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ABSTRACT: Pervaporation (PV) is an effective membrane separation process for o ocelbeveicoment]
organic dehydration, recovery, and upgrading. However, it is crucial to improve membrane ‘ . I
materials beyond the current permeability-selectivity trade-off. In this research, we - 1e
introduce machine learning (ML) models to identify high-potential polymers, greatly ' |t
improving the efficiency and reducing cost compared to conventional trial-and-error eoosossszsesss 2 E §
approach. We utilized the largest PV data set to date and incorporated polymer P —
fingerprints and features, including membrane structure, operating conditions, and solute

properties. Dimensionality reduction, missing data treatment, seed randomness, and data e Fremanopemers
leakage management were employed to ensure model robustness. The optimized >{QO 5
LightGBM models achieved RMSE of 0.447 and 0.360 for separation factor and total flux, / oA
respectively (logarithmic scale). Screening approximately 1 million hypothetical polymers :Q, o )

with ML models resulted in identifying polymers with a predicted permeation separation ~ * mp‘w} P
index >30 and synthetic accessibility score <3.7 for acetic acid extraction. This study
demonstrates the promise of ML to accelerate tailored membrane designs.
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1. INTRODUCTION PV performance, the development process still heavily relies on
slow and costly empirical methods.”'” Alternatively, prediction
models have attracted significant interest, as they have the
potential to minimize exhaustive experimental investigations
and offer insights into the influence of features on perform-
ance.

PV performance prediction has traditionally relied on
theoretical models and simulation methods, such as the
pore-flow model, solution-diffusion model, density functional
theory, and molecular dynamics, which have limited
applicability and are computationally intensive.>~'> Machine
learning (ML) has emerged as a data-driven approach to solve
complex, multivariate problems with high computational
efficiency.'®"” ML models have proved to be promising to
facilitate the discovery of new materials and achieve the
targeted design of materials.'®™>> ML models have been
successfully employed to predict polymer properties (e.g., glass
transition temperature, thermal conductivity) based on
polymer structure.”>”>” In addition, ML models showed
great potential to reveal the relationship between materials’

Pervaporation (PV) is widely used for liquid mixture
separation with high product purity, scalability, and high
energy efficiency compared to traditional methods like
distillation, adsorption, and precipitation.”> PV has gained
significant traction in recent years and has been used in solvent
recovery, food processing, pharmaceutics, and desalination.”
More recently, there has been a growing interest in utilizing PV
for the separation of low-concentration organic compounds,
such as acetic acid, ethanol, and isopropanol, from aqueous
solutions.” PV relies on a semipermeable membrane to
separate the feed and permeate streams. The separation
mechanism involves the adsorption of permeating components
onto the membrane surface on the feed side, followed by
diftusion through the membrane and condensation into the
permeate stream.” The separation performance is closely tied
to the properties of the membrane material, with polymeric
membranes being the most commonly investigated due to their
low cost and ease of fabrication.

Hydrophilic PV membranes (e.g., poly(vinyl alcohol) (PVA)
and sodium alginate (NaAlg)) are used for organic
dehydration;®™® less commonly, hydrophobic membranes
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(e.g., poly(dimethylsiloxane) (PDMS) and poly(1-trimethyl- Revised: Apr%l 28, 2024
silyl-1-propyne) (PTMSP)) are employed for extracting Accepted: April 30, 2024
organics from aqueous streams.””'' Although membrane Published: May 14, 2024

modification methods like chemical modification, cross-linking,
and incorporating fillers have been implemented to enhance
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Figure 1. Workflow of ML-model-assisted polymer screening. (A) Prediction model development using the MFF: Generation of MFF from the
simplified molecular input line system (SMILE) expression of polymers’ repeating units. For model development, different model processing
methods are involved, including missing data management (MDM), DLM, and PCA. (B) The developed ML models are then implemented for
high-throughput screening of hypothetical polymers in the PIIM data set (N = 995,799) with promising acetic acid extraction performance; the

evaluation metrics include similarity score, PSI, and SA score.

structure and their properties and could assist the design of
membranes for different processes, but their use in PV
membrane design is limited.”* > Previous studies linked 15
representative chemical functional groups with PV membrane
performance, but the impacts were limited due to the small
sample size (681 samples) compared to the total number of
samples in the literature.”’ Using only 15 chemical functional
groups to describe a wide range of polymers runs into high
risks of missing topological features, and lack of seed
randomness and data leakage management (DLM) also
compromise the model’s robustness and accuracy. Our
previous ML study addressed some of these limitations for
acetic acid/water separation, and we revealed that the mass
ratio was the most significant parameter to predict separation
selectivity.”” Still, current models lack critical functions such as
separation performance prediction and material design.

