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Abstract—Phasor measurement unit (PMU) networks deliver
accurate and timely measurements, which is essential for
managing today’s electric power systems. To ensure data
quality and enhance the cyber-resilience of PMU networks
against malicious attacks and data errors, this study presents
an online PMU missing data recovery scheme by leveraging
P4 programmable switches. The data plane incorporates a
customized PMU protocol parser that abstracts the necessary
payload data for recovery. Recovery processes are executed
in the control plane using a pre-trained machine learning
model. Both traditional and advanced ML models, such as
transformer and TimeGPT, are explicitly employed for data
prediction. This approach ensures rapid and precise data
recovery. Performance evaluations focus on recovery speed and
accuracy, using a real dataset from a campus microgrid. With
20% missing PMU data, the mean absolute percentage error
for voltage magnitude is 0.0384%, and the phase angle error
discrepancy is approximately 0.4064%.

Index Terms—Phasor Measurement Unit, Machine Learn-
ing, Programmable Network, P4, Smart Grid

I. INTRODUCTION

A Phasor Measurement Unit (PMU) is a device used in

power systems to measure voltage, current, and frequency

with high precision and time synchronization. The measure-

ments from PMUs are pivotal for dynamic event analysis

and disturbance identification [1], crucial for power grid

state estimation, significantly impacting critical security and

electricity market decisions [2]. However, missing PMU data

often arises from various error sources, including device

failures, communication faults, GPS synchronization issues,

electromagnetic interference, configuration errors, and cyber

attacks. The missing data can significantly degrade the

accuracy of grid state estimation due to reduced system

observability. Therefore, precise prediction and recovery

of missing values is vital for optimal state estimation.

Additionally, given the high temporal resolution of PMU

measurements, the speed of the recovery solution is also a

crucial factor to consider.

Many existing work on PMU data recovery utilizes

mathematical approaches, such as matrix completion [3],

tensor decomposition [4], and cubic spline interpolation [5].

These recovery schemes take a centralized approach and

are implemented in the application layer at the receiving

end, typically the substation phasor data concentrator (PDC)

or the control center. To significantly enhance recovery

speed, we aim to adopt an in-network and decentralized

approach, ideally within communication network devices,

to inspect packets and recover missing data in real time.

However, conventional network devices such as routers,

switches, and substation gateways are limited to processing

standard protocols like TCP/IP only and lack the capability

to comprehend the semantics of PMU headers and data

payloads.

To address these challenges, we employ programmable

networks to develop an efficient PMU missing data re-

covery scheme. Our approach is decentralized, utilizing

the programmable network devices to deploy the recovery

scheme. Specifically, we harness the capabilities of P4,

or programming protocol-independent packet processors,

enabling real-time and customizable control over the packet

processing pipeline for rapid detection and recovery of miss-

ing packets [6]–[8]. Furthermore, our approach integrates

deep learning models with P4 switches to achieve high

accuracy.

Utilizing programmable P4 switches offers several advan-

tages: (1) The fully programmable pipeline allows for the

design of parsers tailored to PMU protocols, providing fine-

grained control over PMU packet processing behavior. (2)

Data packets are transmitted and processed at a line rate,

minimizing latency impact, while detection and mitigation

occur within the communication network rather than at the

receiving end, significantly reducing recovery time. (3) The

solution necessitates only incremental changes to existing

PMU networks, simply involving the addition of P4 switches

at aggregators like PDCs.

We leverage the capabilities of programmable P4 switches

to recover missing PMU data during packet transmission in

the communication network. P4 switches parse incoming

PMU packets in real time, extracting information from both

packet headers and payloads, including power magnitude,

angle measurements, and timestamps. Our design features

a bi-layer architecture on P4 switches: packet parsing and

miss data detection are handled on the data-plane, while the

missing data recovery scheme is managed on the control-
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plane. This recovery scheme incorporates pre-trained deep

learning models for rapid prediction of missing values

within milliseconds.

