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Abstract—In this paper, an augmented analysis of a delay-angle
information spoofing (DAIS) is provided for location-privacy
preservation, where the location-relevant delays and angles are
artificially shifted to obfuscate the eavesdropper with an incorrect
physical location. A simplified misspecified Cramér-Rao bound
(MCRB) is derived, which clearly manifests that not only estima-
tion error, but also the geometric mismatch introduced by DAIS
can lead to a significant increase in localization error for an
eavesdropper. Given an assumption of the orthogonality among
wireless paths, the simplified MCRB can be further expressed as a
function of delay-angle shifts in a closed-form, which enables the
more straightforward optimization of these design parameters for
location-privacy enhancement. Numerical results are provided,
validating the theoretical analysis and showing that the root-
mean-square error for eavesdropper’s localization can be more
than 150 m with the optimized delay-angle shifts for DAIS.

Index Terms—Localization, location-privacy, delay-angle esti-
mation, spoofing, misspecified Cramér-Rao bound, stability of the
Fisher Information Matrix.

I. INTRODUCTION

Due to the large-scale proliferation of location-based ser-
vices, accurate location estimation for user equipment (UE)
has been widely investigated. With the proposed widespread
deployment of millimeter wave (mmWave) multi-antenna sys-
tems, UE locations can be precisely estimated via advanced
estimation algorithms [1]–[5]. However, these methods cannot
distinguish between an authorized device (AD) performing the
localization or that of an unauthorized device (UD). Thus
the nature of the wireless channel means that signals can
be eavesdropped and UD’s can localize [1]–[5] thus leaking
location-relevant information [6], [7].

To preserve privacy at the physical layer, the wireless
channel itself or its statistics is usually exploited [6]–[15].
Given accurate channel state information (CSI), artificial noise
injection [8] and transmit beamforming [6], [9] have been
designed specifically for location-privacy enhancement, which
either decreases the received signal-to-noise ratio (SNR) for
UDs or hides the location-relevant delay-angle information.
However, accurately acquiring CSI is expensive for resource-
limited devices. To limit the location-privacy leakage without
CSI, a fake path injection (FPI) is initially proposed in [7]. By
virtually injecting a few fake paths with a precoder design, a
statistically harder estimation problem is created for UDs [5],
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[7], [16]. A similar deceptive jamming design is examined in
[11].

Herein, we consider an approach that seeks to de-stabilize
the eavesdropper’s (UD’s) estimator while maintaining good
performance for the AD. To this end, there is some similarity
between analyses of stability of the super-resolution problem
[17]–[20] and our examination of the Fisher Information
Matrix (FIM) associated with the UD’s localization task. In
particular, we derive appropriate lower bounds that enable the
assessment of the performance degradation of the UD. The
prior stability work studies the impact of the implicit resolution
limit between sources and the singularity of the FIM.

In particular, we build upon our prior work which designs
a delay-angle information spoofing (DAIS) strategy in [12],
where the UE (Alice) can be virtually moved to an incorrect
location via shifting all the location-relevant delays and angles.
We underscore that the methods in [7] and [12] are not noise
injection schemes which require the exchange of realizations
of noise; in contrast, a handful of numbers (versus a waveform)
are shared secretly between the UE and the AD.

While a misspecified Cramér-Rao bound (MCRB) [21]–[23]
was developed in [12], a strategy by which to design artificial
delay-angle shifts to maximize location privacy was not devel-
oped as minimizing certain values is insufficient to guarantee
an increase in privacy. We seek to close this gap herein.

While the optimization of these shifts rely on the CSI,
understanding such an association is a key step for a more
robust, practical design in the future. We note that the analysis
of optimizing MCRB is to further degrade UD’s localization
accuracy, in contrast to the analysis of the stability of the FIM
[24] or the secrecy rate for secure communications [25]. The
main contributions of this paper are:

1) The MCRB on UD’s localization derived in [12] is
further simplified, providing a more clear insight on the
obfuscation caused by DAIS [12].