In this study, we collected and curated the largest database
to date for PV through literature mining, and we then
developed a robust ML model for the first time that can
facilitate the screening of polymers for PV membranes. The
model can greatly advance PV membrane’s manufacturing and
application. The workflow of ML-assisted polymer discovery is
outlined in Figure 1. Polymers’ chemistry was described using
Hashed Morgan frequency fingerprints (MFFs) and recon-
structed via principal component analysis (PCA). The
performance of various ML algorithms was evaluated, and
the light gradient-boosting machine regression (LGBMR)
models demonstrated the highest prediction accuracy on the
testing data set (logarithmic scale). For the separation factor,
the LGBMR models achieved R* and RMSE values of 0.61 and
0.45, respectively, and for total flux, the LGBMR models
achieved R* and RMSE values of 0.40 and 0.36, respectively.
Shapley additive explanations (SHAP) were employed to
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elucidate feature importance at the atomic level, revealing the
most relevant structures for enhancing membrane selectivity.
Furthermore, hypothetical polymers from the PIIM data set
(where PI1M refers to 1 million polymers from the Polymer
Informatics database) were first screened based on their
similarity to the studied polymers in the ML model database.
Out of 995,799 polymers, 183,570 were identified as potential
candidates, based on their high similarity with the studied
polymers from the data set. Applying the developed ML
models to the PIIM data set, we identified 88,363 polymers
with promising potential for acetic acid extraction from water,
which are expected to surpass the current upper limit (i.e.,
permeation separation index, PSI > 4.36). Finally, the viability
of fabricating the screened polymers was assessed using a
synthetic accessibility (SA) score.

2. METHODS

2.1. Data Collection. The sample sizes of the two data sets
are summarized in Table S1. The PV data set was established
based on literature data using data mining-assisted data
collection, details in Text S1.** The PV data set consisted of
2341 data points (Supporting Excel), with 52 unique polymers
and 32 types of organic solutes. The PIIM data set included
995,799 hypothetical polymers learned via an RNN trained on
SMILES strings of existing polymers in PoLylnfo, as
constructed by Ma and Luo.”* These 995,799 hypothetical
polymers have been widely employed for ML-assist polymer
discovery.”> The SMILE of polymers from both the collected
data set and PI1M data set includes polymerization points and
the bonding information between monomers using “*”.

2.2. Fingerprint Generation and Process Description.
Features related to polymer composition, membrane morphol-
ogy, operating conditions, and solute properties were used to

https://doi.org/10.1021/acs.est.4c00060
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Figure 2. Summary of PV performance based on different (A) polymers and (B) organic solutes. N in the plot represents the sample size for each
category. EtOH stands for ethanol, n-BuOH stands for n-butanol, MeOH stands for methanol, EG stands for ethylene glycol, and THF stands for
Tetrahydrofuran. The box represents the interquartile range (IQR) of the data, which is the range between the first quartile (Q1) and the third
quartile (Q3). The black line inside the box represents the mean value. The whiskers extend from the edges of the box to the minimum and

maximum data points.

develop the prediction models for separation factor and total
flux, separately. Molecular fingerprints as numerical represen-
tations of molecules are widely used in cheminformatics and
drug discovery, with high flexibility for new or hypothetical
chemical structures.” The MFF is a type of circular fingerprint
that not only captures the substructures present in a molecule
but also includes overall topological features (details in Text
S2). MFFs for polymers were generated (highlighted in
orange). In a fingerprint vector, each bit represents certain
substructures, and the number of occurrences of each
substructure is calculated from the substructure frequency.*®
Taking PDMS as an example (Figure S1), the feature at bit 22
corresponds to substructure (0,2), where the center (Si) atom
was labeled as 0 (blue circle) and 2 represents the substructure
cropped with a radius of 2 (solid line). In this work, all
polymer MFFs were generated with a maximum radius of 2,
and bit length = 1024.

Twelve key input features were selected based on domain
knowledge, including selective layer thickness (I), filler size,
filler concentration, cross-linker concentration, experimental
temperature (T), downstream pressure (P), mass ratio
between components A and B (a,,3), effluent type, effective
area (A), organics’ Hildebrand solubility parameter (§),
organics’ dielectric constant (¢), and organics’ molar volume
(V). Detailed descriptions of these input features are included
in Text S3 and Tables S2 and S3. We selected two metrics as
output features to evaluate the PV performance, namely, total
flux J (kg m™> h™") and separation factor f35/,. For a given feed
stream composition, a membrane with a higher fg,, indicates
better selectivity. We also included PSI to represent the PV
performance affected by the trade-oft between ] and S, ,, while
PSI = (B4 —1) X J.

