

1 **The January 2022 Hunga eruption cooled the southern**
2 **hemisphere in 2022 and 2023**

3
4
5 **Ashok Kumar Gupta^{1*}, Tushar Mittal², Kristen E. Fauria³, Ralf Bennartz³,**
6 **and Jasper F. Kok¹**

7
8 ¹Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, CA,
9 90095, USA

10 ²Department of Geosciences, Pennsylvania State University, University Park, PA, USA

11 ³Department of Earth and Environmental Sciences, Vanderbilt University, Nashville, TN, USA

12
13
14
15 *Corresponding author (& present Address): Ashok Kumar Gupta, ashokgupta@atmos.ucla.edu

40 **Abstract**

41

42 The 2022 Hunga volcanic eruption injected a significant quantity of water vapor into the
43 stratosphere while releasing only limited sulfur dioxide. It has been proposed that this excess
44 water vapor could have contributed to global warming, potentially pushing temperatures beyond
45 the 1.5°C threshold of the Paris Climate Accord. However, given the cooling effects of sulfate
46 aerosols and the contrasting impacts of ozone loss (cooling) versus gain (warming), assessing the
47 eruption's net radiative effect is essential. Here, we quantify the Hunga-induced perturbations in
48 stratospheric water vapor, sulfate aerosols, and ozone using satellite observations and radiative
49 transfer simulations. Our analysis shows that these components induce clear-sky instantaneous
50 net radiative energy losses at both the top of the atmosphere and near the tropopause. In 2022,
51 the Southern Hemisphere experienced a radiative forcing of $-0.55 \pm 0.05 \text{ W m}^{-2}$ at the top of the
52 atmosphere and $-0.52 \pm 0.05 \text{ W m}^{-2}$ near the tropopause. By 2023, these values decreased to -
53 $0.26 \pm 0.04 \text{ W m}^{-2}$ and $-0.25 \pm 0.04 \text{ W m}^{-2}$, respectively. Employing a two-layer energy balance
54 model, we estimate that these losses resulted in cooling of about $-0.10 \pm 0.02 \text{ K}$ in the Southern
55 Hemisphere by the end of 2022 and 2023. Thus, we conclude that the Hunga eruption cooled
56 rather than warmed the Southern Hemisphere during this period.

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78 **Introduction**

79
80 On 15 January 2022, the Hunga Tonga volcano erupted from a shallow (~200 m deep)
81 submarine vent, injecting unprecedented amounts of water vapor^{1-2, 4-6} (~ 120-150 Tg) into the
82 stratosphere. In addition, in situ and space-borne observations show that the eruption released a
83 moderate amount of sulfur dioxide (~0.4-0.7 Tg) into the stratosphere, which was subsequently
84 converted to sulfate aerosols over several weeks^{2,4,6,9-19}. These two components, sulfate aerosol
85 and water vapor, have opposite climate effects. Sulfate aerosols cool by scattering solar
86 radiation, while water vapor, as a greenhouse gas, leads to stratospheric cooling and surface
87 warming¹². Its net radiative effect at the top of the atmosphere (TOA) depends on altitude,
88 potentially causing either warming or cooling¹²⁻¹⁵. Given the unprecedented stratospheric water
89 vapor injection, several studies have hypothesized that the Hunga eruption resulted in net climate
90 warming¹¹⁻¹². Assessing this possibility is crucial, as volcanic-induced warming could increase
91 the likelihood of temporarily exceeding the 1.5°C threshold set by the Paris Agreement⁵ in the
92 coming years. In contrast, past large subaerial (continental arc) eruptions—such as the 1991
93 Pinatubo, 1883 Krakatau, and 1815 Tambora events—led to prolonged global cooling due to the
94 dominant influence of sulfate aerosols¹⁸⁻²⁴.

95
96 The efficacy of sulfate aerosol-induced cooling is influenced by aerosol properties such
97 as number concentration, mass concentration, particle size distribution, and residence time^{3,6,15,17},
98 all of which substantially impact mass extinction efficiency (MEE)—a measure of an aerosol's
99 ability to attenuate radiation per unit mass²⁵. MEE depends on particle radius through two
100 primary factors: (1) Extinction efficiency: This parameter exhibits a non-monotonic dependence
101 on particle size, with its first peak approximately 25% greater than its second²⁵. (2) Total
102 geometric cross-section: For a fixed aerosol mass, the total geometric cross-section is inversely
103 proportional to particle radius²⁵. Consequently, smaller particles have a larger total cross-
104 sectional area per unit mass, which enhances scattering and increases MEE.

105
106 Explosive volcanic eruptions can potentially disrupt stratospheric ozone concentrations,
107 particularly when sulfate aerosols interact with a moist stratosphere²⁵⁻³². Stratospheric ozone
108 depletion leads to net cooling at Earth's TOA due to reduced shortwave absorption by ozone^{22,26-}
109 ³⁷. The climatic effects of shallow submarine eruptions can differ significantly from those of

110 subaerial eruptions due to variations in water vapor, SO_2 , and halogen gas emissions, which
111 influence ozone chemistry⁴¹⁻⁴³. Thus, accurately determining the net impact of the Hunga
112 eruption on stratospheric composition and radiative forcing is crucial. Most submarine eruptions
113 occur in deep water and release minimal volcanic material into the atmosphere. However, the
114 Hunga eruption—the largest shallow submarine eruption of the satellite era—offers a rare
115 opportunity to assess the climate impacts of such events³⁸⁻⁴⁰. Thus, this requires assessing the
116 perturbation of three key radiatively active species: water vapor, ozone, and sulfate aerosols.

117

118 Previous studies have either focused on a single atmospheric constituent or relied on
119 simplified scaling analyses to estimate radiative forcing in the first and second years after the
120 eruption^{14,15}. This has likely contributed to conflicting conclusions, with some studies suggesting
121 that the Hunga eruption caused warming⁵, while others found it led to cooling^{14,15}. For instance,
122 Schoeberl¹⁴ estimated a net negative (cooling) radiative forcing by combining a scaling analysis
123 based on past subaerial eruptions (for aerosols) with radiative calculations for water vapor⁴³⁻⁴⁶. In
124 a separate study, Schoeberl¹⁵ applied this simplified aerosol radiative forcing scaling method to
125 demonstrate a global reduction in downward radiative flux at the tropopause over two years,
126 attributing this decline to changes in water vapor, aerosols, and ozone. In contrast, Jenkins⁵
127 concluded that the Hunga eruption could contribute to global warming. However, this study only
128 considered the impact of stratospheric water vapor (SH_2O) perturbation while neglecting the
129 effects of aerosols, which are critical to the overall radiative balance.

130

131 Here, we conduct a comprehensive analysis of the instantaneous net radiative response to
132 the Hunga eruption in 2022 and 2023 by: (a) Utilizing satellite remote sensing observations to
133 quantify the spatiotemporal distribution of SH_2O , ozone, and sulfate aerosols (including their
134 size distributions). (b) Using these observations as inputs for idealized 1D radiative transfer
135 model simulations. Here, the model is run independently for each grid cell across the near-global
136 domain, producing a three-dimensional output that captures both spatial and vertical variability
137 within the stratosphere.

138

139

140

141 **Results**

142 We used space-borne remote sensing data from SAGE III⁴⁷⁻⁴⁸ aboard the International
143 Space Station (ISS) (solar occultation, v5.3; available since June 2017) to quantify the three-
144 dimensional distribution of key radiatively active stratospheric species affected by the Hunga
145 eruption: SH₂O, aerosols, and ozone (see [Methods and Supplementary Figure 1](#)). SAGE III/ISS
146 employs a solar occultation technique, capturing up to 31 measurements daily during sunrise and
147 sunset to generate dawn and dusk stratospheric profiles. This method requires approximately one
148 month to cover latitudes from ~60°N to 60°S⁴⁷⁻⁴⁸, providing detailed monthly coverage of the
149 tropics and mid-latitudes, with seasonal variations influencing the sampling pattern.
150 Additionally, we use multi-wavelength SAGE III/ISS observations to retrieve stratospheric
151 aerosol particle size before and after the Hunga eruption.

152

153 For our radiative forcing analysis, we used SAGE III/ISS data due to its exceptional
154 vertical resolution of 0.5 km. This high-resolution dataset on radiatively active species—water
155 vapor, ozone, and aerosols—is critical for accurately estimating atmospheric heating rates and
156 radiative forcings at the TOA and tropopause⁴⁹. However, SAGE III/ISS data have known
157 limitations, including a dry bias in water vapor measurements⁵⁰. Earlier versions of SAGE III
158 showed a ~10% dry bias in the stratosphere, which improved to ~5% in Version 5.2 and 5.3 for
159 the mid-stratosphere^{51,52}. Additionally, water vapor data below ~20 km are noisier due to aerosol
160 and cloud interference, contributing to ~10–20% uncertainty in radiative forcing estimates,
161 particularly in the lower stratosphere⁵⁰. Furthermore, the infrequent sampling of aerosol
162 extinction profiles at multiple wavelengths introduces biases in stratospheric aerosol optical
163 depth (SAOD) estimates. To address this, we compare SAGE III-derived SAOD values with
164 those from multiple instruments, including OMPS-NASA⁵³⁻⁵⁶ (Ozone Mapping and Profiler
165 Suite; NASA aerosol retrieval algorithms), OMPS-SASK⁵³⁻⁵⁶ (Ozone Mapping and Profiler
166 Suite; University of Saskatchewan aerosol retrieval algorithms), OSIRIS⁵⁶ (Optical Spectrograph
167 and Infrared Imaging System), and GloSSAC^{56,57} (Global Space-based Stratospheric Aerosol
168 Climatology) (see [Supplementary Figure 2](#)).
169

170 We calculated the changes in SH₂O, sulfate aerosols, and ozone during the first and
171 second years following the Hunga eruption ("Hunga-2022" and "Hunga-2023") relative to their

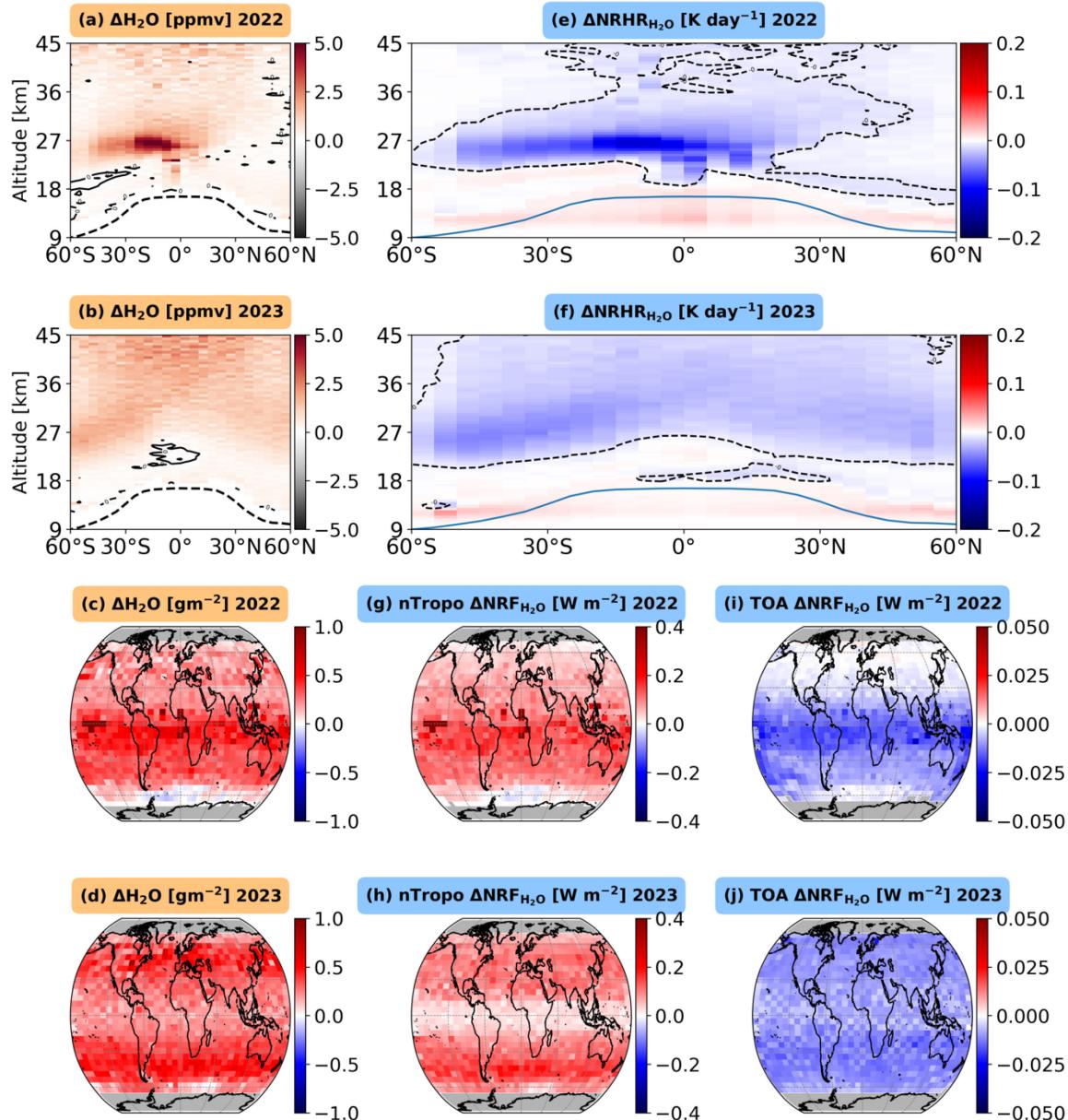
172 variations in the pre-eruption period (7 June 2017 – 9 December 2021; "CLIM") using SAGE-
173 III/ISS observations. Perturbed stratospheric profiles for water vapor and aerosols from the
174 eruption are identified as those with values exceeding two standard deviations above the
175 background climatology. Similarly, ozone perturbations from the eruption are identified using a
176 similar filtering criterion as described by Wilmouth³⁵. To compare the SAGE-III based
177 perturbations in SH₂O and ozone following the eruption, we used long-term (2005–2023) data
178 from the Aura Microwave Limb Sounder (MLS⁵⁸). Here, the absolute changes in water vapor
179 and ozone are compared with SAGE-III observations ([Supplementary Figure 3a–d](#) for SH₂O and
180 ozone from MLS⁵⁸; [3e–h](#) for SH₂O and ozone from SAGE-III).

