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Let G and H be hypergraphs on n vertices, and suppose H has 
large enough minimum degree to necessarily contain a copy 
of G as a subgraph. We give a general method to randomly 
embed G into H with good “spread”. More precisely, for a wide 
class of G, we find a randomised embedding f : G ↪→ H with 
the following property: for every s, for any partial embedding 
f ′ of s vertices of G into H, the probability that f extends 
f ′ is at most O(1/n)s. This is a common generalisation of 
several streams of research surrounding the classical Dirac-
type problem.
For example, setting s = n, we obtain an asymptotically 
tight lower bound on the number of embeddings of G into 
H. This recovers and extends recent results of Glock, Gould, 
Joos, Kühn, and Osthus and of Montgomery and Pavez-Signé 
regarding enumerating Hamilton cycles in Dirac hypergraphs. 
Moreover, using the recent developments surrounding the 
Kahn–Kalai conjecture, this result implies that many Dirac-
type results hold robustly, meaning G still embeds into H
after a random sparsification of its edge set. This allows us 
to recover a recent result of Kang, Kelly, Kühn, Osthus, 
and Pfenninger and of Pham, Sah, Sawhney, and Simkin 
for perfect matchings, and obtain novel results for Hamilton 
cycles and factors in Dirac hypergraphs.
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Notably, our randomised embedding algorithm is self-con-
tained and does not require Szemerédi’s regularity lemma or 
iterative absorption.
© 2024 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).

1. Introduction

A central theme in extremal graph theory is computing the minimum-degree thresh-
olds for various properties. A prototypical result is Dirac’s theorem [5], which states that 
n-vertex graphs with minimum degree at least n/2 are Hamiltonian. This is of course 
tight, as graphs with minimum degree less than n/2 need not be connected. Results 
of this flavour, concerned with minimum-degree thresholds for containment of spanning 
structures, are often referred to as Dirac-type theorems.

Although the assumption that δ(G) ≥ n/2 cannot be weakened in Dirac’s theorem, we 
can say a lot more about n-vertex graphs with δ(G) ≥ n/2 (such graphs are henceforth 
referred to as Dirac graphs). Sárközy, Selkow, and Szemerédi [33] showed that Dirac 
graphs in fact contain !(n)n many distinct Hamilton cycles, which is clearly optimal up 
to the value of the implied constant factor (the constant terms were later sharpened by 
Cuckler and Kahn [4]). We refer to results of this type as enumeration results.

We also know that the Hamilton cycles in Dirac graphs can survive random edge 
deletions (this phenomenon is often called robustness, see the survey of Sudakov [35]). 
Indeed, an influential result of Krivelevich, Lee, and Sudakov [22] states that for any 
Dirac graph G, the random subgraph obtained by keeping each edge of G independently 
with probability p where p ≥ C logn/n (C is an absolute constant) is asymptotically 
almost surely (abbreviated a.a.s.) Hamiltonian. We remark that this result is a common 
generalisation of Dirac’s theorem, as well as the classical result of Pósa [29] that the 
Erdős-Rényi random graph G(n, C log n/n) is a.a.s. Hamiltonian.

Recently, random graph theory was revolutionised by Frankston, Kahn, Narayanan, 
and Park’s [10] proof of the fractional expectation threshold vs. threshold conjecture of 
Talagrand [36] and Park and Pham’s [27] proof of the even stronger Kahn–Kalai con-
jecture [17]. A crucial corollary of Talagrand’s conjecture relates the so-called spread 
measures with thresholds. Roughly speaking, for the study of random graphs, this con-
nection implies that if one can find a probability measure on copies of G ⊆ Kn with 
good spread (see Definition 1.16), then G a.a.s. appears in G(n, p). Simply considering 
the uniform distribution on copies of G ⊆ Kn already gives startlingly powerful results. 
An example that barely scratches the surface of this phenomenon is the following: If 
G is a cycle on n vertices, then the uniform distribution on copies of G in Kn (that 
is, on Hamilton cycles of Kn) turns out to be well-behaved enough that through Ta-
lagrand’s conjecture, we can swiftly recover Pósa’s [29] result about Hamiltonicity of 
G(n, C logn/n).
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Two recent independent papers by Kang, Kelly, Kühn, Osthus, and Pfenninger 
(KKKOP) [19] and Pham, Sah, Sawhney, and Simkin (PSSS) [28] demonstrated that 
spreadness results can yield common generalisations of enumeration and robustness re-
sults. If there is a probability measure on copies of G in H with good spread, where H
is for example a hypergraph with minimum degree large enough to contain a copy of G, 
then Talagrand’s conjecture gives for free that H contains G robustly, in a similar sense 
to the aforementioned result of Krivelevich, Lee, and Sudakov (see the next subsection 
for precise formulations). Moreover, in order for such a probability measure to have good 
spread, it must have large support; that is, there must be many copies of G in H.

Calculating the spread of copies of G ⊆ Kn sampled uniformly at random is in many 
cases quite approachable. When H is not a complete graph, copies of G ⊆ H sampled 
uniformly at random are hard to reason about, and it is unclear how one can compute 
the spread of such a random subgraph. Both KKKOP [19] and PSSS [28] circumvent 
this difficulty by employing powerful methods from extremal/probabilistic combinatorics 
such as Szemerédi’s regularity lemma and iterative absorption to construct a probability 
measure on the desired subgraphs with good spread. The contribution of the current 
paper is a simpler method that can achieve the same task, in many cases in significantly 
more generality.

The notion of vertex spreadness, introduced by PSSS [28], is crucial. Instead of con-
sidering a random copy of G in H and analyzing the probability that a subset of edges 
of H appears in G, we consider a random embedding of G ↪→ H and analyze the prob-
ability that a subset of vertices of G are mapped to a subset of vertices of H. Our 
main results provide a randomized algorithm for embedding G ↪→ H so that the vertex 
spreadness matches up to a constant factor the vertex spreadness of embedding G ↪→ Kn

uniformly at random, when G is a (hypergraph) cycle or the disjoint union of copies of 
some fixed hypergraph. This allows us to recover and extend many results from [19,28], 
as well as obtain novel enumeration results which extend recent results of Montgomery 
and Pavez-Signé [26]. In the next subsections, we provide precise formulations of our 
results.

1.1. Thresholds

Before stating our results, we make precise some concepts already alluded to in the 
introduction. For a k-uniform hypergraph H and d ∈ [k−1], we let δd(H) be the minimum 
number of edges of H that any set of d vertices of V (H) is contained in.

Definition 1.1 (Minimum-degree/Dirac threshold). Let F be an infinite family of k-
uniform hypergraphs. By δF,d we denote the smallest real number δ such that for all 
α > 0 and for all but finitely many n the following holds. Let n be such that there 
exists some F ∈ F with |V (F )| = n. Let H be an n-vertex k-uniform hypergraph with 
δd(H) ≥ (δ + α)

(n−d
k−d

)
. Then, there exists some F ∈ F with |V (F )| = n such that H

contains a copy of F .
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Note that for all F and d, the statement in Definition 1.1 holds for δ = 1 and for the 
infimum over all such δ ∈ [0, 1], so δF,d is well-defined.

The notion of thresholds is central in the study of random graphs. Here we present 
a general definition for the threshold for a binomial random k-uniform hypergraph to 
contain some spanning subgraph.

Definition 1.2. Let F be an infinite family of k-uniform hypergraphs. Denote by p =
p∗F (n) the function so that for all n ∈ N (such that there exists some F ∈ F with 
|V (F )| = n), the binomial random hypergraph G(k)(n, p) contains a copy of some F ∈ F
with |V (F )| = n with probability precisely 1/2.

For example, if F contains one length-n cycle for every n ∈ N, then p∗F (n) is the 
threshold for G(n, p) to have a Hamilton cycle.

Definition 1.3 (p-random sparsification). Given p ∈ [0, 1] and some hypergraph H, by 
Hp, we denote the random graph obtained by keeping every edge of H with probability 
p, making the decisions independently for each distinct edge of H.

Definition 1.4 (RD-threshold/Robust Dirac threshold). Let F be an infinite family of k-
uniform hypergraphs, and let p = p(n) ∈ [0, 1] be a function. By δRD

F,d,p, we denote the 
smallest real number δ such that for all α, ε > 0, there exists C > 0 such that for all 
sufficiently large n ∈ N (such that there exists some F ∈ F with |V (F )| = n), for 
any n-vertex hypergraph H with δd(H) ≥ (δ + α)

(n−d
k−d

)
, there exists some F ∈ F with 

|V (F )| = n such that the random sparsification Hp̂ contains a copy of F with probability 
at least 1 − ε as long as p̂ ≥ Cp(n). By δRD

F,d, we denote δRD
F,d,p∗

F
.

It is clear that δRD
F,d ≥ δF,d. The other inequality is a lot more interesting, and in the 

following cases, true.

Theorem 1.5. For the following values of F and d, we have that δRD
F,d = δF,d:

(1) when F := {Cn : n ∈ N} where Cn is a cycle on n vertices (Krivelevich, Lee, Sudakov
[22]);

(2) for each r ≥ 2, when F := {n ×Kr : n ∈ N} (r-clique-factors) (Pham, Sah, Sawh-
ney, Simkin [28], the r = 3 case was obtained by Allen, Böttcher, Corsten, Davies, 
Jenssen, Morris, Roberts, Skokan [1]);

(3) for each C, when F is made up of a single tree Tn on n vertices for each n ∈ N, and 
∆(Tn) ≤ C (Pham, Sah, Sawhney, Simkin [28]);

(4) when F := {n ×K(k)
k : n ∈ N} (k-uniform matchings), for any d ∈ [k − 1] (indepen-

dently Pham, Sah, Sawhney, Simkin [28] and Kang, Kelly, Kühn, Osthus, Pfenninger 
[19]).
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We remark that the first three results concern graphs, so d = 1 in each case. Our 
main contribution in this paper is a unified strategy giving a far-reaching generalisation 
of the first, second, and fourth result stated above. In particular, this allows us to add 
hypergraph Hamilton cycles and F -factors for a much broader choice of F (the second 
result concerns clique factors and the fourth result concerns perfect matchings, which 
are K(k)

k -factors, where K(k)
n denotes the complete k-uniform n-vertex hypergraph) to 

the list above. It is also conceivable that our methods work in even more generality than 
we explore in the current paper.

We also remark that the first and the second result above hold in a stronger sense, 
with exact minimum degree conditions as opposed to asymptotic ones, and Kang, Kelly, 
Kühn, Osthus, Pfenninger [19] obtained an exact result for the fourth result above in 
the case d = k − 1. We refer the reader to the corresponding papers for more details.

1.2. Hypergraph Hamilton cycles and Hamilton connectivity

We recall that for 0 ≤ % < k, a k-uniform hypergraph is called an %-cycle if its vertices 
can be ordered cyclically such that each of its edges consists of k consecutive vertices 
and every two consecutive edges (in the natural order of the edges) share exactly %
vertices. In particular, (k − 1)-cycles and 1-cycles are known as tight cycles and loose 
cycles respectively, and 0-cycles are matchings. For n ∈ (k − %)N, we let Cn,k,! denote 
the n-vertex %-cycle with vertex set [n] and edge set

{[k + (k − %)(i− 1)] \ [(k − %)(i− 1)] : i ∈ [n/(k − %)]},

where addition above is modulo n. We define k-uniform %-paths Pn,k,! analogously.
Let C!,k := {Cn,k,! : n ∈ (k − %)N}, and let P!,k := {Pn,k,! : n ∈ (k − %)N}.
Unlike in the setting of Theorem 1.5(2) and Theorem 1.5(4), we would like to find 

connected structures in our host graphs. We work with hypergraphs as opposed to graphs, 
so Pósa-rotation-extension techniques as in Theorem 1.5(1) are unavailable to us. For 
the same reason, relying on the regularity lemma (and related tools, such as the blow-up 
lemma) as in Theorem 1.5(3) would be far from straight-forward. Instead, we use as a 
black box a connection between δF,d and the following related parameter.

