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Abstract—Machine learning models are increasingly being
utilized across various fields and tasks due to their outstanding
performance and strong generalization capabilities. Nonetheless,
their success hinges on the availability of large volumes of anno-
tated data, the creation of which is often labor-intensive, time-
consuming, and expensive. Many active learning (AL) approaches
have been proposed to address these challenges, but they often
fail to fully leverage the information from the core phases of
AL, such as training on the labeled set and querying new
unlabeled samples. To bridge this gap, we propose a novel AL
approach, Loss Prediction Loss with Gradient Norm (LPLgrad),
designed to quantify model uncertainty effectively and improve
the accuracy of image classification tasks. LPLgrad operates
in two distinct phases: (i) Training Phase aims to predict the
loss for input features by jointly training a main model and an
auxiliary model. Both models are trained on the labeled data to
maximize the efficiency of the learning process—an aspect often
overlooked in previous AL methods. This dual-model approach
enhances the ability to extract complex input features and learn
intrinsic patterns from the data effectively; (ii) Querying Phase
that quantifies the uncertainty of the main model to guide sample
selection. This is achieved by calculating the gradient norm of
the entropy values for samples in the unlabeled dataset. Samples
with the highest gradient norms are prioritized for labeling and
subsequently added to the labeled set, improving the model’s
performance with minimal labeling effort. Extensive evaluations
on real-world datasets demonstrate that the LPLgrad approach
outperforms state-of-the-art methods by order of magnitude in
terms of accuracy on a small number of labeled images, yet
achieving comparable training and querying times in multiple
image classification tasks. Our code is available at Github.

Index Terms—Active learning, image classification, uncertainty
quantification, loss prediction

I. INTRODUCTION

Machine learning models are being adopted rapidly across
various fields due to their exceptional performance and gen-
eralization capabilities. These models rely on both data and
ground-truth labels to excel in their tasks. However, obtaining
ground-truth labels is often challenging. For instance, in medi-
cal imaging, domain experts must be compensated to annotate
data points, and in speech recognition, labeling audio data at
the word level can take significantly more time than the actual
speech duration [1]. The manual annotation process is both
time-consuming and labor-intensive [2], [3].

Active learning (AL) offers a solution to these challenges
by intelligently selecting the most informative data points for
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labeling, thereby reducing the overall annotation effort [4].
In each active learning round, a set of new unlabeled points
is selected for annotation and added to the labeled set, and
then the target model will be trained on this updated labeled
set (Fig. 1 presents an overview of a typical AL process).
Various AL methodologies have been proposed in recent
years, generally categorized into uncertainty sampling and
diversity sampling. Uncertainty sampling targets data points
where the model is most uncertain about their categories, with
methods such as entropy sampling [5], margin sampling [6],
and least-confidence sampling [5] being popular examples.
Diversity sampling, on the other hand, aims to select the most
diverse samples that represent the entire dataset, with recent
approaches including Coreset [7], variational adversarial AL
(VAAL) [8], and Wasserstein adversarial AL (WAAL) [9].

Challenges. Although AL methods reduce traditional man-
ual annotation efforts, they often fail to fully leverage the
information from the core phases of AL such as training
on labeled set and querying new unlabeled samples. For
example, loss prediction loss (LPL), an uncertainty sampling
method, integrates a loss prediction module with the target
model, yielding two loss values—target loss and prediction
loss—through joint learning. The unlabeled points with the
highest prediction loss values are then chosen for labeling
[10]. However, the hyperparameters in the loss prediction
module can be highly sensitive in large-scale datasets like
Tiny ImageNet [11] and EMNIST [12], leading to performance
degradation [1]. Furthermore, we empirically observe that
selecting points based on prediction loss values is less effective
compared to selecting points based on their entropy values (see
section IV).

On the other hand, methods that utilize output entropy to
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Fig. 2: A visualization of our LPLgrad approach. It highlights the two key components of LPLgrad: training and querying
phases. The process involves 9 steps (represented in red circles): In steps 1 and 2, labeled images £ are processed through the
main model Wi, Where feature maps are extracted and subsequently fed into the auxiliary model wgux. This combination
of models yields two distinct losses, ., and l,x, which are then aggregated to compute the total loss Ly, . From steps 3
to 9, samples from the unlabeled set U/ are processed, producing scores that are passed through a softmax classifier to obtain
entropy values for each sample. These entropy values are back-propagated through wm., to compute the gradient. Then,
LPLgrad calculates the gradient norm and selects the samples with the highest gradient norms for annotating and adding to L.

calculate gradient norm, as proposed by Wang et al. [13]
emphasize the connection between selected samples and model
performance on test data to guide sample selection.

Contributions. In this paper, we propose a novel AL
approach named Loss Prediction Loss with Gradient Norm
(LPLgrad). LPLgrad incorporates an entropy-based method
to quantify model uncertainty, enhancing the accuracy of
image classification. Specifically, our proposed AL approach
is inspired by [10] but differs in three key ways: (i) We do
not use the loss prediction module during the querying phase
as done by [10]; instead, we integrate the loss prediction
module as an auxiliary model with the main model only
during training phase (see the green region in Fig. 2); (ii)
During the querying phase we utilize network probability
scores instead of input features, as they directly indicate the
model’s confidence in its predictions (see the blue region in
Fig. 2); (iii) We conduct enhanced training by learning the
main model and auxiliary model together, and calculate the
output entropy and subsequently the gradient norm of the
unlabeled instances as measures of uncertainty, instead of
predicted loss values as in [10], to capture the best aspects
of both the training and querying phases.

