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Abstract 
 

Sedimentary records indicate that atmospheric dust has increased substantially since preindustrial 20 
times. However, state-of-the-art global Earth system models (ESMs) are unable to capture this historical 
increase, posing challenges in assessing the impacts of desert dust on Earth’s climate. To address this 
issue, we construct a globally gridded dust emission dataset (DustCOMMv1) spanning 1841–2000. We 
do so by combining 19 sedimentary records of dust deposition with observational and modeling 
constraints on the modern-day dust cycle. The derived emission dataset contains interdecadal variability 25 
of dust emissions as forced by the deposition flux records, which increased by approximately 50% from 
the 1850s to the 1990s. We further provide future dust emission datasets for 2000–2100 by assuming three 
possible scenarios for how future dust emissions will evolve. We evaluate the historical dust emission 
dataset and illustrate its effectiveness in enforcing a historical dust increase in ESMs by conducting a long-
term (1851–2000) dust cycle simulation with the Community Earth System Model (CESM2). The 30 
simulated dust depositions are in reasonable agreement with the long-term increase in most sedimentary 
dust deposition records and with measured long-term trends in dust concentration at sites in Miami and 
Barbados. This contrasts with the CESM2 simulations using a process-based dust emission scheme and 
with simulations from the Coupled Model Intercomparison Project (CMIP6), which show little to no 
secular trends in dust deposition, concentration, and optical depth. The DustCOMM emissions thus 35 
enables ESMs to account for the historical radiative forcings (RFs), including due to dust direct 
interactions with radiation (direct RF). Our CESM2 simulations estimate a 1981–2000 minus 1851–1870 
direct RF of –0.10 W m-2 from dust particles up to 10 μm in diameter (PM10). This global dust emission 
dataset thus enables models to more accurately account for historical aerosol forcings, thereby improving 
climate change projections such as those in the Intergovernmental Panel on Climate Change (IPCC) 40 
Assessment Reports. 
 
 
 
  45 
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1 Introduction 
 
 
 Observations indicate that desert dust in the atmosphere has increased by about 50 % since the 
1850s (e.g., Mahowald et al., 2010; Hooper and Marx, 2018; Kok et al., 2023). It is crucial that Earth 50 
system models (ESMs) and chemical transport models (CTMs) simulate this dust increase to adequately 
represent its impacts on climate, ocean nutrient cycles, and ecosystems. However, state-of-the-art ESMs 
struggle to capture this historical increase in desert dust (Kok et al., 2023). While global models can 
reasonably represent the global spatial distribution of dust in the contemporary climate (e.g., Zhao et al., 
2022), they struggle to represent the temporal variability of dust (e.g., Klose et al., 2021; Kok et al., 2023). 55 
Many ESM dust simulations can roughly capture the day-to-day variability and seasonality of dust (e.g., 
Klose et al., 2021; Leung et al., 2024), but they fail to capture the historical interannual to interdecadal 
variability (e.g., Mahowald et al., 2010; Smith et al., 2017; Evan, 2018; Kok et al., 2023). Most historical 
of the Coupled Model Intercomparison Project phase 6 (CMIP6) ESMs showed flat dust trends across 
1850–2000, while sedimentary records showed a dust increase of 55±30 % for the same period (Kok et 60 
al., 2023).  
 

The large observed historical dust increase is thought to be mainly due to historical human land-
use and land-cover change (LULCC) and climate change (Stanelle et al., 2014). For example, the global 
agricultural area increased from ~9 % in the 1850s to ~35 % in the 2000s (Klein Goldewijk et al., 2011). 65 
The large-scale conversion of wildlands to agricultural land across many semiarid regions could have 
resulted in significant desertification and elevated dust emissions across the globe (Ginoux et al., 2012; 
McConnell et al., 2007; Neff et al., 2008; Webb and Pierre, 2018). Human water use management as well 
as climate change could also result in the desiccation of inland lakes and the formation of playas, which 
then emit salted dust (e.g., Niemeyer et al., 1999; Indoitu et al., 2015; Xi and Sokolik, 2016). Furthermore, 70 
global biological soil crust (biocrust) cover on land surfaces have been shown to reduce under human-
induced land-use and climate changes (e.g., trampling by livestocks and vehicles, perturbed temperature 
and precipitation), further enhancing dust emissions (Ferrenberg et al., 2015; Rodriguez-Caballero et al., 
2018, 2022). In addition, climate change could enhance dust emissions via multiple pathways, such as 
enhanced aridity over arid regions (Held and Soden, 2006; Pu and Ginoux, 2017), increased soil bareness 75 
due to increased wildfires (Wagner et al., 2021; Wang et al., 2023; Yu and Ginoux, 2022), and elevated 
wind speed over some desert regions (Masson-Delmotte et al., 2021; Yu and Ginoux, 2022). Climate 
change might also reduce dust emissions, such as by enhancing vegetation cover and reducing bareness 
via CO2 fertilization (e.g., Smith et al., 2000; Mahowald, 2007). Although many ESMs include the 
processes necessary to represent climate change and LULCC, they are unable to reproduce the secular 80 
dust trend. This model–observation discrepancy is likely in part because ESM dust emission schemes are 
not sufficiently sensitive to the input variables of wind speed, soil moisture, and soil bareness in ESMs 
(e.g., Kok et al., 2014, 2018). It could also possibly be because the climate change and LULCC over the 
arid regions in ESMs are not well represented, such as by missing biocrust degradation or other processes. 
Investigating the main drivers of this dust trend, and improving the ESM representation of it, are thus 85 
necessary for accounting for the impacts of the historical and future dust changes on the Earth system. 
 