Definition 1.6 (Hamilton connectivity threshold). By δCON
k,!,d we denote the smallest real 

number δ such that for all α > 0 and for all sufficiently large n the following holds. 
For any F ∈ P!,k with |V (F )| = n, for any n-vertex k-uniform hypergraph H with 
δd(H) ≥ (δ + α)

(n−d
k−d

)
, and any disjoint S, T ⊆ V (H) with |S| = |T | = %, H contains a 

copy of F where the first and last % vertices of F (in the natural ordering of the vertices 
induced by the edges) are embedded to S and T , respectively.

It is not hard to see that δCON
k,!,d ≥ δC!,k,d, and it is also known that δCON

2,1,1 = δC1,2,1 (see 
for example [11]), but as far as we are aware, the parameter δCON

k,!,d has not been studied 
for other ranges of k, %, d.
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Proposition 1.7. For each of the following range of parameters, we have that δCON
k,!,d =

δC!,k,d.

1. d = k − 1;
2. 1 ≤ % < k/2 and d = k − 2;
3. % = k/2 and k/2 < d ≤ k − 1 with k even.

The first part of the above proposition is proved as Lemma 2.6 in [26]. See Section 7
for the short proof of the second and third part of the proposition. These assertions 
are a consequence of the more general phenomenon that whenever there is a “standard 
absorption proof” (as codified in [13]) that δC!,k,d ≤ δ, then δCON

k,!,d ≤ δ as well (see 
Proposition 7.1). Therefore, it is quite feasible that Proposition 1.7 remains true for a 
wider range of the parameters. But we remark that known results imply, for example, 
that δCON

k,!,d > δC!,k,d when k = 3, % = 2 and d = 1 (see [30]).

1.3. New robustness results for Hamilton cycles and factors

An important consequence of our main theorem (Theorem 1.14, to be stated in the 
next subsection) is that δRD

C!,k,d
≤ δCON

k,!,d for all ranges of the parameters. This is implied 
by the combination of the following two theorems.

Theorem 1.8. For every α > 0 and k ∈ N, there exists C = C1.8(α, k) such that the 
following holds for every d ∈ [k − 1]. Let H be an n-vertex k-uniform hypergraph such 
that δd(H) ≥ (δCON

k,1,d +α)
(n−d
k−d

)
. If (k−1) | n and p ≥ C logn/nk−1, then a.a.s. a random 

subhypergraph Hp contains a loose Hamilton cycle.

Theorem 1.9. For every α > 0 and k ∈ N, the following holds for every d ∈ [k − 1]
and % ∈ {2, . . . , k − 1}. Let H be an n-vertex k-uniform hypergraph such that δd(H) ≥
(δCON

k,!,d + α)
(n−d
k−d

)
. If (k − %) | n and p = ω(1/nk−!), then a.a.s. a random subhypergraph 

Hp contains a Hamilton %-cycle.

We chose to state these two theorems separately, to highlight the difference in the 
corresponding values of p we need to work with for the cases of % ≤ 1 and % > 1 cases 
for the assertion that δRD

C!,k,d
≤ δCON

k,!,d . Indeed, the function p∗C!,k
is Θ(logn/nk−1) when 

% ≤ 1 whereas it is Θ(1/nk−!) when % > 1 (see [6,7]). Roughly speaking, this difference 
is caused by isolated vertices being the bottleneck for random hypergraphs to contain 
perfect matchings or loose Hamilton cycles (% ≤ 1), whereas for % > 1, the bottleneck 
comes from a first-moment argument. Due to this subtlety, deriving Theorem 1.9 from 
Theorem 1.14 is more challenging. To circumvent this difficulty, we benefit from a recent 
generalisation of Spiro [34] of Talagrand’s conjecture.
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Combining this with the connection between the parameters δCON
k,!,d and δC!,k,d, we 

derive the following, which considerably extends the families of hypergraphs listed in 
Theorem 1.5.

Corollary 1.10. For each k, % and d such that δCON
k,!,d = δC!,k,d, we have that δRD

C!,k,d
= δC!,k,d. 

In particular, for the ranges of k, % and d described in Proposition 1.7, we have that 
δRD
C!,k,d

= δC!,k,d.

Independently of our work, Anastos, Chakraborti, Kang, Methuku, and Pfenninger 
[2] also obtained that δRD

C!,k,d
= δC!,k,d in the regime where d = k − 1 and % < k/2. In 

fact, in this regime they obtained a stronger result working with exact minimum degree 
thresholds. We conjecture that the hypothesis δCON

k,!,d = δC!,k,d is not required in the above 
statement. See Section 8 for more details.

For a hypergraph F , let FF be a family of disjoint unions of copies of F containing one 
element with i|V (F )| vertices for every i ∈ N, and let δF,d := δFF ,d. Hence, if an n-vertex 
hypergraph H satisfies δd(H) ≥ (δF,d + α)

(n−d
k−d

)
and n is sufficiently large and divisible 

by |V (F )|, then H contains an F -factor ; that is, H contains a spanning subgraph where 
every component is a copy of F . Our next theorem implies δRD

FF ,d = δF,d when F is a 
strictly 1-balanced uniform hypergraph. For a hypergraph H with at least two vertices, 
the 1-density of H is d1(H) := |E(H)|/(|V (H)| − 1). A hypergraph F is 1-balanced if 
d1(F ′) ≤ d1(F ) for every F ′ ⊆ F and strictly 1-balanced if d1(F ′) < d1(F ) for every 
F ′ ! F . For strictly 1-balanced k-uniform F , Johansson, Kahn, and Vu [15] proved that 
the threshold for a binomial random k-uniform hypergraph to contain an F -factor is 
Θ(n−1/d1(F ) log1/|E(F )| n).

Theorem 1.11. For every α > 0 and k, r ∈ N, there exists C = C1.11(α, k, r) > 0
such that the following holds for every d ∈ [k − 1]. Let F be a k-uniform r-vertex 
strictly 1-balanced hypergraph, and let H be an n-vertex k-uniform hypergraph such that 
δd(H) ≥ (δF,d +α)

(n−d
k−d

)
. If r | n and p ≥ Cn−1/d1(F ) log1/|E(F )| n, then a.a.s. a random 

subhypergraph Hp contains an F -factor.

Complete graphs are strictly 1-balanced, so Theorem 1.11 implies Theorem 1.5(2). A 
k-uniform k-vertex hypergraph consisting of a single edge is also strictly 1-balanced, so 
Theorem 1.11 implies Theorem 1.5(4).

1.4. Vertex-spread thresholds

The following definition, originally introduced in [28], is at the heart of the paper.

Definition 1.12. Let X and Y be finite sets, and let µ be a probability distribution over 
injections ϕ : X → Y . For q ∈ [0, 1], we say that µ is q-vertex-spread if for every two 
sequences of distinct vertices x1, . . . , xs ∈ X and y1, . . . , ys ∈ Y ,
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µ ({ϕ : ϕ(xi) = yi for all i ∈ [s]}) ≤ qs.

A hypergraph embedding ϕ : G ↪→ H of a hypergraph G into a hypergraph H is 
an injective map ϕ : V (G) → V (H) that maps edges of G to edges of H, so there 
is an embedding of G into H if and only if H contains a subgraph isomorphic to G. 
Note that the uniformly random embedding ϕ : G ↪→ H when G and H have the same 
vertex set and H is complete is just a uniformly random permutation of V (H), which is 
(e/|V (H)|)-vertex-spread (using Stirling’s approximation).

Definition 1.13 (VSD-threshold/Vertex-spread Dirac threshold). Let F be an infinite fam-
ily of k-uniform hypergraphs. By δVSD

F,d we denote the smallest real number δ such that for 
all α > 0, there exists C > 0 such that the following holds for all but finitely many F ∈ F . 
If n = |V (F )| and H is any n-vertex k-uniform hypergraph with δd(H) ≥ (δ + α)

(n−d
k−d

)
, 

then there is a (C/n)-vertex-spread distribution on embeddings of F ↪→ H.

Note that for every family F , we have that δF,d ≤ δRD
F,d, δ

VSD
F,d ≤ 1.

The main results of this paper are that for every k ∈ N,

1. δRD
Ck,!,d

≤ δVSD
Ck,!,d

≤ δCON
k,!,d for every %, d ∈ [k − 1] and

2. δVSD
FF ,d = δF,d for every k-uniform F and d ∈ [k − 1] and moreover δRD

FF ,d = δF,d if F is 
strictly 1-balanced.

The following theorem implies δVSD
Ck,!,d

≤ δCON
k,!,d , for all ranges of the parameters.

Theorem 1.14. For every α > 0 and k ∈ N, there exists C = C1.14(α, k) such that the 
following holds for every %, d ∈ [k − 1], and every sufficiently large n for which k − %

divides n. If H is an n-vertex k-uniform hypergraph such that δd(H) ≥ (δCON
k,!,d +α)

(n−d
k−d

)
, 

then there is a (C/n)-vertex-spread distribution on embeddings Cn,k,! ↪→ H.

Note a consequence of the above theorem is that whenever, δCON
k,!,d = δCk,!,d, we have 

that δCON
k,!,d = δCk,!,d = δVSD

Ck,!,d
.

The following theorem implies δVSD
FF ,d = δF,d for every k-uniform F and d ∈ [k − 1].

Theorem 1.15. For every α > 0 and k, r ∈ N there exists C = C1.15(α, k, r) > 0 such 
that the following holds for all d ∈ [k−1] and all sufficiently large n for which r divides n. 
Let F be a k-uniform r-vertex hypergraph, and let G be the union of n/r disjoint copies 
of F . If H is an n-vertex k-uniform hypergraph such that δd(H) ≥ (δF,d +α)

(n−d
k−d

)
, then 

there is a (C/n)-vertex-spread distribution on embeddings G ↪→ H.
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1.4.1. The enumeration aspect
Note that if there is a (C/n)-vertex-spread distribution on embeddings G ↪→ H, then

1 =
∑

ϕ:G↪→H

µ({ϕ}) ≤ |{ϕ : G ↪→ H}|
(
C

n

)n

= |{ϕ : G ↪→ H}| exp (n logC − n logn) ,

so there are at least exp(n log n − O(n)) embeddings and at least exp(n log n −
O(n))/|Aut(G)| copies of G in H. In particular, Theorems 1.14 and 1.15 imply that 
under their respective assumptions, the hypergraph H contains at least

• exp (n logn−O(n)) Hamilton %-cycles (for % (= 0) and
• exp ((1 − 1/|V (F )|)n log n−O(n)) F -factors,

respectively, which strengthen recent results of Montgomery and Pavez-Signé [26] and 
Glock, Gould, Kühn, and Osthus [12]. This statement can be interpreted as a far-reaching 
generalisation of the result of Sárközy, Selkow, and Szemerédi [33] stated in the intro-
duction.

We also remark that Ferber, Hardiman, and Mond [9] sharpened the asymptotics for 
%-cycles for % < k − 1 and d = k − 1 by determining the leading constant in the O(n)
term. We refer the reader to [26] for more in depth discussion of the enumeration aspect 
of Dirac-type results.

1.5. Spreadness

As previously mentioned, deriving Theorem 1.8 and Theorem 1.9 from Theorem 1.14
requires us to pass through the fractional expectation thresholds breakthrough of 
Frankston, Kahn, Narayanan, and Park [10], and in fact, a generalisation of this break-
through by Spiro [34]. A hypergraph is called r-bounded if each edge has size at most 
r.

Definition 1.16. Let q ∈ [0, 1], and let r ∈ N. Let (V, H) be an r-bounded hypergraph, 
and let µ be a probability distribution on H. We say µ is q-spread if the following holds:

µ ({A ∈ H : A ⊇ S}) ≤ q|S| for all S ⊆ V.

Frankston, Kahn, Narayanan, and Park (FKNP) [10] proved that if (V, H) is an r-
bounded hypergraph and H supports a q-spread distribution, then a p-random subset 
of V contains an edge in H a.a.s. if p ≥ Kq log r as r → ∞ (here, K is some absolute 
constant). We will consider hypergraphs of the form (V, H) where V := E(H) and H
is the set of (edge sets of) Hamilton %-cycles in some hypergraph H. In this case, we 
sometimes abuse notation and write µ(A) instead of µ({A}) where A ∈ E(H) or µ(F )
instead of µ({E(F )}) when F ⊆ H.
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Let m1(H) = maxH′⊆H:|V (H′)|>1 d1(H). The following proposition allows us to con-
nect spread distributions and vertex-spread distributions.

