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Notably, our randomised embedding algorithm is self-con-
tained and does not require Szemerédi’s regularity lemma or
iterative absorption.
© 2024 The Author(s). Published by Elsevier Inc. This is an
open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).

1. Introduction

A central theme in extremal graph theory is computing the minimum-degree thresh-
olds for various properties. A prototypical result is Dirac’s theorem [5], which states that
n-vertex graphs with minimum degree at least n/2 are Hamiltonian. This is of course
tight, as graphs with minimum degree less than n/2 need not be connected. Results
of this flavour, concerned with minimum-degree thresholds for containment of spanning
structures, are often referred to as Dirac-type theorems.

Although the assumption that 6(G) > n/2 cannot be weakened in Dirac’s theorem, we
can say a lot more about n-vertex graphs with §(G) > n/2 (such graphs are henceforth
referred to as Dirac graphs). Sérkozy, Selkow, and Szemerédi [33] showed that Dirac
graphs in fact contain Q(n)™ many distinct Hamilton cycles, which is clearly optimal up
to the value of the implied constant factor (the constant terms were later sharpened by
Cuckler and Kahn [4]). We refer to results of this type as enumeration results.

We also know that the Hamilton cycles in Dirac graphs can survive random edge
deletions (this phenomenon is often called robustness, see the survey of Sudakov [35]).
Indeed, an influential result of Krivelevich, Lee, and Sudakov [22] states that for any
Dirac graph G, the random subgraph obtained by keeping each edge of G independently
with probability p where p > Clogn/n (C is an absolute constant) is asymptotically
almost surely (abbreviated a.a.s.) Hamiltonian. We remark that this result is a common
generalisation of Dirac’s theorem, as well as the classical result of Pésa [29] that the
Erdds-Rényi random graph G(n, C'logn/n) is a.a.s. Hamiltonian.

Recently, random graph theory was revolutionised by Frankston, Kahn, Narayanan,
and Park’s [10] proof of the fractional expectation threshold vs. threshold conjecture of
Talagrand [36] and Park and Pham’s [27] proof of the even stronger Kahn—Kalai con-
jecture [17]. A crucial corollary of Talagrand’s conjecture relates the so-called spread
measures with thresholds. Roughly speaking, for the study of random graphs, this con-
nection implies that if one can find a probability measure on copies of G C K, with
good spread (see Definition 1.16), then G a.a.s. appears in G(n,p). Simply considering
the uniform distribution on copies of G C K,, already gives startlingly powerful results.
An example that barely scratches the surface of this phenomenon is the following: If
G is a cycle on n vertices, then the uniform distribution on copies of G in K,, (that
is, on Hamilton cycles of K,) turns out to be well-behaved enough that through Ta-
lagrand’s conjecture, we can swiftly recover Pdsa’s [29] result about Hamiltonicity of
G(n,Clogn/n).
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Two recent independent papers by Kang, Kelly, Kiihn, Osthus, and Pfenninger
(KKKOP) [19] and Pham, Sah, Sawhney, and Simkin (PSSS) [28] demonstrated that
spreadness results can yield common generalisations of enumeration and robustness re-
sults. If there is a probability measure on copies of G in H with good spread, where H
is for example a hypergraph with minimum degree large enough to contain a copy of G,
then Talagrand’s conjecture gives for free that H contains G robustly, in a similar sense
to the aforementioned result of Krivelevich, Lee, and Sudakov (see the next subsection
for precise formulations). Moreover, in order for such a probability measure to have good
spread, it must have large support; that is, there must be many copies of G in H.

Calculating the spread of copies of G C K,, sampled uniformly at random is in many
cases quite approachable. When H is not a complete graph, copies of G C H sampled
uniformly at random are hard to reason about, and it is unclear how one can compute
the spread of such a random subgraph. Both KKKOP [19] and PSSS [28] circumvent
this difficulty by employing powerful methods from extremal/probabilistic combinatorics
such as Szemerédi’s regularity lemma and iterative absorption to construct a probability
measure on the desired subgraphs with good spread. The contribution of the current
paper is a simpler method that can achieve the same task, in many cases in significantly
more generality.

The notion of vertex spreadness, introduced by PSSS [28], is crucial. Instead of con-
sidering a random copy of G in H and analyzing the probability that a subset of edges
of H appears in G, we consider a random embedding of G — H and analyze the prob-
ability that a subset of vertices of G are mapped to a subset of vertices of H. Our
main results provide a randomized algorithm for embedding G < H so that the vertex
spreadness matches up to a constant factor the vertex spreadness of embedding G — K,
uniformly at random, when G is a (hypergraph) cycle or the disjoint union of copies of
some fixed hypergraph. This allows us to recover and extend many results from [19,28],
as well as obtain novel enumeration results which extend recent results of Montgomery
and Pavez-Signé [26]. In the next subsections, we provide precise formulations of our
results.

1.1. Thresholds

Before stating our results, we make precise some concepts already alluded to in the
introduction. For a k-uniform hypergraph H and d € [k—1], we let 64(H ) be the minimum
number of edges of H that any set of d vertices of V(H) is contained in.

Definition 1.1 (Minimum-degree/Dirac threshold). Let F be an infinite family of k-
uniform hypergraphs. By 7 4 we denote the smallest real number § such that for all
a > 0 and for all but finitely many n the following holds. Let n be such that there
exists some F' € F with |V(F)| = n. Let H be an n-vertex k-uniform hypergraph with
a(H) > (5 + ) (}-4%). Then, there exists some F' € JF with [V (F)| = n such that H
contains a copy of F.
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Note that for all 7 and d, the statement in Definition 1.1 holds for § = 1 and for the
infimum over all such ¢ € [0,1], so dr,q4 is well-defined.

The notion of thresholds is central in the study of random graphs. Here we present
a general definition for the threshold for a binomial random k-uniform hypergraph to
contain some spanning subgraph.

Definition 1.2. Let F be an infinite family of k-uniform hypergraphs. Denote by p =
px(n) the function so that for all n € N (such that there exists some F' € F with
|V (F)| = n), the binomial random hypergraph G(¥) (n, p) contains a copy of some F € F
with |V (F)| = n with probability precisely 1/2.

For example, if F contains one length-n cycle for every n € N, then p%(n) is the
threshold for G(n, p) to have a Hamilton cycle.

Definition 1.3 (p-random sparsification). Given p € [0,1] and some hypergraph H, by
H,, we denote the random graph obtained by keeping every edge of H with probability
p, making the decisions independently for each distinct edge of H.

Definition 1.4 (RD-threshold/Robust Dirac threshold). Let F be an infinite family of k-
uniform hypergraphs, and let p = p(n) € [0, 1] be a function. By 62—%1), we denote the
smallest real number § such that for all a,e > 0, there exists C' > 0 such that for all
sufficiently large n € N (such that there exists some F € F with |V(F)| = n), for
any n-vertex hypergraph H with dq(H) > (6 + «)(7-%), there exists some F € F with
|V(F')| = n such that the random sparsification Hj contains a copy of F' with probability
at least 1 — ¢ as long as p > Cp(n). By 637, we denote 522@}.

It is clear that 6?_-’% > 6r.q. The other inequality is a lot more interesting, and in the
following cases, true.

Theorem 1.5. For the following values of F and d, we have that 52—% =0r.a:

(1) when F := {C),: n € N} where C,, is a cycle on n vertices (Krivelevich, Lee, Sudakov
[22]);

(2) for each r > 2, when F := {n x K,: n € N} (r-clique-factors) (Pham, Sah, Sawh-
ney, Simkin [28], the r = 3 case was obtained by Allen, Bottcher, Corsten, Davies,
Jenssen, Morris, Roberts, Skokan [1]);

(3) for each C, when F is made up of a single tree T,, on n vertices for each n € N, and
A(T,) < C (Pham, Sah, Sawhney, Simkin [28]);

(4) when F = {n x K,ik) :n € N} (k-uniform matchings), for any d € [k — 1] (indepen-
dently Pham, Sah, Sawhney, Simkin [28] and Kang, Kelly, Kithn, Osthus, Pfenninger
19)).
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We remark that the first three results concern graphs, so d = 1 in each case. Our
main contribution in this paper is a unified strategy giving a far-reaching generalisation
of the first, second, and fourth result stated above. In particular, this allows us to add
hypergraph Hamilton cycles and F-factors for a much broader choice of F' (the second
result concerns clique factors and the fourth result concerns perfect matchings, which
are K ,gk) -factors, where Ky(lk) denotes the complete k-uniform n-vertex hypergraph) to
the list above. It is also conceivable that our methods work in even more generality than
we explore in the current paper.

We also remark that the first and the second result above hold in a stronger sense,
with ezact minimum degree conditions as opposed to asymptotic ones, and Kang, Kelly,
Kiihn, Osthus, Pfenninger [19] obtained an exact result for the fourth result above in
the case d = k — 1. We refer the reader to the corresponding papers for more details.

1.2. Hypergraph Hamilton cycles and Hamilton connectivity

We recall that for 0 < ¢ < k, a k-uniform hypergraph is called an ¢-cycle if its vertices
can be ordered cyclically such that each of its edges consists of k consecutive vertices
and every two consecutive edges (in the natural order of the edges) share exactly ¢
vertices. In particular, (k — 1)-cycles and 1-cycles are known as tight cycles and loose
cycles respectively, and 0-cycles are matchings. For n € (k — )N, we let C,, ;¢ denote
the n-vertex ¢-cycle with vertex set [n] and edge set

{lk+ (k=06 =Dk =06 -1)]:i€[n/(k-0]},

where addition above is modulo n. We define k-uniform /¢-paths P, ;¢ analogously.

Let Cop, ={Cpre:n € (k— 0N}, and let Ppg == {Ppre:n € (k— (N}

Unlike in the setting of Theorem 1.5(2) and Theorem 1.5(4), we would like to find
connected structures in our host graphs. We work with hypergraphs as opposed to graphs,
so Pésa-rotation-extension techniques as in Theorem 1.5(1) are unavailable to us. For
the same reason, relying on the regularity lemma (and related tools, such as the blow-up
lemma) as in Theorem 1.5(3) would be far from straight-forward. Instead, we use as a
black box a connection between §r 4 and the following related parameter.

Definition 1.6 (Hamilton connectivity threshold). By (5,?215 we denote the smallest real
number ¢ such that for all & > 0 and for all sufficiently large n the following holds.
For any F' € Py with |V(F)| = n, for any n-vertex k-uniform hypergraph H with
da(H) > (0 + ) (Z:g), and any disjoint S,T C V(H) with |S| = |T| = ¢, H contains a
copy of F where the first and last £ vertices of F' (in the natural ordering of the vertices
induced by the edges) are embedded to S and T, respectively.