2) Under an assumption of the orthogonality among the
paths, the simplified MCRB is explicitly expressed as
a function of the shifts for the delays and angles in a
closed-form, suggesting the design of these key param-
eters.

3) Numerical results show that, in terms of UD’s localiza-
tion, the root-mean-square error (RMSE) with the DAIS
method proposed in [12] can be more than 150 m if
the delay-angle shifts are properly adjusted, validating
theoretical analysis and the efficacy of DAIS.
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Fig. 1. System model.

We use the following notation. Scalars are denoted by lower-
case letters x and column vectors by bold letters x. The i-th
element of x is denoted by x[i]. Matrices are denoted by bold
capital letters X and X[i, j] is the (i, j)-th element of X . Il
is reserved for a l× l identity matrix. The operators ∥x∥2, |x|,
R{x}, I{x}, ⌊x⌋, and diag(A) stands for the ℓ2 norm of x, the
magnitude of x, the real part of x, the imaginary part of x, the
largest integer that is less than x, and a diagonal matrix whose
diagonal elements are given by A, respectively. (x)(t1,t2] with
t1 < t2 is defined as (x)(t1,t2] ≜ x −

⌊
x−t1
t2−t1

⌋
(t2 − t1) and

E{·} is used for the expectation of a random variable. The
operators Tr(·), (·)T, (·)H and (·)−1, are defined as the trace,
the transpose, the conjugate transpose, and the inverse of a
vector or matrix, respectively.

II. SYSTEM MODEL

We consider the system model of [12] as depicted in Figure
1. The UE (Alice) is at an unknown position p⋆ = [p⋆x, p

⋆
y]

T ∈
R2×1 and is to be localized by an AD. Alice sends pilot signals
over a public channel that can be overheard by the UD (Eve)
at position z⋆ = [z⋆x, z

⋆
y ]

T ∈ R2×1 that is unknown to Alice.
Assume Eve knows the pilot signals. Without any location-
privacy preservation, Alice’s location can be exposed if Eve
leverages an effective localization algorithm, such as [1]–[5].

A. Signal Model

In an augmentation to [12], we adopt mmWave multiple-
input-single-output (MISO) orthogonal frequency-division
multiplexing (OFDM) signaling, where Alice is equipped with
Nt antennas, transmitting G signals over N sub-carrier, while
Eve has only a single antenna. Denoting by x(g,n) and f (g,n) ∈
CNt×1 the g-th symbol transmitted over the n-th sub-carrier
and the associated beamforming vector, respectively, we can
express the pilot signal as s(g,n) ≜ f (g,n)x(g,n) ∈ CNt×1.
Assume that each pilot signal transmitted over the n-th sub-
carrier are independent and identically distributed and we
have E{s(g,n)(s(g,n))H} = 1

Nt
INt . For the wireless channel

between Alice and Eve, in addition to one available line-of-
sight (LOS) path, it is assumed that there exist K non-line-of-
sight (NLOS) paths, produced by K scatterers at an unknown
position v⋆

k = [v⋆k,x, v
⋆
k,y]

T ∈ R2×1, with k = 1, 2, · · · ,K, re-
spectively. For notational convenience, let k = 0 correspond to
the LOS path and define v⋆

0 ≜ z⋆. Denote by c, λc, d, B, Ts ≜
1
B , and α(θ) ≜

[
1, e−j

2πd sin(θ)
λc , · · · , e−j

2π(Nt−1)d sin(θ)
λc

]T
∈

CNt×1, the speed of light, wavelength, distance between
antennas designed as d = λc

2 , bandwidth, sampling period,
and a steer vector for an angle θ, respectively. Given the
narrowband assumption, i.e., B ≪ φc ≜ c