In conventional terms, data recovery involves reconstruct-

ing missing data using mathematical or statistical methods

based on existing data points. In this paper, the machine

learning models we investigate are predictive in nature,

meaning they use available data to forecast missing values.

For clarity, we use the terms missing data “prediction” and

“recovery” interchangeably. Several studies have explored

PMU missing data recovery using machine learning models,

including decision trees [9], Seq2Seq, and LSTM [10]. Our

recovery algorithm is based on a transformer [11] trained on

a dataset from a campus microgrid. This transformer model

can swiftly make predictions, achieving millisecond-level

speeds without compromising accuracy. By incorporating at-

tention layers, the transformer effectively captures relation-

ships between features and encodes positional information

for each input data. Our experiments demonstrate that the

Vanilla Transformer model outperforms other models trained

from scratch, and the pre-trained TimeGPT model achieves

the best overall accuracy despite the long inference time.

We implement the missing data recovery scheme on a

software-based P4 switch named BMv2 [12] and evaluate

the scheme in the Mininet testbed [13], [14]. Our evaluation

utilizes data from a real PMU network deployed on a

campus microgrid. The results demonstrate remarkable effi-

ciency, with our in-network approach achieving an average

recovery and delivery time of 2.5 milliseconds (ms) for

missing PMU packets, compared to 1.2 ms for non-missing

packets. Additionally, our scheme exhibits high accuracy,

successfully recovering missing data in all test scenarios

with minimal error, e.g., even with 20% missing PMU data,

the mean absolute percentage error for voltage magnitude

is 0.0384%, and the phase angle error is approximately

0.4064%.

The main contributions of this work are summarized as

follows:

• Leveraging P4 programmable switches, we enabled

real-time and early recovery of missing data within the

PMU communication network itself.

• We conducted a comparative evaluation of different

deep learning models for missing data recovery, iden-

tifying the Vanilla Transformer model as the top per-

former when implemented on P4 switches.

• Our evaluation demonstrates the effectiveness of our

scheme in accurately predicting missing values and

maintaining consistent performance across packet loss

rates ranging from 1% to 20%.

The remainder of the paper is structured as follows. In

Section II, we describe the related works on time-series

missing data prediction. Section III presents the design of

our AI-assisted PMU missing data recovery scheme on

P4 switches. In Section IV, we explain the various deep

learning models for PMU missing data prediction. Section

V presents the experimental evaluation results, and Section

VI concludes the paper with future works.

II. RELATED WORK

PMU data is structured as a time series comprising

a sequence of data points indexed chronologically, with

measurements taken at regular intervals. Consequently, we

can generalize the PMU missing data recovery problem as

a time series forecasting problem.

One method of time-series forecasting is the Kalman filter

proposed in 1960 [15]. This recursive algorithm utilizes

historical measurements, accounting for noise and inac-

curacies, to generate estimated one-step-ahead predictions.

Kalman’s pioneering work has paved the way for various

state space time-series forecasting models, such as dynamic

linear models [16] and balanced state space models [17].

Another method for time-series forecasting is autoregres-

sive (AR) models [18]. AR models assume that present

values are influenced by past values, relying solely on

previous data to anticipate future trends. A basic example

of an AR model is the linear regression model.

In recent years, neural network-based time-series fore-

casting models have become increasingly popular. Lim et al.

conducted a comprehensive survey evaluating various deep

learning models for time-series forecasting [3]. Deep neural

networks have the advantage of automatically learning data

feature representations without manual feature engineer-

ing. Additionally, these models typically offer open-source

frameworks, simplifying the training process and allowing

for potential customization of network components, such as

the loss function.

Specific methods are proposed for PMU missing data.

Liao et al. proposed ADMM, or alternating direction method

of multipliers, which is a low-rank matrix-completion based

approach [19]. However, ADMM uses the Lagrangian mul-

tiplier approach to solve a matrix optimization problem,

and the computational complexity of ADMM is very high.