It is not hard to see that (5,?21; > dc, .,d> and it is also known that 5207?’? =0c, .1 (see
for example [11]), but as far as we are aware, the parameter 5,321; has not been studied
for other ranges of k, ¢, d.
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ss : CON _
Proposition 1.7. For each of the following range of parameters, we have that 6;y; =
6C£,k’d'
1.d=k-1;

2.1<l<k/2andd=Fk—2;
3. 0=k/2 and k/2 <d <k —1 with k even.

The first part of the above proposition is proved as Lemma 2.6 in [26]. See Section 7
for the short proof of the second and third part of the proposition. These assertions
are a consequence of the more general phenomenon that whenever there is a “standard
absorption proof” (as codified in [13]) that d¢,, s < 0, then 6,?7(21; < 6 as well (see
Proposition 7.1). Therefore, it is quite feasible that Proposition 1.7 remains true for a
wider range of the parameters. But we remark that known results imply, for example,
that 6,?215 > ¢, ,,d when k =3, £ =2and d =1 (see [30]).

1.8. New robustness results for Hamilton cycles and factors

An important consequence of our main theorem (Theorem 1.14, to be stated in the
next subsection) is that 65> ; < d¢9Y for all ranges of the parameters. This is implied

by the combination of the following two theorems.

Theorem 1.8. For every o > 0 and k € N, there exists C = C; s(a, k) such that the
following holds for every d € [k — 1]. Let H be an n-vertex k-uniform hypergraph such
that §4(H) > (5,2?}(\11—%@) (Z:g). If (k—1) | n and p > Clogn/nk~1, then a.a.s. a random
subhypergraph H,, contains a loose Hamilton cycle.

Theorem 1.9. For every a > 0 and k € N, the following holds for every d € [k — 1]
and £ € {2,...,k —1}. Let H be an n-vertex k-uniform hypergraph such that d4(H) >
(5&22} +a) (Z:g). If (k—0) | n and p = w(1/n*~*), then a.a.s. a random subhypergraph
H,, contains a Hamilton {-cycle.

We chose to state these two theorems separately, to highlight the difference in the
corresponding values of p we need to work with for the cases of £ < 1 and ¢ > 1 cases
for the assertion that 5&%701 < 5,3215. Indeed, the function pg, , is ©(log n/n*~1) when
¢ < 1 whereas it is ©(1/n*=*) when ¢ > 1 (see [6,7]). Roughly speaking, this difference
is caused by isolated vertices being the bottleneck for random hypergraphs to contain
perfect matchings or loose Hamilton cycles (¢ < 1), whereas for £ > 1, the bottleneck
comes from a first-moment argument. Due to this subtlety, deriving Theorem 1.9 from
Theorem 1.14 is more challenging. To circumvent this difficulty, we benefit from a recent
generalisation of Spiro [34] of Talagrand’s conjecture.
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Combining this with the connection between the parameters 5,?21; and dc, , .4, We

derive the following, which considerably extends the families of hypergraphs listed in
Theorem 1.5.

Corollary 1.10. For each k,{ and d such that (5,?21; = dc, .4, we have that 5&2,‘1 = 0cy 4,d-
In particular, for the ranges of k,¢ and d described in Proposition 1.7, we have that
06D 4= 0cy pd-

Independently of our work, Anastos, Chakraborti, Kang, Methuku, and Pfenninger
[2] also obtained that 5&2@ = 0¢, ,,a in the regime where d = k — 1 and ¢ < k/2. In
fact, in this regime they obtained a stronger result working with ezact minimum degree
thresholds. We conjecture that the hypothesis 5,?21; = dc,.,,d 18 not required in the above
statement. See Section 8 for more details.

For a hypergraph F, let Fr be a family of disjoint unions of copies of F' containing one
element with |V (F')| vertices for every i € N, and let §p 4 == 07, 4. Hence, if an n-vertex
hypergraph H satisfies §q(H) > (0p.q + ) (Z:g) and n is sufficiently large and divisible
by |V (F)|, then H contains an F-factor; that is, H contains a spanning subgraph where
every component is a copy of F. Our next theorem implies 55‘_—?@ = 0pq when F is a
strictly 1-balanced uniform hypergraph. For a hypergraph H with at least two vertices,
the 1-density of H is di(H) = |E(H)|/(|V(H)| — 1). A hypergraph F' is 1-balanced if
dy(F') < dy(F) for every F/ C F and strictly 1-balanced if di(F') < di(F) for every
F' C F. For strictly 1-balanced k-uniform F', Johansson, Kahn, and Vu [15] proved that

the threshold for a binomial random k-uniform hypergraph to contain an F-factor is
@(nq/dl(F) logl/lE(F)I n).

Theorem 1.11. For every a > 0 and k,r € N, there exists C = C; ;/(a,k,7) > 0
such that the following holds for every d € [k — 1]. Let F be a k-uniform r-vertex
strictly 1-balanced hypergraph, and let H be an n-vertex k-uniform hypergraph such that
da(H) > (0pa+a) (Z:g). Ifr | noand p > Cn~YaE) 1ogV/1EE g then a.a.5. a random
subhypergraph H,, contains an F-factor.

Complete graphs are strictly 1-balanced, so Theorem 1.11 implies Theorem 1.5(2). A

k-uniform k-vertex hypergraph consisting of a single edge is also strictly 1-balanced, so
Theorem 1.11 implies Theorem 1.5(4).

1.4. Vertex-spread thresholds
The following definition, originally introduced in [28], is at the heart of the paper.
Definition 1.12. Let X and Y be finite sets, and let x4 be a probability distribution over

injections ¢ : X — Y. For ¢ € [0,1], we say that p is g-vertez-spread if for every two
sequences of distinct vertices x1,...,2s € X and y1,...,ys € Y,
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p({p: o(x;) = y; for all i € [s]}) < ¢°.

A hypergraph embedding ¢ : G — H of a hypergraph G into a hypergraph H is
an injective map ¢ : V(G) — V(H) that maps edges of G to edges of H, so there
is an embedding of G into H if and only if H contains a subgraph isomorphic to G.
Note that the uniformly random embedding ¢ : G — H when G and H have the same
vertex set and H is complete is just a uniformly random permutation of V(H), which is
(e/|V (H)|)-vertex-spread (using Stirling’s approximation).

Definition 1.13 (VSD-threshold/Vertex-spread Dirac threshold). Let F be an infinite fam-
ily of k-uniform hypergraphs. By 5}/_-?’[}3 we denote the smallest real number § such that for
all @ > 0, there exists C' > 0 such that the following holds for all but finitely many F' € F.
If n = |V(F)| and H is any n-vertex k-uniform hypergraph with §4(H) > (6 +a)(}Z9),
then there is a (C'/n)-vertex-spread distribution on embeddings of F' — H.

Note that for every family F, we have that dr 4 < 55‘_—%, 5\}/-78{}3 <1
The main results of this paper are that for every k € N,

L 6gP 4 < 5(\;/5?61 < 5,?21; for every £,d € [k — 1] and
2. 6%50 = 6p 4 for every k-uniform F and d € [k — 1] and moreover 652 | = dp 4 if F is
strictly 1-balanced.

The following theorem implies 6Y°P, < g7, for all ranges of the parameters.

Theorem 1.14. For every a > 0 and k € N, there exists C = C;.1,(a, k) such that the
following holds for every £,d € [k — 1], and every sufficiently large n for which k — ¢
divides n. If H is an n-vertex k-uniform hypergraph such that 64(H) > (5525 +a) (Z:g),
then there is a (C/n)-vertex-spread distribution on embeddings Cy, o — H.

Note a consequence of the above theorem is that whenever, §¢9Y = d¢, , 4, we have

that 55’25 = 5Ck,z,d = (SXSD

k,e,d”
The following theorem implies 6}/_-?% = 0p,q for every k-uniform F and d € [k — 1].

Theorem 1.15. For every o > 0 and k,r € N there exists C = C; ;5(a, k,r) > 0 such
that the following holds for all d € [k—1] and all sufficiently large n for which r divides n.
Let F be a k-uniform r-vertex hypergraph, and let G be the union of n/r disjoint copies
of F. If H is an n-vertex k-uniform hypergraph such that 64(H) > (6p,q+ ) (Z:Z), then
there is a (C/n)-vertex-spread distribution on embeddings G — H.
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1.4.1. The enumeration aspect
Note that if there is a (C/n)-vertex-spread distribution on embeddings G < H, then

1= Y alten <ler6 o i (£) = le: 6o M exp (nlogC —nlogn).

p:G—H

so there are at least exp(nlogn — O(n)) embeddings and at least exp(nlogn —
O(n))/|Aut(G)| copies of G in H. In particular, Theorems 1.14 and 1.15 imply that
under their respective assumptions, the hypergraph H contains at least

e exp (nlogn — O(n)) Hamilton ¢-cycles (for ¢ # 0) and
o exp ((1=1/|V(F)|)nlogn — O(n)) F-factors,

respectively, which strengthen recent results of Montgomery and Pavez-Signé [26] and
Glock, Gould, Kiihn, and Osthus [12]. This statement can be interpreted as a far-reaching
generalisation of the result of Sarkozy, Selkow, and Szemerédi [33] stated in the intro-
duction.

We also remark that Ferber, Hardiman, and Mond [9] sharpened the asymptotics for
t-cycles for £ < k— 1 and d = k — 1 by determining the leading constant in the O(n)
term. We refer the reader to [26] for more in depth discussion of the enumeration aspect
of Dirac-type results.

1.5. Spreadness

As previously mentioned, deriving Theorem 1.8 and Theorem 1.9 from Theorem 1.14
requires us to pass through the fractional expectation thresholds breakthrough of
Frankston, Kahn, Narayanan, and Park [10], and in fact, a generalisation of this break-
through by Spiro [34]. A hypergraph is called r-bounded if each edge has size at most
r.

Definition 1.16. Let ¢ € [0,1], and let » € N. Let (V,H) be an r-bounded hypergraph,
and let p be a probability distribution on H. We say pu is g-spread if the following holds:

p({AeM:AD8}) <¢® forall SCV.

Frankston, Kahn, Narayanan, and Park (FKNP) [10] proved that if (V,H) is an r-
bounded hypergraph and H supports a ¢-spread distribution, then a p-random subset
of V' contains an edge in H a.a.s. if p > Kqlogr as r — oo (here, K is some absolute
constant). We will consider hypergraphs of the form (V,#) where V = E(H) and H
is the set of (edge sets of) Hamilton ¢-cycles in some hypergraph H. In this case, we
sometimes abuse notation and write p(A) instead of u({A}) where A € E(H) or u(F)
instead of u({E(F)}) when F C H.