To sum up, our contributions can be summarized as follows:

« We propose a novel AL algorithm called LPLgrad that
leverages a loss prediction module to learn input data

901

features and effectively quantify the network’s uncertainty
on unlabeled data based on their gradient norms. To the
best of our knowledge, this approach is the first of its kind
that addresses a common gap in the literature by utilizing
information from both the training and sampling phases
of AL, enabling more informed and deliberate decisions
about sample selection.

« We integrate a main model throughout the training pro-
cess with the auxiliary model that predicts loss to simul-
taneously learn the parametric auxiliary model and main
model. This allows us to effectively extract input features
and complex patterns within the data. Subsequently, the
model utilizes the gradient norm of unlabeled samples
as a metric of uncertainty, aiding in informed decision-
making during sample querying.

« Extensive evaluation with different annotation budgets on
the visual task such as image classification demonstrates
the superior performance of the proposed method against
the state-of-the-art AL approaches.

II. RELATED WORK

In this section, we will review recent works in AL, which
can be categorized into three main approaches: uncertainty
sampling, diversity sampling and hybrid sampling.
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A. Uncertainty based Methods

This category of AL methods evaluates the informativeness
of unlabeled data points by assessing the uncertainty of the
target deep network regarding these points. They prioritize
selecting those unlabeled points fro annotation and adding to
the labeled set where the model exhibits significant uncer-
tainty. In this context, Wang et al. [5] introduce a metric for
data selection based on model uncertainty, known as entropy
sampling. This metric is one of the most widely used for un-
certainty quantification and data selection. Some of the recent
works that propose active learning approaches include [14]-
[16]. For instance, the authors of [14] proposed a technique
that incorporates both known and unknown data distributions
to measure the model’s uncertainty. Another work, [15] in-
troduced a method that utilizes noise stability in the model’s
parameters as an uncertainty metric. A recent approach by [16]
estimates the model’s uncertainty by employing a Gaussian
process (GP) model as a surrogate for the baseline neural
network learner. Another recent work Verified Pseudo-label
Selection for Deep Active Learning (VERIPS) proposed by [4]
that uses a pseudo-label verification mechanism that consists
of a second network only trained on data approved by the
oracle and helps to discard questionable pseudo-labels.

While the aforementioned methods effectively reduce label-
ing effort, they share a common drawback: they are susceptible
to selecting outliers due to their high uncertainty. Additionally,
focusing predominantly on sampling uncertain points can lead
to unreliable model predictions and querying redundant data,
ultimately decaying model’s performance [2].

B. Diversity based Methods

In this category of AL methods, the learner queries exam-
ples that are representative of the entire data distribution such
as the work in [7], [8]. In [7], the authors proposed the Core-
set approach, which is among the most prominent methods
in diversity-based AL. It frames AL as a coreset problem;
selecting unlabeled samples based on their geometric proper-
ties. Despite its effectiveness, this method is computationally
intensive and has delayed sampling times because it requires
storing an array of labeled samples for comparison with new
samples. The authors of [8] proposed a variational adversarial
AL (VAAL) approach that utilizes a variational autoencoder to
learn the distribution of labeled data in latent space, coupled
with an adversarial network that discriminates between labeled
and unlabeled data. However, VAAL necessitates retraining the
VAE multiple times rendering it computationally intensive.

While diversity-based methods effectively capture the un-
derlying data distribution, they may fail to fully leverage the
information from unlabeled data necessary for training the
task learner. Moreover, these techniques might be insensitive
to data points near the decision boundary, even though such
points could be crucial for the target model to query [2].

In this paper, we propose an uncertainty-based AL algorithm
that addresses the limitations above by leveraging both the
training and querying phases. Our algorithm effectively learns
the features of input data through the joint training of models,
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thereby extracting inherent patterns in the input points and
reducing the likelihood of selecting redundant data. During
the selection phase, it chooses unlabeled points based on their
gradient norm values, which provably reduces the test loss.

III. PROPOSED METHODOLOGY

In this section, we provide a comprehensive explanation
of the components comprising our proposed AL approach,
LPLgrad. We start with the problem formulation and an
overview of the framework, followed by a detailed description
of the two main building blocks of LPLgrad: the Training
Phase and the Querying Phase.

A. Problem Formulation and Framework

Given a pool of unlabeled set of data samples denoted as
U = {z;}¥, with N is the total number of samples, we aim to
solve multi-class classification problem with C' categories. To
do that, we first construct a labeled set of multi-class L =
{xi,y;}2., (y; represents the label of the data point z;) by
randomly selecting B samples from the unlabeled pool U%, .
Here, the superscript ¢ = 0, 1, ... signifies the current round of
AL, which increases by one as the training progresses. We then
utilize a set of models w = {Wmain, Waux } and train them on
LY. The training procedure involves an augmented approach
where both the main model wp,, and the auxiliary model
wy,x are jointly learned.