Proposition 1.17. For every C, k, ∆ > 0, there exists C ′ = C1.17(C, k, ∆) > 0 such 
that the following holds for all sufficiently large n. Let H and G be n-vertex k-uniform 
hypergraphs. If there is a (C/n)-vertex-spread distribution on embeddings G ↪→ H and 
∆(G) ≤ ∆, then there is a 

(
C ′/n1/m1(G))-spread distribution on subgraphs of H which 

are isomorphic to G.

In the case when H is complete, since the uniform distribution on embeddings of G
into H is (e/|V (H)|)-vertex-spread, Proposition 1.17 provides an upper bound on the 
spreadness for copies of G in H. For many natural choices for G (such as in the case of 
F -factors or Hamilton %-cycles), this bound is in fact best possible due to the duality 
between spreadness and fractional expectation thresholds.

Moreover, Proposition 1.17 implies δRD
Ck,!,d

≤ δVSD
Ck,!,d

for every % ∈ {0, 1} and d ∈
[k − 1]. Combined with Theorem 1.15, it yields a (O(1)/nk−1)-spread distribution on 
perfect matchings in sufficiently dense n-vertex k-uniform hypergraphs, which was proved 
independently by KKKOP [19, Theorem 1.5] and PSSS [28, Theorem 1.5] (in the k | n
case). Proposition 1.17 combined with Theorem 1.14 also yields a (O(1)/nk−1)-spread 
distribution on loose Hamilton cycles (see Lemma 6.5 for m1(Cn,k,1)) in sufficiently dense 
n-vertex k-uniform hypergraphs. Combined with the FKNP theorem, this result implies 
Theorem 1.8.

To prove Theorem 1.9, we need Spiro’s [34] strengthening of the FKNP theorem – 
see Section 6.2. To prove Theorem 1.11, we combine Proposition 1.17 with a coupling 
argument of Riordan [31] – see Section 6.3.

Remark. In independent work, Joos, Lang, and Sanhueza-Matamala [16] also proved 
Theorems 1.8, 1.9, and 1.11. They also obtained these results from stronger results con-
cerning spreadness, but they did not consider vertex spreadness. To prove Theorem 1.9, 
they used a result of Espuny Díaz and Person [8], which is generalized by the result of 
Spiro [34].

2. Preliminaries

We use standard notation for “hierarchies” of constants, writing x + y to mean that 
there is a non-decreasing function f : (0, 1] → (0, 1] such that the subsequent statements 
hold for x ≤ f(y). Hierarchies with multiple constants are defined similarly. We omit 
rounding signs where they are not crucial.

We need the following well-known version of the Chernoff bounds.

Lemma 2.1 (Chernoff bound). Let X :=
∑m

i=1 Xi where (Xi)i∈[m] is a sequence of in-
dependent indicator random variables, and let E [X] = µ. For every γ ∈ (0, 1), we have 
P [|X − µ| ≥ γµ] ≤ 2e−µγ2/3.
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We will also use a result of Gupta, Hamann, Müyesser, Parczyk, and Sgueglia [13], 
which is proved with a standard concentration inequality.

Lemma 2.2 ([13], Lemma 3.5). Let k, %, d ∈ N, 0 < δ′ < δ < 1 and 1/n, 1/% + 1/k, δ−δ′. 
Let H be a k-uniform n-vertex hypergraph with vertex set V and suppose that deg(D, V ) ≥
δnk−d for each D ∈

(V
d

)
. If A ⊆ V is a vertex set of size % chosen uniformly at random, 

then for every D ∈
(V
d

)
we have

P
[
deg(D,A) < δ′%k−d

]
≤ 2 exp(−%(δ − δ′)2/2).

Finally, we need the following result due to McDiarmid, which appears in the textbook 
of Molloy and Reed [25, Chapter 16.2]. Here, a choice is the position that a particular 
element gets mapped to in a permutation.

Lemma 2.3 (McDiarmid’s inequality for random permutations). Let X be a non-negative 
random variable determined by a random permutation π of [n] such that the following 
holds for some c, r > 0:

1. Interchanging two elements of π can affect the value of X by at most c
2. For any s, if X ≥ s then there is a set of at most rs choices whose outcomes certify 

that X ≥ s.

Then, for any 0 ≤ t ≤ E[X],

P (|X − E[X]| ≥ t + 60c
√

rE[X]) ≤ 4 exp(−t2/(8c2rE[X])).

3. Proof overview

In this section we overview the proofs of Theorems 1.14 and 1.15. The proof of Theo-
rem 1.15 is simpler, so we begin with this one. In fact, for the sake of simplicity, suppose 
k = 2, d = 1 and F is just a triangle, and the host graph H is a graph on n vertices, n is 
divisible by 3, and δ(H) ≥ (2/3 + α)n. Allen, Böttcher, Corsten, Davies, Jenssen, Mor-
ris, Roberts, Skokan [1] recently proved Theorem 1.11 for this case (in fact, they proved 
the stronger result for α = 0), but our result (in the α > 0 case) is stronger in that it 
concerns vertex spreadness and also has a shorter proof. Thus, this special case is still of 
independent interest, and our proof generalises easily to other graph factors (additional 
ideas are required to handle connected spanning subgraphs, as we will explain later). For 
now, let us also assume that n is divisible by some integer C that is in turn divisible by 
3.

Our goal is to embed a triangle factor in H in a O(1/n)-vertex-spread manner. 
The main idea is quite simple: we wish to first partition V (H) into random “cluster-
s” U1, . . . , Um each inducing a graph with good minimum degree, and then embed a 
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triangle factor in each cluster Ui in a deterministic fashion. For the latter task, we hope 
to rely only on δ(Ui) ≥ (2/3 + α/2)|Ui| and |Ui| being divisible by 3 as a black box 
to argue that an embedding exists. This step is not randomised, and thus gains us no 
spreadness whatsoever, so we have to rely exclusively on the randomness of the partition 
to obtain spreadness on this simple algorithm. Let us first suppose that the partition is 
chosen uniformly at random given that each Ui has size C. A simple calculation shows 
that for every set of distinct vertices x1, . . . , xs ∈ V (H) and every function f : [s] → [m],

P
[
xi ∈ Uf(i) for each i ∈ [s]

]
≤

(
C

n

)s

. (1)

Suppose that with probability at least 1/2, each H[Ui] contains a triangle factor. Then, 
(1) is actually all we need, and by conditioning on each H[Ui] containing a triangle factor, 
we obtain a (2C/n)-vertex-spread distribution on embeddings of triangle factors in H.

If C , log n, then it is straightforward to show that indeed δ(H[Ui]) ≥ (2/3 +α/2)|Ui|
for each i with probability at least 1/2 by an application of Chernoff’s bound and a 
union bound over the clusters. By the Corrádi–Hajnal theorem [3], each H[Ui] contains 
a triangle factor, as desired. This argument already implies the desired result up to a 
logarithmic factor, but to obtain the desired result, we need C = O(1). In this regime, 
it may be the case that with high probability, a small percentage of the H[Ui] contain 
isolated vertices, and these clusters cannot possibly contain triangle factors.

A central idea in the proof, replacing the more intricate iterative absorption strategies 
employed in [19,28], is a random redistribution argument. If C is a large constant, it will 
still be the case that most of the Ui have good minimum degree (δ(H[Ui]) ≥ (2/3 +
α/2)|Ui|); in this case, we call the cluster good and otherwise call it bad. The key idea 
is that we can randomly redistribute vertices of the bad clusters to the good ones while 
preserving (1) and the minimum degree property.

With high probability, it will be the case that each vertex v can be added to many 
other good clusters Ui while ensuring that H[Ui ∪ {v}] still has good minimum degree. 
One way to randomly redistribute would be the following. For each vertex v ∈ V (H)
living in a bad cluster, among the good clusters Ui so that Ui+v is also good, choose some 
Ui uniformly at random, and re-define Ui := Ui + v. This actually would not break (1), 
but it would cost us the property that each |Ui| is divisible by three, which is necessary 
for finding a triangle factor. More importantly, it would also cost us the property that 
each random set has the same size, which is surprisingly critical while showing that 
the corresponding random embedding is vertex-spread (see the proof of Lemma 5.3, in 
particular, Observation 5.4).

Hence, we would like to do the redistribution step while maintaining some control 
over the sizes of the clusters. We achieve this by ensuring each good cluster receives 
exactly one new element by adding the following step to the algorithm. (Thus, in the 
triangle factor case, we initially choose each Ui to satisfy |Ui| ≡ 2 mod 3). We first 
define an auxiliary bipartite graph B between vertices v which need to be redistributed 
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and good clusters Ui, having v ∼B Ui only when Ui + v also has good minimum degree. 
By potentially redistributing more vertices than necessary, we can ensure that this is 
a balanced bipartite graph, and it is not too difficult to check that B will have high 
enough minimum degree to contain a perfect matching with high probability. We want 
to redistribute randomly, in particular we want a redistribution that preserves (1). So 
in B, we are looking for a random perfect matching M so that the probability that M
extends a given matching of size s is O(1/n)s. In other words, we want to find a O(1/n)-
spread (not vertex-spread) probability distribution on perfect matchings in B. Such a 
distribution on perfect matchings does exist, and in fact this assertion is just a weaker 
version of results already present in [28]. However the statement we need here has such 
a short proof that we include the simple outline below (a similar proof due to Pham is 
recorded in an earlier version of the paper [28] available on arXiv).

Lemma 3.1 (Pham, Sah, Sawhney, Simkin [28]). There exists an absolute constant C3.1
with the following property. If G is a balanced bipartite graph on 2n vertices with δ(G) ≥
3n/4, then there exists a (C3.1/n)-spread distribution on perfect matchings of G.

Proof sketch. Consider a random subgraph of G′ obtained by sampling C edges incident 
to each vertex of G uniformly at random (we allow edges to be selected twice). We 
claim that with probability at least 99/100, G′ contains a perfect matching. One can 
easily verify this by checking Hall’s condition for G′. Now, condition G′ on the event 
that it satisfies Hall’s condition, and consider an arbitrary perfect matching of G′. This 
defines M , which is a random perfect matching of G. We claim the distribution of M
is O(1/n)-spread. Indeed, consider a matching of M ′ of G of size s. Each edge e of M ′

can be included in M only if e = {x, y} is sampled from the side of x or y, this event 
has probability at most 2C/(3n/4) = O(1/n). Furthermore, for disjoint edges e and e′, 
these events are independent. This implies that M extends M ′ with probability at most 
O(1/n)s, implying the desired spreadness. !

In Section 4, the random partitioning aspect of the proof is treated rigorously, cul-
minating in Lemma 4.1, the “random clustering lemma”. This lemma might be of 
independent interest, and can potentially be used as a black box to solve adjacent prob-
lems. There are two aspects of Lemma 4.1 that we have not discussed. Firstly, we cannot 
assume that n is divisible by C for some constant C = O(1), and therefore, we cannot 
guarantee that all clusters in our partition have the same size. We handle this difficulty 
by having a single exceptional cluster which has a different size, and luckily, it turns 
out that this is good enough for the applications. For the triangle-factor case, we can 
use that, if all of the non-exceptional clusters Ui have size divisible by three, then so 
does the exceptional one. This argument generalises and is sufficient for the proof of 
Theorem 1.15.

The more important aspect of Lemma 4.1 that we have not discussed is that in 
Theorem 1.14 (and possibly in future applications), we want to find structures which are 
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connected (such as Hamilton cycles), so we need to think about edges that go across the 
clusters. To reason about this, consider an auxiliary graph Q where vertices represent 
clusters Ui, and we have Ui ∼Q Uj whenever the bipartite graph between Ui and Uj

has good minimum degree. Before the redistribution, Q itself may have many isolated 
vertices. Thus, in the redistribution step, this will be another aspect we have to consider, 
so that we can ensure that Q itself is well-connected. If Q itself has a Hamilton cycle, 
then we can use this cycle to reorder the clusters, and use this new ordering to embed a 
Hamilton %-cycle in H path-by-path. That is, we can first find a Hamilton path in each 
cluster, and then connect them together along a Hamilton cycle of Q to find the desired 
Hamilton cycle. See Fig. 1.