516 T. Kelly et al. / Journal of Combinatorial Theory, Series B 169 (2024) 507-541

Let my(H) = max g c g:|v (a7 >1 d1(H ). The following proposition allows us to con-
nect spread distributions and vertex-spread distributions.

Proposition 1.17. For every C,k,A > 0, there exists C' = C; ;7(C,k,A) > 0 such
that the following holds for all sufficiently large n. Let H and G be n-vertex k-uniform
hypergraphs. If there is a (C/n)-vertex-spread distribution on embeddings G — H and
A(G) < A, then there is a (C’/nl/ml(G))—spread distribution on subgraphs of H which
are isomorphic to G.

In the case when H is complete, since the uniform distribution on embeddings of G
into H is (e/|V(H)|)-vertex-spread, Proposition 1.17 provides an upper bound on the
spreadness for copies of G in H. For many natural choices for G (such as in the case of
F-factors or Hamilton ¢-cycles), this bound is in fact best possible due to the duality
between spreadness and fractional expectation thresholds.

Moreover, Proposition 1.17 implies 5?)37(1 < 63}524 for every ¢ € {0,1} and d €
[k — 1]. Combined with Theorem 1.15, it yields a (O(1)/n*~1)-spread distribution on
perfect matchings in sufficiently dense n-vertex k-uniform hypergraphs, which was proved
independently by KKKOP [19, Theorem 1.5] and PSSS [28, Theorem 1.5] (in the k | n
case). Proposition 1.17 combined with Theorem 1.14 also yields a (O(1)/n*~1)-spread
distribution on loose Hamilton cycles (see Lemma 6.5 for mq(Cy, 1)) in sufficiently dense
n-vertex k-uniform hypergraphs. Combined with the FKNP theorem, this result implies
Theorem 1.8.

To prove Theorem 1.9, we need Spiro’s [34] strengthening of the FKNP theorem —
see Section 6.2. To prove Theorem 1.11, we combine Proposition 1.17 with a coupling
argument of Riordan [31] — see Section 6.3.

Remark. In independent work, Joos, Lang, and Sanhueza-Matamala [16] also proved
Theorems 1.8, 1.9, and 1.11. They also obtained these results from stronger results con-
cerning spreadness, but they did not consider vertex spreadness. To prove Theorem 1.9,
they used a result of Espuny Diaz and Person [8], which is generalized by the result of
Spiro [34].

2. Preliminaries

We use standard notation for “hierarchies” of constants, writing z < y to mean that
there is a non-decreasing function f : (0,1] — (0, 1] such that the subsequent statements
hold for < f(y). Hierarchies with multiple constants are defined similarly. We omit
rounding signs where they are not crucial.

We need the following well-known version of the Chernoff bounds.

Lemma 2.1 (Chernoff bound). Let X := Y7 X; where (X;)ic(m) is a sequence of in-
dependent indicator random variables, and let E [X] = p. For every v € (0,1), we have
P(|X — pl > ypl < 2670773,
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We will also use a result of Gupta, Hamann, Miiyesser, Parczyk, and Sgueglia [13],
which is proved with a standard concentration inequality.

Lemma 2.2 (/13], Lemma 3.5). Letk,{,d e N, 0 < ¢’ <d<landl/n, 1/ <1/k,6—0".
Let H be a k-uniform n-vertex hypergraph with vertex set V' and suppose that deg(D, V') >
onk=? for each D € (Z) If A CV is a vertex set of size £ chosen uniformly at random,
then for every D € (‘5) we have

P [deg(D, A) < §'¢F~4] < 2exp(—£(5 — §')?/2).

Finally, we need the following result due to McDiarmid, which appears in the textbook
of Molloy and Reed [25, Chapter 16.2]. Here, a choice is the position that a particular
element gets mapped to in a permutation.

Lemma 2.3 (McDiarmid’s inequality for random permutations). Let X be a non-negative
random variable determined by a random permutation w of [n] such that the following
holds for some c,r > 0:

1. Interchanging two elements of ™ can affect the value of X by at most ¢
2. For any s, if X > s then there is a set of at most rs choices whose outcomes certify
that X > s.

Then, for any 0 <t < E[X],
P(|X —E[X]| > t 4+ 60c\/rE[X]) < 4exp(—t*/(8c*rE[X])).
3. Proof overview

In this section we overview the proofs of Theorems 1.14 and 1.15. The proof of Theo-
rem 1.15 is simpler, so we begin with this one. In fact, for the sake of simplicity, suppose
k=2,d=1and F is just a triangle, and the host graph H is a graph on n vertices, n is
divisible by 3, and 6(H) > (2/3 + a)n. Allen, Bottcher, Corsten, Davies, Jenssen, Mor-
ris, Roberts, Skokan [1] recently proved Theorem 1.11 for this case (in fact, they proved
the stronger result for o = 0), but our result (in the o > 0 case) is stronger in that it
concerns vertex spreadness and also has a shorter proof. Thus, this special case is still of
independent interest, and our proof generalises easily to other graph factors (additional
ideas are required to handle connected spanning subgraphs, as we will explain later). For
now, let us also assume that n is divisible by some integer C' that is in turn divisible by
3.

Our goal is to embed a triangle factor in H in a O(1/n)-vertex-spread manner.
The main idea is quite simple: we wish to first partition V(H) into random “cluster-
s” Uy,...,U, each inducing a graph with good minimum degree, and then embed a
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triangle factor in each cluster U; in a deterministic fashion. For the latter task, we hope
to rely only on 6(U;) > (2/3 + «/2)|U;| and |U;| being divisible by 3 as a black box
to argue that an embedding exists. This step is not randomised, and thus gains us no
spreadness whatsoever, so we have to rely exclusively on the randomness of the partition
to obtain spreadness on this simple algorithm. Let us first suppose that the partition is
chosen uniformly at random given that each U; has size C. A simple calculation shows

that for every set of distinct vertices x1,...,zs € V(H) and every function f: [s] — [m],
. c\’
P [x; € Upgy for each i € [s]] < (= | . (1)
n

Suppose that with probability at least 1/2, each H[U;] contains a triangle factor. Then,
(1) is actually all we need, and by conditioning on each H[U;] containing a triangle factor,
we obtain a (2C/n)-vertex-spread distribution on embeddings of triangle factors in H.

If C > log n, then it is straightforward to show that indeed §(H[U;]) > (2/3+«/2)|U;]
for each ¢ with probability at least 1/2 by an application of Chernoff’s bound and a
union bound over the clusters. By the Corrddi-Hajnal theorem [3], each H[U;] contains
a triangle factor, as desired. This argument already implies the desired result up to a
logarithmic factor, but to obtain the desired result, we need C' = O(1). In this regime,
it may be the case that with high probability, a small percentage of the H[U;] contain
isolated vertices, and these clusters cannot possibly contain triangle factors.

A central idea in the proof, replacing the more intricate iterative absorption strategies
employed in [19,28], is a random redistribution argument. If C' is a large constant, it will
still be the case that most of the U; have good minimum degree (§(H[U;]) > (2/3 +
a/2)|U;|); in this case, we call the cluster good and otherwise call it bad. The key idea
is that we can randomly redistribute vertices of the bad clusters to the good ones while
preserving (1) and the minimum degree property.

With high probability, it will be the case that each vertex v can be added to many
other good clusters U; while ensuring that H[U; U {v}] still has good minimum degree.
One way to randomly redistribute would be the following. For each vertex v € V(H)
living in a bad cluster, among the good clusters U; so that U;+wv is also good, choose some
U; uniformly at random, and re-define U; := U; 4+ v. This actually would not break (1),
but it would cost us the property that each |U;| is divisible by three, which is necessary
for finding a triangle factor. More importantly, it would also cost us the property that
each random set has the same size, which is surprisingly critical while showing that
the corresponding random embedding is vertex-spread (see the proof of Lemma 5.3, in
particular, Observation 5.4).

Hence, we would like to do the redistribution step while maintaining some control
over the sizes of the clusters. We achieve this by ensuring each good cluster receives
exactly one new element by adding the following step to the algorithm. (Thus, in the
triangle factor case, we initially choose each U; to satisfy |U;] = 2 mod 3). We first
define an auxiliary bipartite graph B between vertices v which need to be redistributed
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and good clusters U;, having v ~p U; only when U; 4+ v also has good minimum degree.
By potentially redistributing more vertices than necessary, we can ensure that this is
a balanced bipartite graph, and it is not too difficult to check that B will have high
enough minimum degree to contain a perfect matching with high probability. We want
to redistribute randomly, in particular we want a redistribution that preserves (1). So
in B, we are looking for a random perfect matching M so that the probability that M
extends a given matching of size s is O(1/n)®. In other words, we want to find a O(1/n)-
spread (not vertex-spread) probability distribution on perfect matchings in B. Such a
distribution on perfect matchings does exist, and in fact this assertion is just a weaker
version of results already present in [28]. However the statement we need here has such
a short proof that we include the simple outline below (a similar proof due to Pham is
recorded in an earlier version of the paper [28] available on arXiv).

Lemma 3.1 (Pham, Sah, Sawhney, Simkin [28]). There exists an absolute constant Cs. ;
with the following property. If G is a balanced bipartite graph on 2n vertices with §(G) >
3n/4, then there exists a (Cs. ;/n)-spread distribution on perfect matchings of G.

Proof sketch. Consider a random subgraph of G’ obtained by sampling C edges incident
to each vertex of G uniformly at random (we allow edges to be selected twice). We
claim that with probability at least 99/100, G’ contains a perfect matching. One can
easily verify this by checking Hall’s condition for G’. Now, condition G’ on the event
that it satisfies Hall’s condition, and consider an arbitrary perfect matching of G’. This
defines M, which is a random perfect matching of G. We claim the distribution of M
is O(1/n)-spread. Indeed, consider a matching of M’ of G of size s. Each edge e of M’
can be included in M ouly if e = {z,y} is sampled from the side of x or y, this event
has probability at most 2C'/(3n/4) = O(1/n). Furthermore, for disjoint edges e and ¢/,
these events are independent. This implies that M extends M’ with probability at most
O(1/n)*, implying the desired spreadness. O

In Section 4, the random partitioning aspect of the proof is treated rigorously, cul-
minating in Lemma 4.1, the “random clustering lemma”. This lemma might be of
independent interest, and can potentially be used as a black box to solve adjacent prob-
lems. There are two aspects of Lemma 4.1 that we have not discussed. Firstly, we cannot
assume that n is divisible by C' for some constant C' = O(1), and therefore, we cannot
guarantee that all clusters in our partition have the same size. We handle this difficulty
by having a single exceptional cluster which has a different size, and luckily, it turns
out that this is good enough for the applications. For the triangle-factor case, we can
use that, if all of the non-exceptional clusters U; have size divisible by three, then so
does the exceptional one. This argument generalises and is sufficient for the proof of
Theorem 1.15.

