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Abstract—Machine learning models are increasingly being
utilized across various fields and tasks due to their outstanding
performance and strong generalization capabilities. Nonetheless,
their success hinges on the availability of large volumes of anno-
tated data, the creation of which is often labor-intensive, time-
consuming, and expensive. Many active learning (AL) approaches
have been proposed to address these challenges, but they often
fail to fully leverage the information from the core phases of
AL, such as training on the labeled set and querying new
unlabeled samples. To bridge this gap, we propose a novel AL
approach, Loss Prediction Loss with Gradient Norm (LPLgrad),
designed to quantify model uncertainty effectively and improve
the accuracy of image classification tasks. LPLgrad operates
in two distinct phases: (i) Training Phase aims to predict the
loss for input features by jointly training a main model and an
auxiliary model. Both models are trained on the labeled data to
maximize the efficiency of the learning process—an aspect often
overlooked in previous AL methods. This dual-model approach
enhances the ability to extract complex input features and learn
intrinsic patterns from the data effectively; (ii) Querying Phase
that quantifies the uncertainty of the main model to guide sample
selection. This is achieved by calculating the gradient norm of
the entropy values for samples in the unlabeled dataset. Samples
with the highest gradient norms are prioritized for labeling and
subsequently added to the labeled set, improving the model’s
performance with minimal labeling effort. Extensive evaluations
on real-world datasets demonstrate that the LPLgrad approach
outperforms state-of-the-art methods by order of magnitude in
terms of accuracy on a small number of labeled images, yet
achieving comparable training and querying times in multiple
image classification tasks. Our code is available at Github.

Index Terms—Active learning, image classification, uncertainty
quantification, loss prediction

I. INTRODUCTION

Machine learning models are being adopted rapidly across

various fields due to their exceptional performance and gen-

eralization capabilities. These models rely on both data and

ground-truth labels to excel in their tasks. However, obtaining

ground-truth labels is often challenging. For instance, in medi-

cal imaging, domain experts must be compensated to annotate

data points, and in speech recognition, labeling audio data at

the word level can take significantly more time than the actual

speech duration [1]. The manual annotation process is both

time-consuming and labor-intensive [2], [3].

Active learning (AL) offers a solution to these challenges

by intelligently selecting the most informative data points for

This work was supported by the National Science Foundation (NSF) under
Grant No. 2246187.

Fig. 1: Typical active learning pipeline.

labeling, thereby reducing the overall annotation effort [4].

In each active learning round, a set of new unlabeled points

is selected for annotation and added to the labeled set, and

then the target model will be trained on this updated labeled

set (Fig. 1 presents an overview of a typical AL process).

Various AL methodologies have been proposed in recent

years, generally categorized into uncertainty sampling and

diversity sampling. Uncertainty sampling targets data points

where the model is most uncertain about their categories, with

methods such as entropy sampling [5], margin sampling [6],

and least-confidence sampling [5] being popular examples.

Diversity sampling, on the other hand, aims to select the most

diverse samples that represent the entire dataset, with recent

approaches including Coreset [7], variational adversarial AL

(VAAL) [8], and Wasserstein adversarial AL (WAAL) [9].

Challenges. Although AL methods reduce traditional man-

ual annotation efforts, they often fail to fully leverage the

information from the core phases of AL such as training

on labeled set and querying new unlabeled samples. For

example, loss prediction loss (LPL), an uncertainty sampling

method, integrates a loss prediction module with the target

model, yielding two loss values—target loss and prediction

loss—through joint learning. The unlabeled points with the

highest prediction loss values are then chosen for labeling

[10]. However, the hyperparameters in the loss prediction

module can be highly sensitive in large-scale datasets like

Tiny ImageNet [11] and EMNIST [12], leading to performance

degradation [1]. Furthermore, we empirically observe that

selecting points based on prediction loss values is less effective

compared to selecting points based on their entropy values (see

section IV).

On the other hand, methods that utilize output entropy to
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Fig. 2: A visualization of our LPLgrad approach. It highlights the two key components of LPLgrad: training and querying

phases. The process involves 9 steps (represented in red circles): In steps 1 and 2, labeled images L are processed through the

main model wmain, where feature maps are extracted and subsequently fed into the auxiliary model waux. This combination

of models yields two distinct losses, lmain and laux, which are then aggregated to compute the total loss Ltotal. From steps 3

to 9, samples from the unlabeled set U are processed, producing scores that are passed through a softmax classifier to obtain

entropy values for each sample. These entropy values are back-propagated through wmain to compute the gradient. Then,

LPLgrad calculates the gradient norm and selects the samples with the highest gradient norms for annotating and adding to L.

calculate gradient norm, as proposed by Wang et al. [13]

emphasize the connection between selected samples and model

performance on test data to guide sample selection.

Contributions. In this paper, we propose a novel AL

approach named Loss Prediction Loss with Gradient Norm

(LPLgrad). LPLgrad incorporates an entropy-based method

to quantify model uncertainty, enhancing the accuracy of

image classification. Specifically, our proposed AL approach

is inspired by [10] but differs in three key ways: (i) We do

not use the loss prediction module during the querying phase

as done by [10]; instead, we integrate the loss prediction

module as an auxiliary model with the main model only

during training phase (see the green region in Fig. 2); (ii)

During the querying phase we utilize network probability

scores instead of input features, as they directly indicate the

model’s confidence in its predictions (see the blue region in

Fig. 2); (iii) We conduct enhanced training by learning the

main model and auxiliary model together, and calculate the

output entropy and subsequently the gradient norm of the

unlabeled instances as measures of uncertainty, instead of

predicted loss values as in [10], to capture the best aspects

of both the training and querying phases.