Once the training on the selected set L% is completed,
we compute the output entropy for all the samples in UL _ 5
(which includes only the remaining unselected samples). These
entropy values represent the loss incurred by wpain. Subse-
quently, we update the w,;, parameters and store the gradient
norm for each sample in the set. These stored values will be
then sorted, and a new B’ samples with the highest gradient
norm will be selected for labeling in the next AL cycle (t+1).

In the subsequent cycle, the updated labeled and unlabeled
sets are denoted as £%;" and UL, respectively. Then, the
main and auxiliary models will be trained on ﬁtg,1 to update
their model weights as w’"! w!f!, respectively. This process
of training and querying new samples continues in subsequent
AL cycles until a certain accuracy threshold is achieved, a
predefined budget of iterations is exhausted, or any other
termination criterion.

Below, we provide a detailed description of our proposed
LPLgrad framework (see red numbered circles in Fig. 2):

Step @ In each AL round ¢, we select a set of labeled
images EtB to feed both the main model w,,;, and
the auxiliary model w,,x. The main model Wy, 1S
designed to extract features from the selected labeled
images and then feed these features to the auxiliary
model w,x. Subsequently, both models W, and
Waux produce losses, which are jointly learned to
generate the total 10ss lioa = Imain + laux-

Step @ Next, the remaining unlabeled images U4 _ 5 will be
fed into the trained wp,, to calculate the prediction
scores.
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Step ® Then, the main model W, outputs a 1 x C' vector of
prediction scores, where C' is the number of classes
in the dataset for our multi-class problem.

Step @ These output prediction scores are then transformed
into a vector of posterior probabilities of the same
size using a softmax classifier.

Step ® After that, we use these resulting probabilities to

compute the entropy (a scalar value) of the model

Wmain for each sample x; in the unlabeled set Z/{]t\,_ B

In this step, the entropy value is treated as a loss that

the model wp,, incurs for that particular sample.

Subsequently, the gradient of this loss is calculated

with respect to the model’s parameters. The size of

Step ©®

this gradient corresponds to the number of layers in
the model.
Step @ Subsequently, the norm of the gradient value

computed in the previous step is determined as
IV w0 H |

Step These gradient norms are then sorted, and the unla-
beled samples with the highest gradient norms are
selected for annotation and inclusion in the labeled
set L.

Step 9 These newly queried samples are annotated by the
oracle and included in the labeled pool, which is
subsequently used to train the main model.

The above steps will be repeated in each AL round r until a
termination criterion is met such as achieving a target accuracy.

B. LPLgrad Training Phase

The training phase of LPLgrad involves two primary mod-
els: the main model wy,, and the auxiliary model w,yx.
LPLgrad trains the model wp,, alongside wg,y, which is
integrated into its architecture to effectively capture intricate
patterns and characteristics within input data. Here’s how it
works:

For each data point z;, we obtain two values: one is the
prediction of the main model ymain = Wmain(z;), and the other
is a feature map F’, which is processed by auxiliary the model
Waux to output the predicted 1oss lyyx = Waux(F'). The loss of
the main model wp,i, is calculated using cross-entropy loss
that takes the predicted value Yman and ground-truth label y;
of the sample x; as inputs, which can be expressed as

N
1

lmain - N Zl ﬁCE (yza ymain) (1)

The loss for the auxiliary model w,.x is computed based

on the predicted loss I,,x and its corresponding ground-truth
loss value I, Which can be presented as:

1

laux = 75
P

P
Z max(O, M — dz : (laux,i - lmain,i)) (2)
i=1

Here, M is a parameter for margin which explains how
much the predicted loss should differ from the ground-truth
loss before a penalty is applied. d in the equation is used to
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Algorithm 1: LPLgrad Training Phase

Input: Labeled pool £, main model wy,;,, auxiliary
module w,,, number of AL rounds 7, number
of epochs in each round £

Output: wl .

1 Initialize Wmain, Waux

2 fort=0,1,2,...,7 do

3 fore=0,1,2,...,& do

4 Feedforward the input data of £ to wp,, and
extract the features of input images as well as
the output predictions of the wWmain.

5 Calculate the loss of the main model [,
using equation (1).

6 Feedforward the extracted features to the w,ux
to obtain /,,x using equation (2).

7 Add both of these losses l,in and l,x using
equation 4.

8 Train both the wy,, and w,y in conjunction
using the calculated losses.

9 | Call Algorithm 2

return The final model w7

main

for the round T

determine the direction of the margin penalty and is computed
as

3)

This ensures that the margin is adjusted correctly, either
penalizing or not penalizing the predicted loss, depending
on the relative difference between the predicted and true
losses. To make the auxiliary model w,,y robust to overall
scale variations in the loss, we construct a mini-batch of P
examples from Lp. We form P/2 data pairs, denoted as
{zP = (2, xn)}, Where aP represents a pair of examples m
and n. The superscript p indicates the loss for a pair of data
points, denoted as laux,; and lmain,; for the auxiliary model and
the main model, respectively, as shown in equation (2).

Note that [, ; in equation (2) represents the predicted
loss for a specific sample in the pair, which is obtained by
processing the extracted features of input through the w,yx
while the overall loss for auxiliary model is denoted by
laux- The auxiliary model w,,x is learned by comparing the
differences between the predicted losses lgam and %, for each
data pair.