In contrast, our recovery model avoids complex matrix

operations, resulting in significantly lower computational

complexity than ADMM. Another approach involves tensor

decomposition, as utilized by Osipov et al., who organize

PMU data into three-dimensional tensors based on time,

location, and variable type [4]. Similar to ADMM, Os-

ipov et al. decompose multiple three-dimensional tensors,

which requires substantial computational resources. More-

over, the computational time required for tensor decompo-

sition ranges from 3 to 6 seconds, making it slower than the

deep learning model we employ.

Machine learning approaches have also been introduced to

solve the PMU missing data problem. Yang et al. proposed

a C4.5 decision tree based approach [9]. Their approach is

implemented in the data center, so the model has all the

necessary historical PMU data. In contrast, our approach is

restricted within the P4 data plane of the communication

network. Cheng et al. proposed a forecasting model that

leverages Seq2Seq and LSTM with a prior knowledge

matrix integrated into the attention mechanism, which pre-

serves the correlations within the PMU data [10]. They also

introduced the technique of magnitude trend decoupling of

the residual forecast, making the model more resistant to
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noisy signals. The model Cheng et al. proposed includes

two different LSTM networks, one measures the magnitude

component and the other measures the trend component.

III. AI-ASSISTED PMU MISSING DATA RECOVERY

SCHEME DESIGN ON P4 SWITCHES

We leverage the capabilities of P4 switches to develop a

real-time missing data recovery mechanism during packet

transmission in the communication network. Figure 1 il-

lustrates the bi-layer design architecture of our AI-assisted

PMU missing data recovery scheme on P4 switches. The

PMU packet parsing and miss data detection is developed

on the data-plane of the P4 switches and the missing data

recovery scheme is developed on the control-plane of the

P4 switches.

Local Controller

Missing Values Recovery

Historic Data Storage

Programmable Switch

P1

P2

Pn

Parser DeparserMatch-Action Pipeline

Missing Value Detection

 Packet out

Control Plane

Data Plane

PMU data
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data

 Packet in
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Fig. 1. AI-assisted PMU missing data recovery scheme on P4 switches.

The programmability of P4 switches enables the design of

custom parser and deparser modules tailored to the format

of PMU data packets. As shown in Figure 1, every packet

arriving at input ports is parsed at the line rate, extracting

features not only from the packet headers (e.g., IP addresses,

port numbers) but also the payload (e.g., power magnitude,

angle measurements, and timestamp). Because our deep

learning based recovery algorithm requires 24 previous data

points for each PMU data flow as input, we continuously

aggregate and transmit the parsed angles and magnitudes

data to the control plane, adopting a first-in, first-out method

to ensure that only the most recent 24 data points are

retained.

Following packet parsing, our match-action pipeline en-

ables real-time detection of missing data. Utilizing the

TimeTag in accordance with the IEEE C37.118 protocol

[20], each synchrophasor measurement is timestamped, en-

abling a threshold-based detection algorithm. If the arrival

time difference between two consecutive packets exceeds

a predefined window, a missing data event is generated,

prompting communication with the control-plane for data

recovery initiation. While the paper focuses on missing

data recovery, we opted for a straightforward detection

mechanism for proof of concept. However, our modular

design allows for future deployment of more advanced

detection models within the data plane, such as adaptive

thresholds or decision trees, to enhance detection accuracy.

Once triggered, the recovery mechanism prompts the

data-plane to transmit a digest message to the control-plane,

indicating the number of missing packets. Leveraging histor-

ical data aggregated from the parser, the control-plane inputs

them into pre-trained deep learning models to predict the

missed PMU data. The predicted values are then formatted

into a PMU data packet with the appropriate timestamp

and transmitted back to the data-plane via the deparser,

effectively recovering the missing data with a new packet

(i.e., the purpose packet in Figure 1). Contrasted with the

P4 data-plane, the local controller boasts a general-purpose

CPU, larger memory, and a Linux OS kernel, enabling

the execution of advanced recovery algorithms. We have

evaluated various deep learning models for the recovery

process. The detailed design of these recovery algorithms

will be discussed in the next section.