To sum up, our contributions can be summarized as follows:

• We propose a novel AL algorithm called LPLgrad that

leverages a loss prediction module to learn input data

features and effectively quantify the network’s uncertainty

on unlabeled data based on their gradient norms. To the

best of our knowledge, this approach is the first of its kind

that addresses a common gap in the literature by utilizing

information from both the training and sampling phases

of AL, enabling more informed and deliberate decisions

about sample selection.

• We integrate a main model throughout the training pro-

cess with the auxiliary model that predicts loss to simul-

taneously learn the parametric auxiliary model and main

model. This allows us to effectively extract input features

and complex patterns within the data. Subsequently, the

model utilizes the gradient norm of unlabeled samples

as a metric of uncertainty, aiding in informed decision-

making during sample querying.

• Extensive evaluation with different annotation budgets on

the visual task such as image classification demonstrates

the superior performance of the proposed method against

the state-of-the-art AL approaches.

II. RELATED WORK

In this section, we will review recent works in AL, which

can be categorized into three main approaches: uncertainty

sampling, diversity sampling and hybrid sampling.
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A. Uncertainty based Methods

This category of AL methods evaluates the informativeness

of unlabeled data points by assessing the uncertainty of the

target deep network regarding these points. They prioritize

selecting those unlabeled points fro annotation and adding to

the labeled set where the model exhibits significant uncer-

tainty. In this context, Wang et al. [5] introduce a metric for

data selection based on model uncertainty, known as entropy

sampling. This metric is one of the most widely used for un-

certainty quantification and data selection. Some of the recent

works that propose active learning approaches include [14]–

[16]. For instance, the authors of [14] proposed a technique

that incorporates both known and unknown data distributions

to measure the model’s uncertainty. Another work, [15] in-

troduced a method that utilizes noise stability in the model’s

parameters as an uncertainty metric. A recent approach by [16]

estimates the model’s uncertainty by employing a Gaussian

process (GP) model as a surrogate for the baseline neural

network learner. Another recent work Verified Pseudo-label

Selection for Deep Active Learning (VERIPS) proposed by [4]

that uses a pseudo-label verification mechanism that consists

of a second network only trained on data approved by the

oracle and helps to discard questionable pseudo-labels.

While the aforementioned methods effectively reduce label-

ing effort, they share a common drawback: they are susceptible

to selecting outliers due to their high uncertainty. Additionally,

focusing predominantly on sampling uncertain points can lead

to unreliable model predictions and querying redundant data,

ultimately decaying model’s performance [2].

B. Diversity based Methods

In this category of AL methods, the learner queries exam-

ples that are representative of the entire data distribution such

as the work in [7], [8]. In [7], the authors proposed the Core-

set approach, which is among the most prominent methods

in diversity-based AL. It frames AL as a coreset problem;

selecting unlabeled samples based on their geometric proper-

ties. Despite its effectiveness, this method is computationally

intensive and has delayed sampling times because it requires

storing an array of labeled samples for comparison with new

samples. The authors of [8] proposed a variational adversarial

AL (VAAL) approach that utilizes a variational autoencoder to

learn the distribution of labeled data in latent space, coupled

with an adversarial network that discriminates between labeled

and unlabeled data. However, VAAL necessitates retraining the

VAE multiple times rendering it computationally intensive.

While diversity-based methods effectively capture the un-

derlying data distribution, they may fail to fully leverage the

information from unlabeled data necessary for training the

task learner. Moreover, these techniques might be insensitive

to data points near the decision boundary, even though such

points could be crucial for the target model to query [2].

In this paper, we propose an uncertainty-based AL algorithm

that addresses the limitations above by leveraging both the

training and querying phases. Our algorithm effectively learns

the features of input data through the joint training of models,

thereby extracting inherent patterns in the input points and

reducing the likelihood of selecting redundant data. During

the selection phase, it chooses unlabeled points based on their

gradient norm values, which provably reduces the test loss.

III. PROPOSED METHODOLOGY

In this section, we provide a comprehensive explanation

of the components comprising our proposed AL approach,

LPLgrad. We start with the problem formulation and an

overview of the framework, followed by a detailed description

of the two main building blocks of LPLgrad: the Training

Phase and the Querying Phase.

A. Problem Formulation and Framework

Given a pool of unlabeled set of data samples denoted as

U = {xi}
N
i=1 with N is the total number of samples, we aim to

solve multi-class classification problem with C categories. To

do that, we first construct a labeled set of multi-class Lt
B =

{xi, yi}
B
i=1 (yi represents the label of the data point xi) by

randomly selecting B samples from the unlabeled pool U t
N−B .

Here, the superscript t = 0, 1, . . . signifies the current round of

AL, which increases by one as the training progresses. We then

utilize a set of models w = {wmain,waux} and train them on

Lt
B . The training procedure involves an augmented approach

where both the main model wmain and the auxiliary model

waux are jointly learned.