λc
, the n-th sub-

carrier public channel vector can be modeled as [4], [12]

h(n) ≜
K∑

k=0

γ⋆ke
−j2πnτ⋆

k
NTs α

(
θ⋆Tx,k

)H ∈ C1×Nt , (1)

where γ⋆k , τ⋆k , and θ⋆Tx,k are the channel coefficient, the time-
of-arrival (TOA), and the angle-of-departure (AOD) of the k-th
path, respectively. Then, the received signal is given by

y(g,n) = h(n)s(g,n) + w(g,n), (2)

for n = 0, 1, · · · , N − 1 and g = 1, 2, · · · , G, where w(g,n) ∼
CN (0, σ2) is independent, zero-mean, complex Gaussian noise
with variance σ2. According to the geometry, the TOA and
AOD of the k-th path can be derived as

τ⋆k =
∥v⋆

0 − v⋆
k∥2 + ∥p⋆ − v⋆

k∥2
c

,

θ⋆Tx,k = arctan

(
v⋆k,y − p⋆y
v⋆k,x − p⋆x

)
,

(3)

where τ⋆k ∈ (0, NTs] and θ⋆Tx,k ∈ (−π
2 ,

π
2 ] [5]. As in [12],

without of loss of generality, the orientation angle of the
antenna array and the clock bias are assumed to be zero
for the analysis in this paper. Herein, we provide further
analysis over that in [12] to provide values for our spoofing
design parameters. Thus, we review the CSI-free DAIS method
proposed in [12] before providing our extensions.

B. Review of Delay-Angle Information Spoofing [12]

Denote by ∆τ and ∆θ two design parameters used for the
DAIS design. To protect Alice’s location from being accurately
inferred by Eve with the location-relevant channel estimates,
we shift the TOAs and AODs of the paths based on ∆τ and
∆θ, respectively

τ̄k = (τ⋆k +∆τ )(0,NTs]
(4a)

θ̄Tx,k = arcsin
((

sin(θ⋆Tx,k) + sin(∆θ)
)
(−1,1]

)
. (4b)

To shift the associated TOAs and AODs, a precoding matrix
Φ(n) ∈ CNt×Nt is designed as

Φ(n) ≜ e−j 2πn∆τ
NTs diag

(
α (∆θ)

H
)
, (5)

for n = 0, 1, · · · , N − 1. Accordingly, the signal received
through the public channel can be re-expressed as

ȳ(g,n) = h̄(n)s(g,n) + w(g,n), (6)
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where h̄(n) ≜
∑K

k=0 γ
⋆
ke

−j2πnτ̄k
NTs α

(
θ̄Tx,k

)H
is a virtual chan-

nel for the n-th sub-carrier, with distinct TOAs and AODs as
compared with the original channel h(n).

III. ANALYSIS OF EVE’S LOCALIZATION ACCURACY WITH
DELAY-ANGLE INFORMATION SPOOFING

A. Misspecified Cramér-Rao Bound [12]

Denote by ξ̄ ≜
[
τ̄T, θ̄T

Tx,R{γ⋆}, I{γ⋆}
]T ∈ R4(K+1)×1

a vector of the unknown channel parameters,
where τ̄ ≜ [τ̄0, τ̄1 · · · , τ̄K ]

T ∈ R(K+1)×1,
θ̄Tx ≜

[
θ̄Tx,0, θ̄Tx,1 · · · , θ̄Tx,K

]T ∈ R(K+1)×1,
and γ⋆ ≜ [γ⋆0 , γ

⋆
1 , · · · , γ⋆K ]T ∈ R(K+1)×1. Define

ū(g,n) ≜ h̄(n)s(g,n). The FIM for the estimation of ξ̄
can be derived as [26]

Jξ̄ =

2

σ2

N−1∑
n=0

G∑
g=1

R

{(
∂ū(g,n)

∂ξ̄

)H
∂ū(g,n)

∂ξ̄

}
∈ R4(K+1)×4(K+1).