2.3. Data Preprocessing. To obtain robust results, we
followed rigorous data preprocessing and model development
recommendations outlined in Zhu et al.”” Collected data were
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reprocessed via removal, replacement, filling, dimension
reduction, and feature scaling before and during the modeling;
details can be found in Text $4.>

2.4. Model Development and Optimization. We
followed the procedures introduced in our previous work
(Yang et al.) to develop a more robust DLM-based model. For
all modeling in this work, data points from the same study
were bundled into the same subset (e.g, training, testing,
pretraining, and validation) to avoid data leakage. We first
assessed the variance of a reference model based on 101 seeds
(from 0 to 1000 with an interval of 10) because the choice of
seed could lead to different data splitting, resulting in a huge
discrepancy in the final prediction performance. We selected a
representative seed to generate relatively average results based
on the overall accuracy index (OAI) (eq 1), which represents
overall model performance from R?, RMSE, and MAE; the
details of calculating OAI are shown in Text SS.

RZ

OAl= ———
MAE x RMSE (1)

The reference model we used was CatBoost regression (CBR)
(number of iterations = 300), the optimal model identified by
Yang et al.”” In addition to CBR, extra trees regression (ETR),
random forest regression (RFR), and LGBMR were applied to
compare the performance. LGBMR was selected due to its
outperforming computatmnal speed and memory consumption
(details in Text $6).** Second, by fixing the seed, we split the
data into training and testing (18—22%) subsets, and the
training subset was further divided into 3 predefined folds
based on data distribution and DLM to minimize a serious
data imbalance. Third, we applied cross-validation and grid
search using the 3-fold predefined training data to search the
optimal method and model structure. The detailed information
for the hyperparameters in the grid search is explained and
summarized in Text S6 and Table S6. Finally, once the optimal
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Figure 3. Model development and prediction results for the separation factor. (A) Primary seeds assessment using R>, MAE, and RMSE based on
the testing data set using CBR. (B) Box plots showing performance (RMSE) comparison between RFR, ETR, CBR, and LGBMR using DLM-
based data segmentation and a predefined CV approach based on the training data set (seed 370). (C) Comparison between reported and
predicted separation factor (logarithmic) data based on the testing data set using the optimal LGBMR model; note that data from the same
(anonymous) study are shown in the same mark. Prediction performance using the testing data set before and after optimization is also displayed.
(D—H) Model interpretation by analyzing the contribution of features using SHAP for separation factor prediction. SHAP summary plot of (D)
features’ contribution, (E) organics’ molar volume, (F) mass ratio, (G) PC1, and (H) PC2.
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model was identified, we deployed the model structure to the
entire training data set to update the model parameters and
then assessed the model generalization using the testing data
set. The above procedures were used to determine optimal
models.

2.5. Model Explanation. In this work, SHAP was
employed to explain the established model by analyzing the
contribution between different features, where the importance
of each feature is calculated into the output value (Text $7).*
Specifically, the Shapley value was retrained with all possible
features’ subsets, and the model prediction variance was
calculated. To further unveil the contribution from specific
chemical structures for the important PC identified from
SHAP analysis, we also uncovered the original fingerprints and
traced the fingerprints back to the chemical substructures.

2.6. Potential Polymer Screening. The developed ML
models were then implemented in the PI1M data set to screen
promising polymers for acetic acid extraction due to the
industrial need for efficient acetic acid/water separations and
interest in resource recovery.'’ MFFs of polymers in the PI1IM
data set were calculated with the same fingerprint vector. To
improve the feasibility of polymer synthesis and to facilitate the
understanding of the effect of chemical composition on
separation performance, we first screened 995,799 polymers
based on their similarity (i.e., similarity score >0.9) to the 52
studied polymers (Text S8). In addition, PCA obtained from
model training was applied to the candidate polymers’ MFF.
Other input features were replaced with their mean values in
the PV data set. The two best models established in Section 2.4
were then applied to the previously selected hypothetical
polymers, and their predicted values (i.e., Sz, and J) were
obtained. Their PSIs were calculated and acted as evaluation
metrics for the polymer screening.