The total loss during the training phase is then calculated
as follows:

d; = max(O, lmain,i)

Ltotal = laux + lmain (4)

LPLgrad leverages the extraction of multi-level input fea-
tures obtained from various layers of the main model wWain,
which are subsequently fed into the auxiliary model w,ux.
Specifically, the model w,,x comprises a series of blocks cor-
responding to the layers within the model w,i,. Each block
consists of two distinct layers: a global average pooling layer
and a fully-connected layer. These blocks process the feature
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Algorithm 2: LPLgrad Querying Phase
Input: Unlabeled data pool U, initial labeled pool L,
main model w i, number of AL rounds 7,
annotation budget in each round B

Output: wl .
1fort=01 2 ... , T do
2 Calculate the entropy of each sample in U/ using
equation 6.
3 Calculate the gradient of this calculated entropy

with respect to main model w,, parameters
using equation 7 and subsequently its norm.

4 Select B samples with the highest values for
gradient norm from U.

5 Annotate these selected data points and add them
L to L.

6 Call algorithm 1

7 return main model parameters wﬁain for the round T

maps F' derived from the layers of wp,, model, producing
scalar values representing predicted losses [,,x. Our objective
is to jointly minimize both the predicted loss l,,x generated
by the model w,,x and the actual loss I, determined by the
model wm,in. This optimization strategy enables the model to
not only discern relevant input features but also effectively
integrate rich, multi-level input space information.

Algorithm 1 summarizes the LPLgrad’s training phase.

C. LPLgrad Querying Phase

After training the main model wy,i, alongside the auxiliary
model wqux, LPLgrad transitions to its second phase, which
focuses on querying new samples for labeling. While the
method proposed by Yoo et al. [10] utilizes the w,,x model
to identify the most informative points, our empirical results
reveal a more effective strategy. Specifically, selecting samples
based on their entropy values presents a robust alternative
to the aforementioned approach. The hyperparameters in the
loss prediction module can be highly sensitive in large-scale
datasets like [11] and EMNIST [12] leading to performance
degradation. Moreover, the model’s uncertainty is better esti-
mated using its entropy because it incorporates the model’s
confidence scores directly rather than with an attached loss
prediction module. Specifically, selecting samples based on
their gradient norm values presents a robust alternative to the
aforementioned approach.

To implement this, we begin by extracting the embeddings
of each sample in the unlabeled set z; € Up such that
Z; = Wmain(z;). We then use a softmax classifier to obtain
the posterior probabilities P(y;|z;), which can be expressed
as

e
P(y; = clz;) = m &)
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These posterior probabilities are then used to calculate the
output entropy of each sample, which can be given as

c
H(P(yilv:)) = =Y P(yi = cla;) log P(y; = cla;)  (6)

c=1

where P(y; = c|z;) is the predicted probability for class ¢
given the sample x;, and C is the total number of classes in
the dataset.

We treat this entropy as a loss and perform a backward
pass on the loss function to compute the gradient of the wWmain
model parameters for each sample x;:

_ 5’H(P(yi|$i))

ow main

v'L‘Umain H'L (7)

xT;
The Frobenius norm of these gradients is then calculated to
assess the network’s sensitivity to the input as

9i = |V Hill (8)

Wmain

These gradient norms of all the inputs are subsequently
stored and sorted to identify the highest values, which can
be represented as

{giugiy ce. ?giB} s.t. iy > i, > .2 9ip (9)

In our querying phase, we follow the theoretical insights
presented in [13], which suggest that selecting samples with
higher gradient norms from the unlabeled set can lead to a
reduction in the upper bound of the total loss. Thus, we guide
our selection process by prioritizing samples with the largest
gradient norms for annotation. Subsequently, these selected
samples are added to the labeled set L. Importantly, the
parameters of the wman, model will not be updated during
the selection process of the new samples.
Algorithm 2 summarizes the LPLgrad’s querying phase.

IV. EXPERIMENTS

In this section, we evaluate the performance of LPLgrad
across various datasets and compare its accuracy with several
baseline methods. Additionally, we assess LPLgrad’s computa-
tional performance, including both querying and training time.

A. Experimental Setup

To ensure accurate results, we average all the experiments
over 5 trials and report the mean outcomes. Below, we describe
our setup in detail:

Datasets. We evaluate our proposed approach, LPLgrad,
using four publicly available benchmark datasets: CIFAR-10
[17], CIFAR-100 [17], SVHN [6], Caltech-101 [18], which
are commonly used in state-of-the-art (SOTA) comparisons. In
addition, We validate LPLgrad on another real-world dataset,
comprehensive disaster dataset (CDD) [19], to assess its
robustness. Below, we provide a brief description of each
dataset.
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TABLE I: Datasets, Models, and Training Parameters.