By integrating both the detection and recovery algorithms

within the P4 switch, our architecture significantly mini-

mizes communication overhead between these phases. This

modular approach offers a flexible framework for P4-based

solutions, with the detection algorithm operating in the data

plane and the more complex recovery algorithm handled

in the control plane. This allows for parallel processing,

thereby enhancing the overall packet processing speed.

Using P4 programmable switches enables an in-network

solution to address missing data recovery challenges.

Through a decentralized approach that separates the de-

tection and recovery phases and integrates all algorithms

within the P4 switch, our solution minimizes communication

overhead and achieves low latency. Pre-trained deep learning

models deployed in the P4 network enable rapid prediction

of missing values in just a few milliseconds. Furthermore,

P4’s support for user-defined protocols allows for direct cus-

tomization of packet headers within the network, eliminating

the need for parsing and analyzing PMU data packets at the

receiving end, like a PDC or control center.

IV. MISSING DATA PREDICTION MODELS

Our architecture includes two phases. First, missing data

is detected in the P4 data plane. Once missing data is

detected, the P4 switch communicates with the control plane

via digest messages, and the control plane uses the pre-

trained model to predict the values of the missing data

packet. Before we move to the BMv2 implementation of

our design, we want to test the effectiveness of different AI

models for missing data prediction.

A. Feature Preprocessing

By observing the distribution of the PMU data, we

discover that the distributions of the angles and magnitudes

follow a very similar shape. To investigate the data distribu-

tion further, we perform two statistical tests of correlation.

First, we compute the Spearman’s rank correlation coeffi-

cients [21], which measures the rank coefficient between two

variables. The coefficient depicts if there exists a monotonic

relationship between the two variables, where the variables

move in the relatively same direction, but not necessarily at
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a constant rate. We compute the Spearman’s coefficient be-

tween every two magnitude measurements, and we see that

all coefficients are in the range of (0.98, 1), meaning that

every single magnitude measurement has a strong monotonic

relationship with all the other magnitude measurements in

the dataset. That is, all magnitude measurements move in

the same relative direction.

Furthermore, we compute the Pearson’s correlation coef-

ficient [22] between the magnitudes. This correlation shows

the linear relationship between two variables, namely if

the two variables move in the relative same direction at a

constant rate. Similar to Spearman’s coefficients, Pearson’s

coefficients between every two magnitude measurements fall

into the range of (0.98, 1), meaning there exists a strong lin-

ear relationship between any two magnitude measurements

within our dataset.

Lastly, because all the angle measurements are periodic

with a relatively similar shape, we transform the different

angle measurements by a few time steps, and the shapes

of the angle measurements overlap each other. After the

transformation, we then compute both Spearman’s and Pear-

son’s correlation of every two angle measurements, and all

coefficients fall in the range of (0.99, 1), meaning that all

angle measurements after the time-step transformation have

strong monotonic and linear relationships with each other.

Using this knowledge, we can train the machine learning

model with one pair of (magnitude, angle). In the inference

phase, for each pair of missing PMU values, we can

simply run the model multiple times with the appropriate

input. This approach saves training time and decreases the

size of the model, making it more suitable for in-network

implementation.

B. Data Normalization

Because the dataset does not contain extreme outliers, we

normalize our training data based on the z-score to ensure

that the feature distributions have a mean of 0 and a standard

deviation of 1. The mean and the standard deviation are

calculated based on the training dataset. The normalization

equation is defined as follows:

x′ =
x− µ

σ
(1)

where µ is the mean value of the whole training dataset,

and σ is the standard deviation.