 The major problem of the ESMs’ missing long-term dust trend is that ESMs will not capture the 
radiative forcing (RF) due to the increased dust and its interactions with radiation, clouds, atmospheric 
chemistry, snow and ice, and biogeochemistry (Kok et al., 2023). Furthermore, since current estimates of 90 
the climate sensitivity (K or K W-1 m2) to greenhouse gas (GHG) warming depend on the historical aerosol 
RF, missing the dust RF likely causes ESMs to underestimate the overall negative aerosol RF, which could 
in turn affect models’ climate sensitivity (e.g., Andreae et al., 2005; Mahowald et al., 2024). Hence, the 
inadequate representation of the historical dust increase in ESMs may affect RFs, climate sensitivity, and 
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ultimately mislead climate change predictions, such as those reported by the Intergovernmental Panel on 95 
Climate Change (IPCC, 2021).  
 
 Despite the inability of models to represent the historical increase in desert dust, previous studies 
have estimated the effects of this increase on Earth’s radiation budget and climate (Kok et al., 2023; 
Mahowald et al., 2010; Stanelle et al., 2014):  100 
RFhistorical ≡ RE2000s − RE1850s ≈ RE2000s × 𝑓𝑓∆dust,       (1) 
where 𝑓𝑓∆dust represents the fractional change in dust mass loading for 1850–2000. Here, the radiative 
effect (RE; W m-2) of dust is defined as the change in the Earth’s radiation budget due to the presence of 
dust at a given time (e.g., in year 1850), and the RF is defined as the change in RE across time (e.g., from 
1850 to 2000), which could be due to changes in dust mass and/or other dust properties. The uncertainty 105 
in dust RF is thus partially due to uncertainty in the quantification of dust RE, which itself is a sum of REs 
due to dust interactions with radiation, cloud microphysics, atmospheric chemistry, biogeochemistry, and 
the cryosphere (Hamilton et al., 2022; Mahowald et al., 2010; Skiles et al., 2018; Storelvmo, 2017). Of 
these various dust radiative effects, the direct radiative effect (DRE) of dust, due to dust scattering and 
absorbing radiation, is the best understood, while dust indirect REs are less understood due to the highly 110 
complex and uncertain modeled dust interactions with other processes (e.g., Boucher et al., 2013; 
Storelvmo, 2017; Bellouin et al., 2020). The DRE depends on multiple factors, such as the dust particle 
size distribution (PSD), dust mineralogy, as well as the albedo of the underlying land surface (Ke et al., 
2022; Kok et al., 2023; Li and Sokolik, 2018). ESMs thus need to prescribe adequate dust microphysical 
properties and simulate a realistic global dust distribution to estimate the dust DRE. However, current 115 
ESMs commonly overestimate fine dust (volume equivalent diameter Dve < 2.5 μm), which cools by 
scattering shortwave (SW) radiation, and neglect or underestimate super-coarse dust (Dve > 10 μm), which 
tend to warm by absorbing SW and longwave (LW) radiation (Adebiyi et al., 2023; Di Biagio et al., 2020; 
Kok et al., 2017). Moreover, models neglect the warming effects of dust scattering of LW radiation (Di 
Biagio et al., 2020; Dufresne et al., 2002) and are subject to large uncertainties due to poorly constrained 120 
dust optical properties (Li et al., 2021a), with a possible bias towards dust that is too absorbing (Adebiyi 
et al., 2023). Considering all these uncertainties, current best estimates of the dust DRE are within the 
range of –0.15 ± 0.35 W m-2, reflecting that the sign of the dust DRE is unclear (Kok et al., 2023 and 
references therein). The dust DRE could thus slightly warm or moderately cool the Earth, depending on 
prescribed optical properties and the ratio of fine to coarse dust in the ESMs.  125 
 