(7)
Let η̄ ≜ [τ̄T, θ̄T

Tx]
T ∈ R2(K+1)×1 represent the location-

relevant channel parameters and the FIM Jξ̄ is partitioned

into Jξ̄ =

[
J

(1)

ξ̄
J

(2)

ξ̄

J
(3)

ξ̄
J

(4)

ξ̄

]
, with J

(m)

ξ̄
∈ R2(K+1)×2(K+1), for

m = 1, 2, 3, 4. For the analysis of localization accuracy, we
consider the channel coefficients as nuisance parameters and
the effective FIM for the estimation of the location-relevant
channel parameters η̄ is given by [27]

Jη̄ = J
(1)

ξ̄
− J

(2)

ξ̄

(
J

(4)

ξ̄

)−1

J
(3)

ξ̄
∈ R2(K+1)×2(K+1). (8)

Denote by ϕ⋆ ≜ [(p⋆)T, (v⋆
1)

T, (v⋆
2)

T, · · · , (v⋆
K)T]T ∈

R2(K+1)×1, η̂Eve, and ϕ̂Eve, a vector of the true locations of
Alice and scatterers, Eve’s estimate of η̄, and a misspecified-
unbiased estimator of ϕ⋆, respectively. The misspecified
Cramér-Rao bound for the MSE of Eve’s localization is given
by [12], [23],

E
{(

ϕ̂Eve − ϕ⋆
)(

ϕ̂Eve − ϕ⋆
)T}

⪰ Ψϕ̄⋆ ≜ A−1
ϕ̄⋆Bϕ̄⋆A−1

ϕ̄⋆ + (ϕ̄⋆ − ϕ⋆)(ϕ̄⋆ − ϕ⋆)T,

(9)

where Aϕ̄⋆ ∈ R2(K+1)×2(K+1) and Bϕ̄⋆ ∈ R2(K+1)×2(K+1)

are two generalized FIMs, defined as

Aϕ̄⋆ [r, l] ≜ EgT(η̂Eve|ϕ⋆)

{
∂2

∂ϕ̄⋆[r]∂ϕ̄⋆[l]
log gM(η̂Eve|ϕ̄⋆)

}
,

(10)
and

Bϕ̄⋆ [r, l]

≜ EgT(η̂Eve|ϕ⋆)

{
∂ log gM(η̂Eve|ϕ̄⋆)

∂ϕ̄⋆[r]

∂ log gM(η̂Eve|ϕ̄⋆)

∂ϕ̄⋆[l]

}
,

(11)
for r, l = 1, 2, · · · , 2(K +1), while gT(η̂Eve|ϕ⋆), gM(η̂Eve|ϕ̄),
and the vector ϕ̄⋆ ≜ [(p̄⋆)T, (v̄⋆

1)
T, (v̄⋆

2)
T, · · · , (v̄⋆

K)T]T ∈
R2(K+1)×1 represent the true and misspecified distributions
of η̂Eve, and the pseudo-true locations of Alice and scatterers,

respectively. Assume that the true and misspecified distribu-
tions of η̂Eve are characterized by the following two models,

gT(η̂Eve|ϕ⋆) : η̂Eve = u(ϕ⋆) + ϵ, (12a)
gM(η̂Eve|ϕ̄) : η̂Eve = o(ϕ̄) + ϵ, (12b)

where ϵ is a zero-mean Gaussian random vector with co-
variance matrix Ση̄ ≜ J−1

η̄ and u(·) (or o(·)) is a function
mapping the location information ϕ⋆ (or ϕ̄) to the location-
relevant channel parameters η̄ according to the true geometric
model defined in Equation (4) (or the misspecified geometric
model defined in Equation (3)). Due to the effect of potential
phase wrapping caused by the proposed DAIS scheme, the
pseudo-true locations of Alice and scatterers are given by [12],

p̄⋆ = z − cτ̄kmin [cos(θ̄Tx,kmin), sin(θ̄Tx,kmin)]
T, (13a)

v̄⋆kmin,x =
1

2
b̄⋆0 cos(θ̄Tx,0) + p̄⋆x, (13b)

v̄⋆kmin,y =
1

2
b̄⋆0 sin(θ̄Tx,0) + p̄⋆y, (13c)

v̄⋆k,x =
1

2
b̄⋆k cos(θ̄Tx,k) + p̄⋆x, if k ̸= kmin, (13d)

v̄⋆k,y =
1

2
b̄⋆k sin(θ̄Tx,k) + p̄⋆y, if k ̸= kmin, (13e)

where kmin ≜ argmink τ̄k and

b̄⋆k =
(cτ̄k)