Once the training on the selected set Lt
B is completed,

we compute the output entropy for all the samples in U t
N−B

(which includes only the remaining unselected samples). These

entropy values represent the loss incurred by wmain. Subse-

quently, we update the wmain parameters and store the gradient

norm for each sample in the set. These stored values will be

then sorted, and a new B′ samples with the highest gradient

norm will be selected for labeling in the next AL cycle (t+1).

In the subsequent cycle, the updated labeled and unlabeled

sets are denoted as Lt+1

B′ and U t+1

N−B′ , respectively. Then, the

main and auxiliary models will be trained on Lt+1

B′ to update

their model weights as wt+1

main,w
t+1
aux , respectively. This process

of training and querying new samples continues in subsequent

AL cycles until a certain accuracy threshold is achieved, a

predefined budget of iterations is exhausted, or any other

termination criterion.

Below, we provide a detailed description of our proposed

LPLgrad framework (see red numbered circles in Fig. 2):

Step 1 In each AL round t, we select a set of labeled

images Lt
B to feed both the main model wmain and

the auxiliary model waux. The main model wmain is

designed to extract features from the selected labeled

images and then feed these features to the auxiliary

model waux. Subsequently, both models wmain and

waux produce losses, which are jointly learned to

generate the total loss ltotal = lmain + laux.

Step 2 Next, the remaining unlabeled images U t
N−B will be

fed into the trained wmain to calculate the prediction

scores.
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Step 3 Then, the main model wmain outputs a 1×C vector of

prediction scores, where C is the number of classes

in the dataset for our multi-class problem.

Step 4 These output prediction scores are then transformed

into a vector of posterior probabilities of the same

size using a softmax classifier.

Step 5 After that, we use these resulting probabilities to

compute the entropy (a scalar value) of the model

wmain for each sample xi in the unlabeled set U t
N−B .

Step 6 In this step, the entropy value is treated as a loss that

the model wmain incurs for that particular sample.

Subsequently, the gradient of this loss is calculated

with respect to the model’s parameters. The size of

this gradient corresponds to the number of layers in

the model.

Step 7 Subsequently, the norm of the gradient value

computed in the previous step is determined as

∥∇wmain
Hi∥.

Step 8 These gradient norms are then sorted, and the unla-

beled samples with the highest gradient norms are

selected for annotation and inclusion in the labeled

set Lt
B .

Step 9 These newly queried samples are annotated by the

oracle and included in the labeled pool, which is

subsequently used to train the main model.

The above steps will be repeated in each AL round r until a

termination criterion is met such as achieving a target accuracy.

B. LPLgrad Training Phase

The training phase of LPLgrad involves two primary mod-

els: the main model wmain and the auxiliary model waux.

LPLgrad trains the model wmain alongside waux, which is

integrated into its architecture to effectively capture intricate

patterns and characteristics within input data. Here’s how it

works:

For each data point xi, we obtain two values: one is the

prediction of the main model ymain = wmain(xi), and the other

is a feature map F , which is processed by auxiliary the model

waux to output the predicted loss laux = waux(F ). The loss of

the main model wmain is calculated using cross-entropy loss

that takes the predicted value ymain and ground-truth label yi
of the sample xi as inputs, which can be expressed as

lmain =
1

N

N
∑

i=1

LCE(yi, ymain) (1)

The loss for the auxiliary model waux is computed based

on the predicted loss laux and its corresponding ground-truth

loss value lmain, which can be presented as:

laux =
1

P

P
∑

i=1

max(0,M − di · (laux,i − lmain,i)) (2)

Here, M is a parameter for margin which explains how

much the predicted loss should differ from the ground-truth

loss before a penalty is applied. d in the equation is used to

Algorithm 1: LPLgrad Training Phase

Input: Labeled pool L, main model wmain, auxiliary

module waux, number of AL rounds T , number

of epochs in each round E
Output: wT

main

1 Initialize wmain, waux

2 for t = 0, 1, 2, ..., T do

3 for e = 0, 1, 2, ..., E do

4 Feedforward the input data of L to wmain and

extract the features of input images as well as

the output predictions of the wmain.

5 Calculate the loss of the main model lmain

using equation (1).

6 Feedforward the extracted features to the waux

to obtain laux using equation (2).

7 Add both of these losses lmain and laux using

equation 4.

8 Train both the wmain and waux in conjunction

using the calculated losses.

9 Call Algorithm 2

10 return The final model wT
main for the round T

determine the direction of the margin penalty and is computed

as

di = max(0, lmain,i) (3)

This ensures that the margin is adjusted correctly, either

penalizing or not penalizing the predicted loss, depending

on the relative difference between the predicted and true

losses. To make the auxiliary model waux robust to overall

scale variations in the loss, we construct a mini-batch of P
examples from LB . We form P/2 data pairs, denoted as

{xp = (xm, xn)}, where xp represents a pair of examples m
and n. The superscript p indicates the loss for a pair of data

points, denoted as laux,i and lmain,i for the auxiliary model and

the main model, respectively, as shown in equation (2).

Note that laux,i in equation (2) represents the predicted

loss for a specific sample in the pair, which is obtained by

processing the extracted features of input through the waux

while the overall loss for auxiliary model is denoted by

laux. The auxiliary model waux is learned by comparing the

differences between the predicted losses lpmain and lpaux for each

data pair.

