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Abstract—Phasor measurement unit (PMU) networks deliver
accurate and timely measurements, which is essential for
managing today’s electric power systems. To ensure data
quality and enhance the cyber-resilience of PMU networks
against malicious attacks and data errors, this study presents
an online PMU missing data recovery scheme by leveraging
P4 programmable switches. The data plane incorporates a
customized PMU protocol parser that abstracts the necessary
payload data for recovery. Recovery processes are executed
in the control plane using a pre-trained machine learning
model. Both traditional and advanced ML models, such as
transformer and TimeGPT, are explicitly employed for data
prediction. This approach ensures rapid and precise data
recovery. Performance evaluations focus on recovery speed and
accuracy, using a real dataset from a campus microgrid. With
20% missing PMU data, the mean absolute percentage error
for voltage magnitude is 0.0384%, and the phase angle error
discrepancy is approximately 0.4064 %.

Index Terms—Phasor Measurement Unit, Machine Learn-
ing, Programmable Network, P4, Smart Grid

I. INTRODUCTION

A Phasor Measurement Unit (PMU) is a device used in
power systems to measure voltage, current, and frequency
with high precision and time synchronization. The measure-
ments from PMUs are pivotal for dynamic event analysis
and disturbance identification [1], crucial for power grid
state estimation, significantly impacting critical security and
electricity market decisions [2]. However, missing PMU data
often arises from various error sources, including device
failures, communication faults, GPS synchronization issues,
electromagnetic interference, configuration errors, and cyber
attacks. The missing data can significantly degrade the
accuracy of grid state estimation due to reduced system
observability. Therefore, precise prediction and recovery
of missing values is vital for optimal state estimation.
Additionally, given the high temporal resolution of PMU
measurements, the speed of the recovery solution is also a
crucial factor to consider.

Many existing work on PMU data recovery utilizes
mathematical approaches, such as matrix completion [3],
tensor decomposition [4], and cubic spline interpolation [5].
These recovery schemes take a centralized approach and
are implemented in the application layer at the receiving

end, typically the substation phasor data concentrator (PDC)
or the control center. To significantly enhance recovery
speed, we aim to adopt an in-network and decentralized
approach, ideally within communication network devices,
to inspect packets and recover missing data in real time.
However, conventional network devices such as routers,
switches, and substation gateways are limited to processing
standard protocols like TCP/IP only and lack the capability
to comprehend the semantics of PMU headers and data
payloads.

To address these challenges, we employ programmable
networks to develop an efficient PMU missing data re-
covery scheme. Our approach is decentralized, utilizing
the programmable network devices to deploy the recovery
scheme. Specifically, we harness the capabilities of P4,
or programming protocol-independent packet processors,
enabling real-time and customizable control over the packet
processing pipeline for rapid detection and recovery of miss-
ing packets [6]-[8]. Furthermore, our approach integrates
deep learning models with P4 switches to achieve high
accuracy.

Utilizing programmable P4 switches offers several advan-
tages: (1) The fully programmable pipeline allows for the
design of parsers tailored to PMU protocols, providing fine-
grained control over PMU packet processing behavior. (2)
Data packets are transmitted and processed at a line rate,
minimizing latency impact, while detection and mitigation
occur within the communication network rather than at the
receiving end, significantly reducing recovery time. (3) The
solution necessitates only incremental changes to existing
PMU networks, simply involving the addition of P4 switches
at aggregators like PDCs.

We leverage the capabilities of programmable P4 switches
to recover missing PMU data during packet transmission in
the communication network. P4 switches parse incoming
PMU packets in real time, extracting information from both
packet headers and payloads, including power magnitude,
angle measurements, and timestamps. Our design features
a bi-layer architecture on P4 switches: packet parsing and
miss data detection are handled on the data-plane, while the
missing data recovery scheme is managed on the control-
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plane. This recovery scheme incorporates pre-trained deep
learning models for rapid prediction of missing values
within milliseconds.

In conventional terms, data recovery involves reconstruct-
ing missing data using mathematical or statistical methods
based on existing data points. In this paper, the machine
learning models we investigate are predictive in nature,
meaning they use available data to forecast missing values.
For clarity, we use the terms missing data “prediction” and
“recovery” interchangeably. Several studies have explored
PMU missing data recovery using machine learning models,
including decision trees [9], Seq2Seq, and LSTM [10]. Our
recovery algorithm is based on a transformer [11] trained on
a dataset from a campus microgrid. This transformer model
can swiftly make predictions, achieving millisecond-level
speeds without compromising accuracy. By incorporating at-
tention layers, the transformer effectively captures relation-
ships between features and encodes positional information
for each input data. Our experiments demonstrate that the
Vanilla Transformer model outperforms other models trained
from scratch, and the pre-trained TimeGPT model achieves
the best overall accuracy despite the long inference time.