181

182 We computed the instantaneous net (shortwave and longwave) atmospheric radiative
183 heating rates and perturbations to the TOA and near the tropopause energy budgets using
184 the LibRadtran⁵⁹ radiative transfer model ([see Supplementary Figure 1 and Methods](#)). These
185 energy budget perturbations serve as proxies for the overall atmospheric energy balance,
186 accounting for the contributions of stratospheric water vapor, ozone, and sulfate aerosols. In the
187 following sections, we first examine the individual radiative effects of each perturbed species
188 before analyzing their combined net impact.

189

190 **Changes in stratospheric water vapor after Hunga eruption**


191 We show the absolute changes in the zonal-mean latitude-altitude variations of
192 stratospheric H₂O mixing ratio between the ([Fig. 1a](#)) "Hunga-2022" and "CLIM" periods and
193 ([Fig. 1b](#)) "Hunga-2023" and "CLIM" periods based on the SAGE III/ISS observations.

194

195 We observe that the SH₂O injected by the Hunga eruption spread throughout the middle
196 stratosphere from the southern mid-latitudes to the northern tropics during the first year ([Fig. 1a](#)).
197 Around the eruption latitude (20°S–0°S latitude), we observed a 2 km thick layer, extending
198 from 27 to 29 km, with a 90% enhancement in SH₂O mixing ratio relative to the background
199 climatology ([Fig. 1a and Supplementary Figure 4a](#)). Further south, from 20°S to 50°S, the
200 increase in stratospheric water vapor mixing ratio was more modest, indicating lower
201 concentrations of water vapor due to its latitudinal transport by stratospheric wind patterns. The
202 near-global SH₂O content map, integrated from the lower to the upper stratosphere (up to an

203 altitude of 45 km), shows a noticeable absolute increase of approximately 0.5–1 g m⁻² in the SH
204 (Fig. 1c).

205

206
207 **Figure 1: Observed enhancement of stratospheric water vapor and the associated simulated**
208 **instantaneous radiative forcing during 2022 and 2023 following the Hunga eruption.** Panels

209 **(a) and (b)** show the zonal- and annual-mean latitude–altitude variation in the change of the
210 stratospheric water vapor (H_2O) mixing ratio [ppmv] for 2022 and 2023, respectively, relative to
211 the reference climatology (CLIM) period from 2017 to 2021. Contours denote near-zero
212 changes, and the dashed black line represents the tropopause height. Panels **(c) and (d)** show the

213 corresponding vertically integrated changes from the lower stratosphere to the upper
214 stratosphere. Panels (e) and (f) show the latitude–altitude distribution of the difference in net
215 (longwave + shortwave) radiative heating rates ($\Delta NRHR$; $K\ day^{-1}$) of water vapor within the
216 stratosphere between each post-eruption year and the CLIM period. Panels (g) and (h) depict
217 changes in near-tropopause net radiative forcing (ΔNRF_{H_2O} ; $W\ m^{-2}$) for 2022 and 2023,
218 highlighting perturbations primarily observed near the lowest levels of the lower stratosphere
219 (above the tropopause height). Panels (i) and (j) show the changes at the top-of-atmosphere
220 (TOA) net radiative forcing (ΔNRF_{H_2O} ; $W\ m^{-2}$) for 2022 and 2023, respectively.

221

222 In the second year (2023) following the eruption, the injected SH₂O has spread from the
223 southern to the northern hemisphere, covering the middle to the upper stratosphere. The
224 substantial dispersion of SH₂O during the second year has led to a decrease in its mixing ratio
225 and concentration (Fig. 1b, d; see relative changes in SH₂O in Supplementary Figure 4a, b). This
226 accumulated SH₂O has reduced by around 10% relative to the first year, as observed from
227 SAGE-III (Fig. 1d; Table 1). The widespread vertical distribution of SH₂O in 2023, in contrast to
228 2022, is attributed to the stratospheric Brewer-Dobson circulation in combination with some
229 perturbations in stratospheric circulation patterns due to stratospheric
230 temperature perturbations following the Hunga eruption^{33,38}.

231

232 We also quantify the impact of the 2022 Hunga eruption on the seasonal timeline of
233 changes in SH₂O concentration from 2022 to 2023, compared to its seasonal 5-year climatology
234 value between 2017 and 2021 (Fig. 2a). We observe a distinct increase in SH₂O concentration
235 from January 2022 onwards from SAGE-III observations. The peak in absolute changes in SH₂O
236 concentration value is approximately $0.5\ g\ m^{-2}$ (30% higher relative to the background value) in
237 the SH during spring season (MAM) of 2022 (Fig. 2a). The increase in SH₂O gradually decreases
238 in the summer (JJA) and autumn (SON) of 2022 and other seasons of 2023. Note that the
239 decrease in SH₂O concentration in the SH from 2022 to 2023 is minimal with a decline of around
240 10-15% (Fig. 2a). The NH and near-global domain also experience a substantial increase in the
241 magnitude of SH₂O in 2022 and 2023. The strong vertical transport of tropical middle
242 stratosphere SH₂O into the upper stratosphere and towards mid- and high-latitudes regions in

243 2023 in the SH and NH are attributed to Brewer-Dobson circulation^{33,38,46}, as evident from the
244 vertical and spatial map of SH₂O in [Fig. 1a-d](#).

245

246 **Net radiative heating rate and radiative forcing of the Hunga-perturbed SH₂O: 2022 versus**
247 **2023**

248 We used idealized radiative transfer model simulations ([see Methods](#)) to assess the
249 stratospheric radiative heating rates ([Fig. 1e, f](#)) and radiative forcing of the perturbed SH₂O near
250 the tropopause ([Fig. 1g, h](#)) and at the TOA ([Fig. 1i, j](#)). In 2022, in the middle stratosphere (24-26
251 km) around the eruption latitude, the additional SH₂O caused a cooling of -0.20 K day^{-1} due to
252 enhanced emission of longwave radiation ([Supplementary Figure 5a](#)). This cooling was partially
253 offset by heating of up to $+0.05 \text{ K day}^{-1}$ from the additional absorption of SW radiation by the
254 SH₂O ([Supplementary Figure 5g](#)). These effects combined to produce a net radiative cooling rate
255 of up to -0.15 K day^{-1} (dark blue color in [Fig. 1e](#)). During 2023, the vertical spreading of the
256 SH₂O layer in both hemispheres exhibited a net cooling effect below -0.1 K day^{-1} ([Fig. 1f](#)).

257

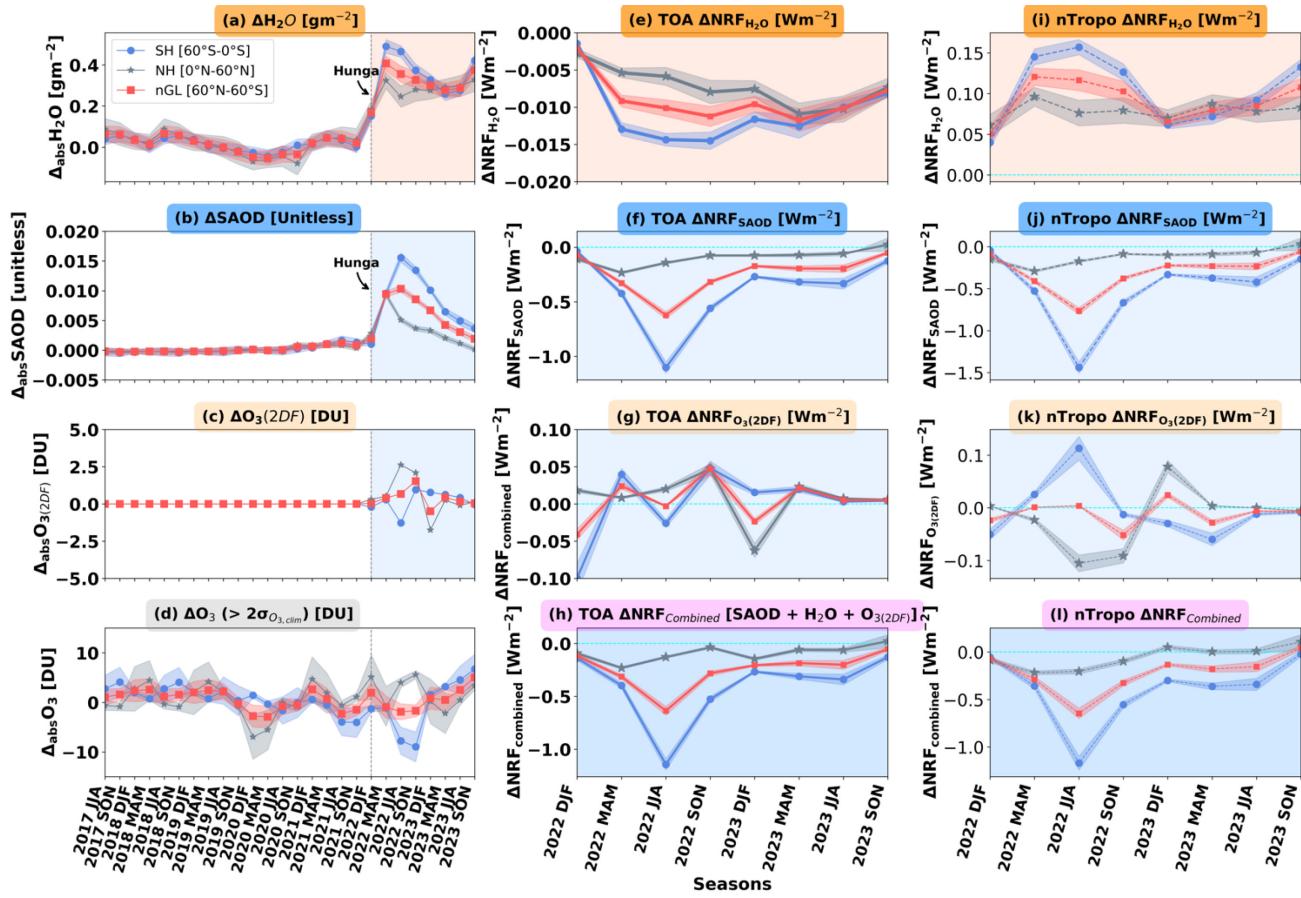
258 During 2022 and 2023, the SH₂O perturbation in the middle and upper stratosphere
259 following the eruption substantially affected the clear-sky net instantaneous radiative forcing
260 near the tropopause ([Fig. 1g, h](#)) and at the TOA ([Fig. 1i, j](#)) relative to background climatology.
261 Enhanced SH₂O, a potent greenhouse gas, substantially increases downward longwave radiation
262 emission from the water vapor layer, contributing to a higher net radiative forcing within Earth's
263 atmosphere while having minimal impact on shortwave radiation ([Supplementary Figure 5g-l](#)).
264 We find that the Hunga eruption's impact on SH₂O in 2022 increased the net radiative flux by
265 $+0.12 \pm 0.01 \text{ Wm}^{-2}$ near the tropopause in the SH and $+0.10 \pm 0.01 \text{ Wm}^{-2}$ in the near-global
266 domain ([Table 1](#)). In contrast, at Earth's TOA, the enhanced SH₂O in 2022 decreased the net
267 radiative flux by $\sim -0.010 \pm 0.001 \text{ Wm}^{-2}$ in the SH and $\sim -0.008 \pm 0.001 \text{ Wm}^{-2}$ in the near-global
268 domain ([Table 1](#)). This is due to the enhanced longwave radiation emission from water vapor in
269 the upper stratosphere.

270

271 During the summer of 2022, we quantified a peak positive instantaneous net radiative
272 flux of $+0.15 \pm 0.02 \text{ Wm}^{-2}$ near the tropopause and a negative instantaneous net radiative flux of
273 $-0.014 \pm 0.001 \text{ Wm}^{-2}$ at TOA in the SH, driven by enhanced SH₂O ([Fig. 2e, i](#)). In the SH, the

274 increased positive net instantaneous radiative flux of $+0.15 \pm 0.02 \text{ Wm}^{-2}$ near the tropopause
275 contributed to a surface warming of $+0.015 \text{ K} \pm 0.004 \text{ K}$ by the end of 2022, as estimated using
276 the FaIR⁷⁻⁸ simple two-layer energy balance climate emulator (see Methods; light cyan color in
277 Supplementary Figure 6e). The increased net instantaneous radiative forcing and its associated
278 uncertainty near the tropopause and at the TOA are calculated solely based on changes in SH₂O,
279 assuming a constant background temperature profile for both pre- and post-eruption periods.
280 Notably, these calculations do not explicitly account for the influence of clouds and temperature
281 adjustments, which may lead to an underestimation of uncertainties.

