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Abstract—The escalating cyber-attacks targeting power in-
frastructure underscore the critical importance of smart grid
security. However, existing solutions often struggle with the
challenge of balancing security and performance overhead,
leading to suboptimal protection or increased operational latency.
To address this, we propose an intrusion detection system (IDS)
designed to operate within P4-based programmable network
devices, enabling real-time identification of critical attacks like
distributed denial-of-service (DDoS) and false data injection
(FDI). Central to our approach is a novel data structure
optimized for time series data, capturing key information such as
packet timing and data payload distribution. Leveraging decision
trees, a robust machine learning technique, enables effective
anomaly detection and prediction. Additionally, we integrate
data compression techniques to reduce device memory usage
while maintaining detection accuracy. Our evaluation results
demonstrate minimal overhead in packet processing speed with
1 to 20 nanoseconds differences per packet, and enhanced data
storage efficiency with compression ratios reaching up to 60.9%.
Despite these optimizations, there is only a slight decrease in
detection accuracy, such as a 2.81% drop in detecting false data
injection attack (FDIA).

Index Terms—Data Compression, Distributed Network Pro-
tocol (DNP3), Network Security, P4, Programmable Network,
Supervisory Control and Data Acquisition (SCADA) System,
Smart Grid,

I. INTRODUCTION

Smart grids integrate advanced computing and communi-
cation technologies to optimize energy processes, yet this
increased connectivity also amplifies vulnerabilities to cyber
threats. As a result, securing smart grids is imperative to
ensure reliable energy delivery, protect critical infrastructure,
and uphold consumer privacy and safety.

Current cybersecurity solutions always involve a trade-off
between security and performance, stalling the feasibility of
deploying them in delay-sensitive critical infrastructures with
demanding service availability. On the one hand, wide-area
monitoring systems collect a large amount of data, attempting
to increase the grid visibility at a much finer granularity.
Leveraging these data, many studies dedicate research efforts
to various security mechanisms, such as intrusion detection
systems, encryption algorithms, and authentication protocols

[1]–[3], increasing the accuracy of detecting various anoma-
lies. On the other hand, control operations in power grids
require a demanding communication latency to ensure the
detection and mitigation of real-time events. The increasing
amount of data in security analysis can introduce significant
latency and computational burden, thereby hindering real-time
operations and responsiveness of smart grid.

The obstacle caused by the security-performance trade-off
is not unique to power grids. To address this obstacle in
general-purpose computing environments like data centers,
many studies design in-network analysis and security solutions
by retrofitting conventional probabilistic data structures (e.g.,
Bloom Filter and Sketches [4], [5]) based on Programming
Protocol-independent Packet Processors (P4) architecture [6]–
[11], which introduces data plane programmability in net-
work devices. These probabilistic data structures profile the
occurrence of network-level events and enable threshold-
based detection. However, power grids and other industrial
control systems (ICS) heavily rely on time series analysis
to reveal anomalies in the trajectory of a control process,
leading to the design of their domain-specific data structures
focusing on compressing the storage space of timed meter
measurements [12]. Inspired by successful in-network security
solutions in general-purpose computing environments, we
raise a critical question: Can we retrofit proprietary data
structures for power grid applications in P4-enabled network
devices, achieving a breakthrough of security-performance
trade-off?

This paper aims to affirmatively answer this question by
integrating data compression methods, widely used in power
grid applications, for the first time within programmable
data planes to bolster smart grid data security. In addition
to reducing storage space, we design security solutions di-
rectly utilizing compressed data, leveraging line-rate hardware
pipelines in programmable switches. Our design is based on
an important observation: normal physical states in power
or control systems typically deviate around a stability point.
This deviation widens when disruptions occur. We utilize
data compression methods to filter out baseline information
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while profiling sensitive changes, which are critical to re-
vealing potential disruptions. Consequently, we can make a
significant breakthrough in the security-performance trade-off,
i.e., achieve accurate intrusion detection and reduce storage
overhead simultaneously with negligible detection latency.