The total loss during the training phase is then calculated

as follows:

Ltotal = laux + lmain (4)

LPLgrad leverages the extraction of multi-level input fea-

tures obtained from various layers of the main model wmain,

which are subsequently fed into the auxiliary model waux.

Specifically, the model waux comprises a series of blocks cor-

responding to the layers within the model wmain. Each block

consists of two distinct layers: a global average pooling layer

and a fully-connected layer. These blocks process the feature
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Algorithm 2: LPLgrad Querying Phase

Input: Unlabeled data pool U , initial labeled pool L,

main model wmain, number of AL rounds T ,

annotation budget in each round B
Output: wT

main

1 for t = 0, 1, 2, ....., T do

2 Calculate the entropy of each sample in U using

equation 6.

3 Calculate the gradient of this calculated entropy

with respect to main model wmain parameters

using equation 7 and subsequently its norm.

4 Select B samples with the highest values for

gradient norm from U .

5 Annotate these selected data points and add them

to L.

6 Call algorithm 1

7 return main model parameters w
T
main for the round T

maps F derived from the layers of wmain model, producing

scalar values representing predicted losses laux. Our objective

is to jointly minimize both the predicted loss laux generated

by the model waux and the actual loss lmain determined by the

model wmain. This optimization strategy enables the model to

not only discern relevant input features but also effectively

integrate rich, multi-level input space information.

Algorithm 1 summarizes the LPLgrad’s training phase.

C. LPLgrad Querying Phase

After training the main model wmain alongside the auxiliary

model waux, LPLgrad transitions to its second phase, which

focuses on querying new samples for labeling. While the

method proposed by Yoo et al. [10] utilizes the waux model

to identify the most informative points, our empirical results

reveal a more effective strategy. Specifically, selecting samples

based on their entropy values presents a robust alternative

to the aforementioned approach. The hyperparameters in the

loss prediction module can be highly sensitive in large-scale

datasets like [11] and EMNIST [12] leading to performance

degradation. Moreover, the model’s uncertainty is better esti-

mated using its entropy because it incorporates the model’s

confidence scores directly rather than with an attached loss

prediction module. Specifically, selecting samples based on

their gradient norm values presents a robust alternative to the

aforementioned approach.

To implement this, we begin by extracting the embeddings

of each sample in the unlabeled set xi ∈ UB such that

zi = wmain(xi). We then use a softmax classifier to obtain

the posterior probabilities P (yi|xi), which can be expressed

as

P (yi = c|xi) =
ezc

∑C

c=1
ezc

(5)

These posterior probabilities are then used to calculate the

output entropy of each sample, which can be given as

H(P (yi|xi)) = −

C
∑

c=1

P (yi = c|xi) logP (yi = c|xi) (6)

where P (yi = c|xi) is the predicted probability for class c
given the sample xi, and C is the total number of classes in

the dataset.

We treat this entropy as a loss and perform a backward

pass on the loss function to compute the gradient of the wmain

model parameters for each sample xi:

∇wmain
Hi =

∂H(P (yi|xi))

∂wmain

∣

∣

∣

∣

xi

(7)

The Frobenius norm of these gradients is then calculated to

assess the network’s sensitivity to the input as

gi = ∥∇wmain
Hi∥F (8)

These gradient norms of all the inputs are subsequently

stored and sorted to identify the highest values, which can

be represented as

{gi1 , gi2 , . . . , giB} s.t. gi1 g gi2 g . . . g giB (9)

In our querying phase, we follow the theoretical insights

presented in [13], which suggest that selecting samples with

higher gradient norms from the unlabeled set can lead to a

reduction in the upper bound of the total loss. Thus, we guide

our selection process by prioritizing samples with the largest

gradient norms for annotation. Subsequently, these selected

samples are added to the labeled set L. Importantly, the

parameters of the wmain model will not be updated during

the selection process of the new samples.

Algorithm 2 summarizes the LPLgrad’s querying phase.

IV. EXPERIMENTS

In this section, we evaluate the performance of LPLgrad

across various datasets and compare its accuracy with several

baseline methods. Additionally, we assess LPLgrad’s computa-

tional performance, including both querying and training time.

A. Experimental Setup

To ensure accurate results, we average all the experiments

over 5 trials and report the mean outcomes. Below, we describe

our setup in detail:

Datasets. We evaluate our proposed approach, LPLgrad,

using four publicly available benchmark datasets: CIFAR-10

[17], CIFAR-100 [17], SVHN [6], Caltech-101 [18], which

are commonly used in state-of-the-art (SOTA) comparisons. In

addition, We validate LPLgrad on another real-world dataset,

comprehensive disaster dataset (CDD) [19], to assess its

robustness. Below, we provide a brief description of each

dataset.
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TABLE I: Datasets, Models, and Training Parameters.

Dataset Size Classes Model Parameters Epochs mini-batch

CIFAR 10 70,000 10 ResNet-18 1,100,000 200 128

CIFAR-100 70,000 10 ResNet-18 1,100,000 200 128

SVHN 73257 10 ResNet-18 1,100,000 200 128

Caltech101 6110 101 ResNet-18 1,100,000 50 80

CDD 8677 6 ResNet-18 1,100,000 50 128

η = 0.001− 0.1 SGD Momentum= 0.9

• CIFAR-10 & CIFAR-100 [17]: are two datasets, with the

former containing 10 different classes and the latter con-

taining 100 classes. Each dataset comprises 60,000 color

images, evenly distributed across the classes. Specifically,

in CIFAR-10, each class has 5000 samples, whereas in

CIFAR-100, each class has 600 samples. The images are

all 32×32 pixels in size and feature various objectives

such as animals, vehicles, etc.