In addition to performance, we used the SA score as an
indicator of the economic and practical feasibility of using
hypothetical polymers to further screen out targeted
polymers.*' SA score is calculated based on a combination of
fragment contributions and complexity penalties, which can
quantitatively indicate the difficulty of polymer synthesis
(details in Text $9).** As a result, the final polymer candidates
are predicted to be more advantageous in terms of both
separation performance and synthetic feasibility.

3. RESULT AND DISCUSSION

3.1. Data Sets and Data Analysis. The PV performance
(P4 and J) for the PV data set is summarized in Figure S2.
The PSI for organic dehydration has a maximum value of
12,723.80 and an average of 105.96, while the PSI for organic
extraction has a maximum value of 1285 and an average of
87.20. In addition, Figure S3 provides the distributions of
selected key features, where all followed the normal
distribution. Figure S4 summarizes the extensively studied
polymers and organic solutes from the PV data set. Figure 2A
displays histograms of the 13 most investigated polymers, with
their corresponding log(fs,4) and log(J) distributions. Table
S7 summarizes the sample sizes for a total of 52 polymer types.
Among these 52 polymers, PVA, NaAlg, and chitosan are the
most extensively studied hydrophilic polymers. Notably, PVA
emerges as the most frequently used polymer overall,
accounting for almost 25% of the data points in the database.
Among hydrophilic polymers, PPO exhibits the highest median
value of log(f3z/,), followed by NaAlg. PEBA membrane is
widely investigated for organic extraction (e.g., phenol and

isopropyl alcohol) and exhibits good selectivity for high boiling
bioproducts, and it exhibits a favorable median value of log(J).
Among hydrophobic polymers, PDMS received the most
attention, followed by PTMSP and PPSU. Interestingly,
PTMSP demonstrates better selectivity of organics from
H,O (higher log(fz4)) compared to other hydrophobic
polymers and the highest average log(J). The density of the
1024 fingerprint bits for the 52 studied polymers is shown in
Figure SS.

Figure 2B illustrates the 12 most extensively studied organic
solutes in the collected data set. Detailed descriptions of the
sample sizes for all 32 types of organics are summarized in
Table S8. Among the organic solutes, ethanol (EtOH), acetic
acid, and 2-propanol (isopropanol) emerged as the most
studied, followed by n-butanol (n-BuOH) and methanol
(MeOH). It is worth noting that these organic solutes possess
boiling points similar to those of H,O and can form azeotropic
mixtures, making traditional distillation methods ineffective.
Interestingly, the separation of ethylene glycol and 1,4-dioxane
from H,O appears to achieve both a satisfactory total flux and
relatively good selectivity. This outcome can likely be
attributed to the significant differences in liquid properties
compared with H,O, thus enabling effective separation.

The literature data analysis did not reveal significant
correlations between the selected input features (experimental
temperature, mass ratio, and selective layer thickness) and the
separation performance indicators (Figure S6). Furthermore,
according to the Pearson correlation coefficient (r) and
Spearman correlation coefficient (ry) analysis (Figures S7—
S8), the organics’ dielectric constant exhibited a high
correlation with the organics’ Hildebrand solubility parameter.
To prevent issues of multicollinearity in the model, the
organics’ dielectric constant was subsequently excluded from
the input features.

3.2. Performance of ML Models for Separation Factor
Prediction. The preliminary seed test for prediction of
separation factor shows a large discrepancy (e.g., R* from 0.269
to 0.686) of prediction performance (R?, MAE, and RMSE) for
different seeds based on the testing data set, indicating the
necessity of seed randomness assessment (Figure 3A). Seed
370 (OAI ~ 1.82) was selected, as it provided similar results
compared to the average performance (OAI = 1.80). Before
optimization, the preliminary model exhibited a severe
overfitting issue, which could be caused by the mixed quality
of the data and overtraining of the model. To minimize
overfitting due to overtraining, we used a series of strategies,
including CV, model regularization, feature subsampling, and
bootstrap/bagging. Model hyperparameter optimization
(HPO) experiments suggested that LGBMR was able to
achieve the lowest RMSE (average ~ 0.62) during CV, with a
feature fraction of 0.4, a learning rate of 0.05, a maximum
depth of 12, a minimum child samples of 5, a number of
estimators of 400, a number of leaves of 30, and a
regularization lambda of 3 (Figure 3B). In other words, only
40% of features and the L, regularization penalty based on a
magnitude of 3 were used to train the model to minimize
overfitting. The 1024 fingerprint features were transformed
into 11 important PCs (Figure S9A). The final prediction
results show that the model obtained better performance after
optimization in terms of R* (0.61), MAE (0.61), and RMSE
(0.45), and the OAI was increased from 1.69 to 2.23 (Figure
3C). Nonetheless, the substantial performance gap between
the training and testing subsets indicates that the overfitting
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issue primarily stems from the mixed quality of data obtained
from different studies. Among the 37 different studies in the
testing data set, it is evident that data from some studies (e.g.,
dark gray diamonds) align closely with the perfect diagonal line
(i.e., results were accurately predicted by the model), whereas
data from some others (e.g, green pluses) deviate more
strongly from the line (Figure 3C). Because of the mixed-
quality nature of the training data set, the model was trained
with both high-quality and poorly fitted data sets. A potential
solution lies in utilizing additional relevant, high-quality
experimental studies in the future, which may alleviate the
issue. It is also worth noting that ML models without DLM (as
have been reported in many previous ML studies) can easily
achieve overoptimistic results (e.g, R* > 0.9).>%