Our contributions in this paper are summarized as follows:
• We design a data structure called the Meter Data Ac-

cumulator (MDA) tailored for handling time series data
in smart grids, capturing key information such as packet
timing and payload distribution.

• We integrate data compression techniques within the
MDA to optimize resource utilization and reduce stor-
age overhead without compromising accuracy or perfor-
mance.

• We develop an efficient intrusion detection system based
on MDA to operate entirely within programmable net-
work devices, enabling real-time identification of critical
attacks like Distributed Denial of Service (DDoS) and
False Data Injection Attacks.

• We maintain high packet processing performance with
minimal overhead (1 to 20 nanoseconds per packet) and
achieve a compression ratio of up to 60.9%, significantly
reducing memory requirements.

The remainder of this paper is organized as follows: Section
II presents the background of P4 and data structure for com-
pressed measurement and related security solutions. Section
III describes our proposed design, including the MDA with
data compression, and anomaly detection using decision trees.
Section IV presents the experimental results and analysis.
Finally, Section V concludes the paper with future works.

II. BACKGROUND AND RELATED WORK

A. Background

Programmable Network Data Planes Enabled by P4.
Current Internet companies are undergoing a foundational
change in their network infrastructures, transitioning from net-
work programmability enabled by a centralized control plane
to a high-speed hardware platform equipped with decentral-
ized data planes. Field Programmable Gate Arrays (FPGA)
and standardized programming interfaces such as P4 are
the major forces driving such transition, permitting network
owners to run customized packet processing functions [13]. By
adopting this advanced data plane programmability, many net-
work infrastructures, including ICS networks, can possess the
following advantages: (i) customized information extraction
across the full network stack (i.e., from the data link layer to
the application layer); (ii) line-rate packet-level analysis based
on unique application-specific integrated circuits (ASICs);
(iii) intrinsic integration of network monitoring and traffic
engineering in the same hardware pipeline; and (iv) trans-
parent deployment requiring minimal changes to the existing
infrastructures.

Data Structure to Compress Smart Meter Measure-
ments. To facilitate data storage and upload, a protocol stack
known as Device Language Message Specification initiated

the effort to standardize the configuration and format of smart
meter measurements. The protocol stack includes methods
to reduce the amount of exchanged and stored data, e.g.,
replacing the repetitive data value with a NULL byte or
encoding value changes. As utility providers begin to collect
data more frequently, the effectiveness of these methods
downgrades significantly. Consequently, current studies have
enhanced these data compression methods with Generalized
Deduplication [12]. This new algorithm decouples a data value
into basis and deviation, increasing the data compression
rate by storing the basis value once while tracking deviation
values at runtime. This data compression is lossless, requiring
restoration before using the data for power grid applications,
such as state estimation.

B. Related Work

In the evolving landscape of cyber-physical defense so-
lutions, the dichotomy between CPU-based and hardware-
accelerated or P4-based methodologies has significantly influ-
enced data processing and management strategies. CPU-based
systems can be broadly categorized into model-based and
data-driven approaches. The model-based approach employs
predefined theoretical algorithms to address a variety of com-
putational tasks, focusing on optimizing even compressed stor-
age. Our previous research developed an optimization-based
network management scheme using software-defined network-
ing (SDN) to quickly restore connectivity and observability in
phasor measurement unit (PMU) networks, ensuring efficient
control and monitoring of power systems [14]. Additionally,
we explored optimization-based rule compression techniques
to further reduce the number of rules required, enhancing
the efficiency and scalability of the system [15]. Despite its
efficiency, it often faces challenges with real-time applica-
tions due to delays and generally overlooks the intricacies
of network and application layers, potentially compromising
responsiveness and adaptability in dynamic environments.