The more important aspect of Lemma 4.1 that we have not discussed is that in
Theorem 1.14 (and possibly in future applications), we want to find structures which are
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connected (such as Hamilton cycles), so we need to think about edges that go across the
clusters. To reason about this, consider an auxiliary graph ) where vertices represent
clusters U;, and we have U; ~g U; whenever the bipartite graph between U; and Uj;
has good minimum degree. Before the redistribution, @ itself may have many isolated
vertices. Thus, in the redistribution step, this will be another aspect we have to consider,
so that we can ensure that @ itself is well-connected. If @ itself has a Hamilton cycle,
then we can use this cycle to reorder the clusters, and use this new ordering to embed a
Hamilton ¢-cycle in H path-by-path. That is, we can first find a Hamilton path in each
cluster, and then connect them together along a Hamilton cycle of @ to find the desired
Hamilton cycle. See Fig. 1.

In fact, we need access to many Hamilton cycles of Q). Indeed, if we were only working
with a fixed Hamilton cycle of @, we could guarantee at most C!"/¢ Hamilton cycles for
any choice of Uy, ...,U,,, since each U; of size C' has at most C! Hamilton paths, and
we have at most n/C random sets. Also, it is easy to see there are at most n!/(n/C)!
choices for Uy,...,U,, (here we consider two choices the same if they are identical up
to relabelling the U;). Thus, in total, this approach could yield at most C!"/“n!/(n/C)!
distinct Hamilton cycles. On the other hand, the definition of O(1/n)-vertex-spread
requires us to find at least (n/C)™ distinct Hamilton cycles, which is much larger than
the previous quantity, as a simple application of Stirling’s approximation shows.

More thought reveals that to maintain vertex spreadness in the algorithm, we need a
vertex-spread distribution on Hamilton cycles of ). This may seem a bit circular, but it
will be the case that @ is almost complete, so the Dirac condition is satisfied with lots
of room to spare. Furthermore, the problem we reduce to is a problem about graphs,
whereas our general theorem concerns hypergraphs. The toolkit we have to find Hamilton
cycles on graphs is significantly more extensive compared to hypergraphs. To conclude,
to find a good ordering on @, we rely on the following result.

Lemma 3.2. There exists an absolute constant C's » with the following property. If G is a
graph with 5(G) > 3n/4 and e(G) > (1—1/C5.2)(3), then there exists a (C.»/n)-vertex-
spread distribution on Hamilton cycles of G (that is, on embeddings ¢ : Cp 21 — G).

There are elementary approaches to this problem, but here we will just give a short
derivation of the lemma from [28, Lemma 7.3], which guarantees O(1/n)-vertex-spread
distributions on Hamilton paths under the same hypotheses. The task is to just modify
the distribution so that it gives Hamilton cycles instead.

Proof of Lemma 3.2. Set C' = C(2,1/4) from [28, Lemma 7.3]. We claim that C5, =
10C" has the property in the lemma. First note that by [28, Lemma 7.3], there exists
a (C'/n)-vertex-spread distribution p on Hamilton paths of G (that is, on embeddings
¢ : P, = G, where P, is C, 21 with the edge {1,n} removed). Let ¢ be a random
embedding sampled according to p, and let u’ be the resulting distribution when p is
conditioned on the embedding ¢ mapping the end points of P, to adjacent vertices
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of G, i.e. {¢(1),6(n)} € E(G). In the distribution given by pu, for every fixed u,v €
V(G), the probability that ¢(1) = u and ¢(n) = v is at most (C’/n)? by the vertex-
spreadness of u. Furthermore, by a union bound over all non-adjacent u,v € V(G), we
have that p ({¢(1),¢(n)} ¢ E(G)) < (C"/n)*(1/C52)n? < 1/10. So i’ is obtained from
1 by conditioning on an event with probability at least 9/10. Therefore, u' is (2C"/n)-
vertex-spread, so also (C5.o/n)-vertex-spread. 0O

4. Random clustering lemma

This section is devoted to proving the following “random clustering lemma”.

Lemma4.1. Let 1/n < 1/C" < 1/C < a,e,1/k,1/d, 1/t < 1 where n,k,d,t,C € N, and
let § € [0,1]. If H is a k-uniform hypergraph on n vertices with §4(H) > (§ + «) (Z:j),
then there exists a random partition U = {Uy,Us, ..., Uy} of V(H) with the following

properties:

(1) |U;| = C for each 2 < i < m and |Uy| equals (C' —1)C plus the remainder when n is
divided by (C' —1)C;

(2) Sa(H[U)) > (5 + a/2)(JV1) for each i € [m];

(3) for every i € [m], there exist u; € U;, T; C U; \ {u;} of size t, and N; CU\ {U;} of
size at least (1 — e)m such that for every U; € Ny,

Sa(HU; UT; \ {u;}]) > (6 + a/2)<|(§;8§j|> nd
Sa(H[U; UT; \ {u;}]) > <5+a/2>(ﬂzg§¢>;

(4) for every set of distinct vertices y1,...,ys € V(H) and every function f: [s] — [m],

N
P [y € Uy for eachi € [s]] < <i) .
For the remainder of this section, fix 1/n < 1/C" < 1/C < a,1/k,1/d,1/t <1 where
n,k,d,t,C € N as in Lemma 4.1. Let  be (C'—1)C plus the remainder when n is divided
by (C'— 1)C. Let Wy = [r], and for i > 2, let W; = [r + (C'— 1)(i — 1)] \ U'Z} W, =
[r+(C-1)@G—-2)+ 1,74+ (C —1)(i — 1)]. Note that {W1y,...,W,,} is a partition of
[n] for m == (n —r)/(C — 1) + 1. Let H be a k-uniform hypergraph with vertex set
V = {uv1,...,v,} satisfying 64(H) > (6 + ) (Z:Z). Let 7 : [n] — [n] be a uniformly
random permutation of [n], and let V; := {v; : w(j) € W;}.
As described in Section 3, the partition of V(H) into Vi,...,V,, is in a sense “close”
to the one we want in Lemma 4.1 because the fourth condition holds, and the second
and third condition hold apart from a few exceptions. Lemmas 4.3, 4.4, and 4.5 set up
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precisely the conditions we need for our random redistribution argument to succeed. Each
of these lemmas rely on the following lemma.

Lemma 4.2. For every T C 'V of size at most t and every i € [m)],

ViuT]|

P |su(HV; UT]) > ((5+2a/3)< o

)} > 1 — exp(—Ca?/200).
Moreover, the same inequality holds for random sets T = {v; : w(j) € W} for every
W C [n] of size at most t.

Proof. Let T C V of size at most ¢t. Note that each V; has the same distribution as a
uniformly random subset of V of size C — 1 for every i € {2,...,m}, and similarly, V;
has the same distribution as a uniformly random subset of V of size r. Moreover, for
every W C [n] and D C V with |[W| = |D|, in the distribution conditional on the event
that D = {v; : m(j) € W}, each set V; \ D has the same distribution as a uniformly
random subset of V' of size |W; \ W/.

For every D' C T of size at most d and W' C W; of size d—|D’|, let Ep, w be the event
that |D| = d and deg(D,V;) < (54—304/4)(,&(‘1), where D := {v; : m(j) € W'} UD’. Note
that if Ep/ y holds for every such D’ and W, then 64(H[V; UT]) > (6 + 3a/4)(}V:]) >
(6+ 2a/3)(|‘gf§|). We claim that for every such D’ and W’ we have

P [ED’,W’] S exp(fC’o?/lOO).
Indeed, by the law of total probability, it suffices to show
P [Ep w | {v; : 7(j) € W'} = D"] < exp(—Ca?/100)

for every D" C V' \ D’ of size d — |D’|, which follows from Lemma 2.2 with D" U D"
playing the role of D and V;\ D" playing the role of A. Since there are (lT‘tilW"'l) < (3024
(using 1/C < 1/t and |W;| < 2C?) choices for D’ and W, the result follows by the union
bound, since 1/C <« «,1/d.

If instead T := {v; : 7(j) € W} for some W C [n] of size at most ¢, then the proof is
essentially the same, so we omit it. O

The next lemma will be used to ensure (3) holds. When applied with T' = {v} for a
vertex v in a “bad” cluster, it also ensures that there are many good clusters to which v
can be added in the random redistribution step.

Lemma 4.3. With probability at least 99/100, for every T C V of size at most t, there
are at least (1 —1/C%)m sets V; for which 64(H[V; UT]) > (6 + 2(1/3)(%85') and for
every W C [n] of size at most t, the same property holds for the random set T = {v, :
m(j) € Wi.
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Proof. For every T' C V of size at most ¢, let X7 denote the number of random sets V;
such that the minimum degree condition above holds. By linearity of expectation and
Lemma 4.2, we have E[X7] > (1 — exp(—Ca?/200))m. Note that interchanging two
elements of the random permutation 7 either has no effect on Vi,...,V,, or changes
the values of two random sets V; and V; and therefore can affect the value of X1 by at
most 2. Also, if X7 > s, this can be certified by at most 2C?%s choices of the random
permutation. Therefore, by Lemma 2.3 applied with ¢ = 2, r = 2C?, and t = m/C?, we
have
2 (m/C?)? 1
P [Xr < (1-1/C*)m| < 4exp (—77”) < exp(—n/C™M).

By a union bound, we have that X7 > (1 — 1/C?)m for every T C V of size at most ¢
with probability at least 99/100, as desired.

If instead T := {v; : 7(j) € W} for some W C [n] of size at most ¢, then the proof is
essentially the same, so we omit it. O

The next lemma ensures that most clusters are good. Moreover, in our random redis-
tribution argument, we will assign every good cluster a vertex from a bad cluster. The
lemma also ensures that for every good cluster (except Vi), there are many options for
this vertex.