Dataset Size Classes | Model Parameters | Epochs| mini-batch
CIFAR 10 | 70,000 | 10 ResNet-18 | 1,100,000 | 200 128
CIFAR-100 | 70,000 | 10 ResNet-18 | 1,100,000 | 200 128
SVHN 73257 | 10 ResNet-18 | 1,100,000 | 200 128
Caltech101 | 6110 | 101 ResNet-18 | 1,100,000 | 50 80

CDD 8677 | 6 ResNet-18 | 1,100,000 | 50 128

n =0.001 -0.1 H SGD Momentum= 0.9

o CIFAR-10 & CIFAR-100 [17]: are two datasets, with the
former containing 10 different classes and the latter con-
taining 100 classes. Each dataset comprises 60,000 color
images, evenly distributed across the classes. Specifically,
in CIFAR-10, each class has 5000 samples, whereas in
CIFAR-100, each class has 600 samples. The images are
all 32x32 pixels in size and feature various objectives
such as animals, vehicles, etc.

e SVHN [6]: The SVHN (Street View House Numbers)
dataset comprises a total of 630,420 colored images of
house numbers, categorized into 10 classes for each digit.
The images are of size 32x32, similar to CIFAR-10
and CIFAR-100. The dataset is divided into three sets:
73,257 images for training, 26,032 images for testing,
and an extra set containing 530,420 images. For a fair
comparison with other AL methods, we do not use the
extra set provided in the SVHN dataset.

« Caltech-101 [18]: It contains images of objects belonging
to 101 categories, making it a highly imbalanced dataset
with over 100 classes. For instance, there are about 40
to 800 images per category, with most categories having
around 50 images. It contains 5800 training while 2877
test images with each image being roughly 300 x 200
pixels in size.

o Comprehensive Disaster Dataset (CDD) [19]: This
dataset consists of a total of 10,733 images, categorized
into fire disaster, human damage, land disaster, water
disaster, and etc. It is divided into two main sets: 8,591
training images and 2,142 test images, with a total of 6
classes. It is an extremely imbalanced dataset, with the
number of samples per class varying from 29 to 1,668.
These images have a resolution of 32 x 32 pixels.

Baselines. We compare our proposed LPLgrad algorithm
with state-of-the-art AL approaches discussed in the literature
[71, [10], [13], [20]. Specifically, we consider the two main
categories: 1) uncertainty-based methods such as LearningLoss
[10], Ent-GradNorm [13], and entropy [5], and ii) diversity-
based methods such as coreset [7], which have been reviewed
in Sections I and II. In addition, we compare LPLgrad with
non-AL strategies, where unlabeled samples are selected ran-
domly to augment the labeled set. We refer to this method as
random sampling (Rand).

Training Models. To ensure a fair comparison with our
baselines, we train an 18-layer residual network (ResNet-18)
as our main model w,,q;, to perform image classification
across all the experiments. We adhere to the settings and
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TABLE II: Values of B, R and A for all datasets.

CIFAR10 CIFAR100 SVHN Caltech101 CDD
B 1,000 2,500 1,000 500 500
R 25,000 25,000 25,000 2,000 1,000
A 10,000 20,000 10,000 3,500 2,500
B 500 1,000 500 200 200
R 5,000 15,000 10,000 1,000 1,000
A 5,000 8,000 5,000 1,400 1,000

hyperparameters recommended by the baseline studies for
reproducing their results. Additionally, we employ stochastic
gradient descent (SGD) as the optimizer, with a momentum of
0.9 for all datasets. The rest of the training settings for each
dataset are as follows:

« For CIFAR10 and CIFAR100, we use a learning rate (Ir)
of 0.1 and train both w,,4;, and wg,,,; models for 200
epochs, reducing the Ir by a factor of 0.1 after 160 epochs.

e For SVHN, we use a Ir of 0.01 and train both w,,qn
and w g, models for 200 epochs, reducing the Ir by 0.1
after 40 epochs.

o For Caltech-101, the w,,,4in, and w,, models are trained
for 50 epochs with a Ir of 0.01, which is decayed by 0.1
after 40 epochs.

e For CDD, the w,4in and wg,,, models are trained for
200 epochs with a Ir of 0.01, which is decayed by 0.1
after 40 epochs.

For training the ResNet-18 model, we begin with a randomly
selected initial pool of samples B from the large unlabeled
pool to be annotated and transferred to the labeled set, which
is then added to the training dataset. However, we note that
this random selection might result in overlapping images and
similar selections each time. To mitigate this, we employ the
technique used in [21] to obtain a random subset Sg C Un
from the pool of unlabeled samples. This simple technique
proves to be efficient as it reduces redundancy. The value of
R is adjusted for each dataset, depending on the total number
of samples and the size of B, considering differences in dataset
size and class imbalance, as each class within the dataset has
a different number of data points.

In Table II, we detail the query batch size B, the size of the
randomly chosen set R, and the annotation budget (A) for all
experiments across all datasets. The values for A and R have
been chosen following the standard practice in AL literature
[22]-[25]. The upper part of the table provides details for a
high A (with plots shown in Fig. 3), while the lower part
corresponds to a low A (with plots shown in Fig. 4).