282 In 2023, Hunga-perturbed SH₂O increased the net radiative flux near the tropopause
283 by $+0.09 \pm 0.01 \text{ Wm}^{-2}$ in the SH and $+0.08 \pm 0.01 \text{ Wm}^{-2}$ in the NH. These changes in radiative
284 flux led to a mean surface warming of $+0.022 \pm 0.003 \text{ K}$ in the SH and $+0.017 \pm 0.002 \text{ K}$ in the
285 NH (see blue and cyan colors in Supplementary Figure 6e). At Earth's TOA, Hunga-perturbed
286 SH₂O decreased the net instantaneous radiative flux by $-0.01 \pm 0.001 \text{ Wm}^{-2}$ in the SH and -0.009
287 $\pm 0.001 \text{ Wm}^{-2}$ in the near-global domain.


288 In aggregate, the SH₂O in the first year (2022) and second year (2023) following the
289 eruption contributed to increased radiative forcing near the tropopause and decreased radiative
290 forcing at Earth's TOA, primarily in the SH, but without a strong longitudinal pattern (Fig. 1c, g,
291 i). In 2023, the widespread dispersion of SH₂O led to tropospheric warming near the tropopause
292 in both hemispheres (Fig. 1d, h).

293

294 The spread of stratospheric water vapor is driven by the Brewer–Dobson circulation, a
295 large-scale atmospheric circulation pattern that transports tropical tropospheric air into the
296 stratosphere, followed by its poleward movement and descent at higher latitudes^{6,46}.
297 Furthermore, the perturbed water vapor levels may influence this background circulation. A
298 more detailed investigation of these interactions would require the application of advanced
299 climate modeling, which is beyond the scope of this study.

300

301

302

303 **Figure 2: Evolution of the absolute changes and corresponding top-of-atmosphere (TOA) and**
 304 **near-tropopause instantaneous net radiative forcing (Δ NRF) of three radiatively important**
 305 **stratospheric species perturbed by the Hunga eruption.** Panels (a)–(d) show the evolution of the
 306 seasonal mean absolute changes (relative to the reference climatology [CLIM] period) from
 307 2017 until 2023 for: (a) stratospheric water vapor (SH_2O) concentration, (b) stratospheric
 308 aerosol optical depth (SAOD), (c) ozone concentration (with 2D-filtered condition), and (d)
 309 ozone concentration (unfiltered, showing values exceeding 2σ above background climatology,
 310 UNF). These values are presented for the Southern Hemisphere (SH; blue line), the Northern
 311 Hemisphere (NH; grey line), and near-global (60° S– 60° N; nGL; red line). Panels (e)–(h) show
 312 the clear-sky net (longwave plus shortwave) radiative forcing (Δ NRF) at TOA due to post-
 313 eruption perturbations in: (e) SH_2O , (f) SAOD, (g) ozone (2D-filtered; 2DF), and (h) the
 314 combined effect of SH_2O + SAOD + ozone (2D-filtered). Panels (i)–(l) show the corresponding
 315 dashed blue, grey, and red lines indicate the clear-sky Δ NRF near the tropopause. Dashed cyan
 316 lines indicate the horizontal bar near zero in (e–h) and (i–l). Shaded regions represent the
 317 interannual standard deviation (1σ) of the background values (except for 2D-filtered ozone,

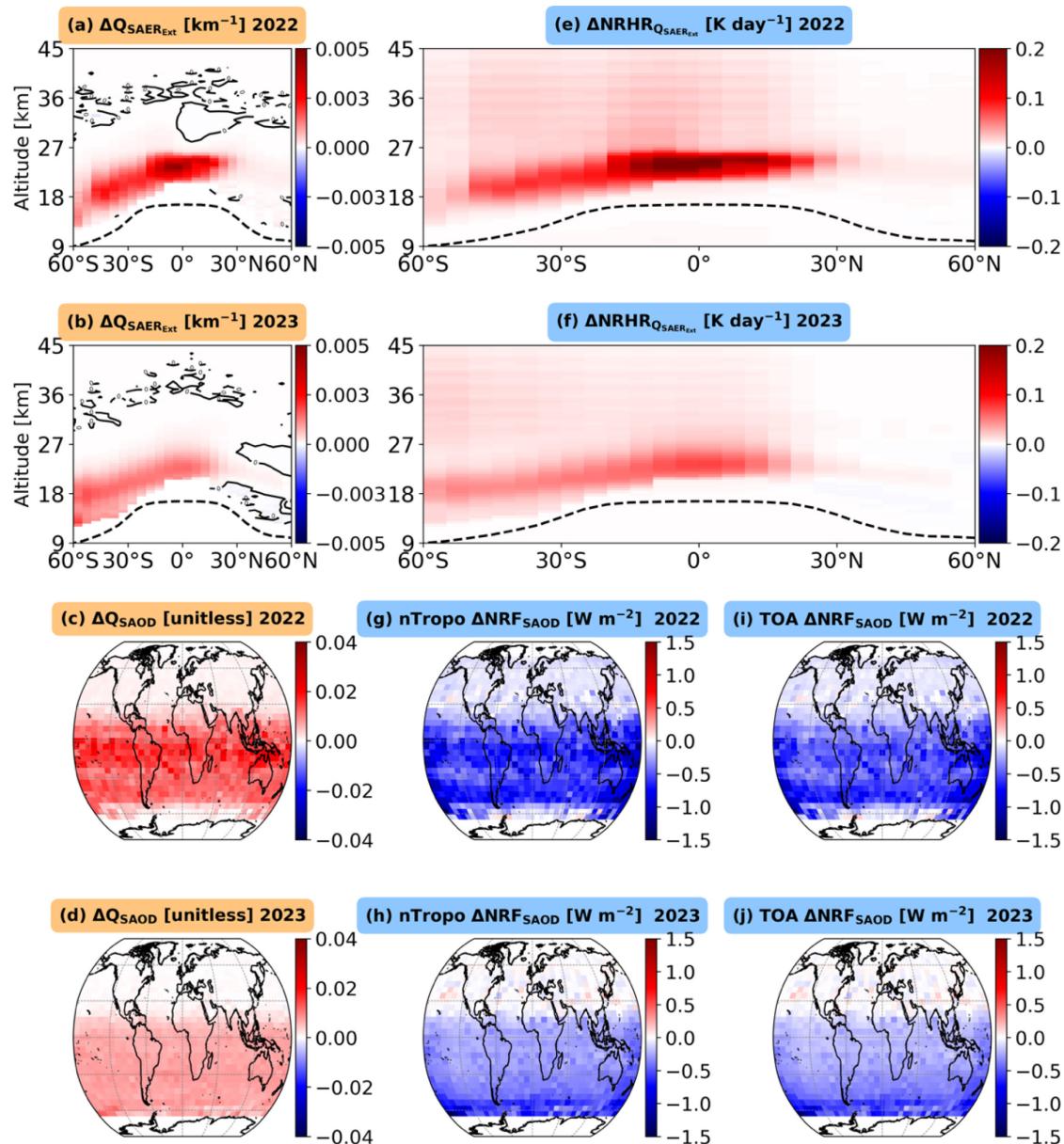
318 which is extracted above 2σ ; see Methods). The perturbations in SH_2O , SAOD, and ozone (2D-
319 filtered) following the eruption exceed their interannual variability, resulting in the combined
320 instantaneous radiative forcing shown in panel (I).

321

322 **Changes in stratospheric aerosols after the Hunga eruption**

323

324 The Hunga eruption injected not only a substantial amount of water vapor but also a
325 moderate quantity of sulfur dioxide (SO_2) into the stratosphere, estimated at approximately 0.4–
326 0.7 Tg^{14,15,60}. The total SO_2 transported from the troposphere to the stratosphere is estimated to
327 be around 1 Tg⁶⁰. However, compared to previous volcanic eruptions such as Raikoke in 2019
328 (1.5 Tg^{61,62}) and the Pinatubo eruption in 1991 (~17 Tg⁶³), the amount of SO_2 injected into the
329 stratosphere by the Hunga eruption was considerably smaller.


330

331 To quantify the impact of the Hunga eruption on the stratosphere, we identified perturbed
332 aerosol extinction in 2022 and 2023 by detecting deviations exceeding above two standard
333 deviations (σ) from the background climatology. This method is based on the expectation that,
334 under normal conditions, stratospheric aerosol extinction remains relatively stable; therefore, any
335 significant deviation likely reflects the additional aerosol load injected by the eruption, which in
336 turn influences radiative forcing and stratospheric dynamics⁶². This approach allowed us to
337 assess the three-dimensional distribution of perturbed stratospheric aerosol extinction and the
338 associated SAOD. We observed an enhanced aerosol extinction of solar radiation over 50°S–
339 20°N in the stratosphere at 22–24 km altitude in 2022 following the eruption (Fig. 3a), with a
340 maximum relative increase in aerosol extinction reaching 800% (Supplementary Fig. 4a). The
341 near-global SAOD map, which represents integrated aerosol extinction from the lower to the
342 upper stratosphere (Fig. 3c), reveals a substantial absolute increase of approximately $+0.014 \pm$
343 0.001 in the SH in 2022 (Fig. 3c; Fig. 2b; Table 1). Similar to SH_2O , stratospheric aerosols are
344 predominantly concentrated in the SH, exhibiting no strong longitudinal pattern (Fig. 3c). During
345 the second-year post-eruption (2023), we observe a decrease in 521 nm sulfate aerosol extinction
346 from 0.004 km^{-1} to 0.002 km^{-1} between 50°S and 20°N, at altitudes ranging from 10 km in the
347 southern midlatitudes to 25 km in the tropics (Fig. 3b).

348

349 Unlike water vapor, the spread of SAOD is predominantly confined to the SH (Fig. 3c,d).
 350 In 2023, perturbed SAOD decreased by around 50% compared to the first-year aerosol
 351 perturbation (Fig. 2b; Fig. 3c, g). With minimal aerosol perturbation in the NH, the cooling
 352 impact of SAOD in the SH contributes to a hemispheric asymmetry under idealized conditions.
 353 The reduction in SAOD observed in 2023 could be attributed to the gravitational settling of
 354 stratospheric sulfate aerosols^{64,65}.

355

356

357 **Figure 3: Observed enhancement of stratospheric aerosol and the associated simulated**
 358 **instantaneous radiative effects during 2022 and 2023 following the Hunga eruption. Panels**

(a) and (b) show the zonal- and annual-mean latitude–altitude variation in the change of the aerosol extinction coefficient at 521 nm ($Q_{SAERext}$; km^{-1}) for 2022 (15 Jan 2022 to 14 Jan 2023) and 2023 (15 Jan 2023 to 31 Dec 2023), respectively, relative to the reference climatology (CLIM) period from 07 June 2017 to 09 Dec 2021. Contours denote near-zero changes, and the dashed black line represents the tropopause height. Panels (c) and (d) display the vertically integrated aerosol extinction coefficient (SAOD) for the perturbed lower to upper stratosphere. Panels (e) and (f) show the latitude–altitude distribution of the difference in net (longwave + shortwave) radiative heating rates ($\Delta NRHR$; $K day^{-1}$) of stratospheric aerosol between each post-eruption year and the CLIM period. Panels (g) and (h) depict the changes in near-tropopause net radiative flux (ΔNRF_{SAOD} ; $W m^{-2}$) for 2022 and 2023, respectively, highlighting perturbations primarily observed in the lowest levels of the lower stratosphere (above the tropopause height). Panels (i) and (j) show the corresponding changes in the top-of-atmosphere (TOA) net radiative flux (ΔNRF_{SAOD} ; $W m^{-2}$) for 2022 and 2023, respectively.

372

373 During 2022, following the eruption, we retrieved a mean effective radius of sulfate
374 aerosols of approximately $0.3 \mu m$ (with a median of $0.27 \mu m$) in the mid-stratosphere (Table 1
375 and Supplementary Fig. 7a,e), which is consistent with the findings of Knepp⁶⁶. In 2023, the
376 mean effective radius of sulfate aerosols in the SH was $0.29 \mu m$ (Table 1 and Supplementary
377 Fig. 7i,m), nearly identical to that observed in 2022. Boichu¹⁷ and Khaykin⁶⁷ showed that during
378 the first two months after the eruption, sulfate aerosol particles were larger; over time, these
379 particles decreased in size, transitioning to finer particles.

380

381 We compare the annual mean percentage change in near-global $\Delta SAOD$ for 2022,
382 derived from SAGE III, with OMPS-NASA⁵⁶, OMPS-SASK⁵⁶, OSIRIS⁵⁶, and GloSSAC⁵⁶ to
383 assess biases (Supplementary Fig. 2; Table 1). Among datasets, OMPS-NASA has the largest
384 $\Delta SAOD$ discrepancy (-66.5%), followed by OMPS-SASK (-37.8%), OSIRIS (-12.6%), and
385 SAGE-III/ISS (-15.5%), while GloSSAC shows a slight increase (+1.8%). Despite inter-
386 instrument biases, GloSSAC estimates align well with our SAOD approach based on $>2\sigma$
387 perturbations. These differences highlight the need for multi-instrument comparisons to refine
388 SAOD estimates and radiative forcing assessments post-eruption. OMPS-NASA shows a >50%

389 high bias due to its fixed aerosol size assumption, while OMPS-SASK mitigates this by
390 accounting for size variations⁵⁴.