In fact, we need access to many Hamilton cycles of Q. Indeed, if we were only working 
with a fixed Hamilton cycle of Q, we could guarantee at most C!n/C Hamilton cycles for 
any choice of U1, . . . , Um, since each Ui of size C has at most C! Hamilton paths, and 
we have at most n/C random sets. Also, it is easy to see there are at most n!/(n/C)!
choices for U1, . . . , Um (here we consider two choices the same if they are identical up 
to relabelling the Ui). Thus, in total, this approach could yield at most C!n/Cn!/(n/C)!
distinct Hamilton cycles. On the other hand, the definition of O(1/n)-vertex-spread 
requires us to find at least (n/C)n distinct Hamilton cycles, which is much larger than 
the previous quantity, as a simple application of Stirling’s approximation shows.

More thought reveals that to maintain vertex spreadness in the algorithm, we need a 
vertex-spread distribution on Hamilton cycles of Q. This may seem a bit circular, but it 
will be the case that Q is almost complete, so the Dirac condition is satisfied with lots 
of room to spare. Furthermore, the problem we reduce to is a problem about graphs, 
whereas our general theorem concerns hypergraphs. The toolkit we have to find Hamilton 
cycles on graphs is significantly more extensive compared to hypergraphs. To conclude, 
to find a good ordering on Q, we rely on the following result.

Lemma 3.2. There exists an absolute constant C3.2 with the following property. If G is a 
graph with δ(G) ≥ 3n/4 and e(G) ≥ (1 −1/C3.2)

(n
2
)
, then there exists a (C3.2/n)-vertex-

spread distribution on Hamilton cycles of G (that is, on embeddings ϕ : Cn,2,1 ↪→ G).

There are elementary approaches to this problem, but here we will just give a short 
derivation of the lemma from [28, Lemma 7.3], which guarantees O(1/n)-vertex-spread 
distributions on Hamilton paths under the same hypotheses. The task is to just modify 
the distribution so that it gives Hamilton cycles instead.

Proof of Lemma 3.2. Set C ′ = C(2, 1/4) from [28, Lemma 7.3]. We claim that C3.2 =
10C ′ has the property in the lemma. First note that by [28, Lemma 7.3], there exists 
a (C ′/n)-vertex-spread distribution µ on Hamilton paths of G (that is, on embeddings 
ϕ : Pn ↪→ G, where Pn is Cn,2,1 with the edge {1, n} removed). Let φ be a random 
embedding sampled according to µ, and let µ′ be the resulting distribution when µ is 
conditioned on the embedding φ mapping the end points of Pn to adjacent vertices 
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of G, i.e. {φ(1), φ(n)} ∈ E(G). In the distribution given by µ, for every fixed u, v ∈
V (G), the probability that φ(1) = u and φ(n) = v is at most (C ′/n)2 by the vertex-
spreadness of µ. Furthermore, by a union bound over all non-adjacent u, v ∈ V (G), we 
have that µ ({φ(1),φ(n)} /∈ E(G)) ≤ (C ′/n)2(1/C3.2)n2 ≤ 1/10. So µ′ is obtained from 
µ by conditioning on an event with probability at least 9/10. Therefore, µ′ is (2C ′/n)-
vertex-spread, so also (C3.2/n)-vertex-spread. !

4. Random clustering lemma

This section is devoted to proving the following “random clustering lemma”.

Lemma 4.1. Let 1/n + 1/C ′ + 1/C + α, ε, 1/k, 1/d, 1/t ≤ 1 where n, k, d, t, C ∈ N, and 
let δ ∈ [0, 1]. If H is a k-uniform hypergraph on n vertices with δd(H) ≥ (δ + α)

(n−d
k−d

)
, 

then there exists a random partition U := {U1, U2, . . . , Um} of V (H) with the following 
properties:

(1) |Ui| = C for each 2 ≤ i ≤ m and |U1| equals (C − 1)C plus the remainder when n is 
divided by (C − 1)C;

(2) δd(H[Ui]) ≥ (δ + α/2)
( |Ui|
k−d

)
for each i ∈ [m];

(3) for every i ∈ [m], there exist ui ∈ Ui, Ti ⊆ Ui \ {ui} of size t, and Ni ⊆ U \ {Ui} of 
size at least (1 − ε)m such that for every Uj ∈ Ni,

δd(H[Ui ∪ Tj \ {ui}]) ≥ (δ + α/2)
(
|Ui ∪ Tj |
k − d

)
and

δd(H[Uj ∪ Ti \ {uj}]) ≥ (δ + α/2)
(
|Uj ∪ Ti|
k − d

)
;

(4) for every set of distinct vertices y1, . . . , ys ∈ V (H) and every function f : [s] → [m],

P
[
yi ∈ Uf(i) for each i ∈ [s]

]
≤

(
C ′

n

)s

.

For the remainder of this section, fix 1/n + 1/C ′ + 1/C + α, 1/k, 1/d, 1/t ≤ 1 where 
n, k, d, t, C ∈ N as in Lemma 4.1. Let r be (C−1)C plus the remainder when n is divided 
by (C − 1)C. Let W1 := [r], and for i ≥ 2, let Wi := [r + (C − 1)(i − 1)] \

⋃i−1
j=1 Wj =

[r + (C − 1)(i − 2) + 1, r + (C − 1)(i − 1)]. Note that {W1, . . . , Wm} is a partition of 
[n] for m := (n − r)/(C − 1) + 1. Let H be a k-uniform hypergraph with vertex set 
V := {v1, . . . , vn} satisfying δd(H) ≥ (δ + α)

(n−d
k−d

)
. Let π : [n] → [n] be a uniformly 

random permutation of [n], and let Vi := {vj : π(j) ∈ Wi}.
As described in Section 3, the partition of V (H) into V1, . . . , Vm is in a sense “close” 

to the one we want in Lemma 4.1 because the fourth condition holds, and the second 
and third condition hold apart from a few exceptions. Lemmas 4.3, 4.4, and 4.5 set up 
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precisely the conditions we need for our random redistribution argument to succeed. Each 
of these lemmas rely on the following lemma.

Lemma 4.2. For every T ⊆ V of size at most t and every i ∈ [m],

P

[
δd(H[Vi ∪ T ]) ≥ (δ + 2α/3)

(
|Vi ∪ T |
k − d

)]
≥ 1 − exp(−Cα2/200).

Moreover, the same inequality holds for random sets T := {vj : π(j) ∈ W} for every 
W ⊆ [n] of size at most t.

Proof. Let T ⊆ V of size at most t. Note that each Vi has the same distribution as a 
uniformly random subset of V of size C − 1 for every i ∈ {2, . . . , m}, and similarly, V1
has the same distribution as a uniformly random subset of V of size r. Moreover, for 
every W ⊆ [n] and D ⊆ V with |W | = |D|, in the distribution conditional on the event 
that D = {vj : π(j) ∈ W}, each set Vi \ D has the same distribution as a uniformly 
random subset of V of size |Wi \W |.

For every D′ ⊆ T of size at most d and W ′ ⊆ Wi of size d −|D′|, let ED′,W ′ be the event 
that |D| = d and deg(D, Vi) < (δ + 3α/4)

( |Vi|
k−d

)
, where D := {vj : π(j) ∈ W ′} ∪D′. Note 

that if ED′,W ′ holds for every such D′ and W ′, then δd(H[Vi ∪ T ]) ≥ (δ + 3α/4)
( |Vi|
k−d

)
≥

(δ + 2α/3)
(|Vi∪T |

k−d

)
. We claim that for every such D′ and W ′, we have

P [ED′,W ′ ] ≤ exp(−Cα2/100).

Indeed, by the law of total probability, it suffices to show

P [ED′,W ′ | {vj : π(j) ∈ W ′} = D′′] ≤ exp(−Cα2/100)

for every D′′ ⊆ V \ D′ of size d − |D′|, which follows from Lemma 2.2 with D′ ∪ D′′

playing the role of D and Vi\D′′ playing the role of A. Since there are 
(|T |+|Wi|

d

)
≤ (3C2)d

(using 1/C + 1/t and |Wi| ≤ 2C2) choices for D′ and W ′, the result follows by the union 
bound, since 1/C + α, 1/d.

If instead T := {vj : π(j) ∈ W} for some W ⊆ [n] of size at most t, then the proof is 
essentially the same, so we omit it. !

The next lemma will be used to ensure (3) holds. When applied with T = {v} for a 
vertex v in a “bad” cluster, it also ensures that there are many good clusters to which v
can be added in the random redistribution step.

Lemma 4.3. With probability at least 99/100, for every T ⊆ V of size at most t, there 
are at least (1 − 1/C2)m sets Vi for which δd(H[Vi ∪ T ]) ≥ (δ + 2α/3)

(|Vi∪T |
k−d

)
and for 

every W ⊆ [n] of size at most t, the same property holds for the random set T := {vj :
π(j) ∈ W}.
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Proof. For every T ⊆ V of size at most t, let XT denote the number of random sets Vi

such that the minimum degree condition above holds. By linearity of expectation and 
Lemma 4.2, we have E [XT ] ≥ (1 − exp(−Cα2/200))m. Note that interchanging two 
elements of the random permutation π either has no effect on V1, . . . , Vm or changes 
the values of two random sets Vi and Vj and therefore can affect the value of XT by at 
most 2. Also, if XT ≥ s, this can be certified by at most 2C2s choices of the random 
permutation. Therefore, by Lemma 2.3 applied with c = 2, r = 2C2, and t = m/C3, we 
have

P
[
XT < (1 − 1/C2)m

]
≤ 4 exp

(
− (m/C3)2

64C2m

)
≤ exp(−n/C10).

By a union bound, we have that XT ≥ (1 − 1/C2)m for every T ⊆ V of size at most t
with probability at least 99/100, as desired.

If instead T := {vj : π(j) ∈ W} for some W ⊆ [n] of size at most t, then the proof is 
essentially the same, so we omit it. !

The next lemma ensures that most clusters are good. Moreover, in our random redis-
tribution argument, we will assign every good cluster a vertex from a bad cluster. The 
lemma also ensures that for every good cluster (except V1), there are many options for 
this vertex.

Lemma 4.4. With probability at least 99/100, for all but at most exp
(
−α2C/1000

)
m

many i ∈ {2, 3, . . . , m}, there are at least (1 − exp
(
−α2C/500

)
)n vertices v ∈ V such 

that δd(H[Vi ∪ {v}]) ≥ (δ + 2α/3)
(|Vi∪{v}|

k−d

)
.

Proof. By Lemma 4.2, we have that P
[
δd(H[Vi ∪ {v}]) < (δ + 2α/3)

(|Vi∪{v}|
k−d

)]
≤

exp
(
−α2C/200

)
for any v ∈ V and any random set Vi. Call v bad for Vi if this low prob-

ability event holds. So for any random set Vi, we have E [|{v ∈ V : v is bad for Vi}]] ≤
exp

(
−α2C/200

)
n by linearity of expectation. By Markov’s inequality, for any random 

set Vi, we have P
[
|{v ∈ V : v is bad for Vi}| ≥ exp

(
−α2C/500

)
n
]
≤ exp

(
−α2C/500

)
. 

Let X denote the number of Vi such that |{v ∈ V : v is bad for Vi}| ≥ exp
(
−α2C/500

)
n. 

By linearity of expectation, E [X] ≤ exp
(
−α2C/500

)
m. By Markov’s inequality, 

P
[
X ≥ exp

(
−Cα2/1000

)
m
]
≤ exp

(
−Cα2/1000

)
≤ 1/100, implying the desired state-

ment. !

For every i ∈ [m], choose some W ′
i ⊆ Wi of size t arbitrarily (irrespective of π), let 

Ti := {vj : π(j) ∈ W ′
i}, let N+

i be the set of Vj ∈ {V1, . . . , Vm} for j (= i such that 
δd(H[Vj ∪ Ti]) ≥ (δ + 2α/3)

(|Vj∪Ti|
k−d

)
, and let N−

i be the set of Vj for j (= i such that 
Vi ∈ N+

j . Note that Ti ⊆ Vi for all i ∈ [m]. In order to ensure (1) holds, we will need to 
have U1 = V1. The next lemma ensures that U1 (which will be V1) satisfies (2) and (3).