Conversely, data-driven methods excel in handling real-time
data through sophisticated statistical and machine learning
techniques, making them adept at recognizing patterns and
anomalies swiftly. Siniosoglou et al. proposed a system that
employs a unique combination of Autoencoder and Generative
Adversarial Network (GAN) architectures, designed to detect
operational anomalies and classify various types with high
accuracy [16]. Hannan et al. propose a framework that com-
bines Vector AutoRegression (VAR) for event detection and
machine learning for event classification, aimed at enhancing
electric grid reliability by analyzing PMU data [17]. However,
these methods typically do not address throughput at the line
rate, a critical element in maintaining network integrity and
performance.

P4-based in-network processing stands out by enabling
dynamic network task management. It programs devices to
respond instantly to traffic flows, making it exceptionally
suitable for scenarios such as DDoS attack mitigation [9]–
[11]. These studies showcase P4’s effectiveness in high-
performance and adaptive security mechanisms but often
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TABLE I: Contributions Compared to Existing Security Solutions in the Related Work

Solution Line-rate Detection (✓/✗/ ) Compressed Storage Lossless Storage
Network Layer Application Layer

Model-based [14], [15] ✗ ✗ ✓ ✓
Data Driven-based [16], [17] ✗ ✗ ✓ ✓

P4-based (Network Focus) [8], [9], [11], [18], [19] ✓ ✓ ✗
Our Approach (MDA, ICS Focus) ✓ ✓ ✓ ✓

focus mainly on flow information, neglecting application-layer
information.

Addressing existing limitations, our solution integrates net-
work and application layer data analysis by examining both
headers and payloads. This integrated architecture employs
P4-based processing for real-time responsiveness while im-
plementing data compression methods for efficient memory
utilization. This collaborative approach ensures swift, precise,
and proactive cybersecurity measures within power grids.

III. SYSTEM DESIGN

We present a design leveraging line-rate programmable
data planes for high-performance intrusion detection against
attacks compromising network availability and control op-
erations in power grids (Figure 1). Today’s programmable
network data planes are generally enabled by P4 architec-
ture primitives, which differ from general CPU architectures.
Consequently, the core of our method includes the design
of a new data structure, which we refer to as Meter Data
Accumulator (MDA), enabling the compact storage of analog
meter data and effective intrusion detection in grid operations.
On top of MDA, we fine-tune intrusion detection to operate
entirely within programmable network devices. This enables
the identification of critical attacks in real-time as network
packets traverse their pipelines, as illustrated by the in-network
intrusion detection component in Figure 1. Combining both
MDA and intrusion detection components, we achieve in-
network security solutions that can correlate knowledge from
both network and application layers, a feature critical to
identifying anomalies in power grids.
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Fig. 1: Design of leveraging MDA to enable P4-based in-
network anomaly detection.

A. Meter Data Accumulator (MDA)

As shown in Figure 2, MDA is our newly designed data
structure that enables (i) compact storage of a series of meter
data directly in programmable data planes and (ii) accurate
intrusion detection to reveal anomalies related to computer
networks and power grid control applications. To achieve
this objective, we employ a two-dimensional array with m
columns and d rows. MDA groups measurements from the
same sensor (i.e., presenting a specific physical property) into
the same row. Therefore, we can store up to m measurements
for each sensor in a specific period.

Indexing Data Source. To distinguish measurements from
different sensors, we use the hash of the 5-tuple network infor-
mation, i.e., source IP, source port, destination IP, destination
port, and transport layer protocol, as an index to select a
row in MDA. General-purpose network environments, e.g.,
cloud data centers, commonly use the 5-tuple hash to identify
network flows because it can map variable-length network
attributes into a fixed-width index, enabling efficient storage
and rapid access to the stored information.