391

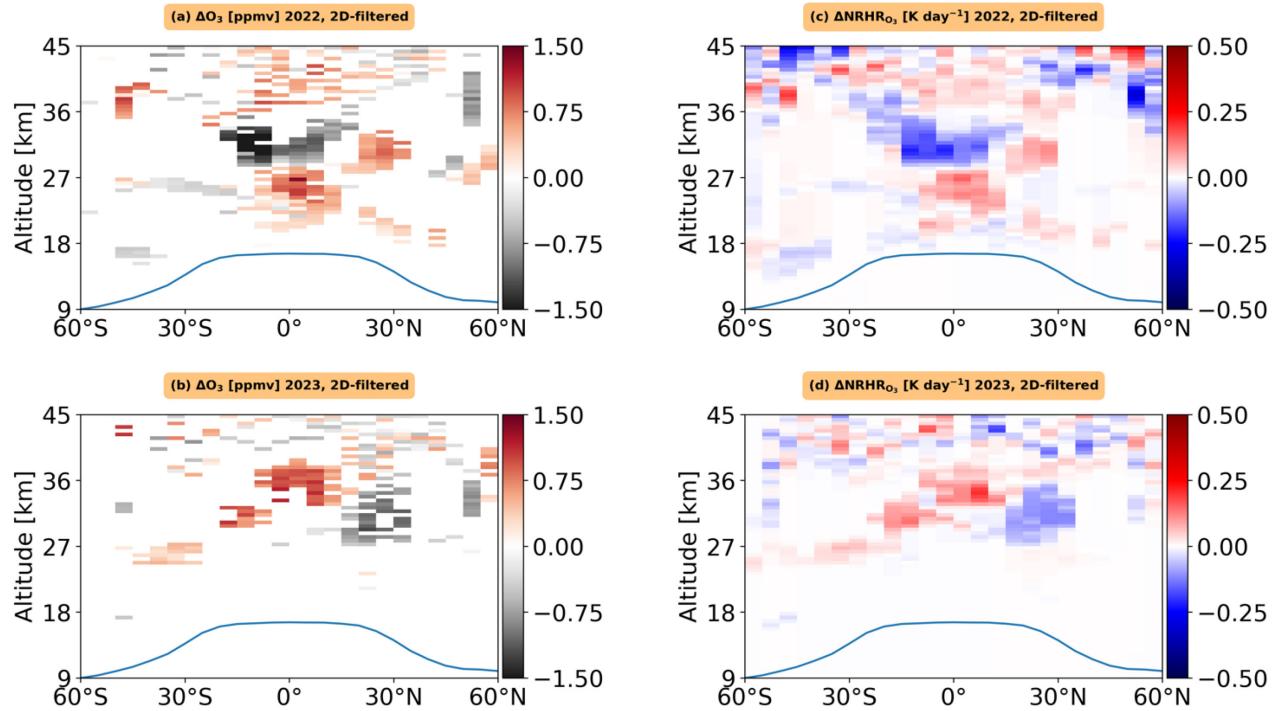
392 **Net radiative heating rate and radiative forcing of the Hunga-perturbed stratospheric**
393 **sulfate aerosol: 2022 versus 2023**

394 We present the near-global distribution of changes in net radiative flux near the
395 tropopause (Fig. 3g) and at the TOA (Fig. 3i) resulting from the perturbation of sulfate-
396 dominated stratospheric aerosols within the lower-to-middle stratosphere. During 2022, when
397 averaged over the SH, our results indicate that the mean net radiative flux at Earth's TOA
398 decreased by $0.53 \pm 0.04 \text{ W m}^{-2}$, leading to a surface cooling of $0.07 \pm 0.01 \text{ K}$, as estimated from
399 the FaIR^{7,8} model (Supplementary Fig. 6b). This reduction is attributed to an increase in SAOD
400 (i.e., ΔSAOD) of approximately 0.014 ± 0.001 (Fig. 2b; Fig. 3c; Table 1). Similarly, the mean
401 net radiative flux near the tropopause in the SH decreased by $0.66 \pm 0.05 \text{ W m}^{-2}$ (Fig. 2b; Fig.
402 3g; Table 1), resulting in a surface cooling of $0.09 \pm 0.01 \text{ K}$ (Supplementary Fig. 6f). On a near-
403 global scale, the mean radiative flux changes at the TOA and near the tropopause are estimated
404 to be $-0.34 \pm 0.03 \text{ W m}^{-2}$ and $-0.41 \pm 0.04 \text{ W m}^{-2}$, respectively, associated with a ΔSAOD of
405 around 0.008 ± 0.001 (Fig. 2b,f, j; Fig. 5a; Table 1).

406

407 During 2023, the increase in SAOD associated with the Hunga eruption amounted
408 to 0.007 ± 0.001 in the SH, leading to a reduction in net radiative flux at the TOA and near the
409 tropopause by $0.26 \pm 0.03 \text{ W m}^{-2}$ and $0.31 \pm 0.04 \text{ W m}^{-2}$, respectively. Consequently, surface
410 temperatures cooled by around $0.11 \pm 0.01 \text{ K}$ by the end of the year. The system's thermal
411 inertia helped sustain this cooling, similar to the radiative forcing changes observed in 2022.
412 On a near-global scale, an increase in SAOD of 0.005 ± 0.001 resulted in a reduction in net
413 radiative flux of $0.15 \pm 0.03 \text{ W m}^{-2}$ at the TOA and $0.19 \pm 0.04 \text{ W m}^{-2}$ near the tropopause (Fig.
414 2b,f, j; Fig. 5a,b; Table 1).

415


416 Using the above results at TOA, we estimate a radiative forcing efficiency (near-global
417 mean radiative forcing at TOA per unit SAOD) of approximately $25\text{--}40 \text{ W m}^{-2}$ during 2022 and
418 2023. This estimate is relatively higher than those reported by Marshall⁶⁸ and Schmidt⁶⁹ for other
419 subaerial volcanic eruptions.

420

421 We retrieved sulfate aerosol effective radii of approximately 0.3 μm (with a median
 422 radius of 0.27 μm) using Mie theory (see Methods), which indicates that these aerosols scatter
 423 incoming solar radiation most efficiently per unit mass⁶⁵. This enhanced scattering efficiency
 424 may have contributed to the higher radiative forcing efficiency observed for sulfate aerosols,
 425 highlighting the need for further chemistry-based sensitivity analyses of radiative efficiency in
 426 future studies.

427

428 Our estimated effective (median) radius of sulfate aerosols has a mean value of 0.3 μm
 429 (0.27 μm). These particle sizes result in a high sulfate MEE (Table 1; Supplementary Fig. 7d, h,
 430 l, p and Supplementary Fig. 8), thereby enhancing sulfate aerosol forcing. The calculated
 431 MEE and its associated standard deviation are $4.21 \pm 0.13 \text{ m}^2 \text{ g}^{-1}$ ($4.24 \pm 0.13 \text{ m}^2 \text{ g}^{-1}$) in
 432 the SH, $4.22 \pm 0.17 \text{ m}^2 \text{ g}^{-1}$ ($4.17 \pm 0.17 \text{ m}^2 \text{ g}^{-1}$) in the NH, and $4.21 \pm 0.25 \text{ m}^2 \text{ g}^{-1}$ (4.21 ± 0.25
 433 $\text{m}^2 \text{ g}^{-1}$) for the near-global domain during 2022 (2023), respectively (Table 1).

434

435 **Figure 4: Observed 2D-filtered changes in stratospheric ozone mixing ratios and the**
 436 **associated simulated instantaneous radiative forcing during 2022 and 2023 following the**
 437 **Hunga eruption.** Panels (a) and (b) show the zonal- and annual-mean latitude–altitude
 438 variation of the changes in stratospheric ozone mixing ratios for 2022 and 2023, respectively.

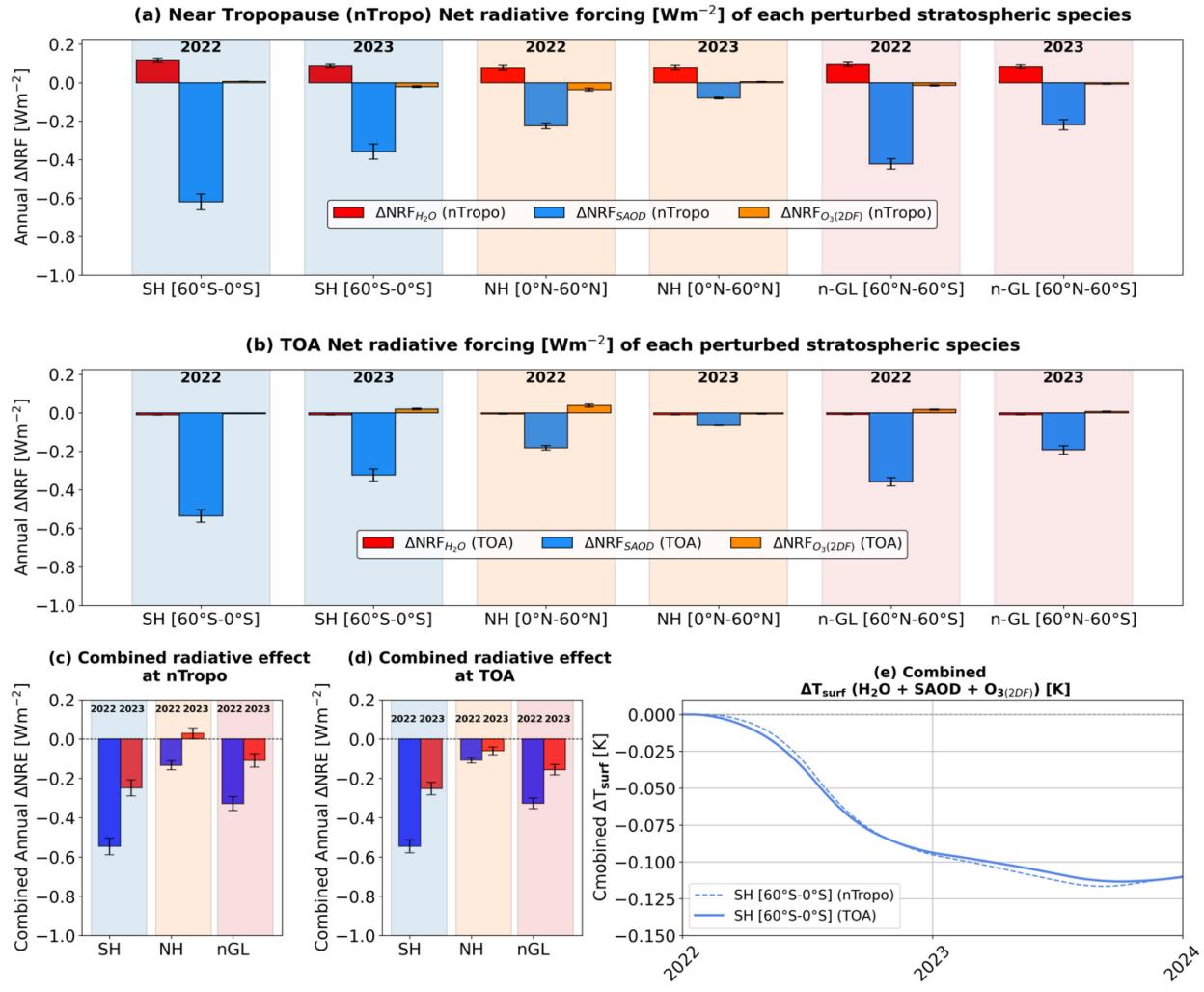
439 *Panels (c) and (d) present the latitude–altitude distribution of the differences in net (longwave +*
440 *shortwave) radiative heating rates (Δ NRHR) for stratospheric ozone for 2022 and 2023,*
441 *respectively.*

442

443 **Changes in stratospheric ozone after the Hunga eruption: 2D-Filtered technique**

444

445 Following the methodologies of Wilmouth³⁵ and Santee³⁷, we assessed changes in
446 the ozone mixing ratio in 2022 and 2023 relative to background mean values using both SAGE
447 III⁴⁷ and MLS⁵⁸ datasets. To better quantify the impact of the Hunga eruption, we applied a 2D-
448 filtered (2DF) technique (see Methods) to distinguish changes in the zonal-mean mixing ratio.
449 Using the 2DF technique, the extent of the Hunga eruption’s influence on ozone fluctuations be-
450 comes discernible, as the observed changes following the eruption exceed the typical year-to-
451 year variability seen before the event (Fig. 2c).


452

453 We find a slightly stronger negative ozone mixing ratio anomaly, with values of around -
454 0.5 ppmv at 27 km and -1 ppmv at 32 km in the SH during the summer of 2022 (Fig. 4a; Fig. 2c;
455 Supplementary Fig. 9c). In 2023, we also observe an increase in the ozone mixing ratio anomaly,
456 with values exceeding 0.5 ppmv between 22 km and 36 km altitude near equatorial regions and
457 in the SH (Fig. 4b; Fig. 2c; Supplementary Fig. 9i, j).

458

459 Wilmouth³⁵, Wang³⁶, and Santee³⁷ conducted a thorough analysis of various trace gas
460 species and also used global climate model simulations to determine the mechanism behind the
461 potential ozone loss in 2022. The results of their study demonstrate that the eruption impacted
462 ozone by influencing both stratospheric dynamics and ozone chemistry. We note that to exactly
463 pinpoint the physical mechanism related to the effects of the Hunga eruption on ozone gain in
464 2023, detailed modeling studies coupling stratospheric dynamics and chemistry are needed
465 which is out of the scope of this study. Therefore, our primary results are focused on assessing
466 the influence of radiative forcing of water vapor, SAOD and ozone (2D-Filtered technique).