In addition to the uncertainty in the dust DRE and other dust REs, the estimation of dust RF is also 
affected by our limited understanding of the historical dust change (𝑓𝑓∆dust). Recent advances in the 
estimation of historical dust change is informed by sedimentary records of dust deposition (e.g., 
McConnell et al., 2007; Mulitza et al., 2010; Clifford et al., 2019). There are > 30 such records that resolve 130 
the preindustrial to modern time period (Mahowald et al., 2010; Hooper and Marx, 2018; Kok et al., 2023), 
but only ~20 of these are thought to be moderately representative of long-range transported dust from the 
major low-latitude source regions (Hooper and Marx, 2018). Nonetheless, previous studies (e.g., 
Mahowald et al., 2010; Kok et al., 2023) have used these deposition records to reconstruct the evolution 
of the global dust cycle since preindustrial times. (Kok et al., 2021a, b, 2023) further showed that one 135 
could statistically derive historical dust emission changes from the observed dust depositions using ESM-
simulated deposition–emission relationships. This could enable ESMs to read in derived dust emissions 
that encapsulate the observed historical dust trend. Using prescribed emissions can thus force more 
realistic ESM simulations of the dust cycle and dust RF that match the 𝑓𝑓∆dust inferred from dust deposition 
records, which current ESMs cannot reproduce using mechanistic emission schemes.  140 
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In this study, we use the existing sedimentary dust records to derive a global dust emission dataset 
and evaluate its effectiveness in representing the historical dust changes as exhibited by the records. We 
first combine sedimentary records of dust deposition with modeling and observational constraints to derive 
a global gridded dust emission dataset for 1841–2000. The emission dataset represents decadal dust trends 145 
constrained by the interdecadal variability of 19 dust deposition time series, and a gridded spatial dust 
variability informed by a multimodel ensemble (MME) estimate of the global dust emission spatial 
distribution and the observationally constrained dust size and optical properties. We then evaluate the 
derived emission dataset by enabling an ESM (in this study the Community Earth System Model version 
2, CESM2) to read in the decadally-varying emission dataset and perform a historical simulation for 1851–150 
2000. We compare the simulated dust cycle against available long-term dust observations to evaluate the 
performance of the ESM using the emission forcing. We finally compute the dust direct REs and RFs 
across the historical period using the ESM forced by the emission dataset. We show that ESMs employing 
this emission inventory are able to simulate the decadal variability of multiple dust cycle variables, hence 
enabling ESMs to predict more realistic dust RF and climatic impacts.  155 

 
The paper is organized as follows. Section 2 provides a detailed discussion on deriving a globally 

gridded dust emission dataset for historical and future conditions. Section 3 describes the configuration of 
the ESM (CESM2) employing the dust emission dataset to conduct historical simulations of the dust cycle. 
Section 4 introduces the CMIP6 and independent dust PM concentration data for model–observation 160 
comparisons. Section 5 discusses the evaluation of the ESM dust simulations against CMIP6 dust 
simulations and long-term dust observations. Section 6 provides an estimate of the globally gridded 
historical dust direct REs and RFs for 1851–2000. Section 7 provides a summary of this study. 
 
 165 
2 Deriving a decadally varying global gridded dust emission dataset 
 

In this section, we first describe our methodology for obtaining a globally gridded historical dust 
emission dataset spanning the years 1841–2000, after which we also extend this dataset until 2100 to 
support future scenario simulations.  170 
 
2.1 A historical dust emission dataset 
 

We build on our previous methodology in Kok et al. (2023; hereafter K23), which reconstructed 
the globally integrated atmospheric dust loading between the years 1841–2000 for each of nine major 175 
source regions. K23 did so by combining multiple sedimentary records of dust deposition (see site 
locations in Fig. 1; McConnell et al., 2007; Mahowald et al., 2010; Mulitza et al., 2010; Hooper and Marx, 
2018; Clifford et al., 2019) with constraints on the modern-day dust deposition flux produced by each 
major source regions to each deposition site (Fig. 1). This allowed them to obtain the time evolution of 
the globally integrated deposition flux (and thus the emission flux) generated by each source region that 180 
best explained the 19 measured deposition timeseries using an inverse analysis. Below, we briefly review 
the methodology in K23 and then extend it to obtain a globally gridded decadal dust emission dataset. 