2 − (zx − p̄⋆x)
2 −

(
zy − p̄⋆y

)2
cτ̄k − (zx − p̄⋆x) cos(θ̄Tx,k)−

(
zy − p̄⋆y

)
sin(θ̄Tx,k)

,

(14)
with k = 1, 2, · · · ,K. We emphasize that due to the phase
wrapping, the estimate of the original LOS may not have the
smallest delay; however, when we perform localization, the
path with smallest shifted TOA is assumed to be the LOS path.
The notation kmin = k means the k-th path will be viewed as
the LOS path. Though the degradation of Eve’s localization
accuracy and the identifiability of the design parameters ∆ ≜
[∆τ ,∆θ]

T ∈ R2×1 have been computed in [12], it is not very
clear how ∆ affects Eve’s performance. Therefore, the design
of ∆ will be further investigated in this paper based on the
analysis of MCRB derived in Equation (9).

B. Analysis of Misspecified Cramér-Rao Bound

With key preliminaries in hand, we can now present the new
contributions of the current work. By substituting the pseudo-
true locations of Alice and scatterers in Equation (13) into
Equation (9), we can simplify the MCRB for Eve’s localization
as follows.

Corollary 1: Given the true and misspecified distributions
of the estimated parameters η̂Eve in Equation (12), the MSE
of Eve’s localization can be bounded as

E
{(

ϕ̂Eve − ϕ⋆
)(

ϕ̂Eve − ϕ⋆
)T}

⪰ Ψϕ̄⋆ = J−1
ϕ̄⋆ + (ϕ̄⋆ − ϕ⋆)(ϕ̄⋆ − ϕ⋆)T.

(15)

Proof: When the vector of the pseudo-true locations of Al-
ice and scatterers ϕ̄⋆ is set according to Equation (13), it
can be verified that o(ϕ̄⋆) = u(ϕ⋆), which indicates that
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gT(η̂Eve|ϕ⋆) = gM(η̂Eve|ϕ̄) for ϕ̄ = ϕ̄⋆ according to Equation
(12). Hence, Bϕ̄⋆ [r, l] = −Aϕ̄⋆ [r, l] holds due to

Aϕ̄⋆ [r, l] = EgT(η̂Eve|ϕ⋆)

{
∂2

∂ϕ̄⋆[r]∂ϕ̄⋆[l]
log gM(η̂Eve|ϕ̄⋆)

}
=

(
∂

∂ϕ̄⋆[l]

(
∂o(ϕ̄⋆)

∂ϕ̄⋆[r]

))T

Σ−1
η̄ EgT(η̂Eve|ϕ⋆)

{
η̂Eve − o(ϕ̄⋆)

}
−
(
∂o(ϕ̄⋆)

∂ϕ̄⋆[r]

)T

Σ−1
η̄

∂o(ϕ̄⋆)

∂ϕ̄⋆[l]

(a)
= −

(
∂o(ϕ̄⋆)

∂ϕ̄⋆[r]

)T

Σ−1
η̄

∂o(ϕ̄⋆)

∂ϕ̄⋆[l]
,

(16)
and
Bϕ̄⋆ [r, l]

= EgT(η̂Eve|ϕ⋆)

{
∂ log gM(η̂Eve|ϕ̄⋆)

∂ϕ̄⋆[r]

∂ log gM(η̂Eve|ϕ̄⋆)

∂ϕ̄⋆[l]

}
,

=

(
∂o(ϕ̄⋆)

∂ϕ̄⋆[r]

)T

Σ−1
η̄ EgT(η̂Eve|ϕ⋆)

{(
η̂Eve − o(ϕ̄⋆)

)
·
(
η̂Eve − o(ϕ̄⋆)

)T}
Σ−1

η̄

∂o(ϕ̄⋆)