The influence of input features on the predicted separation
factors was analyzed by using the Shapley values. Shapley
values quantify the feature’s contribution to the predicted
separation factor, as shown in the hierarchy in the SHAP
summary plot (Figure 3D). Specifically, the color in the plot
represents the value of the input feature, ranging from low
(blue) to high (red). For example, the blue color represents a
low temperature, while the red color indicates a high
temperature. The absolute SHAP value denotes the contribu-
tion of the input feature with a higher absolute value
representing a greater contribution. A positive Shapley value
indicates that an increase in the input feature is associated with
a higher predicted parameter. Conversely, a negative Shapley
value implies that an increased input feature is associated with
a lower predicted parameter. A higher feature value with a
higher predicted parameter indicates a positive correlation and
vice versa.

Figure 3D presents the SHAP summary plot for the
predicted separation factor. Among all of the input features,
organic molar volume ranks first and shows a positive
correlation with SHAP values. This indicates that a larger
organic molar volume is associated with a higher predicted
separation factor (Figure 3E). In the PV data set, it is observed
that H,O has a relatively small molar volume (18.07 cm?®
mol™"), while most organic solutes have larger molar volumes
(e.g., MeOH with 40.49 cm® mol™?, acetic acid with 57.25 cm?®
mol™"). Therefore, the permeation rate of organic solutes from
water is expected to be higher for solutes with smaller molar
volumes compared to those with larger molar volumes."
Consequently, the selectivity would be higher for organic
solutes with larger molar volumes. The mass ratio (A/B) ranks
second (Figure 3F), and in agreement with our previous study,
a positive correlation is observed.”” This means that a higher
mass ratio is associated with a higher separation factor. In the
context of organic dehydration, a lower ratio of H,O in the
feed corresponds to a higher selectivity for H,O, which aligns
with experimental observations.”* Typically, as the water
saturation in the feed solution decreases, the water solubility
and diffusivity tend to increase. This can lead to increased
intermolecular friction and reduced water permeation during
transport through the membrane. Consequently, when the feed
solution has a higher concentration of organic solute (a larger
mass ratio), water permeation through the membrane becomes
more pronounced. In the case of organic extraction, as the
concentration of organic solutes increases, they exhibit
stronger sorption interactions with the hydrophobic mem-
brane. This increased interaction causes the membrane to swell
further, resulting in the creation of free volume and mobility
within the membrane. Consequently, the diffusion rate of both

organic solutes and H,O are enhanced. However, the diffusion
rate of H,O increases more significantly due to its smaller
molecular diameter (e.g,, 0.26 nm for H,O vs 0.52 nm for
ethanol). As a result, the selectivity decreases.*>*°

PCI ranked third for predicting the separation factor. To
elucidate the correlation between PC1 and the separation
factor (Figure 3G), we uncovered the contribution of 1024
fingerprint bits to PC1, which investigated which molecular
substructures contribute the most to the prediction (Figure
S10 and Table S9). The top 10 fingerprint bits of PC1 include
849, 726, 356, 718,1019, 715, 896, 322, 650, and 891. Both
Bit 849 and Bit 356 represent atomic sites on the benzene
ring, but the unbranched carbon on the benzene ring
(Bit_849) is more important than the linked branched carbon
(Bit_356). Bit_726 represented the carbon—carbon bond on
the benzene ring. Additionally, Bits 718, 715, and 896
represented substructures with two chemical bonds away
from the central carbon atom on the benzene ring (Radius =
2), and these substructures include atoms on the branch chain,
such as O, S, and C. The importance between these atoms
follows O > S > C as the rest of the substructure remained
similar. This difference possibly originates from the differences
in electronegativity and polarity. Because O has greater
electronegativity than S and C, the C—O bond exhibits
stronger polarity compared to C—S and C—C bonds. The
presence of a benzene ring is important, as benzene rings
consist of relatively nonpolar C—C and C—H bonds, which are
not effectively solvated by water, making benzene rings highly
stable and hydrophobic. It is also noteworthy that two of the
top 10 most important bits are unrelated to the benzene ring.
Bit_1019 is related to the carbon atom on a six-carbon ring,
which forms a nonpolar bond with adjacent carbon atoms.
Second, Bit 650 corresponds to the oxygen atom on an
oxygen—carbon bond, which is a polar covalent bond.