The methodology in K23 combined the observed dust deposition time series at 19 sites (Fig. 1) 
with constraints on the fractional contribution that dust emissions from each source region make to the 
dust deposition flux at each deposition site (Eq. 2). The times series of the deposition fluxes from the core 185 
records were processed and smoothed to truncate noise and interannual variability, yielding decadally 
varying deposition values. Meanwhile, the constraints on the fractional contribution that dust emissions 
from each source region make to the dust deposition flux at each deposition site (𝑓𝑓𝑖𝑖,𝑗𝑗cc) were obtained from 
the Dust Constraints from joint Observational-Modelling-Experimental analysis (DustCOMM) dataset 
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(Kok et al., 2021a, b). DustCOMM was produced by integrating an ensemble of six global aerosol model 190 
simulations (see table 1 in Kok et al., 2021a) with observationally informed constraints on the dust size 
distribution, extinction efficiency, and regional dust aerosol optical depth (DAOD) near dust source 
regions, providing dust reanalysis up to a particle diameter of 20 μm (dust PM20). The DustCOMM 
deposition fluxes from each source region include uncertainties, which were obtained through a bootstrap 
procedure (Wilks, 2019) that propagates uncertainty from the spread in the model simulations, the 195 
uncertainty in observed dust abundance and microphysical properties, and the spread in the deposition 
flux timeseries. 

Using the deposition records and the source-region resolved dust deposition constraints, K23 
obtained the decadal evolution of dust cycle variables (loading, emission, and deposition fluxes) for each 
of the major dust source regions. They did so by assuming that the globally integrated dust variables 200 
generated by a given source region depend linearly on dust emissions from that source region. K23 then 
found, for each decade, the relative change 𝜆𝜆𝑖𝑖(𝑑𝑑) in the dust deposition flux (and thus dust loading and 
deposition given their linear interdependency) generated by each source region i that minimizes the sum 
of the squared differences between the deposition flux timeseries and the reconstructed dust emissions 
multiplied by the DustCOMM dust deposition-to-emission relationship 𝑓𝑓𝑖𝑖,𝑗𝑗cc. That is, 205 

𝜒𝜒(𝑑𝑑)2 = � ��𝜆𝜆𝑖𝑖(𝑑𝑑)𝑓𝑓𝑖𝑖,𝑗𝑗cc − 𝛽𝛽𝑗𝑗(𝑑𝑑)
𝑁𝑁sr

𝑖𝑖=1

�

2𝑁𝑁dep

𝑗𝑗=1

, 
 
(2) 

where 𝛽𝛽𝑗𝑗(𝑑𝑑) is the measured deposition flux at site j for decade d, normalized by its value in the last 
decade in the reconstructed period (1991–2000), and 𝜆𝜆𝑖𝑖(𝑑𝑑) is the decadal dust emission flux generated by 
source i in decade d, also normalized by its value in the 1990s. Ndep = 19 is the number of deposition flux 
timeseries in the compilation (Fig. 1), and Nsr = 7 is the number of dust emission source regions we defined 
(rectangular boxes in Fig. 1) for which we obtain reconstructed emissions 𝜆𝜆. We note that although 210 
DustCOMM in Kok et al. (2021a) defined Nsr = 9 sources, deposition fluxes from the three North African 
sources (Western and Eastern North Africa, and the Sahel) tend to be correlated. Since there are currently 
insufficient dust deposition records dominated by dust from the Sahel and Eastern North Africa, these 
three sources cannot be separately inverted robustly. Thus, in this study these three sources were grouped 
into one bigger region similar to the North Africa source used in Mahowald et al. (2010), yielding a total 215 
of Nsr = 7 sources (Fig. 1). Lastly, 𝑓𝑓𝑖𝑖,𝑗𝑗cc is the reanalyzed dust deposition-to-emission relationship provided 
by DustCOMM (from Kok et al., 2021a, b; hereafter K21), the fractional contribution of dust emissions 
from the ith source to the deposition flux at the jth core site in the current climate (cc) (see colors in Fig. 
1). In K21, 𝑓𝑓𝑖𝑖,𝑗𝑗cc  is jointly determined by both meteorological factors (such as wind circulation and 
precipitation) and the emission strengths of the different source regions in the current climate. 𝑓𝑓𝑖𝑖,𝑗𝑗cc is used 220 
to quantify the optimizable deposition flux 𝛽̂𝛽𝑗𝑗 at the jth site in the dth decade: 
𝛽̂𝛽𝑗𝑗(𝑑𝑑) = 𝜆𝜆1(𝑑𝑑)𝑓𝑓1,𝑗𝑗

cc + 𝜆𝜆2(𝑑𝑑)𝑓𝑓2,𝑗𝑗
cc + … + 𝜆𝜆𝑁𝑁sr(𝑑𝑑)𝑓𝑓𝑁𝑁sr,𝑗𝑗

cc = ∑ 𝜆𝜆𝑖𝑖(𝑑𝑑)𝑓𝑓𝑖𝑖,𝑗𝑗cc
𝑁𝑁sr
𝑖𝑖=1      (3) 

such that the cost function in Eq. 2 can also be expressed as 𝜒𝜒(𝑑𝑑)2 = ∑ �𝛽̂𝛽𝑗𝑗(𝑑𝑑) − 𝛽𝛽𝑗𝑗(𝑑𝑑)�
2𝑁𝑁dep