Lemma 4.5. With probability at least 99/100, |N−
1 | ≥ (1 − exp(−α2C/500))(m − 1).
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Proof. By the “moreover” part of Lemma 4.2, we have that

P

[
δd(H[V1 ∪ Ti]) < (δ + 2α/3)

(
|V1 ∪ Ti|
k − d

)]
≤ exp

(
−α2C/200

)

for every i ≥ 2, so

P
[
Vi ∈ N−

1
]
≥ 1 − exp

(
−α2C/200

)
.

By linearity of expectation, E 
[
|N−

1 |
]
≥ (1 − exp

(
−α2C/200

)
)(m − 1). By Markov’s 

inequality,

P
[
m− 1 − |N−

1 | ≥ exp
(
−Cα2/500

)
(m− 1)

]
≤ exp

(
−Cα2/500

)
≤ 1/100,

implying the desired statement. !

Now we prove Lemma 4.1, by considering the distribution on V1, . . . , Vm conditional 
on the events in the previous three lemmas and applying the random redistribution 
argument.

Proof of Lemma 4.1. Let E1 be the event that the property in Lemma 4.3 holds, let 
E2 be the event that the property in Lemma 4.4 holds, and let E3 be the event that 
the property in Lemma 4.5 holds. We will condition on E1 ∩E2 ∩ E3, which holds with 
probability at least 97/100.

For each permutation π : [n] → [n], define a set of “bad” random sets Fπ ⊆
{V2, . . . , Vm} to include the Vi for which we have any of

(A1) δd(H[Vi]) < (δ + 2α/3)
( |Vi|
k−d

)
,

(A2) δd(H[Vi∪{v}]) < (δ+2α/3)
(|Vi∪{v}|

k−d

)
for at least exp(−α2C/500)n vertices v ∈ V , 

and
(A3) |N−

i | < (1 − 1/
√
C)m.

Let m′ := |V2 ∪ · · ·∪ Vm|/C, and note that m′ is a positive integer by the choice of r. 
If necessary, add extra elements of {V2, . . . , Vm} arbitrarily to Fπ to ensure Fπ has size 
at least m −1 −m′ = m −1 −m(C−1)/C = m/C−1. We claim that if π ∈ E1∩E2∩E3, 
then |Fπ| = m − 1 − m′. Indeed, there are at most m/C2 of type (A1) by Lemma 4.3
applied with T = ∅ assuming π ∈ E1, there are at most exp

(
−α2C/1000

)
m of type 

(A2) by Lemma 4.4 assuming π ∈ E2, and there are at most m/C4/3 of type (A3) since ∑m
i=1 |N

−
i | =

∑m
i=1 |N

+
i | ≥ (1 − 1/C2)m2 by Lemma 4.3 assuming π ∈ E1.

By possibly relabelling the sets V1, . . . , Vm, we assume without loss of generality that 
Fπ = {Vi : i ∈ [m] \ [m + 1 − |Fπ|]}. Now consider random sets Vi given by a random 
permutation π conditioned on E1 ∩ E2 ∩ E3.
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We define a bipartite graph Gπ between 
⋃

Vi∈Fπ
Vi and {V2, . . . , Vm} \ Fπ. Note that 

the first part is a set of vertices and the second part is a set of subsets of vertices, and by 
the choice of m′, the first and the second part both have size m′, as (m −1 −m′)(C−1) =
m′. We put an edge between v and Vi whenever δd(H[Vi ∪ {v}]) ≥ (δ + 2α/3)

(|Vi∪{v}|
k−d

)
. 

Conditioning on E1 and considering T = {v}, we have dG(v) ≥ (1 − 1/C2)m − |Fπ| ≥
3m′/4 for every v ∈

⋃
Vi∈Fπ

Vi. By the choice of Fπ to contain all sets satisfying (A2), for 
every Vi ∈ {V2, . . . , Vm} \ Fπ, we have dG(Vi) ≥ m′ − exp(−α2C/500)n ≥ 3m′/4. Thus, 
δ(G) ≥ 3m′/4, and by Lemma 3.1, there is a (C3.1/m)-spread distribution on perfect 
matchings of Gπ.

We define the random sets Ui and vertices ui as follows. First, sample π from the 
uniform distribution on permutations of [n] conditional on E1 ∩ E2 ∩ E3. Then, sample 
Mπ from the (C3.1/m)-spread distribution on perfect matchings of Gπ. For each Vi /∈ Fπ, 
let ui be the vertex that it is assigned to in Mπ, and let Ui = Vi∪{ui}. Letting U1 = V1, 
and picking u1 to be an arbitrary vertex in V1 \ T1 concludes the algorithm that defines 
U = {U1, . . . , Um′+1} with m in the lemma statement being m′ + 1. We now check the 
required conditions.

(1) The condition on |U1| holds by construction, and for i ≥ 2, we have |Ui| = |Vi| +1 =
C, as required.

(2) For i = 1, this condition holds because we condition on E3, and for i ≥ 2, the 
condition holds by the definition of the edges in the bipartite graph Gπ.

(3) For every i ∈ [m], let Ni = {Uj : Vj ∈ N+
i ∩ N−

i }. Note that |N+
i | ≥ (1 − 1/C2)m

since we are conditioning on E1. Note that |N−
1 | ≥ (1 −exp(−α2C/500))(m −1) since 

we are conditioning on E3. Note that for i ∈ [2, m′+1], we have |N−
i | ≥ (1 −1/

√
C)m

since these Vi are good sets and so satisfy the reverse of (3). Combining these gives 
|Ni| ≥ m′ −m/C2 −m/

√
C ≥ (1 − ε)(m′ + 1). For i ≥ 2, note that δd(H[Ui ∪ Tj \

{ui}]) = δd(H[Vi ∪ Tj ]). Also note δd(H[U1 ∪ Tj \ {u1}]) = δd(H[V1 ∪ Tj ] \ {u1}) ≥
δd(H[V1∪Tj ]) −

(|V1∪Tj |−1
k−d−1

)
≥ δd(H[V1∪Tj ]) −α

(|V1∪Tj |
k−d

)
/10. Set si,j := α

(|Vi∪Tj |
k−d

)
/10. 

We thus have

δd(H[Ui ∪ Tj \ {ui}]) ≥ δd(H[Vi ∪ Tj ]) − si,j ≥ (δ + 2α/3)
(
|Vi ∪ Tj |
k − d

)
− si,j

≥ (δ + α/2)
(
|Ui ∪ Tj |
k − d

)

for i ≥ 1 and Uj ∈ Ni because Vj ∈ N+
i , and similarly

δd(H[Uj ∪ Ti \ {uj}]) ≥ δd(H[Vj ∪ Ti]) − si,j ≥ (δ + 2α/3)
(
|Vj ∪ Ti|
k − d

)
− si,j

≥ (δ + α/2)
(
|Uj ∪ Ti|
k − d

)

for i ≥ 1 and Uj ∈ Ni because Vj ∈ N−
i .



526 T. Kelly et al. / Journal of Combinatorial Theory, Series B 169 (2024) 507–541

(4) Let y1, . . . , ys ∈ V (H), and let f : [s] → [m′+1] as in the statement. For each i ∈ [s], 
let Di be the event that yi ∈ Uf(i), let D1

i be the event yi ∈ Vf(i), and let D2
i be the 

event yi = ui. Note that D1
i is determined only by the permutation π, and the event 

D2
i only holds if yi is matched to Vi in Gπ by Mπ. Thus, for every S ⊆ [s], we have

P

[
⋂

i∈S

D1
i

]
≤

(
C2|S|(n− |S|)!

n!

)/
P [E1 ∩E2 ∩ E3] ≤

100
97

(
eC2

n

)|S|

,

and for every π′ ∈ E1 ∩ E2 ∩ E3,

P




⋂

i∈[s]\S
D2

i

∣∣∣∣∣∣
π = π′



 ≤
(
C3.1
m′

)s−|S|
.

Therefore, for every S ⊆ [s], we have

P




⋂

i∈S

D1
i ∩

⋂

i∈[s]\S
D2

i



 = P

[
⋂

i∈S

D1
i

]
P




⋂

i∈[s]\[S]
D2

i

∣∣∣∣∣∣

⋂

i∈S

D1
i





≤ 100
97

(
eC2

n

)|S| (
C3.1
m′

)s−|S|
≤

(
C ′

2n

)s

.

Finally, the result follows by a union bound over the 2s choices of S ⊆ [s], since

⋂

i∈[s]
Di =

⋂

i∈[s]

(
D1

i ∪D2
i

)
=

⋃

S⊆[s]




⋂

i∈S

D1
i ∩

⋂

i∈[s]\S
D2

i



 . !

5. Proof of Theorems 1.14 and 1.15

In this section, we prove Theorems 1.14 and 1.15. Since the proof of Theorem 1.14 is 
the most challenging, we do not include all of the details for the proof of Theorem 1.15
and instead describe at the end of this section how to modify the proof of Theorem 1.14
to prove Theorem 1.15.

Recall that a k-uniform Hamilton %-path with s edges occupies (s − 1)(k − %) + k =
s(k − %) + % vertices. We call a set S (k, %)-path-divisible if |S| has the right divisibility 
condition to contain a k-uniform Hamilton %-path, that is, k− % divides |S| − %. We call a 
set S (k, %)-internal-path-divisible if |S| +2% has the right divisibility condition to contain 
a k-uniform Hamilton %-path, so k− % divides |S| + %. We call an integer q path-divisible 
(or internal-path-divisible) if a set of size q is path-divisible (or internal-path-divisible). 
Let f(k, %) := 3(2k − %)/(k − %)4, and note that the final % vertices of an % path with 
f(k, %) edges are disjoint from the first %.
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We now describe the random Hamilton %-cycle embedding algorithm. In this algo-
rithm, we first find a Hamilton cycle in H by gluing together many %-paths. We assume 
each of these paths comes with a natural ordering of its vertices. For technical reasons, it 
is more convenient to find an embedding of C ′

n,k,! into H, where C ′
n,k,! is the hypergraph 

isomorphic to Cn,k,! where edges are shifted to the left by %; that is, C ′
n,k,! has vertex 

set [n], {n − % +1, . . . , n, 1, . . . , k− %} ∈ E(C ′
n,k,!), and all other edges are “(k− %)-shifts” 

of this edge. See Fig. 1 for an illustration of the embedding algorithm.

Definition 5.1 (Random Hamilton cycle embedding algorithm). Let α > 0, let k ∈ N, 
and let d, % ∈ [k−1]. Let 1/n + 1/C ′ + 1/C + α, 1/k as in Lemma 4.1, where k−%

divides n, and C−(k−%)f(k, %) −% is (k, %)-internal-path divisible, meaning that k−%

divides C. Given a hypergraph H on n vertices with δd(H) ≥ (δCON
k,!,d + α)

(n−d
k−d

)
, we 

define ψ : C ′
n,k,! ↪→ H, a random embedding of a Hamilton %-cycle in H, as follows.

Step 1: Sample random clusters. Let U = {U1, . . . , Um} be a random partition of 
V (H) obtained by applying Lemma 4.1 with 10%k playing the role of t, 1/5 playing 
the role of ε, and δCON

k,!,d playing the role of δ (the choice of the other variables is as 
above). Define an auxiliary graph G with vertex set [m] where i is adjacent to j if 
Uj ∈ Ni or Ui ∈ Nj . Note that by the choice of ε, we have δ(G) ≥ 4m/5.

Let φ : Cm,2,1 ↪→ G be a random embedding of a Hamilton cycle on G coming 
from Lemma 3.2, and note that φ is a permutation of [m]. Throughout, we view [m]
cyclically, meaning occurrences of the indices m + 1 and 0 are to be read as 1 and 
m, respectively. Let z = φ−1(1) so that U1 = Uφ(z), the largest random set.

Step 2: Find connecting paths between clusters. For each i ∈ [m], find an %-
path Pφ(i),φ(i+1) of length f(k, %) contained in Uφ(i) ∪ Uφ(i+1) with the following 
properties.