∂ϕ̄⋆[l]

(b)
=

(
∂o(ϕ̄⋆)

∂ϕ̄⋆[r]

)T

Σ−1
η̄

∂o(ϕ̄⋆)

∂ϕ̄⋆[l]
,

(17)
where (a) and (b) follow from o(ϕ̄⋆) = u(ϕ⋆) = η̄ given
ϵ ∼ N (0,Ση̄). Then, the lower bound for the MSE of Eve’s
localization can be simplified into

Ψϕ̄⋆ = A−1
ϕ̄⋆Bϕ̄⋆A−1

ϕ̄⋆ + (ϕ̄⋆ − ϕ⋆)(ϕ̄⋆ − ϕ⋆)T

=

((
∂o(ϕ̄⋆)

∂ϕ̄⋆

)T

Σ−1
η̄

∂o(ϕ̄⋆)

∂ϕ̄⋆

)−1

+ (ϕ̄⋆ − ϕ⋆)(ϕ̄⋆ − ϕ⋆)T

=

((
∂η̄

∂ϕ̄⋆

)T

Σ−1
η̄

∂η̄

∂ϕ̄⋆

)−1

+ (ϕ̄⋆ − ϕ⋆)(ϕ̄⋆ − ϕ⋆)T

=
(
ΠT

ϕ̄⋆Jη̄Πϕ̄⋆

)−1

+ (ϕ̄⋆ − ϕ⋆)(ϕ̄⋆ − ϕ⋆)T

= J−1
ϕ̄⋆ + (ϕ̄⋆ − ϕ⋆)(ϕ̄⋆ − ϕ⋆)T,

(18)
where Πϕ̄⋆ ≜ ∂η̄

∂ϕ̄⋆ , concluding the proof. □
Remark 1 (Interpretation of the simplified MCRB): The

lower bound consists of two parts, i.e., Ψ
(i)

ϕ̄⋆ ≜ J−1
ϕ̄⋆ and

Ψ
(ii)

ϕ̄⋆ ≜ (ϕ̄⋆ − ϕ⋆)(ϕ̄⋆ − ϕ⋆)T. Note that Jϕ̄⋆ is the FIM for
the estimation of ϕ̄⋆. This indicates that using the proposed
DAIS scheme we virtually move Alice and all the scatterers
to certain incorrect locations (pseudo-true locations) ϕ̄⋆ and
Eve is misled to estimate such pseudo-true locations; for the
inference of Alice’s true location, Eve has to address the
estimation error of ϕ̄⋆, i.e., Ψ

(i)

ϕ̄⋆ , as well as the associated

geometric mismatch, i.e., Ψ(ii)

ϕ̄⋆ .

C. Design of ∆τ and ∆θ

In this subsection, we will provide a closed-form expression
for the simplified MCRB in Corollary 1 under a mild condi-

tion, suggesting the appropriate values of ∆τ and ∆θ when
the CSI is available.

Proposition 1: Denote by p̂Eve the position estimated by
Eve. If the paths of mmWave MISO OFDM channels are
orthogonal to each other in the following sense1,

2

σ2

N−1∑
n=0

G∑
g=1

R

{(
∂ū(g,n)

∂ξ̄k

)H
∂ū(g,n)

∂ξ̄k′

}
= 0, k ̸= k′,

(19)
where ξ̄k ∈ {τ̄k, θ̄Tx,k,R{γ⋆k}, I{γ⋆k}} and ξ̄k′ is defined
similarly, with k, k′ = 0, 1, · · · ,K, in the presence of the
DAIS proposed in [12], for any real ψ > 0, there always
exists a positive integer G such that when G ≥ G the MSE
for Eve’s localization can be bounded as,

E
{
∥p̂Eve − p⋆∥22

}
≥ C1 +

C2τ̄
2
kmin

cos2(θ̄Tx,kmin)
+ ∥p̄⋆ − p⋆∥22 ,

(20)
with probability of 1, where

C1 ≜
3σ2c2NT 2

s

2G|γkmin |2π2(N2 − 1)
− ψ

G
, (21a)