PC2 ranked fourth and demonstrates a positive correlation
with the separation factor (Figure 3H). The most important
bit in PC2 is Bit_1019 (Figure S11 and Table S10), which
corresponds to the carbon atom on a six-carbon ring.
Additionally, Bits 807, 463, and 233 are associated with the
hydroxyl group, which contributes to a higher selectivity for
H,O due to its polarity. Furthermore, Bits 695, 897, 299, and
983 correspond to substructures related to the ether group,
where ethers can form hydrogen bonds with water since the
oxygen atom is attracted to the partially positive hydrogens in
water molecules. This interaction may also contribute to higher
selectivity for H,O.

Based on Figure 3D, the effective membrane area ranked
fifth. It is observed that a smaller effective area is associated
with a higher separation factor (Figure S12). However, this
observation has rarely been discussed, prompting us to delve
deeper into representative studies. On the one hand, we
examined 7 representative studies that utilized membranes
with an area larger than 200 cm’ of which 3 employed
commercial membranes obtained from suppliers. On the other
hand, we investigated 15 studies with a membrane area smaller
than 8 cm? all of which utilized lab-synthesized membranes.
This analysis suggests a possible hypothesis: the new
membranes developed with high selectivity were fabricated
by using new/advanced materials or synthetic processes that
are not yet available for scale-up. Specifically, 7 out of the 15
studies developed mixed matrix membranes with inorganic
fillers and 2 employed hybrid membranes.
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Figure 4. Model development and prediction results for flux. (A) Primary seeds assessment using R*, MAE, and RMSE based on the testing data set
using CBR. (B) Box plots showing performance (RMSE) comparison between RFR, ETR, CBR, and LGBMR using DLM-based data segmentation
and a predefined CV approach based on the training data set (seed 220). (C) Comparison between reported and predicted flux (logarithmic) data
based on the testing data set using the optimal LGBMR model notes that data from the same (anonymous) study are shown in the same mark.
Prediction performance using the testing data set before and after optimization is also displayed. (D—H) Model interpretation by analyzing the
contribution of features using SHAP for total flux prediction. SHAP summary plot of (D) features’ contribution, (E) experimental temperature, (F)
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Figure 5. Screening of polymers from PI1M data set. (A) Summary of predicted PV performance of polymers in PI1M data set. The light-yellow
slice means the critical value S, as the current state-of-the-art PSI for acetic acid extraction is 4.6. (B) Expanded graph indicating screened polymers
with the highest predicted PSL. The dashed lines represent PSI = 15, 20, and 2S. (C) Highlight polymers in (B), where “A” indicate the

polymerization points.

3.3. Performance of ML Models for Total Flux
Prediction. In general, similar results, albeit with relatively
lower accuracy, were obtained for flux prediction compared to
the separation factor prediction. Based on the preliminary seed
test (Figure 4A), we selected seed 220 (OAI & 1.32) as it was
very similar to the average OAI (~1.31). Similar to separation
factor prediction, LGBMR outperformed the other tree-based
methods and obtained the lowest RMSE (average ~ 0.64).
Interestingly, the optimal model structure was also similar, with
only the exception being the number of leaves of S0 (Figure
4B). This difference reflects the need for greater model
complexity to gain more useful information for total flux
prediction compared with separation factor prediction.
Another minor difference was found when information on
the fingerprint features was extracted based on 10 PCs (Figure
S9B). The optimal model helped to increase R* (0.24 — 0.40)
and reduce MAE (0.55 — 0.47 kg/m”/h) and RMSE (0.39 —
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0.36 kg/m*/h) (Figure 4C). Among the 40 different studies in
the testing data set, the discrepancy in data positions for
different studies seems to be more significant for total flux than
for the separation factor. For example, data from one study
(hexagons in wine color on the right side) exhibited almost a
vertical line, suggesting minor changes in the total flux with
substantial differences in experimental conditions (causing
different predicted values). Data from another study (triangles
in light blue on the left side) showed an opposite pattern as a
horizontal line, indicating that the model is not sensitive to the
differences in the experimental conditions explored in that
study. The model was also found to be overoptimized (e.g., R*
> 0.85) and less robust when data splitting with strict DLM
was not integrated.