1. The paths Pφ(i),φ(i+1) are pairwise vertex-disjoint.
2. Pφ(i),φ(i+1) has its first % vertices in Uφ(i), and the last |V (Pφ(i),φ(i+1))| − % ≥ %

vertices in Uφ(i+1) (that is, Pφ(i),φ(i+1) does not alternate between clusters).

Step 3: Find Hamilton paths in the leftover part of each cluster. For each i ∈
[m], call the %-set that is an endpoint of Pφ(i−1),φ(i) in Uφ(i) as S and call the 
%-set that is an endpoint of Pφ(i),φ(i+1) in Uφ(i) as T . Find a Hamilton %-path in 
H[Uφ(i) \

(
V (Pφ(i),φ(i+1)) ∪ V (Pφ(i−1),φ(i))

)
∪ S ∪ T ] with endpoints S and T , and 

denote this Hamilton path as Pφ(i).
Defining ψ. Recall that z = φ−1(1). To define ψ : [n] → V (H), we define ψ(1) to 

be the first vertex of Pφ(z−1),φ(z) that is contained in Uφ(z) and define the remaining 
ψ(i) for i > 1 to be consistent with the ordering given by Pφ(1) ∪Pφ(1),φ(2) ∪Pφ(2) ∪
· · · ∪ Pφ(m) ∪ Pφ(m),φ(1).
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H

Lemma 4.1

U1 U2 Um· · ·

Uφ(z) Uφ(z+1) Uφ(z−1)· · ·

C′
n,k,!

ψ (Definition 5.1)
W1 W2 Wm

Fig. 1. An illustration of the random Hamilton cycle embedding algorithm.

For the next two lemmas, fix α > 0, k ∈ N, d, % ∈ [k − 1], and 1/n + 1/C ′ +
1/C + α, 1 as in Definition 5.1, and let H be an n-vertex hypergraph with δd(H) ≥
(δCON

k,!,d +α)
(n−d
k−d

)
. Theorem 1.14 follows immediately from the following two lemmas (note 

that producing embeddings of C ′
n,k,! is equivalent to producing those of Cn,k,!).

Lemma 5.2. The random embedding ψ : C ′
n,k,! ↪→ H in Definition 5.1 is well-defined.

Lemma 5.3. The distribution produced by the algorithm in Definition 5.1 is (C ′C3.2/n)-
vertex-spread.

Proof of Lemma 5.2. By construction, Pφ(1) ∪Pφ(1),φ(2) ∪Pφ(2) ∪ · · ·∪Pφ(m) ∪Pφ(m),φ(1)
is a Hamilton %-cycle of H. Furthermore, by Step 2, the first vertex of Pφ(z−1),φ(z) that 
is contained in Uφ(z) is in fact the (% + 1)th vertex of Pφ(z−1),φ(z), so ψ is an embedding 
of C ′

n,k,! in H, as required. Therefore it suffices to show that each step in Definition 5.1
can be performed.

Step 1. This step can be performed because of Lemmas 4.1 and 3.2.
Step 2. Let i ∈ [m] and suppose paths satisfying the two properties have been found 

for each i′ < i, and let J denote the set of vertices used by these previously found paths. 
Consider Uφ(i) and Uφ(i+1). Note that from each set, J uses at most % +(k−%)f(k, %) ≤ 3k
vertices. Consider the Tφ(i) ⊆ Uφ(i) guaranteed by Lemma 4.1(3). Note that t − 3k ≥ %, 
so we may fix an %-subset T ′ ⊆ Tφ(i) disjoint from J . Let U ⊆ Uφ(i+1) \ (J ∪{uφ(i+1)}) be 
obtained by deleting at most k elements from the latter superset so that U ∪T ′ is (k, %)-
path divisible. Observe that δd(H[U ∪T ′]) ≥ (δCON

k,!,d +α/10)
(|U∪T ′|

k−d

)
(by Lemma 4.1(3)); 

hence, by definition of δCON
k,!,d , H[U ∪ T ′] contains a Hamilton %-path with one endpoint 
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being the %-set T ′, and the other endpoint being some %-subset of U that can be chosen 
arbitrarily. We truncate this path (keeping the side closer to T ′ intact) to keep only its 
first f(k, %) edges. The resulting path satisfies the desired properties, showing that Step 
2 can be executed for each i ∈ [m].

Step 3. Similarly to the previous step, we need to check the relevant divisibility and 
minimum degree conditions to show that a path of the desired form exists for each 
i ∈ [m].

We first show that Uφ(i) \ (V (Pφ(i),φ(i+1)) ∪ V (Pφ(i−1),φ(i))) is (k, %)-internal-path-
divisible for every i ∈ [n]. Indeed, for i (= φ−1(1), we have |Uφ(i) \ (V (Pφ(i),φ(i+1)) ∪
V (Pφ(i−1),φ(i)))| = C − % − f(k, %)(k − %), so the internal path divisibility follows from 
our choice of C. For i = φ−1(1), we have |Uφ(i) \ (V (Pφ(i),φ(i+1)) ∪ V (Pφ(i−1),φ(i)))| =
n − % − f(k, %)(k − %) − (m − 1)C, so the internal path divisibility follows since k − %

divides both n and C.
Now we claim that δd(H[Uφ(i) \ (V (Pφ(i),φ(i+1)) ∪ V (Pφ(i−1),φ(i)))]) ≥ (δk,!,d +

α/10)
(|Uφ(i)|

k−d

)
. This is a consequence of Lemma 4.1(2) since |V (Pφ(i),φ(i+1)) ∪

V (Pφ(i−1),φ(i))| ≤ 10k, and 1/C + 1/k. Therefore, the desired Hamilton path with 
the desired endpoints exists by the definition of δCON

k,!,d , meaning that Step 3 can be 
executed. !

Proof of Lemma 5.3. Let ψ : C ′
n,k,! ↪→ H be the random embedding from Definition 5.1. 

To show the distribution is (C ′C3.2/n)-vertex-spread, we show that for every s ∈ [n]
and every two sequences of distinct x1, . . . , xs ⊆ [n] and y1, . . . , ys ∈ V (H), we have 
P [ψ(xi) = yi for all i ∈ [s]] ≤ (C ′C3.2/n)s.

To that end, let r be (C−1)C plus the remainder when n is divided by (C−1)C. Let 
W1 := [r], and for i ≥ 2, let Wi := [r+C(i −2) +1, r+C(i −1)] = [r+C(i −1)] \

⋃i−1
j=1 Wj . 

(Note that these are slightly different from those defined in the previous section.) We 
refer to each Wi as a “window”. Let w : [s] → [m] where w(i) is the unique index such 
that xi ∈ Ww(i). We refer to Ww(i) as “xi’s window”. Recall U = {U1, . . . , Um} is the 
collection of random sets and φ is the random embedding of Cm,2,1 in the auxiliary graph 
G as defined in Step 1, and z = φ−1(1). See Fig. 1. We will frequently use the following.

Observation 5.4. The embedding ψ induces bijections between and Wi+1 and Uφ(z+i)
for each i ≥ 0 (where the subscripts of W and the inputs to φ are to be interpreted 
cyclically). In particular, for every i ∈ [s], we have ψ(xi) = yi only if yi ∈ Uφ(z+w(i)−1).

For each function f : [s] → [m], let Ef be the event that yi ∈ Uf(i) for each i ∈ [s]. 
Let F be the family of functions f : [s] → [m] satisfying the following:

• If w(i) = 1 (that is, xi is in the biggest window), then f(i) = 1.
• If w(i) = w(j) (that is, xi and xj are in the same window), then f(i) = f(j).
• If w(i) (= w(j) (that is, xi and xj are in different windows), then f(i) (= f(j).
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Let b denote the number of i ∈ [m] for which {x1, . . . , xs} ∩ Wi (= ∅; that is, b is 
the number of windows that are the window of some xi for i ∈ [s]. Define b̂ as b if 
W1 ∩ {x1, . . . , xs} = ∅ and define b̂ as b − 1 otherwise.

We claim the following:

(a) P [Ef ] ≤ (C ′/n)s for every f : [s] → [m];
(b) if f : [s] → [m] is not in F , then P [ψ(xi) = yi for all i ∈ [s] |Ef ] = 0;
(c) |F| =

∏b̂−1
i=0 (m − i) ≤ mb̂;

(d) b̂ ≤ b ≤ s;
(e) P [ψ(xi) = yi for all i ∈ [s] | Ef ] ≤ (C3.2/m)b̂ for every f ∈ F .

Indeed, (a) follows immediately from Lemma 4.1(4), (b) follows from Observation 5.4, 
and (c) and (d) are straightforward from the definitions. To prove (e), first note that by 
Observation 5.4,

P [ψ(xi) = yi for all i ∈ [s] | Ef ] ≤ P [φ(z + w(i) − 1) = f(i) for all i ∈ [s]] .

Let x′
1, . . . , x

′
b̂

and y′1, . . . , y
′
b̂

be the elements of {z + w(i) − 1 : i ∈ [s]} \ {z} and 
{f(i) : i ∈ [s]} \ {1}, respectively. By the vertex spreadness of φ with x′

1, . . . , x
′
b̂

and 
y′1, . . . , y

′
b̂

playing the roles of {x1, . . . , xs} and {y1, . . . , ys}, respectively, we have

P [φ(z + w(i) − 1) = f(i) for all i ∈ [s]] ≤ (C3.2/m)b̂.

The two inequalities above together imply (e).
Combining (a)–(e), we have

P [ψ(xi) = yi ∀i ∈ [s]] (b)=
∑

f∈F
P [ψ(xi) = yi ∀i ∈ [s] | Ef ]P [Ef ]

(a)
≤

∑

f∈F
P [ψ(xi) = yi ∀i ∈ [s] | Ef ]

(
C ′

n

)s

(e)
≤

(
C ′

n

)s ∑

f∈F

(
C3.2
m

)b̂

=
(
C ′

n

)s

|F|
(
C3.2
m

)b̂

(c)
≤

(
C ′

n

)s

mb̂

(
C3.2
m

)b̂

=
(
C ′

n

)s

(C3.2)b̂

(d)
≤

(
C ′

n

)s

(C3.2)s =
(
C ′C3.2

n

)s

,

as desired. !
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We conclude this section by explaining how to modify the proof of Theorem 1.14 to 
prove Theorem 1.15. First we describe the random embedding algorithm.

Definition 5.5 (Random F -factor embedding algorithm). Let α > 0, let k, r ∈ N, 
and let d ∈ [k−1]. Let 1/n + 1/C ′ + 1/C + α, 1 as in Lemma 4.1, where r divides 
n and C. Given a hypergraph H on n vertices with δd(H) ≥ (δF,d + α)

(n−d
k−d

)
, we 

define ψ : G ↪→ H, a random embedding of an F -factor in H, as follows.
Step 1: Sample random clusters. Let U = {U1, . . . , Um} be a random partition of 

V (H) obtained by applying Lemma 4.1 with δF,d playing the role of δ (the choice 
of the other variables is as above – ε and t are unimportant and can be set to 1).

Step 2: Find an F -factor in each cluster. For each i ∈ [m], find an F -factor in 
H[Ui]. Label the vertices of Ui as ui,1, . . . , ui,|Ui| such that H[{ui,(j−1)r+1, . . . , ui,jr}]
∼= F for every j ∈ [|Ui|/r].

Defining ψ. Assume without loss of generality that V (G) = [n] and G[{(j−1)r+
1, . . . , jr}] ∼= F for every j ∈ [n/r]. For every i ∈ [n], let ψ(i) := ux,y, where x is 
the largest integer such that i >

∑x−1
j=1 |Ui| and y = i −

∑x−1
j=1 |Ui|.

To prove Theorem 1.15, we need analogues of Lemmas 5.2 and 5.3. The analogue of 
Lemma 5.2 is straightforward, so we omit it. For the analogue of Lemma 5.3, we note 
the following changes:

• since there is no φ in Definition 5.5, it can be interpreted as the identity, so z = 1;
• the family of functions F consists of the single function w;
• we do not need to define b̂ or b, and we do not need (d);
• (a) and (b) are unchanged, but for (c), we have |F| = 1, and for (e), we have simply 

that this probability is at most 1.

Altogether, we obtain a (C ′/n)-vertex-spread distribution, as desired.