𝑗𝑗=1 . Since 𝑓𝑓𝑖𝑖,𝑗𝑗cc 
was obtained using 2004–2008 ESM simulations and observational constraints (in K21), we here apply 
the stationarity assumption that 𝑓𝑓𝑖𝑖,𝑗𝑗cc is roughly unchanged for 1841–2000. We performed the optimization 225 
decade by decade, using the 19 deposition time series 𝛽𝛽𝑗𝑗 and the fractional contribution 𝑓𝑓𝑖𝑖,𝑗𝑗cc to solve for 
nine 𝜆𝜆 values for all decades in 1841–2000. The seven sources together account for the vast majority of 
natural desert dust emissions (Kok et al., 2021a), excluding emissions from high latitudes (~2–3 % of 
global emissions; Bullard et al., 2016) and from anthropogenic activities like agriculture, industrial 
processes, and vehicular traffic on dirt roads outside of these seven sources (Kok et al., 2021a). Figure 2 230 
shows the solutions to the inverted DustCOMMv1 regional emissions (in Tg yr-1) for 1841–2000 in black 
color. A similar inverse analysis was previously performed in K21 for modern times (2004–2008) but 
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using observationally based regional DAOD values, which could be more accurate than measurements of 
dust deposition fluxes but only available for the past 2–3 decades.  

To quantify the uncertainty of the inverted emissions 𝜆𝜆𝑖𝑖, we solve Eq. 3 500 times using a bootstrap 235 
procedure (e.g., Efron, 1982; Chernick, 2007) that propagates various uncertainties in the DustCOMM 
dataset (e.g., uncertainties in dust optics and emitted dust size distribution; see K21a) and which uses a 
resampling with replacement procedure to propagate uncertainty in the dust deposition records (see details 
in the Supplement to K23). The DustCOMM historical dust emission dataset used to drive the CESM2 
simulations in this study uses the median of the probability distribution obtained from this bootstrap 240 
procedure.   
 

Finally, we extend the K23 dust reconstruction by obtaining a globally gridded dust emission 
dataset or inventory (DustCOMM emissions v1) as 

𝐹𝐹EI(𝜃𝜃, 𝜙𝜙, 𝑑𝑑, 𝑠𝑠) = �𝜆𝜆𝑖𝑖(𝑑𝑑)𝐹𝐹cc,𝑖𝑖(𝜃𝜃, 𝜙𝜙, 𝑠𝑠)
𝑁𝑁sr

𝑖𝑖=1

, 
 
(4) 

where 𝐹𝐹cc,𝑖𝑖(𝜃𝜃, 𝜙𝜙, 𝑠𝑠) denotes the 2004–2008 current climate dust emissions (kg m-2 s-1) constrained per 245 
source region i by DustCOMM as a function of latitude 𝜃𝜃, longitude 𝜙𝜙, and season 𝑠𝑠. 𝐹𝐹cc,𝑖𝑖 was obtained 
as part of the DustCOMM dataset (see Fig. 4a in Kok et al., 2021a) by calibrating emissions simulated by 
six global aerosol models (all regridded to a horizontal resolution of 1.9°×2.5°) to observational 
constraints on DAOD (Ridley et al., 2016). Emissions are non-zero only inside of the source i and are zero 
elsewhere, informing the grid-by-grid spatial variability of emissions of the ith source. Thus, the 250 
nondimensionalized 𝜆𝜆𝑖𝑖(𝑑𝑑) here is the weighting or importance of each source i in a given decade d for 
aggregating a global emission map 𝐹𝐹EI  for any d. As a result, 𝐹𝐹EI(𝜃𝜃, 𝜙𝜙, 𝑑𝑑, 𝑠𝑠) represents our final dust 
emission product, with a resolution of 1.9°×2.5° (see Fig. 3 for the reconstructed contemporary emissions), 
representing the median of the bootstrapping ensemble. We call 𝐹𝐹EI the DustCOMM emission dataset v1 
in this study, and we will evaluate its effectiveness in reproducing the observed dust trend in ESMs by 255 
forcing a CESM historical dust cycle simulation (Sect. 5).  
 