However, the hashing algorithm suffers from the possibility
of collisions, where different 5-tuple combinations may map
to the same index. For example, in our implementation, we
used the CRC32 hashing algorithm, which maps 5-tuple infor-
mation into a 32-bit hash value. Accordingly, 232/2 = 65, 536
network sessions can result in approximately 50% probability
collision. While having 65, 536 network sessions in a data
center is common, power grid networks would introduce a
small chance of collision due to three reasons: (i) a meter or a
sensor rarely creates more than one network session to deliver
measurements periodically; (ii) network devices are deployed
in distributed power substations, which normally contains not
more than a few thousands of sensors, a number too small

Network-layer Info
[src ip, dst ip, src 

port, dst port, prot]

Application-layer Info
(measurement data, 
control commands)

MDA

Data compression
(deduplication)

hash

Array 1
Array 2
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V2 = 110.15 volt

basis: 110; deviation: 15

Fig. 2: Structure of meter data accumulator (MDA).
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to cause high probability collision; and (iii) power grid com-
munication networks often support hierarchical infrastructure,
further reducing the number of devices that a single network
device may need to connect.

Compressing Data Values. In power grids, measurement
data are encoded in floating points to preserve computa-
tional accuracy. Directly storing those values in MDA can
be very storage-consuming. Therefore, we exploit and retrofit
the Generalized Deduplication (GD) [20] procedure, which
is commonly used to compress analog meter data defined
by various network protocols based on hardware primitives
available in P4 architecture. Hence, we can achieve compact
storage directly within network devices without losing data
accuracy. GD operates by splitting a data value extracted from
incoming packet payload into two portions, i.e., a “basis” and
a “deviation.” The “basis” portion undergoes deduplication
and will be stored only once in the array entry in MDA,
effectively removing repetition and reducing data transmission
loads. The “deviation” portion is stored directly for each
observed data, maintaining the accuracy of the measurement.
Implementing GD requires fundamental arithmetic operations,
which can be fully implemented by P4 programming language
and executable in the Tofino platform.

To optimize MDA’s performance, we need to adjust its
design parameters, e.g., the bit-length of the hash value or
the number of stored measurements for each sensor, accord-
ing to the requirements of power grid applications and the
configurations of network devices (i.e., the size of memory
and registers). For example, during benign operating hours,
we can store a measurement for a significant period to save
storage space. While power grids experience dramatic changes
(e.g., due to attacks or accidents), we can store data at a
higher frequency to accurately analyze the grid behavior.
Automatically tuning MDA’s parameters can be encoded in the
control planes connecting to programmable network devices
according to observed grid states, which we will leave as
future work.

B. In-network Intrusion Detection

Because MDA captures the essential information from
meter data, we can achieve accurate intrusion detection on
anomalies found in both network and application layers by
fine-tuning existing machine-learning techniques based on
MDA’s design parameters. To demonstrate this advantage, we
employ decision trees as an example, a powerful machine
learning technique that can learn patterns and rules from
labeled data and make predictions on new, unseen data. Its
recursive structure requires a small number of computational
methods, making it an attractive solution to be implemented
within network switches [21].

1) Data Preprocessing and Feature Selection: We use
different decision trees to process network layer information,
e.g., the number of packets observed per time unit, to detect
denial of service attacks, and application-layer information,
e.g., meter data values, to detect false data injection attacks.
While data preprocessing can reduce the training overhead and

improve the performance of decision trees, it is interesting
that MDA has already performed preprocessing in its data
compression procedure.

For example, in Figure 3, we compare two decision trees,
all attempting to detect the anomaly of voltage magnitude
deviating from a safety margin (i.e., [109.5, 110.5]). The left
tree, relying on the original voltage magnitude, can include
many branches leading to the decision related to the 110-volt
baseline value. In the right tree, however, we can directly work
around the new decision variables (i.e., 0) by dividing the
voltage magnitude into the basis and deviation portions. We
ignore unnecessary decisions related to basis values applied
to each sampled data set. We can use a smaller tree to
identify fine-grained changes in relevant features, such as the
frequency of measurement values falling into specific ranges
and the temporal distribution of measurements.