We implement the missing data recovery scheme on a
software-based P4 switch named BMv2 [12] and evaluate
the scheme in the Mininet testbed [13], [14]. Our evaluation
utilizes data from a real PMU network deployed on a
campus microgrid. The results demonstrate remarkable effi-
ciency, with our in-network approach achieving an average
recovery and delivery time of 2.5 milliseconds (ms) for
missing PMU packets, compared to 1.2 ms for non-missing
packets. Additionally, our scheme exhibits high accuracy,
successfully recovering missing data in all test scenarios
with minimal error, e.g., even with 20% missing PMU data,
the mean absolute percentage error for voltage magnitude
is 0.0384%, and the phase angle error is approximately
0.4064%.

The main contributions of this work are summarized as
follows:

o Leveraging P4 programmable switches, we enabled
real-time and early recovery of missing data within the
PMU communication network itself.

e We conducted a comparative evaluation of different
deep learning models for missing data recovery, iden-
tifying the Vanilla Transformer model as the top per-
former when implemented on P4 switches.

e Our evaluation demonstrates the effectiveness of our
scheme in accurately predicting missing values and
maintaining consistent performance across packet loss
rates ranging from 1% to 20%.

The remainder of the paper is structured as follows. In
Section II, we describe the related works on time-series
missing data prediction. Section III presents the design of
our Al-assisted PMU missing data recovery scheme on
P4 switches. In Section IV, we explain the various deep
learning models for PMU missing data prediction. Section
V presents the experimental evaluation results, and Section
VI concludes the paper with future works.

2024 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)

II. RELATED WORK

PMU data is structured as a time series comprising
a sequence of data points indexed chronologically, with
measurements taken at regular intervals. Consequently, we
can generalize the PMU missing data recovery problem as
a time series forecasting problem.

One method of time-series forecasting is the Kalman filter
proposed in 1960 [15]. This recursive algorithm utilizes
historical measurements, accounting for noise and inac-
curacies, to generate estimated one-step-ahead predictions.
Kalman’s pioneering work has paved the way for various
state space time-series forecasting models, such as dynamic
linear models [16] and balanced state space models [17].

Another method for time-series forecasting is autoregres-
sive (AR) models [18]. AR models assume that present
values are influenced by past values, relying solely on
previous data to anticipate future trends. A basic example
of an AR model is the linear regression model.

In recent years, neural network-based time-series fore-
casting models have become increasingly popular. Lim et al.
conducted a comprehensive survey evaluating various deep
learning models for time-series forecasting [3]. Deep neural
networks have the advantage of automatically learning data
feature representations without manual feature engineer-
ing. Additionally, these models typically offer open-source
frameworks, simplifying the training process and allowing
for potential customization of network components, such as
the loss function.

Specific methods are proposed for PMU missing data.
Liao et al. proposed ADMM, or alternating direction method
of multipliers, which is a low-rank matrix-completion based
approach [19]. However, ADMM uses the Lagrangian mul-
tiplier approach to solve a matrix optimization problem,
and the computational complexity of ADMM is very high.
In contrast, our recovery model avoids complex matrix
operations, resulting in significantly lower computational
complexity than ADMM. Another approach involves tensor
decomposition, as utilized by Osipov et al., who organize
PMU data into three-dimensional tensors based on time,
location, and variable type [4]. Similar to ADMM, Os-
ipov et al. decompose multiple three-dimensional tensors,
which requires substantial computational resources. More-
over, the computational time required for tensor decompo-
sition ranges from 3 to 6 seconds, making it slower than the
deep learning model we employ.

Machine learning approaches have also been introduced to
solve the PMU missing data problem. Yang et al. proposed
a C4.5 decision tree based approach [9]. Their approach is
implemented in the data center, so the model has all the
necessary historical PMU data. In contrast, our approach is
restricted within the P4 data plane of the communication
network. Cheng et al. proposed a forecasting model that
leverages Seq2Seq and LSTM with a prior knowledge
matrix integrated into the attention mechanism, which pre-
serves the correlations within the PMU data [10]. They also
introduced the technique of magnitude trend decoupling of
the residual forecast, making the model more resistant to
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noisy signals. The model Cheng et al. proposed includes
two different LSTM networks, one measures the magnitude
component and the other measures the trend component.