B. Results

Comparing LPLgrad with baselines. We first evaluate the
performance of our LPLgrad approach against the baselines
in terms of image classification with a high A. In Table III,
we present detailed results showing that LPLgrad consis-
tently outperforms its counterparts across almost all datasets.
Notably, LPLgrad achieves a significant margin of superi-
ority, especially with challenging datasets such as CIFAR-
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TABLE III: Comparison of LPLgrad vs. baselines on all datasets: CIFAR10, CIFAR100, SVHN, and Caltech-101 for high A.

| CIFAR10 | CIFAR100 | SVHN | Caltech-101
Actively chosen data | 3000 | 6000 | 9000 | 7500 | 12500 | 20000 | 3000 | 6000 | 9000 | 1500 | 250 | 3500
LearningLoss 713 £ 1.1 86.0 = 0.2 89.7 £ 0.3 437 £ 1.1 60.6 + 0.4 66 + 0.5 90 + 0.3 939 £ 0.1 95.1 £ 0.1 36.0 + 0.6 46.8 £ 0.5 535+ 1.0
Entropy 652 +£29 84.1 £ 0.8 889 + 04 444 £ 10 604 £ 0.3 66.5 £ 0.2 89.6 £ 0.3 93.7 £ 0.1 949 £ 0.1 36.9 + 0.4 456 £ 0.8 541+ 15
Ent-GradNorm 68.0 £ 1.3 84.8 + 0.4 89.0 £ 0.2 46.6 £ 0.8 61.7 £ 0.5 66.7 £ 0.2 89.7 £ 0.3 934 £ 0.1 94.8 £ 0.1 383+ 14 475 £ 1.6 544 + 14
Coreset 64.0 £ 19 81.7 £ 0.6 86.0 £ 0.3 443 £ 1.0 59.8 £0.8 64.5 £ 0.6 823+ 0.3 87.6 £ 0.1 89.7 £ 0.1 378 £ 1.3 455 £ 2.1 51.5+£20
Rand 71.7 £ 0.8 83.8 £ 0.7 86.2 £ 0.5 444 £ 18 593 £ 0.6 64.3 £ 0.1 81.9 £ 0.5 87.5 £ 0.1 89.6 + 0.0 36.0 + 1.4 44.1 £ 1.6 50.8 + 1.7
LPLgrad (Ours) 724+ 11 8.2+02 | 90.1+03 | 468+ L1 | 628+ 04 67 £ 1.4 90.2 £0.1 93.7+0.1 95.1£0.0 386+ 1.9 | 49.1£20 | 56.6 + 1.2
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(c) SVHN dataset. (d) Caltech-101 dataset.

Fig. 3: Classification performance of LPLgrad compared to
baseline methods on CIFAR-10, CIFAR-100, SVHN, and
Caltech-101 datasets with high A.

100 and Caltech101. For example, on the Caltech101 dataset,
which is highly imbalanced with over 100 classes, LPLgrad
demonstrates a clear advantage over all baselines, improving
accuracy by approximately 5%. Learningloss [10] emerges
as the second-best performing method, sometimes surpassing
Ent-GradNorm [13]. Entropy often ranks third, followed by
Coreset and Rand. Interestingly, Coreset performs similarly to
Rand in almost all scenarios.

Evaluating the effect of A. In Fig. 3 and 4, we present the
classification accuracy of LPLgrad across various datasets un-
der two different annotation budget (A) settings: high and low.
These results are compared against our baseline approaches.
For instance, in Fig. 3(a), we show the accuracy curves of
our baselines when classifying the CIFAR-10 dataset. Our
approach, LPLgrad, outperforms the baselines across all As,
achieving the highest accuracy of 91% by the final round.
Learningloss [10] is the second-best performing method,
followed by Ent-GradNorm [13] and entropy [5]. Entropy lags
behind Ent-GradNorm for the first seven rounds but catches up
in the last three rounds. Coreset [7], the only diversity-based
method, performs worse than all other methods in the initial
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Fig. 4: Classification performance of LPLgrad compared to
baseline methods on CIFAR-10, CIFAR-100, SVHN, and
Caltech-101 datasets with low A.

half of the AL rounds, eventually aligning with Rand in the
latter half.

For the CIFAR-100 dataset, which is the most challenging
due to its 100 fine-grained classes, Fig. 3(b) demonstrates that
LPLgrad has superior performance compared to all baselines,
reaching a high accuracy of 68%. Here, Ent-GradNorm is
the second-best performing algorithm, followed by entropy
sampling, indicating their effectiveness in a large-scale dataset
setting. Learningloss performs comparably to entropy until
the end. Coreset and Rand are the worst-performing meth-
ods. As a purely diversity-based method, Coreset does not
outperform the uncertainty-based methods like entropy, Ent-
GradNorm, and LPLgrad.

Fig. 3(c) represents the accuracy curves of LPLgrad on the
SVHN dataset. All algorithms perform well on this dataset,
including our LPLgrad approach, achieving > 95% accuracy,
except for Coreset and Rand, which achieve an accuracy of
90%. LearninglLoss performs worse than LPLgrad in the first
half of the rounds but slightly leads in the later rounds. Entropy
and Ent-GradNorm dip around the fifth AL round but stabilize
and perform on par with other algorithms. Finally, Fig. 3(d)
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TABLE IV: Comparison of computational overheads (in seconds) of our LPLgrad against baselines across different datasets.