More advanced feature selection techniques, like informa-
tion gain or principle component analysis, are not sensitive
to baseline values and thus can be directly applied to the
deviation portion without sacrificing analysis accuracy. For
this impact, we will leave it to future work.

2) Training the Decision Tree Model: We can easily ap-
pend each included array with a label to make MDA ready to
train a machine-learning model, introducing negligible storage
overhead. Unlike neural networks, decision trees involve a
comparatively small set of parameters. Consequently, it be-
comes feasible to directly perform the training within network
switches by using data stored in MDA. Specifically, to train
decision trees for anomaly detection, the algorithm selects
the feature and threshold that best separates the normal and
anomalous instances using splitting criteria, such as Gini
impurity or information gain, at each tree node.

3) Real-time Anomaly Detection: The prediction process
in a decision tree involves iterating through each node and
making decisions based on the trained parameters. Because
the decision trees are inherently implemented with network
pipelines based on P4’s architecture hardware, we can directly
determine whether an incoming packet includes malicious
data, which are stored accordingly. As a result, we can make
real-time anomaly detection and attack prevention in the same
network pipeline, allowing system operators to understand the

Fig. 3: Example decision tree applying to the original and the
deviation portion of a voltage magnitude.
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attack logic and preventing physical damage from happening
simultaneously.

IV. EVALUATION

We implemented an intrusion detection system on P4
switches, employing MDA for compact storage of analog me-
ter data. Through a comprehensive evaluation, we assessed the
system’s performance overhead, memory saving, and detection
accuracy against common security threats, including DDoS
and FDIA attacks.

A. Experiment Setup

Testbed. We implemented our system on a hardware testbed
consisting of an Aurora 610 network switch with P4 pro-
grammable pipelines, connected to two servers running 64-
bit Linux OS (Ubuntu 20.04). Each server boasts dual 64-
core processors, 1 TB of RAM, and a 12-TB hard disk
drive capable of sustaining a data transfer rate of 248 MB/s.
Additionally, the servers are equipped with NVIDIA Quadro
P400 GPUs and network interface cards.

Evaluation Metrics. To evaluate overhead, we measure
the per-packet processing time as the difference between the
ingress global timestamp and egress global timestamp mea-
sured on the P4 switch for each packet. For memory storage
savings, we use the compression ratio:

(
compressed data size

original data size

)
×

100%. For attack detection performance, we use (1)
Accuracy = TP+TN

TP+TN+FP+FN , the percentage of correctly
detected attacks; (2) Precision = TP

TP+FP , the proportion of
true positive predictions among all positive predictions; (3)
Recall = TP

TP+FN (also known as sensitivity), the proportion
of true positive predictions among all actual positive instances;
and (4) F1 Score = 2× Precision×Recall

Precision+Recall , the harmonic mean of
precision and recall. TP, TN, FP, and FN denote true positive,
true negative, false positive, and false negative, respectively.

B. Performance Overhead

We evaluate the overhead of our P4-based attack detection
system with data compression on our hardware testbed. Each
experimental run involved transmitting 3,000 Distributed Net-
work Protocol 3 (DNP3) packets. To gauge the system’s ro-
bustness, we varied the payload size of the DNP3 packet from
8 bytes to 250 bytes, aligning with the protocol’s maximum
data payload size. It is worth noting that the maximum length
of a link layer frame is 292 bytes when considering CRC and
headers.

Figure 4 compares the average per-packet processing time
in two scenarios: simple forwarding and integration with our
attack detection module. The x-axis represents packet payload
sizes, ranging from 8 to 250 bytes, while the y-axis denotes
processing time in microseconds (µs). Firstly, the P4 switch
data plane exhibits rapid packet processing capabilities, oper-
ating at hardware line rates within microseconds, regardless
of the enabled detection module. Secondly, processing time
scales linearly with packet payload size for both scenarios.
Thirdly, results show a marginal increase in processing time,
averaging approximately 0.01%, when the security module is
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Fig. 4: Comparison of packet processing time with and
without the attack detection module.

activated. Specifically, enabling the detection module results
in a minimal increase in processing time. As illustrated by
the green dotted line in Figure 4, the time difference between
simple forwarding and the detection module ranges from 1 to
20 nanoseconds.