IITI. AI-ASSISTED PMU MISSING DATA RECOVERY
SCHEME DESIGN ON P4 SWITCHES

We leverage the capabilities of P4 switches to develop a
real-time missing data recovery mechanism during packet
transmission in the communication network. Figure 1 il-
lustrates the bi-layer design architecture of our Al-assisted
PMU missing data recovery scheme on P4 switches. The
PMU packet parsing and miss data detection is developed
on the data-plane of the P4 switches and the missing data
recovery scheme is developed on the control-plane of the
P4 switches.
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Fig. 1. Al-assisted PMU missing data recovery scheme on P4 switches.

The programmability of P4 switches enables the design of
custom parser and deparser modules tailored to the format
of PMU data packets. As shown in Figure 1, every packet
arriving at input ports is parsed at the line rate, extracting
features not only from the packet headers (e.g., IP addresses,
port numbers) but also the payload (e.g., power magnitude,
angle measurements, and timestamp). Because our deep
learning based recovery algorithm requires 24 previous data
points for each PMU data flow as input, we continuously
aggregate and transmit the parsed angles and magnitudes
data to the control plane, adopting a first-in, first-out method
to ensure that only the most recent 24 data points are
retained.

Following packet parsing, our match-action pipeline en-
ables real-time detection of missing data. Utilizing the
TimeTag in accordance with the IEEE C37.118 protocol
[20], each synchrophasor measurement is timestamped, en-
abling a threshold-based detection algorithm. If the arrival
time difference between two consecutive packets exceeds
a predefined window, a missing data event is generated,
prompting communication with the control-plane for data
recovery initiation. While the paper focuses on missing
data recovery, we opted for a straightforward detection
mechanism for proof of concept. However, our modular
design allows for future deployment of more advanced
detection models within the data plane, such as adaptive
thresholds or decision trees, to enhance detection accuracy.
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Once triggered, the recovery mechanism prompts the
data-plane to transmit a digest message to the control-plane,
indicating the number of missing packets. Leveraging histor-
ical data aggregated from the parser, the control-plane inputs
them into pre-trained deep learning models to predict the
missed PMU data. The predicted values are then formatted
into a PMU data packet with the appropriate timestamp
and transmitted back to the data-plane via the deparser,
effectively recovering the missing data with a new packet
(i.e., the purpose packet in Figure 1). Contrasted with the
P4 data-plane, the local controller boasts a general-purpose
CPU, larger memory, and a Linux OS kernel, enabling
the execution of advanced recovery algorithms. We have
evaluated various deep learning models for the recovery
process. The detailed design of these recovery algorithms
will be discussed in the next section.

By integrating both the detection and recovery algorithms
within the P4 switch, our architecture significantly mini-
mizes communication overhead between these phases. This
modular approach offers a flexible framework for P4-based
solutions, with the detection algorithm operating in the data
plane and the more complex recovery algorithm handled
in the control plane. This allows for parallel processing,
thereby enhancing the overall packet processing speed.

Using P4 programmable switches enables an in-network
solution to address missing data recovery challenges.
Through a decentralized approach that separates the de-
tection and recovery phases and integrates all algorithms
within the P4 switch, our solution minimizes communication
overhead and achieves low latency. Pre-trained deep learning
models deployed in the P4 network enable rapid prediction
of missing values in just a few milliseconds. Furthermore,
P4’s support for user-defined protocols allows for direct cus-
tomization of packet headers within the network, eliminating
the need for parsing and analyzing PMU data packets at the
receiving end, like a PDC or control center.

IV. MISSING DATA PREDICTION MODELS

Our architecture includes two phases. First, missing data
is detected in the P4 data plane. Once missing data is
detected, the P4 switch communicates with the control plane
via digest messages, and the control plane uses the pre-
trained model to predict the values of the missing data
packet. Before we move to the BMv2 implementation of
our design, we want to test the effectiveness of different Al
models for missing data prediction.

A. Feature Preprocessing

By observing the distribution of the PMU data, we
discover that the distributions of the angles and magnitudes
follow a very similar shape. To investigate the data distribu-
tion further, we perform two statistical tests of correlation.