C. Baseline model

For the baseline model, we choose to predict the missing

value to have “no change” from the previous value. That

is, if data x is missing, we predict the values of x to be

the same values as data x − 1. This will naturally produce

good results for single-step prediction, because the value

differences between continuous PMU data are very small. If

multiple values are missing consecutively, the performance

of the baseline model will significantly decrease.

D. Deep Learning Models

Table I lists the deep learning models we have explored

and the number of trainable parameters for each model,

as well as the inference time for a single prediction by

each model. The numbers of parameters determine the

training time of each model. Despite the transformer model

having more parameters than the LSTM model, training

the transformer is quicker than training the LSTM due to

the former’s parallelizability. It can utilize GPUs during the

training phase to process more data in a shorter time period.

All the models are trained with 2 GPUs, while the testing

is done with the Intel Xeon Gold 5220 CPUs at 2.20GHz.

• Multi-Layer Perceptron: fully connected neural net-

work with three hidden layers.

• LSTM [23]: recurrent network with a cell state that

retains long term memory.

• ResLSTM: LSTM inside a residual learning framework

[24] that is fitted to the residual mapping.

• Transformer [11]: network with a self-attention layer

and positional embedding.

• ResTransformer: transformer inside a residual learning

framework that is fitted to the residual mapping.

• Autoformer [25]: transformer with a decomposition

layer and replaces multi-head attention with an auto-

correlation mechanism.

E. Transformer

P1 P2 P24

Embedding

Positional 

Encoding

Encoder

Decoder

Predicted missing values

Multi-head Attention

Multi-head Attention

Feed Forward

Feed Forward

Fig. 2. High-Level architecture of the transformer model.

We choose to implement the Vanilla Transformer model in

the software P4 switch, BMv2. The high-level architecture

is shown in Figure 6. The transformer proposed by Vaswani

et al. [11] introduces a self-attention layer and positional

embedding. The transformer model, unlike RNN and LSTM,

processes the input dataset as a whole, avoiding the is-

sue of long dependencies. Vaswani et al. [11] introduced

scaled dot-product attention and multi-head attention in their

paper. These mechanisms, along with positional embed-

ding, capture relationships between data from different time

steps. Furthermore, the transformer’s architecture allows for

parallel computation, reducing training time by avoiding

recursive computation.

One important feature of a transformer is the positional

encoding, which is concatenated to the embedded input.
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Unlike RNNs, where input features are processed sequen-

tially, the transformer treats input features with no positional

order. Positional encoding ensures the correct order of input

data, facilitating parallel processing and faster computation

compared to LSTM models.

The transformer also has a self-attention mechanism,

where it can capture long-term dependencies, meaning that

historical information is less likely to be lost. The MLP

model only takes the previous three data points as the input,

so it retains no long-term dependencies. The LSTM models

retain some long-term dependencies using the memory cells.

However, they can still lose these long-term dependencies

when processing extremely long sequences due to the forget

gate becoming overly dominant with long input sequences.

We theorize that the transformer will perform best from

all the models due to its positional encoding and self-

attention mechanism, which makes the transformer capable

of retaining long-term dependencies.

F. TimeGPT

We also investigate TimeGPT [26], a generative pre-

trained transformer developed by Garza et al. Pre-trained

on extensive time-series data, TimeGPT possesses zero-

shot learning capabilities, enabling predictions without ad-

ditional training. The authors recommend fine-tuning with

two seasonal historical data for optimal results. Employing

TimeGPT for single time-step prediction, using the previous

three time-steps as input, we find that post-fine-tuning,

TimeGPT surpasses all other AI models tested and achieves

performance comparable to the baseline.

However, the current version of TimeGPT has several

limitations. Firstly, a portion of the TimeGPT architecture

is proprietary and not open-sourced, hindering full trans-

parency and customization. Additionally, parameters after

fine-tuning cannot be saved, necessitating fine-tuning for

each dataset submission to achieve optimal performance.