CIFAR10 CIFAR100 SVHN Caltech101 CDD
Train Time Querying Time Train Time Querying Time Train Time Querying Time Train Time Querying Time Train Time Querying Time
LearningLoss 63.7 15.7 99.7 95 1249 210 280.9 75 63.9 40
Entropy 61.9 14.29 97.5 93 1244 2004 2525 50 59.0 35
Ent-GradNorm 63.1 40 97.9 115 135 202.4 182.5 56.6 55.7 374
Coreset 68.42 2319 97.1 1123 130 2124 197.4 676 63.1 54.5
LPLgrad (Ours) 60.5 14 92 9.3 123 215 252 49.1 60 34.8
76 k
68 e
~ 74 -~
g 266
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% 70 § 64 3 .-} .
3 g 62 )
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Number of labels Number of labels
(a) Round 4
Fig. 5: Classification performance comparison on Comprehen-
sive Disaster Dataset. 2 e

compares LPLgrad against the baselines on the Caltech-101
dataset. LPLgrad clearly outperforms the others, achieving
57.4% accuracy. Ent-GradNorm follows as the second-best
performer. Entropy and Learningloss initially perform poorly
but improve and end up close to Ent-GradNorm. Coreset is
the second-worst AL method, followed by Rand. Uncertainty-
based methods consistently lead over diversity-based methods.
However, all approaches, including LPLgrad, show the lowest
performance on the Caltech-101 dataset compared to the
other datasets, suggesting that increasing the A could improve
results, albeit with more training time needed.

Examining the results with a low A in Fig. 4, LPLgrad
consistently achieves the highest accuracy, outperforming all
baselines across all datasets. An exception is observed in
the Caltech-101 dataset, where the Coreset method initially
achieves higher accuracy than LPLgrad. However, as the learn-
ing curves converge, LPLgrad again surpasses the baseline
methods in accuracy.

Evaluating LPLgrad’s accuracy on a challenging
dataset. We evaluate LPLgrad on a more challenging dataset,
CDD, in Fig. 5 to demonstrate its effectiveness even with
difficult datasets compared to our baselines. In Fig. 5(a),
which depicts results with a high budget A, LPLgrad starts
with an accuracy of around 64%. By the first AL round,
it surpasses all other baselines and continues to achieve the
best performance across all rounds, reaching close to 75%.
LearninglLoss also shows strong performance, ending as the
second-best performing algorithm. Ent-GradNorm attempts to
catch up for almost half the rounds but then its performance
degrades significantly. A similar trend is seen with entropy.
Coreset and Rand both start well, but their performance
declines over the rounds, with Coreset ending up performing
worse than Rand.

Fig. 5(b) presents the results of CDD classification in a
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Fig. 6: t-SNE visualization of feature embeddings generated
by LPLgrad on the CIFAR-10 dataset.

low-budget regime. Here, LPLgrad consistently outperforms
other methods throughout all AL rounds, achieving 69%
accuracy. Due to the low-budget regime, the overall scale of
accuracy is lower compared to the high annotation budget
scenario. Entropy performs fairly well, securing the second-
best position. Interestingly, Ent-GradNorm ends up last in this
case. Coreset, random, and entropy continue to alternate their
positions until the final round.

Comparing LPLgrad’s Computing time against base-
lines. In tabel IV, we show the computation time required
during the training and querying phases of LPLgrad against
our baselines (using Nvidia A100 80GB RAM GPUs). Our
observations indicate that Coreset is the most time-consuming
algorithm due to its need to store all the data and compare new
points with this stored data. On the other hand, LPLgrad per-
forms comparably or even better than Entropy, Ent-GradNorm,
and Learningloss. While in some cases, LPLgrad may require
more querying time due to backpropagation and parameter
updates, this trade-off leads to improved accuracy, rendering
the additional time investment worthwhile.

Evaluating LPLgrad’s feature embeddings. We first
present in Fig. 6 the t-distributed stochastic neighbor em-
bedding (t-SNE) visualization of LPLgrad to illustrate the
distribution of input features across four distinct AL rounds (2,
4, 6, 8). The visualization notably demonstrates that, after only
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Fig. 7: Confidence scores of wpm,in across various AL rounds
on the CIFAR-10 dataset.

8 rounds, LPLgrad effectively labels CIFAR-10 images into
their respective 10 classes. LPLgrad exhibits not only a strong
discriminative ability in differentiating between instances of
various classes but also shows enhanced proficiency in accu-
rately assigning labels to these instances as the AL rounds
progress.

Evaluating LPLgrad’s Confidence score. Next, in Fig. 7,
we present the frequency distribution of the model’s confi-
dence scores for labeled and unlabeled samples of CIFAR-10
dataset, particularly those close to 0.99, across the same AL
rounds (2, 4, 6, 8). We plot the confidence scores for 10,000
unlabeled images in all the subfigures, while the number of
labeled images increases by 1,000 in each subsequent graph,
starting from 1,000. Specifically, Fig. 7(a) illustrates that the
confidence scores for the unlabeled samples are more widely
distributed across the confidence intervals. There are approx-
imately 4,000 images for which the model is confident in
their predictions, but there are 1,000 images with a confidence
frequency of less than 0.99. In contrast, for the labeled images,
almost 700 out of 1,000 have a confidence score between
0.99 and 1. Fig. 7(b) shows the frequency of scores for the
fourth AL round. Evidently, 6,000 unlabeled images now have
confidence scores between 0.99 and 1. Similarly, about 3,500
out of 4,000 are predicted correctly for the labeled samples,
hence decreasing the spread of both the labeled and unlabeled
samples’ confidence scores. Moving to Fig. 7(c), we observe
a further decrease in the spread of bins, indicating that the
model is more confident with both the labeled and unlabeled
images. It gives scores between 0.9 and 1 for about 7,500
unlabeled and 6,000 labeled images. In Fig. 7(d), we show
that the labeled images have surpassed the unlabeled ones,
with about 8,500 and 8,200 out of 10,000, respectively, having
scores between 0.99 and 1.