In Figure 4D, the experimental temperature ranked first
among all input features and demonstrated a positive linear
correlation with J (Figure 4E), indicating that higher

https://doi.org/10.1021/acs.est.4c00060
Environ. Sci. Technol. 2024, 58, 10128—10139


https://pubs.acs.org/doi/suppl/10.1021/acs.est.4c00060/suppl_file/es4c00060_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.4c00060/suppl_file/es4c00060_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.est.4c00060?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.4c00060?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.4c00060?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.4c00060?fig=fig5&ref=pdf
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.4c00060?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Environmental Science & Technology

pubs.acs.org/est

Synthetic Accessibility

PSI kg m? ")

o
n

20 25

30

Permeation Separation Index (kg m~ h')

35

4 0

L.

O
)

Figure 6. Evaluation of the synthetic accessibility and permeation separation index of correlated polymers in the PI1M data set, where “A” indicate

polymerization points.

temperatures could result in higher total flux. The increase in
temperature enhances the driving force for mass transfer due to
the higher partial pressure and increased diffusion coefficient of
a given solute.””™ Furthermore, thermal agitation, charac-
terized by the frequency and amplitude of polymer chain
movement, also increases with the temperature. This leads to
the expansion of the free volume within the membrane and
facilitates solute diffusion.”® The selective layer thickness
ranked second and showed a negative correlation with the J
(Figure 4F), which aligns with previous studies and is
consistent with theoretical models such as Fick’s equation
and the solution-diffusion model.”"

The mass ratio ranked third and exhibited a negative
correlation with J (Figure 4G). In the context of both organic
dehydration and organic extraction, a higher feed concen-
tration (lower mass ratio) indicates that more target molecules
come into contact with the selective layer of the membrane.
Consequently, due to membrane selectivity, more target
molecules are adsorbed to the membrane, causing greater
swelling in the top layer of the membrane. This allows more
target molecules to pass through the swollen membrane,
leading to increased permeability with higher feed con-
tent."”>>® The effective area is ranked fourth (Figure 4H)
and has a negative correlation with J. This means that, similar
to the separation factor, increasing the effective area is not
favorable for achieving a higher total flux. The relatively low
total flux observed for membranes with larger effective areas
may be attributed to the fact that the fabrication of advanced
membranes requires novel technologies that have not yet been
proven scalable. Also, bench-scale results are often obtained
under different operating conditions pilot- and commercial-
scale results; in particular, larger module areas can result in
reduced driving force along the length of the module.’"*
Thus, membrane scale-up should be a key research focus to
improve PV membrane selectivity and permeability. Addition-
ally, the filler concentration ranked fifth and exhibited a
positive correlation with J. This suggests that the addition of
fillers could facilitate solute permeation, as the thickness of
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composite membranes is typically smaller than that of
homogeneous membranes or possibly due to the defects
caused by membrane fabrication with fillers.

As stated earlier, the performance of the currently developed
models is still limited due to the mixed-quality nature of the
training data set, which could be possibly improved by future
high-quality data sets. Despite the model accuracy, conducting
SHAP on a model with DLM would be more reliable than a
model without DLM since the model developed with DLM is
more robust. Besides, it is worth noting that the SHAP analysis
of the currently established models could be limited to drawing
conclusions about feature importance. In addition, based on its
nature, SHAP explains the importance of features based on ML
models instead of real-life PV performance. Therefore, more
experiments and simulations are essential to validate the
importance of different influencing factors in the real PV
process.