C2 ≜
3σ2c2λ2c

2G|γkmin |2π2d2N(N2
t − 1)

. (21b)

Proof: With slight abuse of notation, we shall define the
vector of the location-relevant channel parameters as η̄ ≜
[η̄T

kmin
, η̄T

1 , · · · , η̄T
0 , · · · , η̄T

K ]T ∈ R2(K+1)×1 with η̄k ≜
[τ̄k, θ̄Tx,k]

T ∈ R2×1 for k = 0, 1, · · · ,K. Given the orthog-
onality of the paths in Equation (19), it can be verified that
the effective FIM for the estimation of η̄ is a block diagonal
matrix,

Jη̄ =


Jη̄kmin

0 · · · 0

0 Jη̄1
· · · 0

...
...

. . .
...

0 0 · · · Jη̄K

 . (22)

In addition, we can express the inverse of the transformation
matrix Πϕ̄⋆ as

Π−1
ϕ̄⋆

(c)
=

(
∂ϕ̄⋆

∂η̄

)T

=


T0,0 T1,0 · · · TK,0

0 T1,1 · · · 0
...

...
. . .

...
0 0 · · · TK,K

 , (23)

where (c) holds due to the multivariate inverse function
theorem [3] and the matrix Tk,k′ is given by

Tk,k′ ≜

(
∂v̄⋆

k

∂η̄k′

)T

=

 ∂v̄⋆
x,k

∂τ̄k′

∂v̄⋆
y,k

∂τ̄k′
∂v̄⋆

x,k

∂θ̄Tx,k′

∂v̄⋆
y,k

∂θ̄Tx,k′

 , (24)

for k, k′ = 0, 1, · · · ,K, with v̄⋆
0 ≜ p̄⋆. Then, J−1

ϕ̄⋆ can be
derived as follows,

J−1
ϕ̄⋆ =

(
ΠT

ϕ̄⋆Jη̄Πϕ̄⋆

)−1

=
(
Π−1

ϕ̄⋆

)T
J−1
η̄ Π−1

ϕ̄⋆ . (25)

1Paths are approximately orthogonal to each other for a large number of
symbols and transmit antennas due to the low-scattering sparse nature of the
mm-Wave channels [7]. We will numerically validate the analysis for the
design of ∆ in Section IV with a practical number of symbols and transmit
antennas though orthogonality among paths does not hold strictly.
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Following from Corollary 1 as well as Equations (22) and (23),
it can be verified that

E
{
∥p̂Eve − p⋆∥22

}
≥ Tr

(
TT
0,0J

−1
η̄kmin

T0,0

)
+ ∥p̄⋆ − p⋆∥22 .

(26)
According to the definition for the effective FIM given in
Equations (8) and that for the transformation matrix given
in (24), substituting Equation (13) into Equation (26) and
leveraging the asymptotic property of the FIM shown in [7,
Lemma 1] yield the desired statement. □

Remark 2 (Design of ∆θ): Given the knowledge of kmin

and θ⋆Tx,kmin
, the desired choices of ∆d

θ is selected as

∆d
θ ∈ A ≜{
θ|θ = arcsin

((
1− sin(θ⋆Tx,kmin

)
)
(−1,1]

)
+ 2mπ,m ∈ Z

}
(27)

such that cos2(θ̄Tx,kmin
)=0 and the lower bound derived

in Equation (20) goes to infinity, rendering the estimation
problem unstable. Under the above design of ∆θ, the angle
information is not accessible to Eve and thus she cannot
accurately infer Alice’s position.

Remark 3 (Design of ∆τ ): According to Proposition 1, the
lower bound on the MSE for Eve’s localization is positively
related with τ̄2kmin

and ∥p̄⋆ − p⋆∥22. Hence, given the knowl-
edge of η⋆ and ∆θ /∈ A, we can solve the following problem
for the optimal design of ∆τ ,

∆d
τ = argmax

∆τ

C2τ̄
2
kmin

cos2(θ̄Tx,kmin)
+ ∥p̄⋆ − p⋆∥22 . (28)

We note that ∥p̄⋆ − p⋆∥22 is the distance between Alice’s
true location and the spoofed location. Therefore, in terms of
the location-privacy enhancement, if we maximally increase
∥p̄⋆ − p⋆∥22, then we virtually move Alice as far away from
her true location as possible.