Moreover, there is a cost quota associated with using the

model, calculated based on input, output, and fine-tuning

token usage. Once the quota is exhausted, accurate billing

management is necessary to continue using the model.

Lastly, our experiments revealed that predicting a single

time-step using TimeGPT averages around 3 seconds, which

does not meet the speed requirements for real-time data

recovery. While we recognize TimeGPT’s great potential

and anticipate improvements in its limitations over time,

we opt against implementing it in our P4 framework for

evaluation.

V. EVALUATION

A. PMU Datasets

This research utilizes a dataset derived from real-time

measurements collected by PMUs within the IIT campus

microgrid [27]. The dataset includes parameters, such as

time (UTC), voltage magnitude, phasor angle, frequency,

and frequency deviation, with measurements recorded ap-

proximately every 17 milliseconds. It encompasses data

from 12 PMUs. For the evaluation, data from the first PMU

was used for both training and testing.

B. Evaluation Metrics

For model evaluation, we chose the mean absolute per-

centage error (MAPE) metric to evaluate the predicted

magnitudes. We choose MAPE because it tells us how

much the predicted values deviate from the ground truth

in percentage terms relative to the ground truth values. The

metric is defined below:

MAPE(%) =
1

n

n∑

t=1

|At − Ft|

|At|
∗ 100% (2)

We use the mean absolute error (MAE) metric to evaluate

the predicted angles. We choose MAE because the angles

can have a ground truth of 0 degrees, meaning the MAPE

metric is no longer suitable due to denominators of zero.

The metric is defined below:

MAE =
1

n

n∑

t=1

|At − Ft| (3)

In both equations 2 and 3, At indicates the ground truth

values and Ft indicates the forecast or predicted values.

C. Experimental Results and Analysis

1) Speed Analysis: We focus on the inference time for

each model as they are pre-trained before implementation

on the P4 switches. Models like Transformers and LSTMs,

with more trainable parameters, exhibit longer inference

times than MLP, ranging from 0.5 to 1 milliseconds. The

Autoformer model requires about 1 to 2 milliseconds per

prediction. TimeGPT, however, relies on communication

with a cloud server provided by Nixtla, resulting in an

inference time of up to 3 seconds per prediction.

TABLE I
COMPARISON OF TRAINABLE PARAMETERS AND INFERENCE TIME FOR

SINGLE PREDICTIONS ACROSS DEEP LEARNING MODELS.

Models # of Parameters Inference Time (ms)

Baseline 0 0.0008
MLP 5,900 0.0505

LSTM 11,308 0.5151
ResLSTM 11,308 0.5183

Transformer 25,343 0.5344
ResTransformr 25,343 0.5350

Autoformer 25,944 1.0322
TimeGPT N/A 3043.2

Table I reports the prediction time and complexity of each

machine learning model. ResNets maintain the total number

of trainable parameters due to residual learning, which adds

an identity mapping layer requiring no additional training.

Inference time generally correlates with parameter count,

with most models averaging around 0.5 milliseconds. The

Autoformer exhibits longer inference times, comparable to

TimeGPT, due to its incorporation of the decomposition

layer and auto-correlation mechanism, demanding increased

computational resources during prediction.

The number of trainable parameters for TimeGPT is not

publicly disclosed, and training the model is unnecessary

for making predictions. Each prediction requires establish-

ing a communication channel with the TimeGPT server
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and transmitting the requisite fine-tuning data. However,

the parameters of the fine-tuned model cannot be stored

locally, necessitating fresh fine-tuning for each prediction.

Additionally, users are initially granted free credits upon

TimeGPT sign-up, with costs contingent on input, output,

and fine-tuning token usage. Once these credits are de-

pleted, users must provide billing information for future

token usage. While TimeGPT offers powerful time-series

forecasting capabilities, its integration into our architecture

would compromise processing speed.