First, we compute the Spearman’s rank correlation coeffi-
cients [21], which measures the rank coefficient between two
variables. The coefficient depicts if there exists a monotonic
relationship between the two variables, where the variables
move in the relatively same direction, but not necessarily at
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a constant rate. We compute the Spearman’s coefficient be-
tween every two magnitude measurements, and we see that
all coefficients are in the range of (0.98,1), meaning that
every single magnitude measurement has a strong monotonic
relationship with all the other magnitude measurements in
the dataset. That is, all magnitude measurements move in
the same relative direction.

Furthermore, we compute the Pearson’s correlation coef-
ficient [22] between the magnitudes. This correlation shows
the linear relationship between two variables, namely if
the two variables move in the relative same direction at a
constant rate. Similar to Spearman’s coefficients, Pearson’s
coefficients between every two magnitude measurements fall
into the range of (0.98, 1), meaning there exists a strong lin-
ear relationship between any two magnitude measurements
within our dataset.

Lastly, because all the angle measurements are periodic
with a relatively similar shape, we transform the different
angle measurements by a few time steps, and the shapes
of the angle measurements overlap each other. After the
transformation, we then compute both Spearman’s and Pear-
son’s correlation of every two angle measurements, and all
coefficients fall in the range of (0.99, 1), meaning that all
angle measurements after the time-step transformation have
strong monotonic and linear relationships with each other.

Using this knowledge, we can train the machine learning
model with one pair of (magnitude, angle). In the inference
phase, for each pair of missing PMU values, we can
simply run the model multiple times with the appropriate
input. This approach saves training time and decreases the
size of the model, making it more suitable for in-network
implementation.

B. Data Normalization

Because the dataset does not contain extreme outliers, we
normalize our training data based on the z-score to ensure
that the feature distributions have a mean of 0 and a standard
deviation of 1. The mean and the standard deviation are
calculated based on the training dataset. The normalization
equation is defined as follows:

(1

where p is the mean value of the whole training dataset,
and o is the standard deviation.

C. Baseline model

For the baseline model, we choose to predict the missing
value to have “no change” from the previous value. That
is, if data x is missing, we predict the values of x to be
the same values as data « — 1. This will naturally produce
good results for single-step prediction, because the value
differences between continuous PMU data are very small. If
multiple values are missing consecutively, the performance
of the baseline model will significantly decrease.

2024 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)

D. Deep Learning Models

Table I lists the deep learning models we have explored
and the number of trainable parameters for each model,
as well as the inference time for a single prediction by
each model. The numbers of parameters determine the
training time of each model. Despite the transformer model
having more parameters than the LSTM model, training
the transformer is quicker than training the LSTM due to
the former’s parallelizability. It can utilize GPUs during the
training phase to process more data in a shorter time period.
All the models are trained with 2 GPUs, while the testing
is done with the Intel Xeon Gold 5220 CPUs at 2.20GHz.

e Multi-Layer Perceptron: fully connected neural net-
work with three hidden layers.

e LSTM [23]: recurrent network with a cell state that
retains long term memory.

e ResLSTM: LSTM inside a residual learning framework
[24] that is fitted to the residual mapping.

o Transformer [11]: network with a self-attention layer
and positional embedding.

o ResTransformer: transformer inside a residual learning
framework that is fitted to the residual mapping.

o Autoformer [25]: transformer with a decomposition
layer and replaces multi-head attention with an auto-
correlation mechanism.

E. Transformer
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Fig. 2. High-Level architecture of the transformer model.

We choose to implement the Vanilla Transformer model in
the software P4 switch, BMv2. The high-level architecture
is shown in Figure 6. The transformer proposed by Vaswani
et al. [11] introduces a self-attention layer and positional
embedding. The transformer model, unlike RNN and LSTM,
processes the input dataset as a whole, avoiding the is-
sue of long dependencies. Vaswani et al. [11] introduced
scaled dot-product attention and multi-head attention in their
paper. These mechanisms, along with positional embed-
ding, capture relationships between data from different time
steps. Furthermore, the transformer’s architecture allows for
parallel computation, reducing training time by avoiding
recursive computation.

One important feature of a transformer is the positional
encoding, which is concatenated to the embedded input.
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Unlike RNNs, where input features are processed sequen-
tially, the transformer treats input features with no positional
order. Positional encoding ensures the correct order of input
data, facilitating parallel processing and faster computation
compared to LSTM models.