IV. NUMERICAL RESULTS

In this section, we validate the theoretical analysis
through the evaluation of the lower bound derived in III-B,
which bounds the smallest possible MSE for Eve em-
ploying a mis-specified-unbiased estimator. The evaluated
RMSE for Eve’s localization is defined as RMSEEve ≜√

Ψϕ̄⋆ [1, 1] +Ψϕ̄⋆ [2, 2]. In the numerical results, we place

Alice and Eve at [3 m, 0 m]T and [10 m, 5 m]T, respectively.
while the pilot signals are randomly and uniformly generated
on the unit circle. We set the parameters K, φc, B, c, N , G,
and Nt, to 2, 60 GHz, 30 MHz, 300 m/µs, 16, 16, and 16,
respectively. A three-path channel is considered, with two scat-
terers at [8.87 m,−6.05 m]T (k = 1) and [7.44 m, 8.53 m]T

(k = 2), respectively. SNR is set to 20 dB.
Under different choices of ∆τ and ∆θ, the associated

RMSEs for Eve’s localization accuracy are shown in Figure
2 (a). As observed in Figure 2 (a), variations of the RMSE
are more pronounced when we change the value of ∆τ , which
suggests the adjustment of ∆θ has a relatively less influence on
Eve’s performance degradation if cos2(θ̄Tx,kmin) is not close to
zero. We wish to underscore the non-linear and non-monotonic

Fig. 2. (a) Lower bounds for the RMSE of Eve’s localization with different
choices of ∆, where kmin = k means that the k-th path with the smallest
shifted TOA is assumed to be the LOS path for localization due to phase
wrapping according to Equation (13); (b) The associated values of ∥p̄⋆− p̄∥;
(c) The associated values of cos2(θ̄Tx,kmin

).

effect of changing ∆τ on the RMSE; hence the need for
the analysis to determine the proper values of the spoofing
parameters. Note that the RMSE can be driven up to 150 m
with proper choice of spoofing parameters. We contrast this
with our numerical results in [12] where our “less informed”
choices achieved an error of about 90 m.

In addition, for the given choices of ∆τ and ∆θ, we show
the corresponding values for ∥p̄⋆ − p̄∥ and cos2(θ̄Tx,kmin

)
in Figure 2 (b) and (c), respectively. We note that the or-
thogonality among the paths does not strictly hold in the
numerical results. However, coinciding with our theoretical
analysis of the parameter designs, relatively higher RMSEs
are still achieved at large values of ∥p̄⋆− p̄∥ and small values
of cos2(θ̄Tx,kmin

). Therefore, to significantly degrade Eve’s
localization accuracy using the DAIS strategy, one option is
to increase the distance between Alice’s true and pseudo-
true locations as much as possible with the adjustment of
the design parameters ∆τ and ∆θ; under the knowledge of
kmin and θ⋆Tx,kmin

, another option is to design ∆θ to make the
line between Alice’s pseudo-true location and Eve’s location
parallel to Alice’s antenna array.

V. CONCLUSIONS

An augmented analysis was provided for location-privacy
enhancement with a delay-angle information spoofing design.
A simplified lower bound on eavesdropper’s localization error
was derived, theoretically validating that the eavesdropper
can be misled to mistake the incorrect location as the true
one. Furthermore, the simplified lower bound was explicitly
expressed as a function of the design parameters under a
mild condition on the orthogonality between the paths in
a multi-path channel. This expression provided appropriate
choices of these key parameters to maximize spoofing. With an
adjustment of the design parameters according to the analysis,
the root-mean-square error for eavesdropper’s localization can
be up to 150 m, providing very effective location privacy.
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