3.4. High-Throughput Polymer Screening and Iden-
tification from Hypothetical Polymers. We applied the
established prediction models to identify promising polymers
for separating acetic acid from water. The current upper-bound
limit of homogeneous polymeric membranes for acetic acid
extraction is summarized in Figure S13. Table S11 provides
details of the input features, excluding polymers, with the
effluent type set as 1 to indicate organic extraction as the
separation objective. The chemical space of the studied
polymers and PI1M polymers is shown in Figure S15, where
PC1 and PC2 explained 70% data variance (Table SS). The
similarity scores between 995,799 hypothetical polymers and
52 studied polymers were compiled in Figure S14. To ensure
the feasibility of polymer synthesis, we screened out 183,570
hypothetical polymers with higher similarity (>0.9) to the
previously studied polymers. Subsequently, we applied the
best-established models from above for separation factor and
total flux (Table S12) to these 183,570 hypothetical polymer-
sthen the PSI was calculated for each polymer. As a result, we
identified 27,344 polymers with predicted PSI values exceeding
the current upper bond limit by 130% (Figure SA). Polymers
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with the highest predicted log(PSI) values are highlighted and
expanded in Figure SB. Clear patterns emerge in the two
marked regions, indicating highly promising predicted
separation performance (i, PSI > 25); see details in Table
S$13. Upon comparison of the two marked regions (Figure SC),
we observe that the polymers in the blue region exhibit higher
total flux despite a relatively lower separation factor. The
molecular structure of these polymers suggests that their high
flux may be attributed to the presence of long carbon chains.
These long chains are expected to result in a greater molar
volume, which in turn increases the free volume within the
membrane. This increased free volume facilitates solute
transport, leading to higher total flux. Conversely, the polymers
in the green region demonstrate a lower total flux compared to
the blue region while exhibiting attractive separation factors,
indicating greater selectivity for acetic acid over water. Upon
analyzing their molecular structures, we found that all of the
polymers in the green region contain more than two benzene
rings. Benzene rings have been identified as important features
in the model interpretation, as discussed in Section 3.2. These
rings consist of relatively nonpolar C—C and C—H bonds,
which are not effectively solvated by water. The increased
hydrophobicity associated with benzene rings may contribute
to the selectivity of these polymers for organic solutes over
water.

After promising polymers were identified, their synthetic
complexity and feasibility were assessed using SA scores. The
details of the SA scores can be found in Text S6. Figure 6
illustrates the evaluation of PSI and SA scores of the 183,570
hypothetical polymers with higher similarity (>0.9) to
previously studied polymers. We selected three marked regions
based on SA score (<3, 3—5, and >$) to further analyze the
relationship between PSI and SA score based on their
distribution patterns (details in Table S14). A clear pattern
emerged in Figure 6. In the region where the SA score is
greater than S, five polymers were selected (a—e), all of which
exhibited unsatisfactory PSI. From their molecule structure,
polymers a—c exhibit complex cyclic structures, making their
synthesis inaccessible. Compound d has a relatively simple
structure of a repeating unit, but a polymeric compound
involving a recurring nitrogen—nitrogen double bond could be
challenging. Compound e also consists of benzene rings and
multiple C—N double bonds and ether bonds, which increase
its synthetic complexity. From the SA region of 3-S5, four
compounds (a, f3, 7, and 5) were selected. All of these four
compounds have shown promising predicted PSI. For
synthetic accessibility, compounds a and S consist of a long
carbon chain and ring structure, thus exhibiting moderate
synthetic complexity. As for compounds y and 9, although they
contain only one ring structure, the benzene ring, they also
incorporate other elements besides C and O, such as fluorine
(F), phosphorus (P), silicon (Si), etc. Additionally, they
consist of various chemical bonds, such as Si—O, N—P, and S—
P. From the region where the SA score is less than 3, six
polymers were selected (1—6). Among these, polymers labeled
1, 2, 3, and 4 exhibited both satisfactory PSI and relatively low
SA scores, making them promising candidates for future
exploration of acetic acid recovery. However, polymers S and 6
sacrifice PSI despite their relatively low SA scores, which can
be attributed to their symmetrical molecular structure and
recurring benzene rings.

In addition, it is also valuable to evaluate the structural
characteristics such as free volume for the identified polymers

10137

because for single-polymeric dense membranes, the mass
transport mainly occurs within the free volume of the
amorphous regions. Therefore, to quantify the FFV of the
membranes formed by polymers, we also developed a
CatBoost Regression model that could predict the FFV using
the data set acquired by Tao et al. (Text $10).°° As a result,
our established model performance on the testing data set was
R* = 0.88, and RMSE = 0.0092. Then, we employed the
polymers from the PIIM polymer data set after the first
screening (N = 183,570) as the testing data set and acquired
their predicted FFVs (Figure S16). As a result, we listed the
predicted FFV for the top 10 selected polymers with the best
PV performance (Table S15).

Taking into account the SA score, we summarized the top
10 polymers with the highest PSI along with their respective
SA scores in Table S15. Among the top 10 polymers, those
with long carbon chains (specifically, 37 carbons) exhibited
relatively low SA scores, indicating that their synthetic
pathways are feasible. These polymers hold great promise for
future experimental studies, which may involve validating their
predicted performance through experiments or conducting
process modeling to fully assess their suitability for PV
applications.
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