6. Spreadness from vertex spreadness

In this section we prove Proposition 1.17, which, combined with Theorem 1.14 and the 
FKNP theorem, implies Theorem 1.8. We also prove Theorem 1.9 using Theorem 1.14 and 
Spiro’s strengthening of the FKNP theorem, and we prove Theorem 1.11 by combining 
Theorem 1.15 with the FKNP theorem and a coupling argument of Riordan [31].

6.1. Proof of Proposition 1.17

We begin with the proof of Proposition 1.17. First we need a lemma, upper bounding 
the number of “partial embeddings” of G into H.
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Lemma 6.1. Let H and G be n-vertex k-uniform hypergraphs. If F ⊆ H has v vertices 
and c components, then there are at most

nc(k∆(G))v−c

hypergraph embeddings ϕ : G[X] ↪→ H[V (F )] where X ∈
(V (G)

v

)
and F ⊆ H[ϕ(X)].

Proof. Let F1, . . . , Fc be the components of F , and for each i ∈ [c], let V (Fi) =
{vi,1, . . . , vi,|V (Fi)|}, where for every j ∈ [|V (Fi)|] \ {1}, there exists j′ < j such that vi,j
and vi,j′ are contained in a common edge of Fi. Each embedding ϕ : G[X] ↪→ H[V (F )]
with F ⊆ H[ϕ(X)] is then determined by

1. the preimages ϕ−1(v1,1), . . . , ϕ−1(vc,1) of the “roots” and
2. for each i ∈ [c], a sequence in [k∆(G)]|V (Fi)|−1, where the jth term in the sequence 

determines ϕ−1(vi,j+1) based on ϕ−1(vi,j′), where j′ ≤ j and vi,j′ and vi,j+1 are 
contained in a common edge of Fi.

Note that there are at most nc choices for the preimages of the roots and at most 
(k∆(G))v−c choices for the sequences. Combining these choices yields the desired 
bound. !

Proof of Proposition 1.17. Let 1/n + 1/C ′ + 1/C, 1/k, 1/∆ ≤ 1. Let H and G be 
n-vertex k-uniform hypergraphs, where ∆(G) ≤ ∆, and suppose there is a (C/n)-vertex-
spread distribution µ on embeddings G ↪→ H. For every F ⊆ H isomorphic to G, let

µ′(F ) := µ ({ϕ : {ϕ(e) : e ∈ E(G)} = E(F )}) ,

and note that µ′ is a probability distribution on subgraphs of H which are isomorphic 
to G.

We prove that µ′ is 
(
C ′/n1/m1(G))-spread. To that end, let S ⊆ E(H), and let T ⊆ H

have edge set S and subject to that, the fewest number of vertices. We may assume T
is isomorphic to a subgraph of G, or else µ′({F ⊆ H : E(F ) ⊇ S}) = 0. We may also 
assume S (= ∅. Let v and c be the number of vertices and components of T , respectively. 
By Lemma 6.1, the number of embeddings ϕ : G[X] ↪→ H[V (T )] where X ∈

(V (G)
v

)
and 

T ⊆ H[ϕ(X)] is at most nc(k∆v−c), so since µ is (C/n)-vertex-spread,

µ′({F ⊆ H : E(F ) ⊇ S}) ≤ nc(k∆)v−c

(
C

n

)v

≤
( (C ′)m1(G)

n

)v−c

=
( (C ′)m1(G)

n

)|S|(v−c)/|S|

.

Let T1, . . . , Tc be the components of T . Since each Ti is isomorphic to a subgraph of 
G, for every i ∈ [c] we have |E(Ti)|/(|V (Ti)| − 1) ≤ m1(G). In particular,
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|S| =
c∑

i=1
|E(Ti)| ≤ m1(G)

c∑

i=1
(|V (Ti)|− 1) = m1(G)(v − c),

so (v − c)/|S| ≥ 1/m1(G). Therefore

µ′({F ⊆ H : E(F ) ⊇ S}) ≤
( (C ′)m1(G)

n

)|S|(v−c)/|S|

≤
(

C ′

n1/m1(G)

)|S|
,

as desired. !

6.2. Stronger spreadness: proof of Theorem 1.9

Next we prove Theorem 1.9. As mentioned, we need a result of Spiro [34], which 
requires the following stronger notion of spreadness.

Definition 6.2. Let q ∈ [0, 1], and let r0, . . . , r! ∈ N be a decreasing sequence of positive 
integers. Let (V, H) be an r0-bounded hypergraph, and let µ be a probability distribution 
on H. We say µ is (q; r0, . . . , r!)-spread if the following holds for all i ∈ [%]:

µ ({A ∈ H : |A ∩ S| = t}) ≤ qt for all t ∈ [ri, ri−1] and S ∈
ri−1⋃

i=ri

{(
E

i

)
: E ∈ H

}
.

As noted by Spiro, if µ is a q-spread measure on an r0-bounded hypergraph (V, H), 
then it is also (4q; r0, . . . , r!) spread where ri := 3ri−1/24 for i ∈ [%], so the following 
result with % = Θ(log r) implies the FKNP theorem for uniform hypergraphs. (Spiro [34, 
Theorem 3.1] also proved a slightly stronger result in the non-uniform setting which 
implies the FKNP theorem, but we do not need this result here).

Theorem 6.3 (Spiro [34]). There exists a constant K6.3 > 0 such that the following holds 
for all K > K6.3. Let q ∈ [0, 1], let r0, . . . , r! ∈ N be a decreasing sequence of positive 
integers, where r! = 1, and let (V, H) be an r0-uniform hypergraph. If there exists a 
(q; r0, . . . , r!)-spread probability distribution on H and p ≥ K%q, then a p-random subset 
of V contains an edge of H with probability at least 1 −K6.3/(K%).

We apply Theorem 6.3 with 1 playing the role of % in Definition 6.2. This special case 
of Theorem 6.3 is in some sense the “base case” of Spiro’s proof [34, Lemma 2.5] and 
can be proved directly with the second moment method. To apply Theorem 6.3, we also 
need the following analogue of Proposition 1.17 with this notion of spreadness.

Proposition 6.4. For every C > 0 and k ∈ N, there exists C ′ = C6.4(k, C) > 0 such 
that the following holds for all % ∈ {2, . . . , k − 1} and all sufficiently large n. Let H
be an n-vertex k-uniform hypergraph. If there is a (C/n)-vertex-spread distribution on 
embeddings Cn,k,! ↪→ H, then there is a (C ′/nk−!; n/(k − %), 1)-spread distribution on 
Hamilton %-cycles of H.
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Theorem 6.3 and Proposition 6.4 together imply that δRD
Ck,!,d

≤ δVSD
Ck,!,d

for every % ∈
{2, . . . , k− 1} and d ∈ [k− 1]. Theorem 1.9 follows immediately from Theorems 6.3 and 
1.14 and Proposition 6.4, so the remainder of this subsection is devoted to the proof of 
Proposition 6.4. This proof is inspired by the proof of Kahn, Narayanan, and Park [18]
determining the threshold for G(n, p) to contain the square of a Hamilton cycle.

Lemma 6.5. Every connected subgraph of Cn,k,! with v vertices and t edges satisfies

v ≥ min{(k − %)t + %, n}.

In particular, if % > 0, then

m1(Cn,k,!) = 1
k − %

· n

n− 1 .

Proof. Let F ⊆ Cn,k,! be a connected subgraph with v vertices and t edges. We may 
assume without loss of generality that F has vertex set [v] where v < n. For some 
I ⊆ [n/(k − %)] of size t, the edge set of F is

{fi := [k + (k − %)(i− 1)] \ [(k − %)(i− 1)] : i ∈ I}.

Therefore,

v ≥
n/(k−!)∑

i=1
1i∈I

∣∣∣∣∣∣
fi \

i−1⋃

j=1
fj

∣∣∣∣∣∣
≥ k + (k − %)(t− 1) = (k − %)t + %,

as desired. To see that m1(Cn,k,!) = n/((k − %)(n − 1)) for % > 0, first note d1(Cn,k,!) =
n/((k − %)(n − 1)). Moreover, every spanning subgraph F ⊆ H satisfies d1(F ) ≤ d1(H). 
If F ⊆ H has fewer than n vertices, then |V (F )| ≥ (k − %)|E(F )| + %, so

d1(F ) = |E(F )|
|V (F )|− 1 ≤ |V (F )|− %

(k − %)(|V (F )|− 1) ≤ 1
k − %

,

as desired. !

Lemma 6.6. If S is a subset of edges of Cn,k,!, then the number of subgraphs of Cn,k,!

with t edges, all in S, no isolated vertices, and c components, is at most
(
k|S|
c

)(
2 · 16k

)t
.

Proof. Let fi := [k + (k − %)(i − 1)] \ [(k − %)(i − 1)] for each i ∈ [n/(k − %)] as in 
Lemma 6.5. Each subgraph F ⊆ H with t edges, all in S, no isolated vertices, and c
components F1, . . . , Fc, is determined by
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1. c distinct vertices {v1, . . . , vc} ∈
(⋃

e∈S e
c

)
to serve as the “roots” of F1, . . . , Fc,

2. a c-composition t1, . . . , tc of t (that is, t1 + · · · + tc = t), where |E(Fi)| = ti for all 
i ∈ [c], and

3. for each i ∈ [c], the edges E(Fi) ⊆ S ∩ {fj : |k + (k − %)(j − 1) − vi| ≤ 2kti}.

Note that there are at most 
(k|S|

c

)
choices for the roots, at most 

(t−1
c−1

)
≤ 2t choices for 

the c-composition, and at most 
∏c

i=1 24kti =
(
16k

)t choices for the edges of each Fi. 
Combining these choices yields the desired bound. !

Proof of Proposition 6.4. Let 1/n + 1/C ′ + 1/C, 1/k ≤ 1. Let H be an n-vertex 
k-uniform hypergraph, and suppose there is a (C/n)-vertex-spread distribution µ on 
embeddings Cn,k,! ↪→ H. Let H be the set of edge sets of Hamilton %-cycles of H. Define 
a probability distribution µ′ on H as in the proof of Proposition 1.17, with Cn,k,! playing 
the role of G. By Proposition 1.17 and Lemma 6.5, µ′ is 

(
2−kC ′/nk−!

)
-spread.

We prove that µ′ is (C ′/nk−!; n/(k − %), 1)-spread. To that end, let t ∈ [n/(k − %)], 
and let S ⊆ E(H) be a subset of a Hamilton %-cycle of H. Let F ⊆ H have edge set S
and subject to that, the fewest number of vertices.

If t ≥ n/k, then since µ′ is (2−kC ′/nk−!)-spread, we have

µ′ ({A ∈ H : |A ∩ S| = t}) ≤ 2|S|
(2−kC ′

nk−!

)t

≤
(

C ′

nk−!

)t

,

as desired. Therefore, we may assume t < n/k, and in particular, every subgraph of F
has fewer than n vertices. By Lemmas 6.1, 6.5, and 6.6, since µ is (C/n)-vertex-spread,

µ′ ({A ∈ H : |A ∩ S| = t}) ≤
t∑

c=1

(
k|S|
c

)
(2 · 16k)tnc

(2k2C

n

)(k−!)t+!c

≤ (2 · 16k)t
t∑

c=1

(
ekn · 2k2C

c

)c (2k2C

n

)(k−!)t+(!−1)c

≤
(2 · 16k(2k2C)k−!

nk−!

)t t∑

c=1

(4ek4C2

c

)c (2k2C

n

)(!−2)c

≤
(
C ′/2
nk−!

)t ∞∑

c=1

(1
c

)c

≤
(

C ′

nk−!

)t

,

as desired. !

6.3. Proof of Theorem 1.11

We conclude this section with the proof of Theorem 1.11. With Theorem 1.15 in hand, 
the proof of Theorem 1.11 is similar to the PSSS proof of Theorem 1.5(2) assuming a 
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similar result for Kr-factors [28, Theorem 1.8]. For hypergraphs F and H, the F -complex
of H, denoted HF , is the |V (F )|-uniform multi-hypergraph with vertex set V (H) in 
which every copy of F in H corresponds to a distinct hyperedge of H on the same set of 
vertices. Note that H has an F -factor if and only if HF contains a perfect matching. We 
let GF (n, p) be the binomial random multi-hypergraph on n vertices where every edge of 
the F -complex of the complete hypergraph is included independently with probability p.