Lemma 4.4. With probability at least 99/100, for all but at most exp (—a*C/1000) m
many i € {2,3,...,m}, there are at least (1 — exp (fa20/500))n vertices v € V such
that 54(H[V; U {v}]) > (8 + 2a/3) (V12103

Proof. By Lemma 4.2, we have that P [5d(H[WU{U}]) < (5+2oz/3)(‘v"ku_{;}‘)} <
exp (—aQC’/QOO) for any v € V and any random set V;. Call v bad for V; if this low prob-
ability event holds. So for any random set V;, we have E [|[{v € V: v is bad for V;}]] <
exp (—aQC / 200) n by linearity of expectation. By Markov’s inequality, for any random
set V;, we have P [|{v € V': v is bad for V;}| > exp (—a2C/500) n] < exp (—a*C/500).
Let X denote the number of V; such that [{v € V': v is bad for V;}| > exp (—a2C/500) n.
By linearity of expectation, E[X] < exp (—a2C / 500) m. By Markov’s inequality,
P [X > exp (—Ca?/1000) m] < exp (—Ca?/1000) < 1/100, implying the desired state-

ment. O

For every i € [m], choose some W/ C W; of size t arbitrarily (irrespective of ), let
T, = {vj : 7(j) € W/}, let N;* be the set of V; € {Vi,...,V,,} for j # i such that
Sa(H[V; UT)) > (6 + 2a/3)("79%1), and let N be the set of V; for j # i such that
Vi € N;r. Note that T; C V; for all ¢ € [m]. In order to ensure (1) holds, we will need to
have U; = V;. The next lemma ensures that U; (which will be V7) satisfies (2) and (3).

Lemma 4.5. With probability at least 99/100, [Ny | > (1 — exp(—a?C/500))(m — 1).
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Proof. By the “moreover” part of Lemma 4.2, we have that

P |64(H[Vi UT}) < (6 4 2a/3) <|V; B dT”)] < exp (—a?C//200)

for every i > 2, so
P [Vi € Nf] >1—exp (—a2C/200) .

By linearity of expectation, E [|[N; || > (1 — exp (—a?C/200))(m — 1). By Markov’s
inequality,

P [m—1—|N;|>exp (—Ca?/500) (m —1)] < exp (—Ca?/500) < 1/100,
implying the desired statement. 0O

Now we prove Lemma 4.1, by considering the distribution on Vi, ...,V,, conditional
on the events in the previous three lemmas and applying the random redistribution
argument.

Proof of Lemma 4.1. Let F; be the event that the property in Lemma 4.3 holds, let
FE5 be the event that the property in Lemma 4.4 holds, and let E3 be the event that
the property in Lemma 4.5 holds. We will condition on £ N E5 N E3, which holds with
probability at least 97/100.

For each permutation m : [n] — [n], define a set of “bad” random sets F, C
{Va,...,Vin} to include the V; for which we have any of

(A1) Sq(H[VH]) < (5 + 2a/3) (1Y),
(A2) §4(H[V;U{v}]) < (64+2a/3) (lvu{”}l) for at least exp(—a?C/500)n vertices v € V,
and

(A3) IN; | <(1-1/VC)m

Let m’' .= |VoU---UV,,|/C, and note that m’ is a positive integer by the choice of r.
If necessary, add extra elements of {Va,...,V,,} arbitrarily to F, to ensure F, has size
atleast m—1—m' =m—-1-m(C—1)/C = m/C —1. We claim that if 7 € E1 N E>N E3,
then | Fr| = m — 1 — m’. Indeed, there are at most m/C? of type (A1) by Lemma 4.3
applied with 7' = ) assuming © € E, there are at most exp (faQC/l()OO) m of type
(A2) by Lemma 4.4 assuming 7 € Fs, and there are at most m/C*/3 of type (A3) since
S UINT =Y NS > (1 - 1/C?)m? by Lemma 4.3 assuming 7 € E.

By possibly relabelling the sets Vi, ..., V,,, we assume without loss of generality that
Fr=AVi:i € [m]\ [m+1—|F|]}. Now consider random sets V; given by a random
permutation 7 conditioned on Ey N Es N E3.
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We define a bipartite graph G between Uy, Vi and {V2,...,Vp} \ Fr. Note that
the first part is a set of vertices and the second part is a set of subsets of vertices, and by
the choice of m/, the first and the second part both have size m/, as (m—1—m/)(C—1) =
m’. We put an edge between v and V; whenever d4(H[V; U {v}]) > (0 + 2a/3)(‘viku_{;’}‘).
Conditioning on F; and considering T' = {v}, we have dg(v) > (1 — 1/C?)m — | F,| >
3m/ /4 for every v € Jy, c = Vi- By the choice of F to contain all sets satisfying (A2), for
every V; € {Va,..., Vm} \ Fr, we have dg(V;) > m/ — exp(—a?C/500)n > 3m//4. Thus,
d(G) > 3m//4, and by Lemma 3.1, there is a (C5.;/m)-spread distribution on perfect
matchings of G.

We define the random sets U; and vertices u; as follows. First, sample 7 from the
uniform distribution on permutations of [n] conditional on E; N E2 N E3. Then, sample
M, from the (C5 /m)-spread distribution on perfect matchings of G . For each V; ¢ F,
let u; be the vertex that it is assigned to in M, and let U; = V; U{u;}. Letting Uy = V4,
and picking u; to be an arbitrary vertex in V; \ T} concludes the algorithm that defines
U=A{U,...,Upn+1} with m in the lemma statement being m’ + 1. We now check the
required conditions.

(1) The condition on |U;| holds by construction, and for ¢ > 2, we have |U;| = |V;|+1 =
C, as required.

(2) For ¢ = 1, this condition holds because we condition on Ej3, and for ¢ > 2, the
condition holds by the definition of the edges in the bipartite graph G.

(3) For every i € [m], let N; = {U; : V; € N;* N N; }. Note that |[N;"| > (1 - 1/C*)m
since we are conditioning on F;. Note that |[N; | > (1—exp(—a?C/500))(m—1) since
we are conditioning on F3. Note that for i € [2,m’+1], we have [N, | > (1—-1/v/C)m
since these V; are good sets and so satisfy the reverse of (3). Combining these gives
IN;| > m' —m/C? —m/V/C > (1—¢)(m'+1). For i > 2, note that d4(H[U; UT; \
{u;}]) = da(H[V; UT;]). Also note dq(H[Uy UT; \ {ur}]) = da(H[VA UT;)\ {u1}) >
Sa(HUTy]) — (Y3 2 da(HUT;]) —a(Vi5) /10. Set s, := a(1%251) /10.
We thus have

SO U\ ()] 2 Bl IV UT]) = 50y > 0+ 2031 22T = s

k—d
> (5+a/z)(|U];f§f'>

for i > 1 and U; € N; because V; € N7, and similarly

SO UT (i) = 0TV U s3> 6ot 20/ (1 2 ) =

> (54 a/z)(W]gdei')

for ¢ > 1 and U; € N; because V; € N .
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(4) Let y1,...,ys € V(H), and let f : [s] — [m’+1] as in the statement. For each i € [s],
let D; be the event that y; € Uy(y), let D} be the event y; € Vi), and let D? be the
event y; = u;. Note that D} is determined only by the permutation 7, and the event
D? only holds if y; is matched to V; in G by M. Thus, for every S C [s], we have

2[Sl(p — |S)! 2\ |51
PlﬂDil]S<w>/P[ElmE2mE3]S%(£> ,
ies v "

and for every 7’ € E1 N Es N Es,

Cy31 s—19|
B| () Dijr=n <(",> :
m

i€[s]\S

Therefore, for every S C [s], we have

P|(\pin () D?

ic€S i€[s]\S

P| (| D7 (D!

i€ [s]\[S] €S
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Finally, the result follows by a union bound over the 2° choices of S C [s], since

P lﬂD}

i€S

No-Nwuoe=-U [Nein N e o

i€ls] i€[s] SCls] \i€s ie[s]\S

5. Proof of Theorems 1.14 and 1.15

In this section, we prove Theorems 1.14 and 1.15. Since the proof of Theorem 1.14 is
the most challenging, we do not include all of the details for the proof of Theorem 1.15
and instead describe at the end of this section how to modify the proof of Theorem 1.14
to prove Theorem 1.15.

Recall that a k-uniform Hamilton ¢-path with s edges occupies (s — 1)(k — ¢) + k =
s(k — £) + £ vertices. We call a set S (k, £)-path-divisible if |S| has the right divisibility
condition to contain a k-uniform Hamilton ¢-path, that is, k — ¢ divides |S|—¢. We call a
set S (k, £)-internal-path-divisible if |S|+2¢ has the right divisibility condition to contain
a k-uniform Hamilton £-path, so k — ¢ divides |S| + £. We call an integer ¢ path-divisible
(or internal-path-divisible) if a set of size ¢ is path-divisible (or internal-path-divisible).
Let f(k,€) == [(2k — ¢)/(k — £)], and note that the final ¢ vertices of an ¢ path with
f(k,€) edges are disjoint from the first .
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We now describe the random Hamilton f-cycle embedding algorithm. In this algo-
rithm, we first find a Hamilton cycle in H by gluing together many ¢-paths. We assume
each of these paths comes with a natural ordering of its vertices. For technical reasons, it
is more convenient to find an embedding of C;l’ k¢ Into H, where C’;L’ k¢ 1s the hypergraph
isomorphic to C,, 1¢ where edges are shifted to the left by ¢; that is, C’;L,,M has vertex
set [n], {n—L+1,...,n,1,....k—L} € E(C] , ,), and all other edges are “(k — £)-shifts”
of this edge. See Fig. 1 for an illustration of the embedding algorithm.

Definition 5.1 (Random Hamilton cycle embedding algorithm). Let « > 0, let k € N,
andlet d,f € [k—1]. Let 1/n <« 1/C' <« 1/C < «a,1/k as in Lemma 4.1, where k—¢
divides n, and C'—(k—2) f (k, €)—{ is (k, £)-internal-path divisible, meaning that k—¢
divides C. Given a hypergraph H on n vertices with 64(H) > (5&85 +«) (Z:g), we
define 9 : C,’% k¢ < H, arandom embedding of a Hamilton (-cycle in H, as follows.

Step 1: Sample random clusters. Let & = {U, ..., U,,} be a random partition of
V(H) obtained by applying Lemma 4.1 with 10¢k playing the role of ¢, 1/5 playing
the role of €, and 5,?21; playing the role of ¢ (the choice of the other variables is as
above). Define an auxiliary graph G with vertex set [m] where ¢ is adjacent to j if
U; € N; or U; € N;. Note that by the choice of €, we have 6(G) > 4m/5.

Let ¢ : Cpp21 — G be a random embedding of a Hamilton cycle on G coming
from Lemma 3.2, and note that ¢ is a permutation of [m|. Throughout, we view [m]
cyclically, meaning occurrences of the indices m + 1 and 0 are to be read as 1 and
m, respectively. Let z = ¢~1(1) so that U; = Ug(z), the largest random set.

Step 2: Find connecting paths between clusters. For each i € [m], find an ¢-
path Py ¢i+1) of length f(k,£) contained in Ugy U Ug(;41) with the following
properties.