467

468

469 **Figure 5: Net radiative forcing during 2022 and 2023 due to three radiatively important stratospheric species perturbed by the Hunga eruption.** Panel (a) shows the clear-sky net (longwave + shortwave) instantaneous radiative forcing near the tropopause due to perturbations in stratospheric H_2O (red bars), aerosols (blue bars), and O_3 (orange bars) for the Southern Hemisphere (SH), Northern Hemisphere (NH), and near-global (60°S – 60°N) regions. Panel (b) presents the clear-sky net instantaneous radiative forcing at the top-of-the-atmosphere (TOA) for the same species and regions. Panels (c) and (d) show the combined ΔNRF near the tropopause and at the TOA, respectively, averaged for the SH, NH, and near-global regions during 2022 and 2023. Panel (e) shows the surface temperature changes in the SH, estimated using a two-layer energy balance FaIR model based on the perturbed instantaneous energy balance at the TOA and near the tropopause. These estimates represent only a first-order approximation of the actual surface

480 temperature changes. Uncertainty bars (black) in panels (a) and (c) indicate the background in-
481 terannual variations in the radiative forcing for SH_2O , $SAOD$, and O_3 (black caps).

482

483 **Net radiative heating rate and radiative forcing of the Hunga-perturbed stratospheric 484 ozone (2D-Filtered): 2022 versus 2023**

485 Because ozone molecules absorb a substantial amount of solar radiation, a decrease in
486 their concentration would lead to reduced warming within the stratosphere. This, in turn, would
487 decrease the upwelling solar radiation from the uppermost layer of the stratosphere, resulting in
488 a relative reduction in the net radiative flux at Earth's TOA³³. The opposite effect occurs in the
489 case of ozone gain.

490

491 We find that the ozone mixing ratio, derived from the 2D-filtered technique, decreased in
492 the stratosphere over 20°S–40°S between 24–27 km altitude and over 10°S–30°S between 30–35
493 km altitude during the first year after the eruption (Fig. 4a). This ozone loss contributed to strato-
494 spheric cooling of more than -0.15 K day $^{-1}$ (Fig. 4c). Additionally, we observed an increase in
495 ozone in the equatorial regions (15°S–15°N) in the lower stratosphere below 27 km (Fig. 4a),
496 leading to stratospheric warming of more than $+0.1$ K day $^{-1}$ (Fig. 4c). We observed a strong in-
497 crease in ozone mixing ratio from the middle stratosphere to lower stratosphere in 2023, possibly
498 influenced by dynamical processes associated with the easterly phase of the Quasi-Biennial Os-
499 cillation and secondary stratospheric circulation^{15,32–36}, contributing to a stratospheric heating
500 rate of approximately $+0.15$ to $+0.2$ K day $^{-1}$.

501

502 During 2022, we found that the reduction in O_3 concentration was primarily located in
503 the SH (Table 1). This decline in stratospheric ozone concentration by -0.06 DU in the SH
504 contributed to a small negative net radiative flux of -0.009 W m $^{-2}$ at the TOA and a positive net
505 radiative flux of $+0.018$ W m $^{-2}$ near the tropopause (Table 1). During 2023, an increase in ozone
506 concentration by 1.38 DU in the NH resulted in a net positive radiative flux change of $+0.02 \pm$
507 0.01 W m $^{-2}$ at the TOA and -0.05 ± 0.01 W m $^{-2}$ near the tropopause (Table 1).

508

Hunga eruption-perturbed species	SH		NH		nGL	
	2022	2023	2022	2023	2022	2023
$r_{eff,HTHH} [\mu m]$	0.30	0.29	0.26	0.27	0.28	0.28
$MEE_{HTHH} [m^2 g^{-1}]$	4.21	4.24	4.22	4.17	4.21	4.21
$M_{SO_2,HTHH} [Tg]$	0.46	0.31	0.26	0.19	0.71	0.50
$SAOD_{HTHH} [Unitless]$	0.017	0.013	0.010	0.007	0.013	0.010
$\Delta M_{SO_2,HTHH} [Tg]$	0.35	0.18	0.13	0.06	0.48	0.24
$\Delta SAOD_{HTHH} [Unitless]$	0.014	0.007	0.005	0.002	0.008	0.005
$\Delta NRF_{SAOD} [Wm^{-2}]$ (near tropopause)	-0.66	-0.31	-0.18	-0.06	-0.41	-0.19
$\Delta NRF_{SAOD} [Wm^{-2}]$ (TOA)	-0.53	-0.26	-0.14	-0.05	-0.34	-0.15
$\Delta H_2O_{Total} [Tg]$	86	72	59	66	145	138
$\Delta H_2O [gm^{-2}]$	0.37	0.32	0.24	0.30	0.32	0.31
$\Delta NRF_{H_2O} [Wm^{-2}]$ (near tropopause)	0.12	0.09	0.08	0.08	0.10	0.08
$\Delta NRF_{H_2O} [Wm^{-2}]$ (TOA)	-0.010	-0.01	-0.005	-0.009	-0.008	-0.009
$\Delta O_3 [DU]$ (2DF with H_2O)	-0.06	0.45	1.38	-0.36	0.66	0.05
$\Delta NRF_{O_3} [Wm^{-2}]$ (2DF; near tropopause)	0.018	-0.028	-0.05	0.02	-0.018	-0.004
$\Delta NRF_{O_3} [Wm^{-2}]$ (2DF; TOA)	-0.009	0.01	0.02	-0.006	0.007	0.002
Near tropopause $\Delta NRF_{H_2O+SAOD+O_3,2DF}$	-0.52	-0.25	-0.15	+0.04	-0.33	-0.11
At TOA $\Delta NRF_{H_2O+SAOD+O_3,2DF}$	-0.55	-0.26	-0.13	-0.07	-0.34	-0.16

Table 1: Properties and hemispherical mean net radiative forcing of radiatively important stratospheric species perturbed by the 2022 Hunga eruption. The blue rows list the mean

552 effective radius (r_{eff} ; in μm) of retrieved sulfate aerosols, the retrieved vertically integrated SO_2
553 mass (MSO_2 ; in Tg), the retrieved mass extinction efficiency (MEE; in $\text{m}^2 \text{g}^{-1}$) per gram of SO_2 ,
554 and the SAGE-III/ISS observed SAOD for Hunga for the Southern Hemisphere (SH), Northern
555 Hemisphere (NH), and near-global ($n\text{-GL}$) domains for 2022 and 2023. The light orange rows
556 present the retrieved absolute (Hunga-CLIM) change in sulfate aerosols ($\Delta\text{MSO}_{2\text{Hunga}}$; Tg), the
557 SAGE-III/ISS observed absolute (Hunga-CLIM) changes in the vertically integrated SAOD
558 (ΔSAOD), and the resulting simulated mean net radiative forcing ($\Delta\text{NRF}_{\text{SAOD}}$; W m^{-2}) near the
559 tropopause and at the top of the atmosphere (TOA). The dark orange rows show the SAGE-
560 III/ISS observed total injected H_2O mass ($\Delta\text{H}_2\text{O}$; Tg) and its corresponding simulated mean net
561 radiative forcing ($\Delta\text{NRF}_{\text{H}_2\text{O}}$; W m^{-2}) near the tropopause and at the TOA. The light magenta
562 rows display the absolute changes in ozone derived from the 2D-filtered technique (ΔO_3 ; DU ;
563 2DF with water vapor) and their simulated mean net radiative forcing ($\Delta\text{NRF}_{\text{O}_3}$; W m^{-2} ; 2DF)
564 near the tropopause and at the TOA. The final grey rows show the combined net radiative forcing
565 of the three species ($\text{NRF}_{\text{H}_2\text{O}+\text{SAOD}+\text{O}_3,2\text{DF}}$; W m^{-2}) near the tropopause and at the TOA.

566

567

568 The combined net radiative effects of the three perturbed stratospheric species

569 After determining the domain-averaged net instantaneous radiative effects of
570 enhanced stratospheric water vapor, stratospheric sulfate aerosol, and ozone using the 2D-filtered
571 technique, we combined these three radiative perturbations to estimate the net TOA radiative
572 forcing and the associated surface temperature changes due to the eruption (Fig. 5; Table 1).
573 Using a simple climate emulator (FaIR)^{7,8}, we find that the Hunga eruption induced a mean
574 surface cooling effect of approximately $-0.10 \pm 0.01 \text{ K}$ by the end of 2022 (Fig. 5e). This cooling
575 resulted from a combined instantaneous radiative forcing of $\sim-0.55 \pm 0.05 \text{ W m}^{-2}$ at the TOA,
576 concentrated almost entirely in the SH (Fig. 4c; Table 1). This cooling effect was primarily
577 driven by sulfate aerosols. During 2023, in the SH, the combined effects of SH_2O ,
578 SAOD, and ozone ($\text{O}_3\text{-2DF}$) resulted in a TOA radiative forcing of $-0.26 \pm 0.04 \text{ W m}^{-2}$, leading
579 to a cooling of $-0.10 \pm 0.01 \text{ K}$ by the end of 2023 (Fig. 5d). Thus, the Hunga-associated
580 cooling (and any potential future warming) is likely very small compared to natural climate
581 variability and will be difficult to detect observationally.

582

583 The stronger surface cooling observed in both 2022 and 2023, despite variations in the
584 magnitude of the combined net radiative flux at the TOA and near the tropopause altitude,
585 suggests a cumulative effect of radiative forcing over time, influenced by thermal inertia and
586 feedback processes. This implies that, although radiative forcing in 2023 was relatively small,
587 the temperature change in 2023 also reflects the residual effects of the stronger forcing from
588 2022, leading to a similar overall temperature response.

589

590 Also, given that the Pinatubo eruption injected approximately 20 Tg of sulfur, resulting in
591 a maximum cooling of about -0.5 K, a simple linear scaling suggests that the HTHH event,
592 which injected less than 1 Tg of sulfur, would induce a cooling effect of approximately -0.025
593 K^{15,22}. Such a small temperature change is likely to be masked by natural variability and may not
594 be directly detectable. Given the modest magnitude of the expected cooling, further investigation
595 using comprehensive climate model simulations is necessary to determine whether these
596 gradients could trigger any measurable atmospheric responses.

597

598 In conclusion, our findings indicate that the Hunga eruption did not cause warming in
599 the SH or globally between 2022 and 2023. Instead, it had a cooling effect in the SH.
600 The efficient conversion of SO₂ into sulfate aerosols in a water-rich stratosphere in the SH likely
601 contributed to the net cooling effect observed at Earth's TOA in 2022 and 2023.

602

603 However, in 2023, we find a slight increase in net radiative flux near the tropopause in
604 the NH, primarily due to increased SH₂O and reduced ozone, with minimal perturbation of
605 SAOD. Given that the stratospheric lifetime of SH₂O is much longer than that of SAOD (around
606 2.5 years⁶⁴⁻⁶⁵), this warming trend in the NH may persist and spread over the years until
607 the perturbed SH₂O is fully depleted. Consequently, depending on ozone perturbations,
608 this longer-lasting SH₂O effect could eventually outweigh the cooling effect of SAOD in the SH.

609

610 Our findings show that the climate impact of shallow submarine eruptions (water-rich
611 eruptions with a moderate amount of SO₂) differs from that of subaerial
612 eruptions (e.g., Pinatubo²²), depending on the injected altitude and composition of the volcanic
613 plume.

614 **Methods**

615 This study aimed to assess the radiative effects of the Hunga eruption. To achieve this,
616 we analyzed observed changes in the three main radiatively important species in the stratosphere
617 that were substantially perturbed by the eruption: water vapor, aerosols, and ozone (see
618 Supplementary Information). We then used the observed changes in these three stratospheric
619 species before and after the eruption to simulate the radiative effects of the Hunga eruption using
620 the LibRadtran radiative transfer model ([Supplementary Figure 1](#)).

621

622 **Descriptions of data sets**

623 **SAGE-III/ISS observations**

624 We analyzed SAGE III/ISS data from 7 June 2017 to 31 December 2023, covering
625 latitudes from 70°N to 70°S, depending on variations in solar insolation, solar zenith angle, and
626 the coverage range of the ISS instrument. Specifically, we used solar occultation
627 data from SAGE III on the ISS (SAGE III/ISS; version 5.3, accessed on 28 October 2023;
628 Algorithm Theoretical Basis Document (ATBD)^{[70-71](#)}), which provided approximately 30
629 atmospheric profiles per day of H₂O, O₃, and aerosol extinction coefficient at sunrise and sunset
630 across the globe.

631

632 Compared to estimates of stratospheric temperature and composition from passive limb
633 sounding instruments (e.g., Aura Microwave Limb Sounder; MLS), the solar occultation
634 technique of SAGE III/ISS provides much higher vertical resolution measurements. While MLS
635 offers daily near-global observations (82°S–82°N; [Supplementary Figures 11–12](#)), its lower
636 vertical resolution makes it challenging to fully resolve vertical variations in H₂O and ozone, as
637 well as the associated radiative forcings^{[49–50](#)}. From the perspective of higher vertical resolution,
638 accurate estimation of atmospheric heating rates and top-of-atmosphere radiative
639 forcing requires detailed profiling of radiatively active species, such as water vapor, ozone, and
640 aerosols^{[49](#)}. Therefore, in this study, we primarily use multi-wavelength SAGE III/ISS data as
641 input for most of our radiative forcing analysis. However, we also compare our results with
642 other satellite products, including MLS for H₂O and O₃ ([Supplementary Figs. 3, 11–14](#))
643 and SAOD measurements from multiple instruments, such as OMPS-SASK, OMPS-NASA, and

644 GloSSAC, to ensure consistency and to assess and highlight uncertainties across different
645 datasets ([Supplementary Fig. 2; Table 1](#)).