The detection and recovery algorithms are executed

within BMv2, a software-based P4 switch utilized for test-

ing packet-processing behaviors. Initially, the P4 program

undergoes compilation into a JSON representation, distinct

from the static BMv2 source code, which is then loaded

during runtime. The missing data prediction performance is

identical to the evaluation from Section V-C2.

BMv2 serves as a tool for developing, testing, and debug-

ging P4 data plane and control plane programs. Although

the millisecond latency in this paper is sufficient for most

real-time PMU applications, the applications running on

P4 hardware switches are much faster than BMv2. As a

result, we have not conducted end-to-end speed analysis in

this paper. For future endeavors, we aim to implement our

algorithms directly on P4 hardware to demonstrate further

speed and accuracy improvement.

2) Accuracy Analysis: We report the MAPE of the mag-

nitudes in Figure 3 and the MAE evaluation for angles in

Figure 4. Our models are trained with the data collected by

the first PMU within the IIT campus microgrid. The dataset

contains 2,393,026 data packets, and we use a 70-30 train-

test split.

Fig. 3. MAPE evaluation of the predicted magnitudes under 1%, 5%, 10%,
and 20% missing data rates.

Based on our evaluation results, the Vanilla Transformer

model demonstrates superior performance compared to all

other models except TimeGPT. With average magnitude

MAPEs of 0.0357% and angle MAEs of 2.9381, we chose

to implement the Transformer model in the P4 control plane.

Notably, TimeGPT exhibits the highest performance across

all models, with average magnitude MAPEs of 0.0331% and

angle MAEs of 2.4333 despite its long inference time as

reported earlier.

Fig. 4. MAE evaluation of the predicted angles under 1%, 5%, 10%, and
20% missing data rates.

Fig. 5. Cascading effect when using predicted values for future prediction,
evaluated from 1 to 50 continuous missing values.

Fig. 6. Comparison of the predicted values and the ground truth values
with 5% missing packets rate.

We also note that as the percentage of missing packets

increases, both MAPE and MAE values rise. This increase is

attributed to a larger portion of the input data being predicted

rather than actual ground truth data, thereby introducing
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more error into the model. This trend is evident in Figure 5,

where the cumulative MAPEs and MAEs increase with the

number of continuous missing data packets. However, the

variance of the predicted values remains low as the errors

increase, meaning that the model’s predictions are relatively

consistent across different subsets of the testing dataset. By

analyzing the occurrences of real missing packets from our

dataset, we found that the majority involve fewer than 24

consecutive missing data packets. As shown in Figure 5, the

MAPE for 24 missing values closely aligns with the average

MAPE performance depicted in Figures 3 and 4.

In Figure 6, we compare the predicted values to the

ground truth values in a scenario where 5% of the data is

missing. Out of 2500 packets, we randomly designated 5%

as missing, with the red dots indicating the values predicted

by the transformer model. We plot the values of the first

magnitude and the first phase angle from the PMU dataset.

It is evident that the predicted values closely align with the

ground truth values, maintaining the same distribution trend.

This close correspondence demonstrates the effectiveness of

our scheme in accurately addressing the PMU missing data

recovery problem.

VI. CONCLUSION AND FUTURE WORKS

In this paper, we propose a deep learning based model

on P4 programmable network switches for in-network PMU

missing data recovery. We combine the advantages of the

high-speed data plane for missing packet detection and the

transformer model in the control plane for missing data

prediction. We implemented the solution in the BMv2 P4

software switch, and our evaluation showed that the Vanilla

Transformer model outperformed other machine learning

models.

For future work, we aim to explore more specialized

machine learning models tailored for time-series forecasting.

Additionally, we aspire to implement our architecture on P4

hardware, enabling a comprehensive evaluation of the entire

recovery process’s speed. Furthermore, we intend to develop

a decision tree-based algorithm to enhance the detection of

missing PMU data packets.
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