1. The paths Py(;) ¢(i+1) are pairwise vertex-disjoint.
2. Py(i),¢(i+1) has its first £ vertices in Uy, and the last [V/( Py p(i41))] — € > ¢
vertices in Ug(;y1) (that is, Py(;),¢(i+1) does not alternate between clusters).

Step 3: Find Hamilton paths in the leftover part of each cluster. For each ¢ €
[m], call the f-set that is an endpoint of Py_1) ¢) in Uy as S and call the
(-set that is an endpoint of Py ¢(i+1) in Ugy as T. Find a Hamilton (-path in
H[U¢(i) \ (V(P¢(i)’¢(i+1)) U V(P¢(i,1)’¢(i))) U S UT] with endpoints S and T, and
denote this Hamilton path as Pg).

Defining ¢. Recall that z = ¢~1(1). To define v : [n] — V(H), we define ¥ (1) to
be the first vertex of Py(,_1) () that is contained in Uy() and define the remaining
(i) for i > 1 to be consistent with the ordering given by Py(1)U Py(1),4(2) U Pp(2) U

U Py(m) U Py(m), (1)
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Fig. 1. An illustration of the random Hamilton cycle embedding algorithm.

For the next two lemmas, fix « > 0, k € N, d,¢ € [k — 1], and 1/n <« 1/C" <
1/C <« «,1 as in Definition 5.1, and let H be an n-vertex hypergraph with d4(H) >
(6&23‘ +a) (Z:g). Theorem 1.14 follows immediately from the following two lemmas (note
that producing embeddings of C’;L’,M is equivalent to producing those of Cj, j ¢).

Lemma 5.2. The random embedding v : C:L,k,[ — H in Definition 5.1 is well-defined.

Lemma 5.3. The distribution produced by the algorithm in Definition 5.1 is (C'Cs.2/n)-
vertex-spread.

Proof of Lemma 5.2. By construction, Py1)U Py1),¢2) U Py2) U U Pyim) U Pym),e(1)
is a Hamilton (-cycle of H. Furthermore, by Step 2, the first vertex of Py(,_1) 4(») that
is contained in Up.y is in fact the (£ + 1)th vertex of Py(._1),¢(z), 50 % is an embedding
of Cr’%k’z in H, as required. Therefore it suffices to show that each step in Definition 5.1
can be performed.

Step 1. This step can be performed because of Lemmas 4.1 and 3.2.

Step 2. Let ¢ € [m] and suppose paths satisfying the two properties have been found
for each i’ < i, and let J denote the set of vertices used by these previously found paths.
Consider Ug(;y and Ug(i41). Note that from each set, J uses at most £+ (k—£) f(k,£) < 3k
vertices. Consider the Ty(;) € Ug(;) guaranteed by Lemma 4.1(3). Note that ¢t — 3k > £,
so we may fix an £-subset 7" C Ty;) disjoint from J. Let U C Ug(iy1) \ (J U{ug(i+1)}) be
obtained by deleting at most k elements from the latter superset so that U UT" is (k, £)-
path divisible. Observe that é4(H[UUT']) > ((5,?21; + a/lO)(liLij;‘) (by Lemma 4.1(3));
hence, by definition of (5,221;, H[U UT'] contains a Hamilton ¢-path with one endpoint
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being the f-set T”, and the other endpoint being some ¢-subset of U that can be chosen
arbitrarily. We truncate this path (keeping the side closer to 7" intact) to keep only its
first f(k,£) edges. The resulting path satisfies the desired properties, showing that Step
2 can be executed for each i € [m].

Step 3. Similarly to the previous step, we need to check the relevant divisibility and
minimum degree conditions to show that a path of the desired form exists for each
i€ [m].

We first show that U¢(i) \ (V(P¢(i),¢(i+1)) U V(P¢(i—1),¢(i))) is (k,¢)-internal-path-
divisible for every ¢ € [n]. Indeed, for i # ¢~1(1), we have |Uyy \ (V (P, p(i+1)) U
V(Pyii-1),6:)))] = C — £ — f(k,£)(k — £), so the internal path divisibility follows from
our choice of C. For i = ¢_1(1), we have ‘U¢(i) \ (V(P¢( ), ¢,(l+1)) U V(P¢ (i—1),6(i) ))| =
n—L0— f(k,)(k—4¢) — (m — 1)C, so the internal path divisibility follows since k — £
divides both n and C.

Now we claim that (5d(H[U¢(i) \ (V(P¢(i),¢(i+1)) U V(P¢(i_1)7¢(i)))]) > (5;@’(@ +
a/lO)(‘iﬂ(Z}‘). This is a consequence of Lemma 4.1(2) since |[V(Pyuyp(it1)) U
V(Pgi-1),6:))] < 10k, and 1/C < 1/k. Therefore, the desired Hamilton path with
the desired endpoints exists by the definition of 5,?21;, meaning that Step 3 can be
executed. O

Proof of Lemma 5.3. Let v : C;IM — H be the random embedding from Definition 5.1.
To show the distribution is (C’'C3 5 /n)-vertex-spread, we show that for every s € [n]
and every two sequences of distinct z1,...,25 C [n] and y1,...,ys € V(H), we have
P [¢(z;) =y, for all i € [s]] < (C'C5.2/n)".

To that end, let r be (C'—1)C plus the remainder when n is divided by (C'—1)C. Let
W = [r], and for i > 2, let W; == [r+C(i—2)+1,r+C(i—1)] = [r+C(i—1)]\UZ) W;.
(Note that these are slightly different from those defined in the previous beCthl’l) We
refer to each W; as a “window”. Let w : [s] — [m] where w(¢) is the unique index such
that z; € W, (;). We refer to W,(;) as “z;’s window”. Recall i = {U1,...,Up} is the
collection of random sets and ¢ is the random embedding of C;, 2 1 in the auxiliary graph
G as defined in Step 1, and z = ¢~ 1(1). See Fig. 1. We will frequently use the following.

Observation 5.4. The embedding 1 induces bijections between and W1 and Ug(.44)
for each @ > 0 (where the subscripts of W and the inputs to ¢ are to be interpreted
cyclically). In particular, for every i € [s], we have 9 (z;) = y; only if y; € Ug(zyw(i)—1)-

For each function f : [s] — [m], let Ey be the event that y; € Uy(;y for each i € [s].
Let F be the family of functions f: [s] — [m] satisfying the following;:

o If w(i) =1 (that is, z; is in the biggest window), then f(i) =1
o If w(i) = w(j) (that is, z; and z; are in the same window), then f(i) = f(j).
o If w(i) # w(j) (that is, x; and x; are in different windows), then f(i) # f(j).
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Let b denote the number of i € [m] for which {z1,...,2s} N W; # 0; that is, b is
the number of windows that are the window of some z; for i € [s]. Define b as b if
Wi n{z1,...,xs} = 0 and define b as b — 1 otherwise.

We claim the following:

(a) P [Ef] < (C'/n)® for every f:[s] = [m];

(b) if f: [s] — [m] is not in ;’:, then P [¢(z;) = y; for all ¢ € [s] | Ef] = 0;
(c) |F| = ITiZg(m =) < ms

(d) b<b<s; )

(e) P ih(x;) =y; for alli € [s] | Ef] < (Cs.0/m)® for every f € F.

Indeed, (a) follows immediately from Lemma 4.1(4), (b) follows from Observation 5.4,
and (c) and (d) are straightforward from the definitions. To prove (e), first note that by
Observation 5.4,

P [¢(z;) = y; for all i € [s] | Ef] <P [¢(z +w(i) — 1) = f(3) for all i € [s]].
Let af,...,2} and yi,...,y; be the elements of {z +w(i) — 1 : i € [s]} \ {2} and

{f(@) : @ € [s]} \ {1}, respectively. By the vertex spreadness of ¢ with x1,...,z}; and
T/ ,yé playing the roles of {x1,...,2} and {y1,...,ys}, respectively, we have

P¢(z +w(i) — 1) = f(i) for all i € [s]] < (C;;,g/m)g.

The two inequalities above together imply (e).
Combining (a)—(e), we have

P y(e:) = i Vi€ [s]] 2 S P [(ai) = i Vi € [s] | Bf] P [Ey]

feF
(@) A
<SPl —uvield |5 (£)
fer
s b s N
B )
feF

)
|

(Cy0)° = (%)s’

n

as desired. O
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We conclude this section by explaining how to modify the proof of Theorem 1.14 to
prove Theorem 1.15. First we describe the random embedding algorithm.

Definition 5.5 (Random F-factor embedding algorithm). Let o > 0, let k,r € N,
andlet d € [k—1]. Let 1/n < 1/C’' « 1/C <« «,1 as in Lemma 4.1, where r divides
n and C. Given a hypergraph H on n vertices with dq(H) > (dpq + >(k73) we
define ¢ : G — H, a random embedding of an F-factor in H, as follows.

Step 1: Sample random clusters. Let &/ = {U, ..., U,,} be a random partition of
V(H) obtained by applying Lemma 4.1 with dr 4 playing the role of § (the choice
of the other variables is as above — € and ¢ are unimportant and can be set to 1).

Step 2: Find an F-factor in each cluster. For each i € [m], find an F-factor in
H[Uj]. Label the vertices of U; as w1, . . ., u; y,| such that H[{w; ;j_1)r41,-- -, Wi jr}]
= F for every j € [|U;]/r].

Defining 1. Assume without loss of generality that V(G) =
1,...,jr}] & F for every j € [n/r]. For every i € [n], let ¢
the largest integer such that ¢ > Zf;ll U] and y =i — 375

[n] and G[{(j —1)r+
) = Ugy, Where z is
Ui

(i
-1

To prove Theorem 1.15, we need analogues of Lemmas 5.2 and 5.3. The analogue of
Lemma 5.2 is straightforward, so we omit it. For the analogue of Lemma 5.3, we note
the following changes:

e since there is no ¢ in Definition 5.5, it can be interpreted as the identity, so z = 1;

¢ the family of functions F consists of the single function w;

« we do not need to define b or b, and we do not need (d);

e (a)and (b) are unchanged, but for (c¢), we have |F| = 1, and for (e), we have simply
that this probability is at most 1.

Altogether, we obtain a (C’/n)-vertex-spread distribution, as desired.
6. Spreadness from vertex spreadness

In this section we prove Proposition 1.17, which, combined with Theorem 1.14 and the
FKNP theorem, implies Theorem 1.8. We also prove Theorem 1.9 using Theorem 1.14 and
Spiro’s strengthening of the FKNP theorem, and we prove Theorem 1.11 by combining
Theorem 1.15 with the FKNP theorem and a coupling argument of Riordan [31].