646

647 We analyzed approximately 70,000 profiles over our study period, conducting the
648 analysis on a seasonal basis to ensure sufficient global observations while accounting
649 for temporal changes in solar angle and other variables when calculating the radiative effects of
650 the eruption ([Supplementary Methods](#)). We computed the observed changes in SH₂O, multi-
651 wavelength aerosol extinction coefficient, and ozone as a function of altitude (binned at 0.5 km),
652 latitude (binned at 5° to ensure robust sampling statistics per bin), and longitude (binned at
653 10°). Additionally, we estimated the seasonal variations in a near-global map, depicting
654 the vertical integral of water vapor, aerosol extinction coefficient, and ozone concentration from
655 the lower to upper stratosphere.

656

657 We divided the background period before the Hunga eruption (CLIM period) into
658 four seasons: DJF (December–January–February), MAM (March–April–May), JJA (June–July–
659 August), and SON (September–October–November), using data from 7 June 2017 to 9
660 December 2021 (data was unavailable between 10–18 December 2021). We included all
661 available data from December 2021 before the initial phase of the Hunga eruption began on 19
662 December 2021. Similarly, we divided the Hunga eruption period into: Hunga-2022: JF (15
663 January – 28 February 2022), MAM (1 March – 31 May 2022), JJA (1 June – 31 August
664 2022), and SON (1 September – 30 November 2022). Hunga-2023: DJF (December 2022 – 28
665 February 2023), MAM (1 March – 31 May 2023), JJA (1 June – 31 August 2023), and SON (1
666 September – 30 November 2023).

667

668 For our radiative calculations, we applied the nearest-neighbor interpolation technique (K-
669 dimensional tree interpolation) when necessary to achieve complete latitude-longitude
670 coverage between 70°S and 70°N. Finally, we computed the weighted mean, accounting
671 for differences in the number of days across the four seasonal analysis periods during both
672 the Hunga and CLIM periods. This approach enabled us to assess annual-mean changes in
673 the radiation budget, thereby quantifying the annual radiative effect of Hunga-2022 and Hunga-
674 2023.

675 **Ozone perturbations analysis following the Hunga Eruption: 2D-filtered anomaly**
676 To assess ozone perturbations associated with the Hunga eruption during 2022 and 2023, we em-
677 ployed a structured methodology based on the approach adopted by Wilmouth³⁵:

678 (a) **Evaluation of ozone mixing ratio anomalies exceeding 2σ :** We analyzed the zonal-mean
679 and seasonal-mean ozone (O_3) mixing ratio in 2022 and 2023 to identify deviations exceeding ± 2
680 standard deviations from the 2005–2021 MLS and 2017–2021 SAGE III seasonal means.

681 (b) **Detection of ozone anomalies exceeding 2σ , synchronized with $>2\sigma$ water vapor anomalies:** The Hunga eruption strongly perturbed water vapor, meaning that any ozone changes
682 caused by the eruption should co-occur with water vapor anomalies (Wilmouth³⁵). Therefore, re-
683 gions where water vapor was perturbed served as a reference to determine when and where the
684 eruption also affected ozone.

686 Following Wilmouth³⁵, we identified concurrent anomalies in ozone and water vapor. Specifi-
687 cally, we assessed ozone changes as a function of season, latitude bin (5°), and pressure
688 level for MLS (and 0.5 km altitude bin for SAGE III), ensuring that they coincided with water
689 vapor anomalies exceeding $>2\sigma$ above the MLS 16-year mean and SAGE III 5-year mean.

690 (c) **Removal of pre-existing anomaly values from 2022 and 2023:** To quantify ozone anom-
691 lies caused by the Hunga eruption, we examined whether the 2022–2023 anomalies had occurred
692 in previous years and whether they fell within background variability, independent of the erup-
693 tion. Using abnormally high water vapor levels in 2022 and 2023 as a reference, we identified
694 and excluded zonal-mean ozone anomaly values (classified by season, latitude, and altitude)
695 that predated these exceptional conditions.

696 (d) **Application of the 2D-Filtered (2DF) technique:** The 2D-Filtered (2DF) technique was ap-
697 plied to ozone anomalies as a function of season, latitude, and altitude (or pressure level) if they
698 met the criteria from Steps (a) to (c) (Fig. 2c; Fig. 4a,b; [Supplementary Figure 10, 13, 14](#)). When
699 the 2DF technique was applied without water vapor constraints, it was referred to as 2D-Filtered
700 (2DF) without water vapor ([see Supplementary Fig. 10](#)). Ozone anomalies that did not meet
701 these criteria were classified as unfiltered conditions ([Supplementary Fig. 3e-h](#)). Note that one

702 limitation of this filtering approach is that it may underestimate ozone anomalies influenced by
703 secondary circulation effects that extend beyond the core of the water vapor anomalies.

704 **Mass extinction efficiency of sulfate aerosol**

705 Mass extinction efficiency (MEE; $m^2 g^{-1}$) of sulfate aerosols indicates how efficiently of
706 aerosols scatter or absorb of solar radiation per unit mass. It can be expressed as:

$$707 MEE[m, 521nm, D_s] = \frac{\int_{D_{smin}}^{D_{smax}} \frac{3}{2\rho_s D_s} Q_{ext}(D_s, n, k, 521nm) n_M(D_s) dD_s}{\int_{D_{smin}}^{D_{smax}} n_M(D_s) dD_s} \quad (1)$$

708

709 The mass size distribution, $n_M(D_s)$, is given by:

$$710 n_M(D_s) = \frac{\pi}{6} \rho_s D_s^3 n(D_s)$$

711 where $n(D_s)$ represents the log-normal number size distribution at geometric standard deviation
712 of 1.2. ρ_s is the SO_2 density. Based on the retrieved effective radius (r_{eff}) of sulfate aerosol (D_s
713 = $2r_{eff}$) and the complex refractive index of sulfate aerosol at 521 nm (real part: $n = 1.431$;
714 imaginary part: $k = 1.0 \times 10^{-8}$), we determined the extinction efficiency factor (Q_{ext} at 521 nm)
715 using Mie theory ([Supplementary Figure 7, 8,11](#)). Details of the expression of
716 $Q_{ext}(r_{eff}, n, k, 521nm)$ are provided in the Supplementary Methods. The refractive index of
717 sulfate aerosol is obtained from [GEISA database](#).

718

719 The hemispherical mean value of MEE is also estimated using:

720

$$721 MEE = \frac{SAOD * \text{Surface area}[m^2]}{\text{mass of } \text{SO}_2[\text{g}] * \left(\frac{\text{Molar Mass of } \text{H}_2\text{SO}_4 * 1}{\text{Molar mass of } \text{SO}_2} \right)} \quad (2)$$

722

723 Here, wt is the 75% H_2SO_4 weight.

724

Relative and absolute changes of three stratospheric species: Hunga versus CLIM

725 We determined the relative and absolute changes in the three stratospheric species (Y) for

726 the Hunga and CLIM periods using:

727

$$Absolute\ change = \Delta Y = Y[HTHH] - Y[CLIM] \quad (3)$$

728

$$\% \text{ Relative change} = 100 \times \frac{\Delta Y}{Y[CLIM]} \quad (4)$$

729

730 **Retrieval of optical and microphysical properties of stratospheric sulfate aerosol: Hunga 731 versus CLIM**

732 We utilized near-global coverage of the spatial and temporal distribution of aerosol
733 extinction [km^{-1}] (SAGE-III; ATBD, 2002) at nine wavelengths (384.224 nm, 448.511 nm,
734 520.513 nm, 601.583 nm, 676.037 nm, 755.979 nm, 869.178 nm, 1021.20 nm, and 1543.92 nm).
735 It is important to note that uncertainty in aerosol extinction varies with wavelength⁷⁰. For
736 instance, at 407 nm and 1089 nm, the uncertainty can exceed 25%, whereas at 450 nm, it
737 decreases to 10%, and at 521 nm, it is less than 5%. To maximize accuracy, we jointly
738 utilized all nine wavelengths to retrieve stratospheric sulfate aerosol optical and microphysical
739 properties using a pre-calculated look-up table (LUT) based on Mie theory^{66,71-74}.

740

741 **Mie-LUT based retrieval of stratospheric sulfate aerosol**

742 An accurate assessment of the size distribution of stratospheric aerosols is crucial
743 for accurately quantifying their radiative effects before and after the eruption. When
744 analyzing background stratospheric aerosols, studies have shown that their size distribution can
745 typically be characterized by a unimodal lognormal distribution⁷⁵. These aerosols
746 are predominantly spherical and consist of approximately 75% sulfuric acid and 25% water
747 vapor⁶⁸⁻⁷³.

748 Ground-based stratospheric aerosol observations from AERONET indicate that during
749 the early stages of aerosol growth following the Hunga eruption, bi-modal and tri-modal log-
750 normal size distributions better represented the aerosol characteristics, particularly the coarse
751 mode of aerosol particles^{16,17}. However, within a few months after the eruption, the data showed
752 that fine-mode stratospheric aerosols became dominant in aerosol extinction^{16,67}. Thus, we

753 adopted a unimodal log-normal size distribution to represent the size distribution of sulfate
754 aerosols resulting from the Hunga eruption, with a geometric standard deviation of 1.2. This is
755 broadly consistent with the more comprehensive size distribution analysis by Knepp⁶⁶,
756 Khaykin⁶⁶ and Duchamp¹⁶. This size distribution parameterization has previously been used to
757 assess stratospheric sulfate aerosol growth one year after the Pinatubo eruption²².
758 Notably, Knepp⁶⁶ introduced a novel method based on SAGE III data, indicating a spectral width
759 of 1.2 to 1.3 post-Hunga eruption, which aligns with our choice of 1.2 for the geometric standard
760 deviation in the Hunga case.

761 We used the Mie LUT to retrieve the optical and microphysical properties of sulfate
762 aerosols from SAGE III/ISS stratospheric aerosol extinction profiles at nine wavelengths,
763 covering the period from 7 June 2017 to 31 December 2023 (Hunga-2022 vs. CLIM and Hunga-
764 2023 vs. CLIM periods). For this purpose, we followed these steps:

765

766 1. We calculate the aerosol extinction ratios at 521 nm as: 384.224 /520.513 nm,
767 448.511/520.513 nm, 520.513/520.513 nm, 601.583/520.513nm, 676.037/520.513
768 nm, 755.979/520.513 nm, 869.178/520.513 nm, 1021.20/520.513 nm, and
769 1543.92/520.513 nm) using SAGE-III/ISS observations.

770

771 2. We compare the SAGE-III aerosol extinction ratios (from point 1) with the Mie LUT
772 aerosol extinction ratios and determine the closest matching extinction ratios at each
773 given wavelength.
774 3. We calculate the squared difference between the eight aerosol extinction ratios from
775 SAGE-III/ISS and the Mie LUT for each effective radius, then sum these differences
776 to quantify the discrepancy between the two datasets.

777 Here, Eq. (5) summarizes above step 3:

$$p(r_{eff}) = \sum_{\lambda_i} [Q_{ratio_{SAGE}}(\lambda_i) - Q_{ratio_{LUT}}(\lambda_i, r_{eff})]^2 \quad (5)$$

778 where $Q_{ratio_{SAGE}}$ and $Q_{ratio_{LUT}}$ represent the extinction ratio at 521 nm from SAGE-III
779 observations and LUT, respectively. Here λ_i sums over the eight wavelengths from 400

780 to 1450 nm (as listed above), determined for both SAGE-III and LUT table using
781 interpolation techniques.

782
783 4. The minimum sum of squared differences represents the best solution for the effective
784 radius, asymmetry factor, and single scattering albedo. This step identifies the closest
785 match between the observed and modeled data.

786
787 **Simulations of radiative effects of three stratospheric species (Hunga versus CLIM periods)**
788 | **Columnar- & Zonal-mean**

789 We utilized observational data from multiple instruments (SAGE III/ISS and Aura MLS)
790 to obtain atmospheric and aerosol extinction profiles. Specifically, we retrieved vertical
791 profiles of temperature, pressure, density, water vapor (H_2O), ozone (O_3), and multi-wavelength
792 aerosol extinction from SAGE III/ISS observations between 9 km and 100 km altitude.
793 For atmospheric profiles below 9 km, we incorporated data from other sources,
794 including MLS⁵⁸ and ERA5⁷⁸.

795
796 Using the input data described above, we conducted idealized radiative transfer
797 simulations to examine the 3D distribution of stratospheric radiative heating
798 rates and instantaneous radiative fluxes between two periods: Hunga-2022 and Hunga-
799 2023 versus the CLIM period, at the TOA and near the tropopause. A summary of these data
800 sources and radiative transfer model simulations is provided in Supplementary Figure 1. Using
801 the LibRadtran model with the DISORT solver^{59,79-80} and eight streams, we simulated radiative
802 flux changes and associated heating rates by incorporating observed seasonal-mean vertical
803 profiles of atmospheric constituents, aerosol properties, and seasonal-mean daily-insolation
804 weighted solar zenith angle as a function of latitude and longitude. These simulations were
805 conducted separately for the shortwave (0.28–4 μm) and longwave (4.0–100 μm) components
806 of radiative flux changes and heating rates (see [Supplementary Methods](#)). We used the CLIM
807 period to define the atmospheric temperature profiles (per season) and applied these fixed
808 temperature profiles for the Hunga period analysis. Thus, our radiative calculations do not
809 account for any temperature adjustments in the stratosphere in the year following the eruption
810 due to net heating/cooling from different radiative species. This analysis design allows us

811 to clearly isolate the instantaneous radiative response of the Hunga eruption from eruption-
812 associated climate feedbacks (e.g., dynamical changes) that influence the observed stratospheric
813 and tropospheric temperature profiles over the past year.