• SVHN [6]: The SVHN (Street View House Numbers)

dataset comprises a total of 630,420 colored images of

house numbers, categorized into 10 classes for each digit.

The images are of size 32×32, similar to CIFAR-10

and CIFAR-100. The dataset is divided into three sets:

73,257 images for training, 26,032 images for testing,

and an extra set containing 530,420 images. For a fair

comparison with other AL methods, we do not use the

extra set provided in the SVHN dataset.

• Caltech-101 [18]: It contains images of objects belonging

to 101 categories, making it a highly imbalanced dataset

with over 100 classes. For instance, there are about 40

to 800 images per category, with most categories having

around 50 images. It contains 5800 training while 2877

test images with each image being roughly 300 × 200

pixels in size.

• Comprehensive Disaster Dataset (CDD) [19]: This

dataset consists of a total of 10,733 images, categorized

into fire disaster, human damage, land disaster, water

disaster, and etc. It is divided into two main sets: 8,591

training images and 2,142 test images, with a total of 6

classes. It is an extremely imbalanced dataset, with the

number of samples per class varying from 29 to 1,668.

These images have a resolution of 32 × 32 pixels.

Baselines. We compare our proposed LPLgrad algorithm

with state-of-the-art AL approaches discussed in the literature

[7], [10], [13], [20]. Specifically, we consider the two main

categories: i) uncertainty-based methods such as LearningLoss

[10], Ent-GradNorm [13], and entropy [5], and ii) diversity-

based methods such as coreset [7], which have been reviewed

in Sections I and II. In addition, we compare LPLgrad with

non-AL strategies, where unlabeled samples are selected ran-

domly to augment the labeled set. We refer to this method as

random sampling (Rand).

Training Models. To ensure a fair comparison with our

baselines, we train an 18-layer residual network (ResNet-18)

as our main model wmain to perform image classification

across all the experiments. We adhere to the settings and

TABLE II: Values of B, R and A for all datasets.

CIFAR10 CIFAR100 SVHN Caltech101 CDD

B 1,000 2,500 1,000 500 500
R 25,000 25,000 25,000 2,000 1,000
A 10,000 20,000 10,000 3,500 2,500

B 500 1,000 500 200 200
R 5,000 15,000 10,000 1,000 1,000
A 5,000 8,000 5,000 1,400 1,000

hyperparameters recommended by the baseline studies for

reproducing their results. Additionally, we employ stochastic

gradient descent (SGD) as the optimizer, with a momentum of

0.9 for all datasets. The rest of the training settings for each

dataset are as follows:

• For CIFAR10 and CIFAR100, we use a learning rate (lr)

of 0.1 and train both wmain and waux models for 200

epochs, reducing the lr by a factor of 0.1 after 160 epochs.

• For SVHN, we use a lr of 0.01 and train both wmain

and waux models for 200 epochs, reducing the lr by 0.1

after 40 epochs.

• For Caltech-101, the wmain and waux models are trained

for 50 epochs with a lr of 0.01, which is decayed by 0.1

after 40 epochs.

• For CDD, the wmain and waux models are trained for

200 epochs with a lr of 0.01, which is decayed by 0.1

after 40 epochs.

For training the ResNet-18 model, we begin with a randomly

selected initial pool of samples B from the large unlabeled

pool to be annotated and transferred to the labeled set, which

is then added to the training dataset. However, we note that

this random selection might result in overlapping images and

similar selections each time. To mitigate this, we employ the

technique used in [21] to obtain a random subset SR ¢ UN

from the pool of unlabeled samples. This simple technique

proves to be efficient as it reduces redundancy. The value of

R is adjusted for each dataset, depending on the total number

of samples and the size of B, considering differences in dataset

size and class imbalance, as each class within the dataset has

a different number of data points.

In Table II, we detail the query batch size B, the size of the

randomly chosen set R, and the annotation budget (A) for all

experiments across all datasets. The values for A and R have

been chosen following the standard practice in AL literature

[22]–[25]. The upper part of the table provides details for a

high A (with plots shown in Fig. 3), while the lower part

corresponds to a low A (with plots shown in Fig. 4).

B. Results

Comparing LPLgrad with baselines. We first evaluate the

performance of our LPLgrad approach against the baselines

in terms of image classification with a high A. In Table III,

we present detailed results showing that LPLgrad consis-

tently outperforms its counterparts across almost all datasets.

Notably, LPLgrad achieves a significant margin of superi-

ority, especially with challenging datasets such as CIFAR-
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TABLE III: Comparison of LPLgrad vs. baselines on all datasets: CIFAR10, CIFAR100, SVHN, and Caltech-101 for high A.