We note that 𝐹𝐹EI is subject to several uncertainties or limitations. First, measurements of deposition 
fluxes 𝛽𝛽𝑗𝑗 and the DustCOMM constraints on 𝑓𝑓𝑖𝑖,𝑗𝑗cc both carry substantial uncertainties (Avila et al., 1997; 
Cakmur et al., 2006; Stanelle et al., 2014; Kok et al., 2021b). We propagated these uncertainties into 𝐹𝐹EI 260 
using a bootstrap procedure, of which we provide 100 ensemble members (or realizations) of the derived 
emissions. The spread of the ensemble members captures the uncertainties in the measurement errors of 
the core records 𝛽𝛽𝑗𝑗, as well as model uncertainties in 𝑓𝑓𝑖𝑖,𝑗𝑗cc including dust aerosol size distribution, optical 
properties, and the intermodel uncertainties due to differences in the use of dust emission and deposition 
schemes, as presented by Kok et al. (2021a, b).  265 

Second, Eqs. 1 and 2 use several critical assumptions to obtain 𝐹𝐹EI (see a full discussion of these 
assumptions in K23). The most important ones include the stationarity assumptions that (i) the spatial 
pattern of the dust deposition flux per source region has not changed across time, and that (ii) decadal 
trends in deposition fluxes are caused by changes in emissions instead of transport pathways / deposition 
processes; there is also a non-local assumption that (iii) dust deposited at the 19 sites originates from 270 
representative parts of major sources and not from non-representative local sources. Errors (i) and (ii) 
were partially assessed by Mahowald et al. (2010), who concluded that each source’s simulated transport 
and deposition patterns changed relatively little over time.  

Third, the model ensemble representation of 𝑓𝑓𝑖𝑖,𝑗𝑗cc contains further model internal uncertainties due 
to inaccurate parameters and missing mechanisms in the ensemble of global models, which are not 275 
characterized by the bootstrapping procedure. For instance, there are parameter uncertainties in dust 
schemes and systemetic biases in the aerosol transport and deposition mechanisms in global models (e.g., 
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Li et al., 2022; Li et al., 2024). Also, inadequate or missing parameterizations and parameter uncertainties 
in capturing dust’s two-way interactions with different Earth system components could lead to inaccurate 
representation of some regionally important dust feedback mechanisms, such as dust interactions with 280 
radiation, clouds, snow, and ecosystems (e.g., Sagoo and Storelvmo, 2017; Xie et al., 2018a, b; Hamilton 
et al., 2020; He et al., 2024), which further impact on 𝑓𝑓𝑖𝑖,𝑗𝑗cc and dust variability. The above issues require 
further model developments to improve modeled aerosol representation. Considering all the above 
assumptions and the resulting systematic errors, the error estimates on our emission inventory from the 
bootstrapping procedure should be considered a lower bound.  285 

Fourth, as Kok et al. (2021a) pointed out, an important caveat is that while most global models 
focus on simulating natural/desert dust emissions and neglect anthropogenic (e.g., agricultural and fugitive) 
dust, the core records of dust deposition fluxes will not distinguish between natural and anthropogenic 
dust and thus inherently includes both. Therefore, in the inverse analysis (Eq. 2) all the observed dust 
variability in 𝛽𝛽𝑗𝑗  will be attributed to the source regions defined by the model ensemble, i.e., grids 290 
containing deserts (𝐹𝐹cc,𝑖𝑖 in Eq. 4), although some model grids (e.g., over the Sahel) will both contain 
deserts as well as urban areas / farmlands. For the purpose of estimating dust climate impacts, the partition 
between natural and anthropogenic dust does not matter that much as long as both sources produce dust 
aerosols with similar climate impacts. In this case, DustCOMMv1 emissions will still produce more 
accurate regional radiative effects and forcings without partitioning the natural and anthropogenic 295 
contributions.  

 
 

 

 300 
Figure 1. Map of deposition record sites and dominant dust source regions. The black boxes denote the 
seven major source regions (North Africa, the Middle East & Central Asia, East Asia, North America, 
Australia, South America, and Southern Africa). The colors represent which source region contributes the 
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greatest deposition flux in the current climate (cc) at a given grid, with the shading denoting the fractional 
contribution of that dominant source region. The letters correspond to the panel of the retrieved dust 305 
deposition time series in Fig. 4. Gray symbols denote the locations of the 19 dust deposition records used 
to reconstruct dust loading since preindustrial times, with triangles, circles, diamonds, and hexagons 
respectively denoting records extracted from ice, marine/lake sediment, coral, and peat cores. The figure 
is modified after Kok et al. (2021b) Fig. 8a.  
 310 
 