6.1. Proof of Proposition 1.17

We begin with the proof of Proposition 1.17. First we need a lemma, upper bounding
the number of “partial embeddings” of G into H.
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Lemma 6.1. Let H and G be n-vertex k-uniform hypergraphs. If ' C H has v vertices
and ¢ components, then there are at most

n(kA(G))"*

hypergraph embeddings ¢ : G[X] — H[V (F)] where X € (VUG)) and F C H[p(X)].
Proof. Let Fy,...,F. be the components of F, and for each i € ], let V(F;) =
{win, .. vi v}, where for every j € [[V(F;)[]\ {1}, there exists j* < j such that v;
and v; j are contained in a common edge of F;. Each embedding ¢ : G[X] — H[V(F)]
with F' C H[p(X)] is then determined by

1. the preimages ¢! (v1.1),...,0 ' (ve,1) of the “roots” and

2. for each i € [c], a sequence in [k A(G)]IVUF)I=1 where the jth term in the sequence
determines go’l(vm-ﬂ) based on go’l(vm-/), where j/ < j and v; j» and v; j41 are
contained in a common edge of Fj.

Note that there are at most n¢ choices for the preimages of the roots and at most
(k A(G))?—¢ choices for the sequences. Combining these choices yields the desired
bound. O

Proof of Proposition 1.17. Let 1/n <« 1/C" <« 1/C,1/k,1/A < 1. Let H and G be
n-vertex k-uniform hypergraphs, where A(G) < A, and suppose there is a (C/n)-vertex-
spread distribution p on embeddings G < H. For every F' C H isomorphic to G, let

p(F)=p({p:{p(e) e € E(G)} = E(F)}),

and note that y’ is a probability distribution on subgraphs of H which are isomorphic
to G.

We prove that p is (C’/nl/ml(a))—spread. To that end, let S C E(H), and let T'C H
have edge set S and subject to that, the fewest number of vertices. We may assume T
is isomorphic to a subgraph of G, or else p/({F C H : E(F) 2 S}) = 0. We may also
assume S # (). Let v and ¢ be the number of vertices and components of T, respectively.
By Lemma 6.1, the number of embeddings ¢ : G[X] < H[V(T)] where X € (V(%) and
T C H[p(X)] is at most n°(kAY~°), so since u is (C/n)-vertex-spread,

W{FCH:E(F)DS}) < n(kA)*~ (9)71 . (M)U_C

NG )n n

Let T1,...,T. be the components of T'. Since each T; is isomorphic to a subgraph of
G, for every i € [c] we have |E(T;)|/(|V(T;)] — 1) < m1(G). In particular,

IS1(v=c)/15]
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[

S| = Z |B(T3)| < mi(G) )Y (IV(T)] = 1) = mi(G)(v - ¢),

=1

so (v —¢)/|S| > 1/m1(G). Therefore

W/ ({FCH:E(F)2S}) < (—(Cl)ml(g)>|3|(“)/s < (L> : ;

n nl/ml(G)

as desired. 0O
6.2. Stronger spreadness: proof of Theorem 1.9

Next we prove Theorem 1.9. As mentioned, we need a result of Spiro [34], which
requires the following stronger notion of spreadness.

Definition 6.2. Let ¢ € [0, 1], and let ro,...,7; € N be a decreasing sequence of positive
integers. Let (V, H) be an ro-bounded hypergraph, and let u be a probability distribution
on H. We say u is (¢; 70, . - ., 7¢)-spread if the following holds for all i € [¢]:

Ti—1

p({AeH |ANS|=t}) <q' forallt € [r;,r;_1] and S € U {(?) :EEH}.

i=r;

As noted by Spiro, if p is a g-spread measure on an ro-bounded hypergraph (V,H),
then it is also (4q;ro,...,re) spread where r; := [r;_1/2] for i € [{], so the following
result with £ = ©(logr) implies the FKNP theorem for uniform hypergraphs. (Spiro [34,
Theorem 3.1] also proved a slightly stronger result in the non-uniform setting which
implies the FKNP theorem, but we do not need this result here).

Theorem 6.3 (Spiro [3/]). There exists a constant Ks 5 > 0 such that the following holds
for all K > Ky 3. Let g € [0,1], let 7¢,...,7¢ € N be a decreasing sequence of positive
integers, where ro = 1, and let (V,H) be an ro-uniform hypergraph. If there exists a
(¢; 70, - .. 7¢)-spread probability distribution on H and p > Klq, then a p-random subset
of V' contains an edge of H with probability at least 1 — K4 3/(KY).

We apply Theorem 6.3 with 1 playing the role of ¢ in Definition 6.2. This special case
of Theorem 6.3 is in some sense the “base case” of Spiro’s proof [34, Lemma 2.5] and
can be proved directly with the second moment method. To apply Theorem 6.3, we also
need the following analogue of Proposition 1.17 with this notion of spreadness.

Proposition 6.4. For every C > 0 and k € N, there exists C' = Cy 4(k,C) > 0 such
that the following holds for all £ € {2,...,k — 1} and all sufficiently large n. Let H
be an n-vertex k-uniform hypergraph. If there is a (C/n)-vertex-spread distribution on
embeddings C, .o — H, then there is a (C'/n*~%n/(k — £),1)-spread distribution on
Hamilton (-cycles of H.
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Theorem 6.3 and Proposition 6.4 together imply that 6&%7 a < 6(\3755(1 for every £ €
{2,...,k—1} and d € [k — 1]. Theorem 1.9 follows immediately from Theorems 6.3 and
1.14 and Proposition 6.4, so the remainder of this subsection is devoted to the proof of
Proposition 6.4. This proof is inspired by the proof of Kahn, Narayanan, and Park [18]
determining the threshold for G(n,p) to contain the square of a Hamilton cycle.

Lemma 6.5. Every connected subgraph of Cy, ¢ with v vertices and t edges satisfies
v > min{(k — )t +¢,n}.

In particular, if £ > 0, then

1 n
m1(Ch k0) = =0 n-1

Proof. Let I C C,, ;¢ be a connected subgraph with v vertices and ¢ edges. We may
assume without loss of generality that F' has vertex set [v] where v < n. For some
I C[n/(k—0)] of size t, the edge set of F is

{fimlk+k=-0G=-DI\[(k-0>G-1)]:ie T}

Therefore,
n/(k—£) i—1
v> Y e |\ B 2R+ E-OE-1) = (k- 0t +1,
i=1 j=1

as desired. To see that m1(Cy e) = n/((k —€)(n — 1)) for £ > 0, first note di(Cp k) =
n/((k —£)(n —1)). Moreover, every spanning subgraph F' C H satisfies dq(F) < d;(H).
If F' C H has fewer than n vertices, then |V (F)| > (k — £)|E(F)| + ¢, so

B V(E) ¢ |
W) = E 1S GV ) Sk

as desired. O

Lemma 6.6. If S is a subset of edges of Cy, ¢, then the number of subgraphs of Cp 1. ¢
with t edges, all in S, no isolated vertices, and ¢ components, is at most

<k|S> (2-16%)".
c
Proof. Let f; == [k + (k—0)(i — 1]\ [(k—¥€)(i — 1)] for each i € [n/(k — )] as in
Lemma 6.5. Each subgraph F C H with t edges, all in S, no isolated vertices, and ¢
components Fi, ..., Fy, is determined by
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1. ¢ distinct vertices {vy,...,v.} € (Ueis e) to serve as the “roots” of Fi, ..., F,,

2. a c-composition t1,...,t. of t (that is, t; + --- + t. = t), where |E(F;)| = t; for all
i € [c], and

3. for each i € [¢], the edges E(F;) CSN{f;: |k+ (k-0 —1)—v| < 2kt;}.

Note that there are at most (*°/) choices for the roots, at most ('~}) < 2¢ choices for

the c-composition, and at most [[°_, 2% = (16%)" choices for the edges of each F;.
Combining these choices yields the desired bound. O

Proof of Proposition 6.4. Let 1/n < 1/C" <« 1/C,1/k < 1. Let H be an n-vertex
k-uniform hypergraph, and suppose there is a (C/n)-vertex-spread distribution u on
embeddings C), ¢ — H. Let H be the set of edge sets of Hamilton ¢-cycles of H. Define
a probability distribution u' on H as in the proof of Proposition 1.17, with C,, 1, ¢ playing
the role of G. By Proposition 1.17 and Lemma 6.5, ' is (2_kC’/nk_£)—spread.

We prove that u' is (C'/n*~*%n/(k — ¢),1)-spread. To that end, let t € [n/(k — £)],
and let S C E(H) be a subset of a Hamilton ¢-cycle of H. Let F' C H have edge set S
and subject to that, the fewest number of vertices.

If t > n/k, then since p/ is (27*C’/n*~*)-spread, we have

2-kC"\ " '\
W ({AeH: |ANS|=1}) <2 ( Y ) = (nkJ) ’

as desired. Therefore, we may assume t < n/k, and in particular, every subgraph of F'

has fewer than n vertices. By Lemmas 6.1, 6.5, and 6.6, since p is (C/n)-vertex-spread,

(k—0)t+Le
k| S| et o [2K2C
— < .
W ({AeH |ANS|=t}) g ( )(2 16%)'n -

t . 2 c 2 (k—O)t+(¢—1)c
< (2~16k)tz (ekn C2k C) (anC)

c=1
gk (912 k—1 t 4,2 2 (£=2)c
< (2 16 (isz) ) Z(4ek C > < k C)
nv— p— n
C2\' < [1\° c’
< () 2 () = ()
c=1

as desired. 0O
6.3. Proof of Theorem 1.11

We conclude this section with the proof of Theorem 1.11. With Theorem 1.15 in hand,
the proof of Theorem 1.11 is similar to the PSSS proof of Theorem 1.5(2) assuming a
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similar result for K,-factors [28, Theorem 1.8]. For hypergraphs F and H, the F-complex

of H, denoted Hp, is the |V (F)|-uniform multi-hypergraph with vertex set V(H) in

which every copy of F'in H corresponds to a distinct hyperedge of H on the same set of

vertices. Note that H has an F-factor if and only if Hr contains a perfect matching. We

let Gr(n,p) be the binomial random multi-hypergraph on n vertices where every edge of

the F-complex of the complete hypergraph is included independently with probability p.
To prove Theorem 1.11, we need following result of Riordan [31, Theorem 18].

Theorem 6.7. For every k,r € N, there exists a = ag.+(k,r) € (0,1] such that the
following holds. If F is a strictly 1-balanced k-uniform r-vertex hypergraph and p =

B we may couple G ~

p(n) < log?(n)/n"/“ () then for some m = m(n) ~ ap
G*) (n,p) with Ggp ~ Gr(n,m) such that, a.a.s. for every F-edge present in Hp, the

corresponding copy of F is present in G.