CIFAR10 CIFAR100 SVHN Caltech-101

Actively chosen data 3000 6000 9000 7500 12500 20000 3000 6000 9000 1500 2500 3500

LearningLoss 71.3 ± 1.1 86.0 ± 0.2 89.7 ± 0.3 43.7 ± 1.1 60.6 ± 0.4 66 ± 0.5 90 ± 0.3 93.9 ± 0.1 95.1 ± 0.1 36.0 ± 0.6 46.8 ± 0.5 53.5 ± 1.0

Entropy 65.2 ± 2.9 84.1 ± 0.8 88.9 ± 0.4 44.4 ± 1.0 60.4 ± 0.3 66.5 ± 0.2 89.6 ± 0.3 93.7 ± 0.1 94.9 ± 0.1 36.9 ± 0.4 45.6 ± 0.8 54.1 ± 1.5

Ent-GradNorm 68.0 ± 1.3 84.8 ± 0.4 89.0 ± 0.2 46.6 ± 0.8 61.7 ± 0.5 66.7 ± 0.2 89.7 ± 0.3 93.4 ± 0.1 94.8 ± 0.1 38.3 ± 1.4 47.5 ± 1.6 54.4 ± 1.4

Coreset 64.0 ± 1.9 81.7 ± 0.6 86.0 ± 0.3 44.3 ± 1.0 59.8 ± 0.8 64.5 ± 0.6 82.3 ± 0.3 87.6 ± 0.1 89.7 ± 0.1 37.8 ± 1.3 45.5 ± 2.1 51.5 ± 2.0

Rand 71.7 ± 0.8 83.8 ± 0.7 86.2 ± 0.5 44.4 ± 1.8 59.3 ± 0.6 64.3 ± 0.1 81.9 ± 0.5 87.5 ± 0.1 89.6 ± 0.0 36.0 ± 1.4 44.1 ± 1.6 50.8 ± 1.7

LPLgrad (Ours) 72.4 ± 1.1 86.2 ± 0.2 90.1 ± 0.3 46.8 ± 1.1 62.8 ± 0.4 67 ± 1.4 90.2 ±0.1 93.7±0.1 95.1±0.0 38.6 ± 1.9 49.1 ± 2.0 56.6 ± 1.2

(a) CIFAR-10 dataset. (b) CIFAR-100 dataset.

(c) SVHN dataset. (d) Caltech-101 dataset.

Fig. 3: Classification performance of LPLgrad compared to

baseline methods on CIFAR-10, CIFAR-100, SVHN, and

Caltech-101 datasets with high A.

100 and Caltech101. For example, on the Caltech101 dataset,

which is highly imbalanced with over 100 classes, LPLgrad

demonstrates a clear advantage over all baselines, improving

accuracy by approximately 5%. LearningLoss [10] emerges

as the second-best performing method, sometimes surpassing

Ent-GradNorm [13]. Entropy often ranks third, followed by

Coreset and Rand. Interestingly, Coreset performs similarly to

Rand in almost all scenarios.

Evaluating the effect of A. In Fig. 3 and 4, we present the

classification accuracy of LPLgrad across various datasets un-

der two different annotation budget (A) settings: high and low.

These results are compared against our baseline approaches.

For instance, in Fig. 3(a), we show the accuracy curves of

our baselines when classifying the CIFAR-10 dataset. Our

approach, LPLgrad, outperforms the baselines across all As,

achieving the highest accuracy of 91% by the final round.

LearningLoss [10] is the second-best performing method,

followed by Ent-GradNorm [13] and entropy [5]. Entropy lags

behind Ent-GradNorm for the first seven rounds but catches up

in the last three rounds. Coreset [7], the only diversity-based

method, performs worse than all other methods in the initial

(a) CIFAR-10 dataset. (b) CIFAR-100 dataset.

(c) SVHN dataset. (d) Caltech-101 dataset.

Fig. 4: Classification performance of LPLgrad compared to

baseline methods on CIFAR-10, CIFAR-100, SVHN, and

Caltech-101 datasets with low A.

half of the AL rounds, eventually aligning with Rand in the

latter half.

For the CIFAR-100 dataset, which is the most challenging

due to its 100 fine-grained classes, Fig. 3(b) demonstrates that

LPLgrad has superior performance compared to all baselines,

reaching a high accuracy of 68%. Here, Ent-GradNorm is

the second-best performing algorithm, followed by entropy

sampling, indicating their effectiveness in a large-scale dataset

setting. LearningLoss performs comparably to entropy until

the end. Coreset and Rand are the worst-performing meth-

ods. As a purely diversity-based method, Coreset does not

outperform the uncertainty-based methods like entropy, Ent-

GradNorm, and LPLgrad.

Fig. 3(c) represents the accuracy curves of LPLgrad on the

SVHN dataset. All algorithms perform well on this dataset,

including our LPLgrad approach, achieving g 95% accuracy,

except for Coreset and Rand, which achieve an accuracy of

90%. LearningLoss performs worse than LPLgrad in the first

half of the rounds but slightly leads in the later rounds. Entropy

and Ent-GradNorm dip around the fifth AL round but stabilize

and perform on par with other algorithms. Finally, Fig. 3(d)

Authorized licensed use limited to: University of Maryland College Park. Downloaded on April 23,2025 at 00:48:54 UTC from IEEE Xplore.  Restrictions apply. 



907

TABLE IV: Comparison of computational overheads (in seconds) of our LPLgrad against baselines across different datasets.