2.2 Extending the dust emission dataset into the future 
In addition to obtaining an emission dataset for the historical period, we also derive emission datasets of 
plausible future scenarios of dust emissions. These emission datasets could be used in simulations of 
future climate to evaluate the effects of different reasonable assumptions about how dust emissions 315 
could evolve in the future. Currently, it is unclear whether dust emissions will increase or decrease in the 
future (e.g., Mahowald and Luo, 2003; Tegen et al., 2004; Achakulwisut et al., 2017; Pu and Ginoux, 
2017; Li et al., 2021b; Wu et al., 2022; Liu et al., 2024), both because model projections diverge (Kok et 
al., 2018; Thornhill et al., 2021) and because we have insufficient mechanistic understanding of what 
caused the historical changes in dust emissions and how those drivers might change in the future 320 
(Ginoux et al., 2012; Kok et al., 2023). Factors that could drive an increase in future dust include further 
land use changes, a decline in biological soil crusts (Rodriguez-Caballero et al., 2022), and increased 
aridity from increased evaporative demand over land (Cook et al., 2020). Conversely, factors that could 
drive a decrease in future dust emissions include increased rainfall in prominent dust source regions 
such as the Sahel (Schewe and Levermann, 2017), greening of semi-arid regions from CO2 fertilization 325 
(Mahowald, 2003; Smith et al., 2016), and possible reductions in wind speeds (Zha et al., 2021). Since 
the future evolution of dust emissions is thus unclear, , we provide three future emission scenarios that 
span a range of plausible possibilities in DustCOMMv1 dust emissions. The enhancement scenario 
assumes that the historical dust trend will continue post-2020; the constant scenario assumes that dust 
emissions will remain at present day levels; and the reduction scenario assumes that the trend in dust 330 
emissions will reverse, decreasing post-2020 at the same rate it increased over the historical period. All 
scenarios assume that dust emissions stayed constant for 2001–2020, which is largely consistent with 
what satellite data implies (Logothetis et al., 2021).  

 
We calculate the emissions for each decade after 2020 as follows: 335 

𝐹𝐹EI(𝜃𝜃, 𝜙𝜙, 𝑠𝑠, 𝑑𝑑) = ��1 + 𝑓𝑓𝑠𝑠𝜂𝜂𝑖𝑖𝑑𝑑𝑓𝑓�𝐹𝐹cc,𝑖𝑖(𝜃𝜃, 𝜙𝜙, 𝑠𝑠)
𝑁𝑁sr

𝑖𝑖=1

, 
 
(5) 

where df is the number of decades past the 2010s (e.g., df = 7 for the 2080s), and 𝑓𝑓𝑠𝑠 is a scenario-dependent 
constant that equals 1, 0, and -1 for the three scenarios with enhanced, constant, and reduced future dust, 
respectively. Finally, 𝜂𝜂𝑖𝑖 [decade-1] is the change per decade in dust emissions emitted by source region i, 
normalized by the modern-day (1981–2000) dust emissions from that source region. We obtained 𝜂𝜂𝑖𝑖 from 
a linear fit to the reconstructed 1841–2000 dust emissions, which yields 0.027, 0.030, 0.038, and 0.030, 340 
0.014, 0.038, and 0, for the North Africa, Middle East & Central Asia, East Asia, North America, Australia, 
South America, and South Africa source regions, respectively. Note that the South African source region 
was assumed to have remained constant over 1841–2000 due to a lack of deposition data to constrain it 
(see Fig. 1 and Kok et al., 2023). Figure 2 shows the regionally aggregated dust emission variability for 
1841–2100 from the DustCOMMv1 dataset, comprising plots for all three future scenarios. Note that we 345 
here focus only on evaluating the historical 𝐹𝐹EI, and exploring dust impacts on future climate using the 
future 𝐹𝐹EI will be the topic of future work. 
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 350 
Figure 2. Decadal timeseries of the regional mean and global mean dust emissions (Tg yr-1) for 1841–
2100. The black lines show the solutions of the DustCOMM (a-g) inverted emissions for the seven defined 
source regions in this paper and (h) the globally aggregated emission for 1841–2000, which are evaluated 
in this paper. The dashed lines show the corresponding linear trend to the 1841–2000 emissions. South 
African emissions were assumed to have remained constant because there are no deposition core records 355 
available to constrain its temporal evolution. The 2001–2020 emissions were set to remain equal to the 
1991–2000 emissions, and the 2020–2100 period contains three future dust emission scenarios: 
enhancement (red; following the same historical trend), constant (green; horizontal line), and reduction 
(blue; same as the historical trend with a negative sign).  
 360 
 