Although the maximum data payload size for DNP3 is 250
bytes, we extended the payload size to 64k to assess the effec-
tiveness of our data compression scheme, applicable to other
existing or future protocols. Despite the increase in payload
size, the overhead remains relatively marginal. For instance,
only a discernible 7.1% difference is observed for a packet
size of 10,000 bytes. This minimal overhead underscores the
module’s effectiveness in preserving processing speed akin to
simple forwarding while offering security functions on the
network data plane.

C. Data Compression

Table II summarizes the data compression rates for the
eight datasets analyzed in our study. Integrating data com-
pression techniques into the P4 programmable switch enables
substantial data storage enhancements, with compression ratio
ranging from 32.1% to 60.9%. This robust performance allows
for increased data retention within the same storage space,
thereby reducing the need for frequent offloading.

D. Attack Detection Accuracy

1) Distributed Denial of Service (DDoS) Attack: To evalu-
ate the effectiveness of our proposed P4-based attack detection
system incorporating data compression, we first present a case
study focusing on DDoS attack detection. Our experimental
setup involved a DNP3-based network with a P4 switch at
the center of a star-shaped topology, comprising one DNP3
data aggregator and five DNP3 field devices. Four devices

TABLE II: Data Compression Ratios

Dataset Compression Ratio (%) Dataset Compression Ratio (%)

#1 60.90 #5 32.13
#2 56.63 #6 43.80
#3 45.34 #7 52.91
#4 59.63 #8 40.47
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sent normal measurements (21-byte packets at one packet
per second) to the aggregator. One device was compromised,
generating high-volume traffic of up to 10 Mbps for an event
buffer flooding attack. The data aggregator had a limited
buffer size capable of storing 1000 packets. On the P4 switch,
we developed a decision tree model using specific features
outlined in Table III. This model played a crucial role in
analyzing traffic patterns and identifying anomalies indicative
of DDoS attacks.

Figure 5 compares the detection accuracy with and without
data compression across eight distinct datasets. The verti-
cal axis represents accuracy as a percentage. The blue bar
indicates accuracy without data compression, while the red
bar signifies accuracy with data compression. Notably, data
compression enables high detection accuracy for all datasets
ranging from 86.1% to 95.6%. The decrease in accuracy due
to data compression is relatively small, ranging from 1.08%
to 3.22%.

Our solution not only effectively detects DDoS attacks
but also enables rapid mitigation through the programmable
capabilities of P4. Upon detecting an attack, the network
switches can dynamically update their forwarding rules to
drop or redirect malicious traffic, ensuring the continuity of
legitimate traffic flow. Our findings demonstrate that the P4-
based solution, enhanced with data compression, significantly
maintains network performance while effectively detecting
and mitigating DDoS attacks.

2) False Data Injection Attack: Our second case study
focuses on the detection of false data injection attacks (FDIA).
FDIA is a critical security threat in which an attacker ma-
nipulates the sensor measurements or control commands,
potentially leading to harmful consequences, such as incorrect
state estimations, meter readings, or control signals, leading
to failure to report system anomalies, incorrect system control
decisions, false alarms, and even equipment damage or power
outages [22].

We simulated a Supervisory Control and Data Acquisition
(SCADA) System network comprising five DNP3 outstations
and one DNP3 master station. The network traffic included
both normal operational data and maliciously crafted data
packets representing FDIA attempts. Our P4-based security
solution, integrated with data compression, utilized a decision
tree model to pinpoint suspicious data patterns and deviations
from expected behavior.