CIFAR10 CIFAR100 SVHN Caltech101 CDD

Train Time Querying Time Train Time Querying Time Train Time Querying Time Train Time Querying Time Train Time Querying Time

LearningLoss 63.7 15.7 99.7 95 124.9 210 280.9 75 63.9 40

Entropy 61.9 14.29 97.5 93 124.4 200.4 252.5 50 59.0 35

Ent-GradNorm 63.1 40 97.9 115 135 202.4 182.5 56.6 55.7 37.4

Coreset 68.42 2319 97.1 1123 130 2124 197.4 676 63.1 54.5

LPLgrad (Ours) 60.5 14 92 92.3 123 215 252 49.1 60 34.8

Fig. 5: Classification performance comparison on Comprehen-

sive Disaster Dataset.

compares LPLgrad against the baselines on the Caltech-101

dataset. LPLgrad clearly outperforms the others, achieving

57.4% accuracy. Ent-GradNorm follows as the second-best

performer. Entropy and LearningLoss initially perform poorly

but improve and end up close to Ent-GradNorm. Coreset is

the second-worst AL method, followed by Rand. Uncertainty-

based methods consistently lead over diversity-based methods.

However, all approaches, including LPLgrad, show the lowest

performance on the Caltech-101 dataset compared to the

other datasets, suggesting that increasing the A could improve

results, albeit with more training time needed.

Examining the results with a low A in Fig. 4, LPLgrad

consistently achieves the highest accuracy, outperforming all

baselines across all datasets. An exception is observed in

the Caltech-101 dataset, where the Coreset method initially

achieves higher accuracy than LPLgrad. However, as the learn-

ing curves converge, LPLgrad again surpasses the baseline

methods in accuracy.

Evaluating LPLgrad’s accuracy on a challenging

dataset. We evaluate LPLgrad on a more challenging dataset,

CDD, in Fig. 5 to demonstrate its effectiveness even with

difficult datasets compared to our baselines. In Fig. 5(a),

which depicts results with a high budget A, LPLgrad starts

with an accuracy of around 64%. By the first AL round,

it surpasses all other baselines and continues to achieve the

best performance across all rounds, reaching close to 75%.

LearningLoss also shows strong performance, ending as the

second-best performing algorithm. Ent-GradNorm attempts to

catch up for almost half the rounds but then its performance

degrades significantly. A similar trend is seen with entropy.

Coreset and Rand both start well, but their performance

declines over the rounds, with Coreset ending up performing

worse than Rand.

Fig. 5(b) presents the results of CDD classification in a

(a) Round 2 (a) Round 4

(a) Round 6 (a) Round 8

Fig. 6: t-SNE visualization of feature embeddings generated

by LPLgrad on the CIFAR-10 dataset.

low-budget regime. Here, LPLgrad consistently outperforms

other methods throughout all AL rounds, achieving 69%
accuracy. Due to the low-budget regime, the overall scale of

accuracy is lower compared to the high annotation budget

scenario. Entropy performs fairly well, securing the second-

best position. Interestingly, Ent-GradNorm ends up last in this

case. Coreset, random, and entropy continue to alternate their

positions until the final round.

Comparing LPLgrad’s Computing time against base-

lines. In tabel IV, we show the computation time required

during the training and querying phases of LPLgrad against

our baselines (using Nvidia A100 80GB RAM GPUs). Our

observations indicate that Coreset is the most time-consuming

algorithm due to its need to store all the data and compare new

points with this stored data. On the other hand, LPLgrad per-

forms comparably or even better than Entropy, Ent-GradNorm,

and LearningLoss. While in some cases, LPLgrad may require

more querying time due to backpropagation and parameter

updates, this trade-off leads to improved accuracy, rendering

the additional time investment worthwhile.

Evaluating LPLgrad’s feature embeddings. We first

present in Fig. 6 the t-distributed stochastic neighbor em-

bedding (t-SNE) visualization of LPLgrad to illustrate the

distribution of input features across four distinct AL rounds (2,

4, 6, 8). The visualization notably demonstrates that, after only
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(a) Round 2 (b) Round 4

(c) Round 6 (d) Round 8

Fig. 7: Confidence scores of wmain across various AL rounds

on the CIFAR-10 dataset.

8 rounds, LPLgrad effectively labels CIFAR-10 images into

their respective 10 classes. LPLgrad exhibits not only a strong

discriminative ability in differentiating between instances of

various classes but also shows enhanced proficiency in accu-

rately assigning labels to these instances as the AL rounds

progress.

Evaluating LPLgrad’s Confidence score. Next, in Fig. 7,

we present the frequency distribution of the model’s confi-

dence scores for labeled and unlabeled samples of CIFAR-10

dataset, particularly those close to 0.99, across the same AL

rounds (2, 4, 6, 8). We plot the confidence scores for 10,000

unlabeled images in all the subfigures, while the number of

labeled images increases by 1,000 in each subsequent graph,

starting from 1,000. Specifically, Fig. 7(a) illustrates that the

confidence scores for the unlabeled samples are more widely

distributed across the confidence intervals. There are approx-

imately 4,000 images for which the model is confident in

their predictions, but there are 1,000 images with a confidence

frequency of less than 0.99. In contrast, for the labeled images,

almost 700 out of 1,000 have a confidence score between

0.99 and 1. Fig. 7(b) shows the frequency of scores for the

fourth AL round. Evidently, 6,000 unlabeled images now have

confidence scores between 0.99 and 1. Similarly, about 3,500

out of 4,000 are predicted correctly for the labeled samples,

hence decreasing the spread of both the labeled and unlabeled

samples’ confidence scores. Moving to Fig. 7(c), we observe

a further decrease in the spread of bins, indicating that the

model is more confident with both the labeled and unlabeled

images. It gives scores between 0.9 and 1 for about 7,500

unlabeled and 6,000 labeled images. In Fig. 7(d), we show

that the labeled images have surpassed the unlabeled ones,

with about 8,500 and 8,200 out of 10,000, respectively, having

scores between 0.99 and 1.