The transformer also has a self-attention mechanism,
where it can capture long-term dependencies, meaning that
historical information is less likely to be lost. The MLP
model only takes the previous three data points as the input,
so it retains no long-term dependencies. The LSTM models
retain some long-term dependencies using the memory cells.
However, they can still lose these long-term dependencies
when processing extremely long sequences due to the forget
gate becoming overly dominant with long input sequences.
We theorize that the transformer will perform best from
all the models due to its positional encoding and self-
attention mechanism, which makes the transformer capable
of retaining long-term dependencies.

F TimeGPT

We also investigate TimeGPT [26], a generative pre-
trained transformer developed by Garza et al. Pre-trained
on extensive time-series data, TimeGPT possesses zero-
shot learning capabilities, enabling predictions without ad-
ditional training. The authors recommend fine-tuning with
two seasonal historical data for optimal results. Employing
TimeGPT for single time-step prediction, using the previous
three time-steps as input, we find that post-fine-tuning,
TimeGPT surpasses all other AI models tested and achieves
performance comparable to the baseline.

However, the current version of TimeGPT has several
limitations. Firstly, a portion of the TimeGPT architecture
is proprietary and not open-sourced, hindering full trans-
parency and customization. Additionally, parameters after
fine-tuning cannot be saved, necessitating fine-tuning for
each dataset submission to achieve optimal performance.
Moreover, there is a cost quota associated with using the
model, calculated based on input, output, and fine-tuning
token usage. Once the quota is exhausted, accurate billing
management is necessary to continue using the model.
Lastly, our experiments revealed that predicting a single
time-step using TimeGPT averages around 3 seconds, which
does not meet the speed requirements for real-time data
recovery. While we recognize TimeGPT’s great potential
and anticipate improvements in its limitations over time,
we opt against implementing it in our P4 framework for
evaluation.

V. EVALUATION
A. PMU Datasets

This research utilizes a dataset derived from real-time
measurements collected by PMUs within the IIT campus
microgrid [27]. The dataset includes parameters, such as
time (UTC), voltage magnitude, phasor angle, frequency,
and frequency deviation, with measurements recorded ap-
proximately every 17 milliseconds. It encompasses data
from 12 PMUs. For the evaluation, data from the first PMU
was used for both training and testing.
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B. Evaluation Metrics

For model evaluation, we chose the mean absolute per-
centage error (MAPE) metric to evaluate the predicted
magnitudes. We choose MAPE because it tells us how
much the predicted values deviate from the ground truth
in percentage terms relative to the ground truth values. The
metric is defined below:

1 |4, — F|
MAPE(%) = — % 100% 2)
n e A

We use the mean absolute error (MAE) metric to evaluate
the predicted angles. We choose MAE because the angles
can have a ground truth of 0 degrees, meaning the MAPE
metric is no longer suitable due to denominators of zero.
The metric is defined below:

1 n
MAE = — A — F 3
” Z |Ay — Fi (3)

t=1

In both equations 2 and 3, A; indicates the ground truth
values and Fj indicates the forecast or predicted values.

C. Experimental Results and Analysis

1) Speed Analysis: We focus on the inference time for
each model as they are pre-trained before implementation
on the P4 switches. Models like Transformers and LSTMs,
with more trainable parameters, exhibit longer inference
times than MLP, ranging from 0.5 to 1 milliseconds. The
Autoformer model requires about 1 to 2 milliseconds per
prediction. TimeGPT, however, relies on communication
with a cloud server provided by Nixtla, resulting in an
inference time of up to 3 seconds per prediction.

TABLE I
COMPARISON OF TRAINABLE PARAMETERS AND INFERENCE TIME FOR
SINGLE PREDICTIONS ACROSS DEEP LEARNING MODELS.

Models # of Parameters Inference Time (ms)
Baseline 0 0.0008
MLP 5,900 0.0505
LSTM 11,308 0.5151
ResLSTM 11,308 0.5183
Transformer 25,343 0.5344
ResTransformr 25,343 0.5350
Autoformer 25,944 1.0322
TimeGPT N/A 3043.2

Table I reports the prediction time and complexity of each
machine learning model. ResNets maintain the total number
of trainable parameters due to residual learning, which adds
an identity mapping layer requiring no additional training.
Inference time generally correlates with parameter count,
with most models averaging around 0.5 milliseconds. The
Autoformer exhibits longer inference times, comparable to
TimeGPT, due to its incorporation of the decomposition
layer and auto-correlation mechanism, demanding increased
computational resources during prediction.