Proof of Theorem 1.11. Let 1/n < 1/C < 1/C" < 1/C" < 1/k,1/r,a,a < 1, where

—1/d1(F) 1o l/ | E(F)]

a = agr(k,r). It suffices to prove the result for p = Cn log n. By

Theorem 6.7, H, contains an F-factor if (Hp), contains a perfect matching where
7 = apl FEN = qCIEE) I =(IVE)=D 1og .

By Theorem 1.15, there exists a (C”/n)-vertex-spread distribution on embeddings of
G — H where G is n/r disjoint copies of F. Since an F-factor in H corresponds to a
perfect matching in Hr, an embedding of G into H is also an embedding of G’ into H'
where G’ and H' are the “simplifications” of Gr and Hp, respectively (G’ is just an r-
uniform perfect matching because a strictly 1-balanced hypergraph is connected). Hence,
Proposition 1.17 implies that H’ supports a (C’/n"~!)-spread distribution on its perfect
matchings. Therefore, the Frankston—-Kahn—-Narayanan—Park theorem implies that H.
contains a perfect matching a.a.s. if 7 > KC’log(n/r)/n"~!. Indeed, this inequality
holds by the choice of C. Since H/ a.a.s. contains a perfect matching, so does (Hp)x.
Thus, as mentioned, by Theorem 6.7, H, a.a.s. contains an F-factor, as desired. O

7. Proof of Proposition 1.7

The following two properties were introduced in [13] to codify in abstract what it
means for there to be a standard absorption proof for hypergraphs which are obtained
from so-called A-chains. In this paper, we are concerned only with hypergraph Hamilton
cycles, so the A-chains are obtained by setting A to be a single edge. Therefore, we state
the following properties in the language of hypergraph Hamilton cycles. Note also that in
contrast to [13], we use (Z:Z) terms instead of nF~¢ terms, as this was more convenient
in the current paper.

Ab For any a > 0, there exist 0 < 7,7 < a and ng € N so that if H is a k-uniform
hypergraph on n > ng vertices with 84(H) > (6 + ) (}_4), then there exists A C
V(H) of size at most 7n with the following property.
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For any L C V(H) \ A of size at most nn such that |L| + |A| is (k,¢)-path-
divisible, there exists an embedding of a k-uniform /-path to H with vertex set
A U L. Furthermore, the embedding of the sets of ¢ first and ¢ last endpoints of
the path does not depend on the subset L, meaning that there exist disjoint /-sets
Ay, As C A such that for all L, the £-path covering AU L has endpoints A; and As,.
Con For any a > 0, there exist a positive integer ¢ and ng € N so that if H is a k-uniform
hypergraph H on n > ng vertices with d4(H) > (0 + «) (Z:g), then the following
holds.
For every S,T C V(H) of vertex-disjoint ¢-sets, H contains an embedding of a
k-uniform ¢-path of length at most ¢ with start on S and end on 7.

As noted in [13] (see Section 6, Table 1), both of these properties are known to hold
with d¢, , 4 playing the role of § for the parameters ¢, k, d as listed in Proposition 1.7(2-3).
The following therefore immediately implies Proposition 1.7(2-3).

Proposition 7.1. Let 0 € [0,1], let k € N, and let {,d € [k —1]. If 6 > d¢c, . and the
properties Ab and Con hold for §, k, £, and d, then 6,?21; <.

Proof. Let a > 0, let n be sufficiently large and (k, ¢)-path-divisible, and consider a k-
uniform hypergraph H on n vertices with 04(H) > (0 +«) (2:3). Let S and T be disjoint
vertex subsets of size ¢ each. We wish to find a Hamilton ¢-path of H with end sets S
and 7.

Let n,7,&' € (0,1) and ¢ > 1 satisfy 1/n < 1/¢ < 1,7 < o < «, where n,7 and
¢ satisfy Ab and Con, respectively, with o’ playing the role of «. Let R C V(H) be an
(nn/2)-subset so that for any 2¢-subset @ C V(H) we have that d4(H[RU Q]) > (§ +
af 2)('35?171) (such a subset exists by a union bound over applications of Lemma 2.2).
Since o/ < a, we have 64(H \ R) > (5 + @/2)(}-%), so by Ab (with o playing the role
of &), there exists an absorbing set A C V(H) \ R of size at most 7n, and Ay, A3 C A
so that for any small L, A U L has a Hamilton path with A; and As as the first and
last ¢ vertices of the path. Similarly, 6;(H \ (RU A)) > (6 + /2)(}-%), so H\ (RU A)
therefore contains two vertex-disjoint /-paths Py and P; together covering all but at most
3k vertices outside RU A. (To find such paths, first delete a minimal number of vertices
from H \ (RU A) to obtain a hypergraph where the number of vertices is divisible by
k — . Then, since > dc, , 4, the resulting hypergraph contains a Hamilton /-cycle, and
we again delete a minimum number of vertices from the cycle to obtain the two paths.
Note that in the first step, we delete at most k vertices, and in the second step, we delete
at most 2k vertices.)

Now, using Con four times (each time deleting ¢ vertices from the host hypergraph,
which does not significantly change the minimum degree condition), we can extend P,
to P} so that it has as endpoints S and Ay, and extend P; to P so that it has endpoints
As and T. While doing this, we only use vertices coming from the set R (those which
have not been previously used). The remaining vertices in R together with the vertices
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deleted for divisibility reasons (while finding Py, P;) can be absorbed into A, as the
number of remaining vertices is at most nn/2+ 3k < nn (since 1/n < 1/k) and have the
appropriate divisibility property (otherwise n itself would not be (k, £)-path-divisible).
This allows us to find the desired spanning path with endpoints S and T. O

8. Open problems

8.1. Beyond Hamilton connectivity
We conjecture that Theorem 1.14 can be strengthened by replacing 679 with ¢, , 4,
as follows.

Conjecture 8.1. For every a > 0 and k € N, there exists C = Cg ;(a, k) such that the
following holds for every £,d € [k—1] and every sufficiently large n for which k—{ divides
n. If H is an n-vertex k-uniform hypergraph such that 64(H) > (dc,, ,,a + ) (Z:j), then
there is a (C/n)-vertex-spread distribution on embeddings Cp ¢ — H.

Together with Theorem 6.3 and Propositions 1.17 and 6.4, if true Conjecture 8.1 would
imply dc,, ,,.a = 6&11@ = kas,gd. For ¢ = 0, this indeed holds because 5,?7813 = 0¢,.,a for
all k and d. However, for ¢ > 0, this problem seems very difficult. A natural starting
point would be the following case of k = 3, £ = 2, and d = 1: If H is an n-vertex
3-uniform hypergraph such that 6;(H) > (5/9 + «)(5), then there is a (C/n)-vertex-
spread distribution on embeddings C;, 32 — H. Reiher, Rédl, Rucinski, Schacht, and
Szemerédi [30] proved that dc,,,1 = 5/9 and noted that 53?(2)71;] > 5/9, so this case does

not follow from Theorem 1.14.
8.2. Ezact minimum-degree thresholds

It would be interesting to investigate whether Theorem 1.14 holds with the minimum-
degree condition replaced by an ezact one. However, in general, this problem is challeng-
ing because exact minimum-degree conditions for the existence of a single Hamilton
{-cycle are known only in a few special cases.

For example, Katona and Kierstead [20] conjectured that every n-vertex k-uniform
hypergraph H with 6,_1(H) > |[(n — k + 3)/2] has a tight Hamilton cycle. This con-
jecture was confirmed in the case k = 3 for sufficiently large n by R6dl, Rucinski, and
Szemerédi [32] but remains open for k > 4. Nevertheless, it seems likely that if the
Katona—Kierstead conjecture holds, then robust versions of it hold as well.

More generally, we conjecture that if a k-uniform hypergraph has minimum d-degree
large enough to guarantee a Hamilton ¢-cycle, then there is a (C'/n)-vertex-spread em-
bedding of C,, ;¢ into it, where C only depends on k. To that end, for every k € N,
delk—1],¢€{0,...,k—1}, and n € N divisible by k — ¢, let hy s 4(n) be the minimum
integer D > 0 such that the following holds: If H is an n-vertex k-uniform hypergraph
satisfying d4(H) > D, then H has a Hamilton ¢-cycle.
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Conjecture 8.2. For every k € N, there exists C = Cg o(k) such that the following holds
for everyd € [k —1], £ € {0,...,k — 1}, and n € N for which k — { divides n. If
H is an n-vertex k-uniform hypergraph such that 6q(H) > hgeaq(n), then there is a
(C/n)-vertez-spread distribution on embeddings of Cp e — H.

Note that Conjecture 8.2 strengthens Conjecture 8.1. As mentioned, it seems difficult
to prove such a result without knowing the value of hy ¢ 4(n). It would be interesting
to confirm Conjecture 8.2 for the case k = 3 and d = ¢ = 2, since the result of Rodl,
Rucinski, and Szemerédi [32] implies hs22(n) = [n/2] for all large n. Another inter-
esting case would be d = k — 1 and £ = 1, since a result of Han and Zhao [14] implies
hi1k—1(n) = [n/(2k — 2)] for all large n. As mentioned earlier, the robustness result
that would be implied by the existence of such a vertex-spread measure has already been
confirmed by Anastos, Chakraborti, Kang, Methuku, and Pfenninger [2], independently
of our work here.

It would also be interesting to investigate whether Theorem 1.15 holds with an exact
minimum-degree condition. Such a result was proved for d = k —1 and FF = K ng) (so
an F-factor is a perfect matching) by Kang, Kelly, Kithn, Osthus, and Pfenninger [19]
and for k = 2 and F' & K, by Pham, Sah, Sawhney, and Simkin [28]. For graphs (i.e.
k = 2), minimum-degree conditions for the existence of F-factors are comparatively well
understood (see e.g. [21,24,23]), and we suspect many of these results likely admit robust
versions.

8.3. General robustness

Considering all of the research into robustness to date, it seems that every Dirac-
type result admits a robust version. It is plausible that for every family of k-uniform
hypergraphs F and d € [k — 1], we have dr 4 = 52% = 6}/_-23 , which would partially
explain this phenomenon and significantly generalise Conjecture 8.1. However, proving
such a result seems out of reach at present.

One consequence of such a result (using the s = n case of the definition of vertex-
spread) would be that whenever H has minimum degree large enough to necessarily
contain a copy of F', H supports at least (n/C)™ many embeddings (as opposed to
copies) of F, where n = |V (H)| = |V(F)|. Although plausible, it seems quite difficult to
approach even this special case without any knowledge about what F' looks like.
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