Evaluating LPLgrad’s class accuracy. In Fig. 8, we

analyze the accuracy of LPLgrad across all 10 classes in the

CIFAR-10 dataset across the four AL classes. Specifically,

(a) Round 2 (b) Round 4

(c) Round 6 (d) Round 8

Fig. 8: Per class accuracy values of LPLgrad on CIFAR10.

Fig. 8 shows the results of the second AL round, where the

model exhibits a lack of confidence, with the highest accuracy

reaching only 55.7%. Moving to Fig. 8(b), which depicts

the fourth AL round, we observe significant improvements

across all classes, with the model achieving a peak accuracy

of 80%. Fig. 8(c) illustrates the sixth AL round, where

the model’s proficiency continues to improve, achieving the

highest accuracy of 88.6%. Finally, Fig. 8(d) shows the results

of the eighth AL round, where the model demonstrates a

thorough understanding of the dataset, achieving consistently

high accuracies across all classes, with the highest accuracy

reaching 93.3%.

C. Ablation Study

In this subsection, we delve into the significance of in-

corporating an auxiliary model to enhance the accuracy of

our training pipeline. We explore the impact of integrating

this auxiliary model by comparing results obtained from

standalone training (only using the main model wmain) with

those achieved when the auxiliary model is used. The primary

role of the auxiliary model is to bolster the main model’s

capacity to learn and process input features more efficiently. It

achieves this by introducing an additional set of layers that are

trained concurrently with the main model. This setup allows

the auxiliary model to capture supplementary information and

nuances from the data, which the main model alone might

overlook. By doing so, we aim to improve the overall perfor-

mance, robustness, and generalization of the main model. The

following sections will present detailed results and analyses of

these approaches to highlight the tangible benefits of including

the auxiliary model in our training regimen.

In Table V and VI, we present a comparison under two

different annotation budget settings, A, across four distinct

datasets. These results illustrate that the auxiliary model

consistently supports the main model in achieving higher per-

formance throughout the entire training process. Specifically,
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TABLE V: Accuracy values across different epochs with and

without the auxiliary model model for low A.

with waux w/o waux

1/3 of A 1/2 of A Entire A 1/3 of A 1/2 of A Entire A

CIFAR-10 52.1 65.7 77.4 49.8 63.3 76.2

CIFAR-100 24.6 43.7 50.2 24.1 42.3 47.7

SVHN 75.2 88.7 92.4 69.7 86.3 91.2

Caltech-101 22.5 31.4 37.6 14.9 27.6 34.8

TABLE VI: Accuracy values across different epochs with and

without the auxiliary model for high A.

with waux w/o waux

1/3 of A 1/2 of A Entire A 1/3 of A 1/2 of A Entire A

CIFAR-10 72.2 85.5 90.8 69.8 83.7 89.9

CIFAR-100 47.7 63.4 68.7 47.6 62.1 67.9

SVHN 91 93.5 95.1 89.8 93.3 95

Caltech-101 33.5 44.2 53.8 33.4 43.8 51.2

the inclusion of the auxiliary model leads to an approximate

improvement in accuracy of around 8%. This enhancement

is observed across all training epochs, demonstrating the

auxiliary model’s effectiveness in improving the main model’s

performance and stability. The tables provide detailed evidence

of the auxiliary model’s positive impact on both accuracy and

result consistency, regardless of the training phase.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed LPLgrad, a novel AL approach

aimed at addressing a common gap in the literature: the

underutilization of the core phases of AL, specifically the

training and querying phases. To fully exploit the labeled data,

we adopted an augmented approach wherein two models—a

main model and an auxiliary model—are trained together to

optimally learn the features of the input data. Additionally, to

effectively query the most informative samples, we compute

the entropy values of the unlabeled set and backpropagate

these values to obtain loss values. This loss is minimized, and

its gradients with respect to the main model’s parameters are

calculated. The Frobenius norm of gradients is then computed,

sorted, and used to identify the samples with the highest

gradient norm values, which are selected for labeling and

added to the labeled set. We extensively evaluate LPLgrad on

diverse image classification datasets and a real-world dataset

to validate its efficacy. Our findings demonstrate that LPLgrad

surpasses state-of-the-art approaches by achieving higher ac-

curacy with fewer labels and less computing time.

As future work, we plan to explore the application of

LPLgrad to more complex and larger-scale datasets to fur-

ther validate its robustness and scalability. We also aim to

investigate the potential of LPLgrad in domains beyond image

classification, such as natural language processing or time-

series data, which will be a key focus. Finally, we will explore

using LPLgrad in real-time systems where rapid decision-

making with limited labeled data is critical.
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