814

815 **Uncertainty analysis related to three stratospheric species**

816 We estimated seasonal and yearly standard deviation values for three stratospheric
817 species (H_2O , sulfate aerosol, and O_3) using SAGE III/ISS observations from 2017 to 2021,
818 before the Hunga eruption. Based on these yearly standard deviation values of the perturbed
819 stratospheric species, we calculated the corresponding standard deviation associated with
820 their instantaneous radiative effects at the TOA and near the tropopause (Fig. 2). Additionally,
821 we determined the propagated standard deviation for the combined radiative effects of the
822 three stratospheric species (Fig. 2). It is important to note that the standard deviation associated
823 with surface temperature changes, estimated using the FaIR model⁷⁻⁸, is derived from
824 the propagated standard deviation of the combined instantaneous radiative effects of the
825 three stratospheric species⁶⁶. We presented the standard deviation values rounded to two and
826 three places. Other sources of uncertainty, such as dynamical variations, cloud effects, and biases
827 across different satellite products, may also influence temperature changes. However, these
828 factors are beyond the scope of this study and are therefore not included in our uncertainty
829 estimate⁶⁶.

830 **Limitations of Radiative transfer model**

831 Even though we directly use the observed vertical profiles of aerosols, stratospheric water
832 vapor, and ozone as inputs to the LibRadtran model, our results are subject to several important
833 limitations.

834

835 First, the infrequent sampling of aerosol extinction profiles at multiple wavelengths by
836 SAGE III introduces uncertainties in SAOD retrievals, particularly in the lower stratosphere
837 following the Hunga eruption. Thus, cross-instrument comparisons are critical for improving
838 confidence in SAOD estimates and reducing uncertainties in radiative forcing assessments
839 following major volcanic events (Supplementary Figure 2 and Supplementary Table 1).

840

841 Second, the high signal-to-noise ratio SAGE-III/ISS dataset we used provides only dawn-
842 dusk solar stratospheric profiles. Consequently, we cannot capture the diurnal variations of
843 radiative fluxes in our calculations, which are limited to daytime periods (i.e., no diurnal
844 variability is considered). However, we anticipate that this limitation does not significantly affect
845 our results, as the impact of diurnal temperature and water vapor variations in the stratosphere is
846 relatively small⁸¹⁻⁸⁴.

847

848 Third, for computational simplicity, we assume a fixed, idealized clear-sky surface
849 albedo of 0.15 between 60°N and 60°S ([Supplementary Figure 15](#)). This assumption may
850 influence the net magnitude of the cooling effect, which could be even stronger if surface albedo
851 were higher. However, the overall sign of the radiative effect remains the same even if the clear-
852 sky surface albedo is assumed to be 0.2 over the same latitude range.

853

854 Fourth, our idealized radiation-only simulations do not account for the dynamical effects
855 of radiative components. Additionally, we do not incorporate measured temperature profiles
856 from the Hunga eruption period to estimate radiative forcing under a relaxed stratospheric state
857 (i.e., effective radiative forcing). Notably, Schoeberl¹⁵ accounted for temperature anomalies and
858 found that while they are not always as pronounced as those associated with water vapor or
859 aerosols, they are non-negligible. To illustrate the potential impact of stratospheric temperature
860 anomalies (cooling), we provide idealized radiative forcing column calculations in
861 [Supplementary Figures 15–19](#), showing that these anomalies primarily affect longwave radiation.
862 When accounting for stratospheric temperature changes, we find that the radiative forcing at both
863 the TOA and near the tropopause altitude due to stratospheric water vapor remains positive.
864 Furthermore, surface albedo should ideally be treated as a dynamic variable, varying with
865 surface type, land use, and seasonal changes. Nonetheless, despite these simplifications, our
866 primary conclusion—that sulfate aerosols dominate the stratospheric radiative cooling effect
867 among the three species considered—remains robust.

868

869 **The Finite-amplitude Impulse-Response (FaIR) model**

870 We use the Finite-Amplitude Impulse-Response (FaIR) model, an emulator of a two-
871 layer energy balance system, to estimate the first-order temperature response to the Hunga

872 eruption^{7–8}. In this model, "finite-amplitude" refers to the response magnitude being determined
873 by the forcing strength, while "impulse-response" describes the system's reaction to a sudden
874 forcing change. FaIR is applied to assess the temperature response to Hunga-induced radiative
875 forcing from stratospheric water vapor, sulfate aerosols, and ozone. The model provides an
876 estimate of the resulting temperature change, particularly in the SH. However, as FaIR primarily
877 simulates global and hemispheric-scale surface temperature changes, it does not fully account for
878 regional variability or all Earth system feedbacks.

879

880

881

882 **Data availability**

883 The SAGE-III/ISS v053 solar datasets (filename: g3bssp_53) are freely available from
884 (https://asdc.larc.nasa.gov/project/SAGE%20III-ISS/g3bssp_53). The Aura MLS dataset is also
885 freely available and can be obtained using <https://search.earthdata.nasa.gov/>. The ECMWF
886 ERA5 reanalysis pressure level datasets can be obtained from
887 <https://cds.climate.copernicus.eu/cdsapp#!/search?type=dataset>. Underlying data (Supplementary
888 Data 1–5) related to the manuscript is publicly available at Zenodo website
889 (<https://zenodo.org/records/14955808> ; Gupta⁸⁵). The data related to the refractive index of
890 sulfate aerosols is taken from <https://geisa.aeris-data.fr/litms/>. The Mie table for sulfate aerosol is
891 available here: [https://github.com/matthew2e/easy-volcanic-
892 aerosol/blob/master/eva_Mie_lookuptables.nc](https://github.com/matthew2e/easy-volcanic-aerosol/blob/master/eva_Mie_lookuptables.nc)⁷².

893

894

895

896 **Code availability**

897

898 The LibRadtran model is available at <http://www.libradtran.org/doku.php?id=download> here. All
899 the Figures (including Supplementary Figures) were originally produced and plotted using
900 various open-source Python libraries (e.g., <https://matplotlib.org/stable/>). The LibRadtran model-
901 based processed data and input is also publicly available at the Zenodo
902 (<https://zenodo.org/records/14955808>; Gupta⁸⁵).

903

904

905 **References**

- 906 1. Millan, L. et al. The Hunga Tonga-Hunga Ha'apai hydration of the stratosphere. *Geophys. Res. Lett.* 49, e2022GL099381 (2022).
- 907 2. Gupta, A. K., Bennartz, R., Fauria, K. E. & Mittal, T. Eruption chronology of the December 908 2021 to January 2022 Hunga Tonga-Hunga Ha'apai eruption sequence. *Commun. Earth 909 Environ.* 3(1), 314 (2022).
- 910 3. Self, S., Zhao, J. X., Holasek, R. E., Torres, R. C. & King, A. J. The atmospheric impact of 911 the 1991 Mount Pinatubo eruption (No. NASA/CR-93-207274). *NASA Report* (1993).
- 912 4. Carn, S. A., Krotkov, N. A., Fisher, B. L. & Li, C. Out of the blue: Volcanic SO₂ emissions 913 during the 2021–2022 eruptions of Hunga Tonga—Hunga Ha'apai (Tonga). *Front. Earth Sci.* 10, 914 976962 (2022).
- 915 5. Jenkins, S., Chris, S., Myles, A. & Roy, G. Tonga eruption increases chance of temporary 916 surface temperature anomaly above 1.5° C. *Nat. Clim. Change* 13(2), 127–129 (2023).
- 917 6. Zhu, Y. et al. Perturbations in stratospheric aerosol evolution due to the water-rich plume of 918 the 2022 Hunga-Tonga eruption. *Commun. Earth Environ.* 3(1), 248 (2022).
- 919 7. Smith, C. J. et al. FAIR v1.3: A simple emissions-based impulse response and carbon cycle 920 model. *Geosci. Model Dev.* 11(6), 2273–2297 (2018).
- 921 8. Held, I. M. et al. Probing the fast and slow components of global warming by returning 922 abruptly to preindustrial forcing. *J. Clim.* 23(9), 2418–2427 (2010).
- 923 9. Vömel, H., Evan, S. & Tully, M. Water vapor injection into the stratosphere by Hunga 924 Tonga-Hunga Ha'apai. *Science* 377(6613), 1444–1447 (2022).
- 925 10. Global Volcanism Program (GVP). Report on Hunga Tonga-Hunga Ha'apai (Tonga). In S. 926 K. Sennert (ed.), *Weekly Volcanic Activity Report*, 16 February–22 February 2022. Smithsonian 927 Institution and US Geological Survey (2022).
- 928 11. Xu, J., Li, D., Bai, Z., Tao, M. & Bian, J. Large amounts of water vapor were injected into 929 the stratosphere by the Hunga Tonga–Hunga Ha'apai volcano eruption. *Atmosphere* 13, 912 930 (2022).
- 931 12. Sellitto, P. et al. The unexpected radiative impact of the Hunga Tonga eruption of 15 932 January 2022. *Commun. Earth Environ.* 1, 288 (2022).
- 933 13. Schoeberl, M. et al. Analysis and impact of the Hunga Tonga-Hunga Ha'apai stratospheric 934 water vapor plume. *Geophys. Res. Lett.* 49(20), e2022GL100248 (2022).
- 935 14. Schoeberl, M. The estimated climate impact of the Hunga Tonga-Hunga Ha'apai eruption 936 plume. *Geophys. Res. Lett.* 50, e2023GL104634 (2023).
- 937 15. Schoeberl, M. R. Evolution of the climate forcing during the two years after the Hunga 938 Tonga-Hunga Ha'apai eruption. *J. Geophys. Res. Atmos.* 129, e2024JD041296 (2024).

954 16. Duchamp, C. et al. Observation of the aerosol plume from the 2022 Hunga Tonga—Hunga
955 Ha'apai eruption with SAGE III/ISS. *Geophys. Res. Lett.* 50(18), e2023GL105076 (2023).

956

957 17. Boichu, M. et al. Growth and global persistence of stratospheric sulfate aerosols from the
958 2022 Hunga Tonga—Hunga Ha'apai volcanic eruption. *J. Geophys. Res. Atmos.* 128(23),
959 e2023JD039010 (2023).

960

961 18. Forster, P. M. D. F. & Shine, K. P. Assessing the climate impact of trends in stratospheric
962 water vapor. *Geophys. Res. Lett.* 29(6), 10–1 (2002).

963

964 19. Solomon, S. et al. Contributions of stratospheric water vapor to decadal changes in the rate
965 of global warming. *Science* 327(5970), 1219–1223 (2010).

966

967 20. Fueglistaler, S. & Haynes, P. H. Control of interannual and longer-term variability of
968 stratospheric water vapor. *J. Geophys. Res. Atmos.* 110 (D24) (2005).

969

970 21. Bergstrom, R. W., Kinne, S., Russell, P. B., Bauman, J. J. & Minnis, P. Radiative forcing
971 of the Pinatubo aerosol as a function of latitude and time. *NASA Technical Report* (1996).

972

973 22. Stenchikov, G. L. et al. Radiative forcing from the 1991 Mount Pinatubo volcanic
974 eruption. *J. Geophys. Res. Atmos.* 103(D12), 13837–13857 (1998).

975

976 23. Witze, A. Why the Tongan eruption will go down in the history of
977 volcanology. *Nature* 602, 376–378 (2022).

978

979 24. Oppenheimer, C. Climatic, environmental and human consequences of the largest known
980 historic eruption: Tambora volcano (Indonesia) 1815. *Prog. Phys. Geogr.* 27(2), 230–259
981 (2003).

982

983 25. Hand, J. L. & Malm, W. C. Review of aerosol mass scattering efficiencies from ground-
984 based measurements since 1990. *J. Geophys. Res. Atmos.* 112 (D16) (2007).

985

986 26. Lu, J. et al. Stratospheric aerosol and ozone responses to the Hunga Tonga-Hunga Ha'apai
987 volcanic eruption. *Geophys. Res. Lett.* 50(4), e2022GL102315 (2023).

988

989 27. Carslaw, K. S. et al. Stratospheric aerosol growth and HNO_3 gas phase depletion from
990 coupled HNO_3 and water uptake by liquid particles. *Geophys. Res. Lett.* 21(23), 2479–2482
991 (1994).

992

993 28. Solomon, S., Garcia, R. R., Rowland, F. S. & Wuebbles, D. J. On the depletion of Antarctic
994 ozone. *Nature* 321(6072), 755–758 (1986).

995

996 29. Shine, K. P., Byrom, R. E. & Checa-Garcia, R. Separating the shortwave and longwave
997 components of greenhouse gas radiative forcing. *Atmos. Sci. Lett.* 23(10), e1116 (2022).

998

999 30. Coy, L. Stratospheric circulation changes associated with the Hunga Tonga-Hunga Ha'apai
1000 eruption. *Geophys. Res. Lett.* 49(22), e2022GL100982 (2022).

1001

1002 31. Raymond, N., Bernath, P. & Boone, C. Atmospheric effects of the Tonga volcanic sulfate
1003 aerosols. *J. Quant. Spectrosc. Radiat. Transfer* (2024): 109056.

1004

1005 32. Zhang, J. et al. Chemistry contribution to stratospheric ozone depletion after the
1006 unprecedented water-rich Hunga Tonga eruption. *Geophys. Res. Lett.* 51(7), e2023GL105762
1007 (2024).