To prove Theorem 1.11, we need following result of Riordan [31, Theorem 18].

Theorem 6.7. For every k, r ∈ N, there exists a = a6.7(k, r) ∈ (0, 1] such that the 
following holds. If F is a strictly 1-balanced k-uniform r-vertex hypergraph and p =
p(n) ≤ log2(n)/n1/d1(F ), then for some π = π(n) ∼ ap|E(F )|, we may couple G ∼
G(k)(n, p) with GF ∼ GF (n, π) such that, a.a.s. for every F -edge present in HF , the 
corresponding copy of F is present in G.

Proof of Theorem 1.11. Let 1/n + 1/C + 1/C ′ + 1/C ′ + 1/k, 1/r, a, α < 1, where 
a = a6.7(k, r). It suffices to prove the result for p = Cn−1/d1(F ) log1/|E(F )| n. By 
Theorem 6.7, Hp contains an F -factor if (HF )π contains a perfect matching where 
π = ap|E(F )| = aC |E(F )|n−(|V (F )|−1) log n.

By Theorem 1.15, there exists a (C ′′/n)-vertex-spread distribution on embeddings of 
G ↪→ H where G is n/r disjoint copies of F . Since an F -factor in H corresponds to a 
perfect matching in HF , an embedding of G into H is also an embedding of G′ into H ′

where G′ and H ′ are the “simplifications” of GF and HF , respectively (G′ is just an r-
uniform perfect matching because a strictly 1-balanced hypergraph is connected). Hence, 
Proposition 1.17 implies that H ′ supports a (C ′/nr−1)-spread distribution on its perfect 
matchings. Therefore, the Frankston–Kahn–Narayanan–Park theorem implies that H ′

π

contains a perfect matching a.a.s. if π > KC ′ log(n/r)/nr−1. Indeed, this inequality 
holds by the choice of C. Since H ′

π a.a.s. contains a perfect matching, so does (HF )π. 
Thus, as mentioned, by Theorem 6.7, Hp a.a.s. contains an F -factor, as desired. !

7. Proof of Proposition 1.7

The following two properties were introduced in [13] to codify in abstract what it 
means for there to be a standard absorption proof for hypergraphs which are obtained 
from so-called A-chains. In this paper, we are concerned only with hypergraph Hamilton 
cycles, so the A-chains are obtained by setting A to be a single edge. Therefore, we state 
the following properties in the language of hypergraph Hamilton cycles. Note also that in 
contrast to [13], we use 

(n−d
k−d

)
terms instead of nk−d terms, as this was more convenient 

in the current paper.

Ab For any α > 0, there exist 0 < ,, η ≤ α and n0 ∈ N so that if H is a k-uniform 
hypergraph on n ≥ n0 vertices with δd(H) ≥ (δ + α)

(n−d
k−d

)
, then there exists A ⊆

V (H) of size at most ,n with the following property.
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For any L ⊆ V (H) \ A of size at most ηn such that |L| + |A| is (k, %)-path-
divisible, there exists an embedding of a k-uniform %-path to H with vertex set 
A ∪ L. Furthermore, the embedding of the sets of % first and % last endpoints of 
the path does not depend on the subset L, meaning that there exist disjoint %-sets 
A1, A2 ⊆ A such that for all L, the %-path covering A ∪L has endpoints A1 and A2.

Con For any α > 0, there exist a positive integer c and n0 ∈ N so that if H is a k-uniform 
hypergraph H on n ≥ n0 vertices with δd(H) ≥ (δ + α)

(n−d
k−d

)
, then the following 

holds.
For every S, T ⊆ V (H) of vertex-disjoint %-sets, H contains an embedding of a 

k-uniform %-path of length at most c with start on S and end on T .

As noted in [13] (see Section 6, Table 1), both of these properties are known to hold 
with δC!,k,d playing the role of δ for the parameters %, k, d as listed in Proposition 1.7(2-3). 
The following therefore immediately implies Proposition 1.7(2-3).

Proposition 7.1. Let δ ∈ [0, 1], let k ∈ N, and let %, d ∈ [k − 1]. If δ ≥ δC!,k,d and the 
properties Ab and Con hold for δ, k, %, and d, then δCON

k,!,d ≤ δ.

Proof. Let α > 0, let n be sufficiently large and (k, %)-path-divisible, and consider a k-
uniform hypergraph H on n vertices with δd(H) ≥ (δ+α)

(n−d
k−d

)
. Let S and T be disjoint 

vertex subsets of size % each. We wish to find a Hamilton %-path of H with end sets S
and T .

Let η, ,, α′ ∈ (0, 1) and c ≥ 1 satisfy 1/n + 1/c + η, , ≤ α′ + α, where η, , and 
c satisfy Ab and Con, respectively, with α′ playing the role of α. Let R ⊆ V (H) be an 
(ηn/2)-subset so that for any 2%-subset Q ⊆ V (H) we have that δd(H[R ∪ Q]) ≥ (δ +
α/2)

(|R∪Q|−d
k−d

)
(such a subset exists by a union bound over applications of Lemma 2.2). 

Since α′ + α, we have δd(H \ R) ≥ (δ + α/2)
(n−d
k−d

)
, so by Ab (with α′ playing the role 

of α), there exists an absorbing set A ⊆ V (H) \ R of size at most ,n, and A1, A2 ⊆ A

so that for any small L, A ∪ L has a Hamilton path with A1 and A2 as the first and 
last % vertices of the path. Similarly, δd(H \ (R ∪ A)) ≥ (δ + α/2)

(n−d
k−d

)
, so H \ (R ∪ A)

therefore contains two vertex-disjoint %-paths P0 and P1 together covering all but at most 
3k vertices outside R∪A. (To find such paths, first delete a minimal number of vertices 
from H \ (R ∪ A) to obtain a hypergraph where the number of vertices is divisible by 
k− %. Then, since δ ≥ δC!,k,d, the resulting hypergraph contains a Hamilton %-cycle, and 
we again delete a minimum number of vertices from the cycle to obtain the two paths. 
Note that in the first step, we delete at most k vertices, and in the second step, we delete 
at most 2k vertices.)

Now, using Con four times (each time deleting c vertices from the host hypergraph, 
which does not significantly change the minimum degree condition), we can extend P0
to P ′

0 so that it has as endpoints S and A1, and extend P1 to P ′
1 so that it has endpoints 

A2 and T . While doing this, we only use vertices coming from the set R (those which 
have not been previously used). The remaining vertices in R together with the vertices 
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deleted for divisibility reasons (while finding P0, P1) can be absorbed into A, as the 
number of remaining vertices is at most ηn/2 +3k ≤ ηn (since 1/n + 1/k) and have the 
appropriate divisibility property (otherwise n itself would not be (k, %)-path-divisible). 
This allows us to find the desired spanning path with endpoints S and T . !

8. Open problems

8.1. Beyond Hamilton connectivity

We conjecture that Theorem 1.14 can be strengthened by replacing δCON
k,!,d with δCk,!,d, 

as follows.

Conjecture 8.1. For every α > 0 and k ∈ N, there exists C = C8.1(α, k) such that the 
following holds for every %, d ∈ [k−1] and every sufficiently large n for which k−% divides 
n. If H is an n-vertex k-uniform hypergraph such that δd(H) ≥ (δCk,!,d + α)

(n−d
k−d

)
, then 

there is a (C/n)-vertex-spread distribution on embeddings Cn,k,! ↪→ H.

Together with Theorem 6.3 and Propositions 1.17 and 6.4, if true Conjecture 8.1 would 
imply δCk,!,d = δRD

Ck,!,d
= δVSD

Ck,!,d
. For % = 0, this indeed holds because δCON

k,0,d = δCk,0,d for 
all k and d. However, for % > 0, this problem seems very difficult. A natural starting 
point would be the following case of k = 3, % = 2, and d = 1: If H is an n-vertex 
3-uniform hypergraph such that δ1(H) ≥ (5/9 + α)

(n
2
)
, then there is a (C/n)-vertex-

spread distribution on embeddings Cn,3,2 ↪→ H. Reiher, Rödl, Ruciński, Schacht, and 
Szemerédi [30] proved that δC3,2,1 = 5/9 and noted that δCON

3,2,1 > 5/9, so this case does 
not follow from Theorem 1.14.

8.2. Exact minimum-degree thresholds

It would be interesting to investigate whether Theorem 1.14 holds with the minimum-
degree condition replaced by an exact one. However, in general, this problem is challeng-
ing because exact minimum-degree conditions for the existence of a single Hamilton 
%-cycle are known only in a few special cases.

For example, Katona and Kierstead [20] conjectured that every n-vertex k-uniform 
hypergraph H with δk−1(H) ≥ 6(n − k + 3)/27 has a tight Hamilton cycle. This con-
jecture was confirmed in the case k = 3 for sufficiently large n by Rödl, Ruciński, and 
Szemerédi [32] but remains open for k ≥ 4. Nevertheless, it seems likely that if the 
Katona–Kierstead conjecture holds, then robust versions of it hold as well.

More generally, we conjecture that if a k-uniform hypergraph has minimum d-degree 
large enough to guarantee a Hamilton %-cycle, then there is a (C/n)-vertex-spread em-
bedding of Cn,k,! into it, where C only depends on k. To that end, for every k ∈ N, 
d ∈ [k−1], % ∈ {0, . . . , k−1}, and n ∈ N divisible by k− %, let hk,!,d(n) be the minimum 
integer D ≥ 0 such that the following holds: If H is an n-vertex k-uniform hypergraph 
satisfying δd(H) ≥ D, then H has a Hamilton %-cycle.
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Conjecture 8.2. For every k ∈ N, there exists C = C8.2(k) such that the following holds 
for every d ∈ [k − 1], % ∈ {0, . . . , k − 1}, and n ∈ N for which k − % divides n. If 
H is an n-vertex k-uniform hypergraph such that δd(H) ≥ hk,!,d(n), then there is a 
(C/n)-vertex-spread distribution on embeddings of Cn,k,! ↪→ H.

Note that Conjecture 8.2 strengthens Conjecture 8.1. As mentioned, it seems difficult 
to prove such a result without knowing the value of hk,!,d(n). It would be interesting 
to confirm Conjecture 8.2 for the case k = 3 and d = % = 2, since the result of Rödl, 
Ruciński, and Szemerédi [32] implies h3,2,2(n) = 6n/27 for all large n. Another inter-
esting case would be d = k − 1 and % = 1, since a result of Han and Zhao [14] implies 
hk,1,k−1(n) = 3n/(2k − 2)4 for all large n. As mentioned earlier, the robustness result 
that would be implied by the existence of such a vertex-spread measure has already been 
confirmed by Anastos, Chakraborti, Kang, Methuku, and Pfenninger [2], independently 
of our work here.

It would also be interesting to investigate whether Theorem 1.15 holds with an exact 
minimum-degree condition. Such a result was proved for d = k − 1 and F ∼= K(k)

k (so 
an F -factor is a perfect matching) by Kang, Kelly, Kühn, Osthus, and Pfenninger [19]
and for k = 2 and F ∼= Kr by Pham, Sah, Sawhney, and Simkin [28]. For graphs (i.e. 
k = 2), minimum-degree conditions for the existence of F -factors are comparatively well 
understood (see e.g. [21,24,23]), and we suspect many of these results likely admit robust 
versions.

8.3. General robustness

Considering all of the research into robustness to date, it seems that every Dirac-
type result admits a robust version. It is plausible that for every family of k-uniform 
hypergraphs F and d ∈ [k − 1], we have δF,d = δRD

F,d = δVSD
F,d , which would partially 

explain this phenomenon and significantly generalise Conjecture 8.1. However, proving 
such a result seems out of reach at present.

One consequence of such a result (using the s = n case of the definition of vertex-
spread) would be that whenever H has minimum degree large enough to necessarily 
contain a copy of F , H supports at least (n/C)n many embeddings (as opposed to 
copies) of F , where n = |V (H)| = |V (F )|. Although plausible, it seems quite difficult to 
approach even this special case without any knowledge about what F looks like.
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