The number of trainable parameters for TimeGPT is not
publicly disclosed, and training the model is unnecessary
for making predictions. Each prediction requires establish-
ing a communication channel with the TimeGPT server
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and transmitting the requisite fine-tuning data. However,
the parameters of the fine-tuned model cannot be stored
locally, necessitating fresh fine-tuning for each prediction.
Additionally, users are initially granted free credits upon
TimeGPT sign-up, with costs contingent on input, output,
and fine-tuning token usage. Once these credits are de-
pleted, users must provide billing information for future
token usage. While TimeGPT offers powerful time-series
forecasting capabilities, its integration into our architecture
would compromise processing speed.

The detection and recovery algorithms are executed
within BMv2, a software-based P4 switch utilized for test-
ing packet-processing behaviors. Initially, the P4 program
undergoes compilation into a JSON representation, distinct
from the static BMv2 source code, which is then loaded
during runtime. The missing data prediction performance is
identical to the evaluation from Section V-C2.

BMyv2 serves as a tool for developing, testing, and debug-
ging P4 data plane and control plane programs. Although
the millisecond latency in this paper is sufficient for most
real-time PMU applications, the applications running on
P4 hardware switches are much faster than BMv2. As a
result, we have not conducted end-to-end speed analysis in
this paper. For future endeavors, we aim to implement our
algorithms directly on P4 hardware to demonstrate further
speed and accuracy improvement.

2) Accuracy Analysis: We report the MAPE of the mag-
nitudes in Figure 3 and the MAE evaluation for angles in
Figure 4. Our models are trained with the data collected by
the first PMU within the IIT campus microgrid. The dataset
contains 2,393,026 data packets, and we use a 70-30 train-
test split.
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Fig. 3. MAPE evaluation of the predicted magnitudes under 1%, 5%, 10%,
and 20% missing data rates.

Based on our evaluation results, the Vanilla Transformer
model demonstrates superior performance compared to all
other models except TimeGPT. With average magnitude
MAPE:s of 0.0357% and angle MAEs of 2.9381, we chose
to implement the Transformer model in the P4 control plane.
Notably, TimeGPT exhibits the highest performance across
all models, with average magnitude MAPEs of 0.0331% and
angle MAEs of 2.4333 despite its long inference time as
reported earlier.
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Fig. 4. MAE evaluation of the predicted angles under 1%, 5%, 10%, and
20% missing data rates.
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We also note that as the percentage of missing packets
increases, both MAPE and MAE values rise. This increase is
attributed to a larger portion of the input data being predicted
rather than actual ground truth data, thereby introducing
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more error into the model. This trend is evident in Figure 5,
where the cumulative MAPEs and MAEs increase with the
number of continuous missing data packets. However, the
variance of the predicted values remains low as the errors
increase, meaning that the model’s predictions are relatively
consistent across different subsets of the testing dataset. By
analyzing the occurrences of real missing packets from our
dataset, we found that the majority involve fewer than 24
consecutive missing data packets. As shown in Figure 5, the
MAPE for 24 missing values closely aligns with the average
MAPE performance depicted in Figures 3 and 4.

In Figure 6, we compare the predicted values to the
ground truth values in a scenario where 5% of the data is
missing. Out of 2500 packets, we randomly designated 5%
as missing, with the red dots indicating the values predicted
by the transformer model. We plot the values of the first
magnitude and the first phase angle from the PMU dataset.
It is evident that the predicted values closely align with the
ground truth values, maintaining the same distribution trend.
This close correspondence demonstrates the effectiveness of
our scheme in accurately addressing the PMU missing data
recovery problem.

VI. CONCLUSION AND FUTURE WORKS

In this paper, we propose a deep learning based model
on P4 programmable network switches for in-network PMU
missing data recovery. We combine the advantages of the
high-speed data plane for missing packet detection and the
transformer model in the control plane for missing data
prediction. We implemented the solution in the BMv2 P4
software switch, and our evaluation showed that the Vanilla
Transformer model outperformed other machine learning
models.

For future work, we aim to explore more specialized
machine learning models tailored for time-series forecasting.
Additionally, we aspire to implement our architecture on P4
hardware, enabling a comprehensive evaluation of the entire
recovery process’s speed. Furthermore, we intend to develop
a decision tree-based algorithm to enhance the detection of
missing PMU data packets.
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