Figure 6 shows the comparative performance of our de-
tection module implemented in two different platforms: the
baseline system, implemented using Python on a PC, and the
P4 Security Solution implemented in the p4 switch, over

TABLE III: Decision Tree Model Features

Network
Feature

Network
Feature

Power System
Feature

Power System
Feature

srcPort avgFlowBytes VoltageMean VoltageDiff
dstProt counterPacket VoltageMin VoltageMagnitude
freqIIN freqFuncCode VoltageMax VoltageChangeRate

#1 #2 #3 #4 #5 #6 #7 #8
Dataset
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Fig. 5: Comparison of DDoS detection accuracy with and
without data compression.

a timeline from 0 to 4032. The anomaly detection scores,
which are the aggregation of the predictions of multiple
decision trees and their weights, are plotted for both systems
with the baseline depicted in blue and the P4 solution in
red. The Baseline method exhibits greater consistency in
its anomaly detection scores, maintaining a relatively stable
and low variability throughout the observed time period.
Conversely, the P4 Security Solution shows more significant
variability, which could indicate a more sensitive or complex
method that perhaps tries to adapt to changing data patterns
over time. Despite this variability, both methods register a
significant increase in anomaly detection scores at time index
3232, marking a clear response to an event, the launch of a
False Data Injection Attack (FDIA), which is generated based
on the theorem from [22]. This sharp increase demonstrates
the capability of both methods to recognize and react to a
significant cyber-security threat within the system.

Figure 7 compares key machine learning performance met-
rics for models trained with and without data compression.
Notably, while data compression resulted in a consistent
degradation in model performance, it is essential to highlight
that the difference is small. Accuracy, for instance, expe-
rienced the smallest relative drop, declining from approxi-
mately 0.890 to 0.865, a decrease of about 2.81%. Mean-
while, precision, recall, and F1-score exhibited slightly larger
performance gaps between compressed and uncompressed
conditions. Specifically, precision decreased by approximately
3.19%, recall by approximately 3.50%, and the F1-score by
about 3.01%.

The results indicate that although data compression does
affect model performance, the extent of this impact is
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Fig. 6: Comparative analysis of anomaly detection scores over
time.
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Fig. 7: Comparative performance of the FDIA detection
module with and without data compression.

minimal, with all metrics remaining above 0.851 even under
compression. This implies that data compression could be a
viable approach for substantially reducing storage and compu-
tational costs, with only a slight impact on key performance
measures. Moving forward, we plan further to explore the
tradeoffs between compression ratio and model performance
to achieve an optimal balance.

Limitations and Discussion. Enhancing performance for
specific attacks may require redesigning and redeploying
customized structures, increasing system complexity and de-
velopment time. Additionally, the range of detectable attacks
is limited by the localized view based on traffic inspected by
P4 switches. This limitation could be mitigated by integrating
a centralized controller or enabling inter-switch communica-
tion through customizable and stateful protocols, providing a
more comprehensive network view and improving detection
accuracy.

V. CONCLUSION AND FUTURE WORKS

We utilize line-rate programmable data planes for high-
performance intrusion detection in smart grid operations. Our
approach includes a novel data structure optimized for time
series data and integrates data compression techniques. This
enables efficient in-network security solutions, correlating
insights from both network and application layers, which are
essential for detecting DDoS and false data injection attacks.

In our future work, we aim to expand the scope of our
research by integrating P4 switches with communication net-
works and power system simulators to evaluate their perfor-
mance and usability across diverse cyber-physical scenarios.
Additionally, we plan to enhance our anomaly detection
capabilities by incorporating advanced machine learning algo-
rithms, such as Long Short-Term Memory (LSTM) networks
and Vector AutoRegressive (VAR) models. Furthermore, we
seek to broaden our detection capabilities to encompass a
broader range of attack vectors by integrating semi-supervised
learning and data augmentation strategies. These initiatives
will bolster the adaptability, resilience, and efficacy of our
framework against evolving threats in smart grid operations.
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