Evaluating LPLgrad’s class accuracy. In Fig. 8, we
analyze the accuracy of LPLgrad across all 10 classes in the
CIFAR-10 dataset across the four AL classes. Specifically,
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Fig. 8: Per class accuracy values of LPLgrad on CIFAR10.

Fig. 8 shows the results of the second AL round, where the
model exhibits a lack of confidence, with the highest accuracy
reaching only 55.7%. Moving to Fig. 8(b), which depicts
the fourth AL round, we observe significant improvements
across all classes, with the model achieving a peak accuracy
of 80%. Fig. 8(c) illustrates the sixth AL round, where
the model’s proficiency continues to improve, achieving the
highest accuracy of 88.6%. Finally, Fig. 8(d) shows the results
of the eighth AL round, where the model demonstrates a
thorough understanding of the dataset, achieving consistently
high accuracies across all classes, with the highest accuracy
reaching 93.3%.

C. Ablation Study

In this subsection, we delve into the significance of in-
corporating an auxiliary model to enhance the accuracy of
our training pipeline. We explore the impact of integrating
this auxiliary model by comparing results obtained from
standalone training (only using the main model w,,q4in) With
those achieved when the auxiliary model is used. The primary
role of the auxiliary model is to bolster the main model’s
capacity to learn and process input features more efficiently. It
achieves this by introducing an additional set of layers that are
trained concurrently with the main model. This setup allows
the auxiliary model to capture supplementary information and
nuances from the data, which the main model alone might
overlook. By doing so, we aim to improve the overall perfor-
mance, robustness, and generalization of the main model. The
following sections will present detailed results and analyses of
these approaches to highlight the tangible benefits of including
the auxiliary model in our training regimen.

In Table V and VI, we present a comparison under two
different annotation budget settings, A, across four distinct
datasets. These results illustrate that the auxiliary model
consistently supports the main model in achieving higher per-
formance throughout the entire training process. Specifically,
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TABLE V: Accuracy values across different epochs with and
without the auxiliary model model for low A.

with Waux W/0 Waux
1/3 of A 172 of A Entire A 1/3 of A 1/2 of A Entire A
CIFAR-10 52.1 65.7 77.4 49.8 63.3 76.2
CIFAR-100 24.6 43.7 50.2 24.1 42.3 47.7
SVHN 752 88.7 92.4 69.7 86.3 91.2
Caltech-101 22.5 31.4 37.6 14.9 27.6 34.8
TABLE VI: Accuracy values across different epochs with and

without the auxiliary model for high A.

with waux W/0 Waux
1/3 of A 172 of A Entire A 1/3 of A 1/2 of A Entire A
CIFAR-10 722 85.5 90.8 69.8 83.7 89.9
CIFAR-100 47.7 63.4 68.7 47.6 62.1 67.9
SVHN 91 93.5 95.1 89.8 93.3 95
Caltech-101 335 442 53.8 334 438 512

the inclusion of the auxiliary model leads to an approximate
improvement in accuracy of around 8%. This enhancement
is observed across all training epochs, demonstrating the
auxiliary model’s effectiveness in improving the main model’s
performance and stability. The tables provide detailed evidence
of the auxiliary model’s positive impact on both accuracy and
result consistency, regardless of the training phase.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed LPLgrad, a novel AL approach
aimed at addressing a common gap in the literature: the
underutilization of the core phases of AL, specifically the
training and querying phases. To fully exploit the labeled data,
we adopted an augmented approach wherein two models—a
main model and an auxiliary model—are trained together to
optimally learn the features of the input data. Additionally, to
effectively query the most informative samples, we compute
the entropy values of the unlabeled set and backpropagate
these values to obtain loss values. This loss is minimized, and
its gradients with respect to the main model’s parameters are
calculated. The Frobenius norm of gradients is then computed,
sorted, and used to identify the samples with the highest
gradient norm values, which are selected for labeling and
added to the labeled set. We extensively evaluate LPLgrad on
diverse image classification datasets and a real-world dataset
to validate its efficacy. Our findings demonstrate that LPLgrad
surpasses state-of-the-art approaches by achieving higher ac-
curacy with fewer labels and less computing time.

As future work, we plan to explore the application of
LPLgrad to more complex and larger-scale datasets to fur-
ther validate its robustness and scalability. We also aim to
investigate the potential of LPLgrad in domains beyond image
classification, such as natural language processing or time-
series data, which will be a key focus. Finally, we will explore
using LPLgrad in real-time systems where rapid decision-
making with limited labeled data is critical.
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