1008
1009 33. Maycock, A. C., Smith, C. J., Rap, A. & Rutherford, O. On the structure of instantaneous
1010 radiative forcing kernels for greenhouse gases. *J. Atmos. Sci.* 78(3), 949–965 (2021).
1011
1012 34. Basha, G. et al. Impact of Hunga Tonga-Hunga Ha'apai volcanic eruption on stratospheric
1013 water vapour, temperature, and ozone. *Remote Sens.* 15(14), 3602 (2023).
1014
1015 35. Wilmouth, D. M. et al. Impact of the Hunga Tonga volcanic eruption on stratospheric
1016 composition. *Proc. Natl. Acad. Sci. USA* 120(46), e2301994120 (2023).
1017
1018 36. Wang, X. et al. Stratospheric climate anomalies and ozone loss caused by the Hunga
1019 Tonga-Hunga Ha'apai volcanic eruption. *J. Geophys. Res. Atmos.* 128(22), e2023JD039480
1020 (2023).
1021
1022 37. Santee, M. L. et al. Strong evidence of heterogeneous processing on stratospheric sulfate
1023 aerosol in the extrapolar southern hemisphere following the 2022 Hunga Tonga-Hunga Ha'apai
1024 eruption. *J. Geophys. Res. Atmos.* 128(16), e2023JD039169 (2023).
1025
1026 38. Asher, E. et al. Unexpectedly rapid aerosol formation in the Hunga Tonga plume. *Proc.*
1027 *Natl. Acad. Sci. USA* 120(46), e2219547120 (2023).
1028
1029 39. Legras, B. et al. The evolution and dynamics of the Hunga Tonga–Hunga Ha'apai sulfate
1030 aerosol plume in the stratosphere. *Atmos. Chem. Phys.* 22(22), 14957–14970 (2022).
1031
1032 40. Fleming, E. L., Newman, P. A., Liang, Q. & Oman, L. D. Stratospheric temperature and
1033 ozone impacts of the Hunga Tonga-Hunga Ha'apai water vapor injection. *J. Geophys. Res.*
1034 *Atmos.* 129(1), e2023JD039298 (2024).
1035
1036 41. Erba, E. et al. Environmental consequences of Ontong Java Plateau and Kerguelen plateau
1037 volcanism. *Geol. Soc. Am. Spec. Pap.* 511, 271–303 (2015).
1038
1039 42. Kump, L. R. & Barley, M. E. Increased subaerial volcanism and the rise of atmospheric
1040 oxygen 2.5 billion years ago. *Nature* 448(7157), 1033–1036 (2007).
1041
1042 43. Li, Chenwei et al. Microphysical simulation of the 2022 Hunga volcano eruption using a
1043 sectional aerosol model. *Geophys. Res. Lett.* 51(11), e2024GL108522 (2024).
1044
1045 44. Madhavan, B. L. et al. Stratospheric aerosol characteristics from the 2017–2019 volcanic
1046 eruptions using the SAGE III/ISS observations. *Remote Sens.* 15(1), 29 (2022).
1047
1048 45. Schallock, J. Reconstructing volcanic radiative forcing since 1990 using a comprehensive
1049 emission inventory and spatially resolved sulfur injections from satellite data in a chemistry-
1050 climate model. *Atmos. Chem. Phys.* 23(2), 1169–1207 (2023).
1051
1052 46. Wang, Y. & Huang, Y. Compensating atmospheric adjustments reduce the volcanic forcing
1053 from Hunga stratospheric water vapor enhancement. *Sci. Adv.* 10(32), eadl2842 (2024).
1054
1055 47. Thomason, L. W. & Taha, G. SAGE III aerosol extinction measurements: Initial
1056 results. *Geophys. Res. Lett.* 30(12) (2003).
1057
1058 48. Thomason, L. W., Moore, J. R., Pitts, M. C., Zawodny, J. M. & Chiou, E. W. An
1059 evaluation of the SAGE III version 4 aerosol extinction coefficient and water vapor data
1060 products. *Atmos. Chem. Phys.* 10(5), 2159–2173 (2010).
1061

1062 49. Ramanathan, V. et al. Warming trends in Asia amplified by brown cloud solar
1063 absorption. *Nature* 448, 575–578 (2007).

1064 50. Davis, S. M. et al. Validation of SAGE III/ISS solar water vapor data with correlative
1065 satellite and balloon-borne measurements. *J. Geophys. Res. Atmos.* 126(2), e2020JD033803
1066 (2021).

1067 51. Strode, S. A. SAGE III/ISS ozone and NO₂ validation using diurnal scaling factors. *Atmos.*
1068 *Meas. Tech.* 15(20), 6145–6161 (2022).

1069 52. Park, M. et al. . *J. Geophys. Res. Atmos.* 126(7), e2020JD034274 (2021).

1070 53. Taha, G. et al. OMPS LP version 2.0 multi-wavelength aerosol extinction coefficient
1071 retrieval algorithm. *Atmos. Meas. Tech.* 14(2), 1015–1036 (2021).

1072 54. Rozanov, A. et al. Retrieval of stratospheric aerosol extinction coefficients from sun-
1073 normalized Ozone Mapper and Profiler Suite Limb Profiler (OMPS-LP) measurements. *Atmos.*
1074 *Meas. Tech.* 17(22), 6677–6695 (2024).

1075 55. Chen, Z., Bhartia, P. K., Loughman, R., Taha, G. & Xu, P. Evaluation of the OMPS/LP
1076 stratospheric aerosol extinction product using SAGE III/ISS observations. *Atmos. Meas.*
1077 *Tech.* 13(6), 3471–3485 (2020).

1078 56. Kovilakam, M. et al. OMPS-LP aerosol extinction coefficients and their applicability in
1079 GloSSAC. *EGU Sphere 2024*, 1–31 (2024).

1080 57. Damadeo, R. P., Sofieva, V. F., Rozanov, A. & Thomason, L. W. An empirical
1081 characterization of the aerosol Ångström exponent interpolation bias using SAGE III/ISS
1082 data. *Atmos. Meas. Tech.* 17(12), 3669–3678 (2024).

1083 58. Waters, J. W. et al. The earth observing system microwave limb sounder (EOS MLS) on
1084 the Aura satellite. *IEEE Trans. Geosci. Remote Sens.* 44(5), 1075–1092 (2006).

1085 59. Mayer, B. & Kylling, A. The libRadtran software package for radiative transfer
1086 calculations—description and examples of use. *Atmos. Chem. Phys.* 5(7), 1855–1877 (2005).

1087 60. Sellitto, P. et al. Observing the SO₂ and sulfate aerosol plumes from the 2022 Hunga
1088 eruption with the Infrared Atmospheric Sounding Interferometer (IASI). *Geophys. Res.*
1089 *Lett.* 51(19), e2023GL105565 (2024).

1090 61. de Leeuw et al. The 2019 Raikoke volcanic eruption—Part 1: Dispersion model
1091 simulations and satellite retrievals of volcanic sulfur dioxide. *Atmos. Chem. Phys.* 21(14),
1092 10851–10879 (2021).

1093 62. Timmreck, C. et al. The interactive stratospheric aerosol model intercomparison project
1094 (ISA-MIP): Motivation and experimental design. *Geosci. Model Dev.* 11(7), 2581–2608 (2018).

1095 63. Stenchikov, G. et al. How does a Pinatubo-size volcanic cloud reach the middle
1096 stratosphere? *J. Geophys. Res. Atmos.* 126(10), e2020JD033829 (2021).

1097 64. Toohey, M., Jia, Y., Khanal, S. & Tegtmeier, S. Stratospheric residence time and the
1098 lifetime of volcanic stratospheric aerosols. *EGU Sphere 2024*, 1–28 (2024).

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115 65. Hamill, P., Jensen, E. J., Russell, P. B. & Bauman, J. J. The life cycle of stratospheric
1116 aerosol particles. *Bull. Am. Meteorol. Soc.* 78(7), 1395–1410 (1997).

1117

1118 66. Knepp, T. N., Kovilakam, M., Thomason, L. & Miller, S. J. Characterization of particle
1119 size distribution uncertainties using SAGE II and SAGE III/ISS extinction spectra. *Atmos. Meas.*
1120 *Tech. Discuss.* 2023, 1–42 (2023).

1121

1122 67. Khaykin, S. et al. Global perturbation of stratospheric water and aerosol burden by Hunga
1123 eruption. *Commun. Earth Environ.* 3(1), 316 (2022).

1124

1125 68. Marshall, L. et al. Multi-model comparison of the volcanic sulfate deposition from the
1126 1815 eruption of Mt. Tambora. *Atmos. Chem. Phys.* 18(3), 2307–2328 (2018).

1127

1128 69. Schmidt, A. et al. Volcanic radiative forcing from 1979 to 2015. *J. Geophys. Res.*
1129 *Atmos.* 123(22), 12491–12508 (2018).

1130

1131 70. SA, E. SAGE III. Available at: <https://eospso.gsfc.nasa.gov/sites/default/files/atbd/atbd-sage-cloud.pdf> (2002).

1132

1133

1134 71. Wrana, F., von Savigny, C., Zalach, J. & Thomason, L. W. Retrieval of stratospheric
1135 aerosol size distribution parameters using satellite solar occultation measurements at three
1136 wavelengths. *Atmos. Meas. Tech.* 14(3), 2345–2357 (2021).

1137

1138 72. Aubry, T. J., Toohey, M., Marshall, L., Schmidt, A. & Jellinek, A. M. A new volcanic
1139 stratospheric sulfate aerosol forcing emulator (EVA_H): Comparison with interactive
1140 stratospheric aerosol models. *J. Geophys. Res. Atmos.* 125(3), e2019JD031303 (2020).

1141

1142 73. Toohey, M., Stevens, B., Schmidt, H. & Timmreck, C. Easy Volcanic Aerosol (EVA v1.0):
1143 An idealized forcing generator for climate simulations. *Geosci. Model Dev.* 9(11), 4049–4070
1144 (2016).

1145

1146 74. Wrana, F., Niemeier, U., Thomason, L. W., Wallis, S. & von Savigny, C. Stratospheric
1147 aerosol size reduction after volcanic eruptions. *Atmos. Chem. Phys.* 23(17), 9725–9743 (2023).

1148

1149 75. Kahn, R. A. et al. Evolving particles in the 2022 Hunga Tonga—Hunga Ha’apai volcano
1150 eruption plume. *J. Geophys. Res. Atmos.* 129(11), e2023JD039963 (2024).

1151

1152 76. Kremser, S. et al. Stratospheric aerosol—Observations, processes, and impact on
1153 climate. *Rev. Geophys.* 54(2), 278–335 (2016).

1154

1155 77. Palmer, K. F. & Williams, D. Optical constants of sulfuric acid; application to the clouds of
1156 Venus? *Appl. Opt.* 14(1), 208–219 (1975).

1157

1158 78. Hersbach, H. et al. The ERA5 global reanalysis. *Q. J. R. Meteorol. Soc.* 146, 1999–2049
1159 (2020).

1160

1161 79. Gasteiger, J. et al. Representative wavelengths absorption parameterization applied to
1162 satellite channels and spectral bands. *J. Quant. Spectrosc. Radiat. Transfer* 148, 99–115 (2014).

1163

1164 80. Stamnes, K., Tsay, S. C., Wiscombe, W. & Laszlo, I. DISORT, general-purpose Fortran
1165 program for discrete-ordinate-method radiative transfer in scattering and emitting layered media:
1166 Documentation of methodology. *Tech. Rep.* (2000).

1167

1168 81. Haywood, J. M. & Shine, K. P. The effect of anthropogenic sulfate and soot aerosol on the
1169 clear sky planetary radiation budget. *Geophys. Res. Lett.* 22(5), 603–606 (1995).

1170

1171 82. Baker, D. N. & Kanekal, S. G. Solar cycle changes, geomagnetic variations, and energetic
1172 particle properties in the inner magnetosphere. *J. Atmos. Sol.-Terr. Phys.* 70(2–4), 195–206
1173 (2008).

1174

1175 83. Bellouin, N. et al. Radiative forcing of climate change from the Copernicus reanalysis of
1176 atmospheric composition. *Earth Syst. Sci. Data* 12(3), 1649–1677 (2020).

1177

1178 84. Haefele, A. et al. Diurnal changes in middle atmospheric H₂O and O₃: Observations in the
1179 Alpine region and climate models. *J. Geophys. Res. Atmos.* 113(D17) (2008).

1180

1181 85. Gupta, A. K. et al. The January 2022 Hunga eruption cooled the southern hemisphere in 2022
and 2023. Zenodo. <https://zenodo.org/records/14955808> (2025).

1182

1183

1184

1185

1186 **Acknowledgments**

1187 We thank John Rausch for his assistance in obtaining the dataset and for his valuable discussions.
1188 We also thank Ralph Kahn for his constructive feedback and comments during scientific meetings.
1189 K. E. F. and R. B. secured funding from the National Aeronautics and Space Administration
1190 (NASA). This work was supported by NASA grant 80NSSC20K1450 awarded to the P.I. (K.E.F.)
1191 and Co-I (R.B.). A.G. received partial support from this funding during his postdoctoral tenure at
1192 Vanderbilt, and additional support from NSF grant 2151093 awarded to J. F. K. at UCLA during
1193 his current tenure at AOS, UCLA. The scope of these awards addresses submarine volcanism and
1194 the radiative effects of volcanic aerosols. We also thank the SAGE-III/ISS, LibRadtran, GEISA,
1195 and NASA teams for providing access to their data and model archives.

1196

1197 **Author contributions**

1198 A.G. contributed to the conceptual development of this work, conducted the analysis, and produced
1199 all figures and results. R.B. ran the FaIR model. A.G. drafted the original manuscript, which was
1200 reviewed by T.M., J.F.K., R.B., and K.E.F.

1201

1202 **Competing interests**

1203 The authors declare no competing interests.