3 Using CESM to evaluate the impact of historical DustCOMMv1 emissions 
 
3.1 Coupled model configuration 

We use the CESM version 2.2 (hereafter CESM2; Danabasoglu et al., 2020), a coupled ESM with 365 
multiple earth system components including atmosphere, land, ocean, and sea ice. We use a model 
configuration (FHIST) of CESM2 that couples the land model to the atmospheric model, while other 
components (e.g., ocean, sea ice, glacier/land ice) use prescribed data (AMIP configuration). The SST and 
sea ice dataset is from the reconstructed historical dataset derived by the Met Office Hadley Centre 
(HadISST, Rayner et al., 2003). Anthropogenic and natural emissions of chemical tracers and aerosols 370 
(except dust) and land use changes evolve with time follow the CMIP6 standard forcings, based on the 
descriptions in Emmons et al. (2020; their Sect. 5) and Lawrence et al. (2019; their Sect. 2.3.1). Our 
configuration uses a horizontal resolution of 0.9°×1.25°, 32 vertical levels, and a time step of 30 minutes 
and we ran the simulation for the period 1851–2000.  
 375 
3.2 Land model configuration 
 The Community Land Model (CLM5) is the land model component of CESM2. It represents 
multiple land processes, including surface energy fluxes, surface hydrology, and land biogeochemical 
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cycles. We use the satellite phenology (SP) mode in CLM5, which means that vegetation state (leaf area 
index, canopy height, vegetation type) is prescribed . The annual LULCC in CLM5 follows the Land Use 380 
Harmonization 2 (LUH2) dataset (Hurtt et al., 2020). CLM5 contains a mechanistic dust emission module 
that estimates dust emission flux (kg m-2 s-1) as a function of meteorological and land-surface variables 
(Leung et al., 2023, 2024). Dust emission fluxes are then passed to the atmospheric model for simulating 
dust transport and radiative effects. 

In this study, we will compare the differences in dust cycle simulations using both the mechanistic 385 
dust emission scheme and the derived emission inventory. Instead of the default CLM5 dust emission 
scheme (Zender et al., 2003), we use an updated scheme based on our prior work (Leung et al., 2023; 
hereafter the CESM2–L23 run). The L23 scheme adds or improves upon several components of dust 
emission physics on top of the physically based Kok et al. (2014) scheme. We showed in Leung et al. 
(2024) that L23 outperforms both the Kok et al. (2014) scheme and the default dust emission scheme in 390 
CLM5 (the DEAD scheme; Zender et al., 2003) in capturing the spatial and day-to-day temporal 
variability of atmospheric dust, but the long-term (interdecadal) temporal variability of dust was not 
assessed. In addition, we also performed a historical simulation using the prescribed DustCOMMv1 
emissions to force an observationally constrained dust trend (hereafter the CESM2–DustCOMM run). 
CLM5 regridded the emission data to the model resolution in both space and time. The processed 395 
emissions were then passed on to CAM6 for atmospheric dust aerosol simulations.       
 
3.3 Atmospheric model configuration 

The Community Atmosphere Model (CAM6) takes the emission fluxes from the land model and 
simulates the transport, deposition, optical properties, and radiative effects of dust aerosols using a four 400 
mode aerosol model (MAM4). The four aerosol modes in MAM4 include the Aitken mode (0.01–0.1 μm), 
the accumulation mode (0.1–1 μm), the coarse mode (1–10 μm), and the primary carbon mode (Liu et al., 
2016). Dust is in all modes except the primary carbon mode. The emitted dust size distribution is based 
on brittle fragmentation theory (BFT; Kok, 2011), with respective contributions of 0.1 %, 1.0 %, and 98.9 % 
for the Aitken, accumulation, and coarse modes. The coarse mode in CAM6 includes dust up to a diameter 405 
of ~10 μm and therefore misses the super-coarse dust ranging between 10 and 62.5 μm, which produces 
radiative effects in both the shortwave and the longwave spectra (Adebiyi et al., 2023).  

CAM6 uses a tracer advection scheme to transport dust aerosols (Neale et al., 2012). Aerosols in 
each mode are transported as an internal mixture of the different aerosol species present, with their 
physical properties (e.g., optical properties and density) predicted based upon the volume fraction of each 410 
species, while aerosol species from different modes are externally mixed. CAM6 simulates the removal 
of aerosols via dry deposition and wet deposition. Dry deposition includes turbulent and gravitational 
settling (Zhang et al., 2001), and wet deposition of aerosols includes in-cloud and below-cloud scavenging 
(Neale et al., 2012) for both stratiform and convective clouds (Shan et al., 2021).  

The CAM6 radiative fluxes are computed by the Rapid Radiative Transfer Method for General 415 
Circulation Models (RRTMG; Iacono et al., 2008). RRTMG computes the net radiative flux based on the 
radiation diagnosed at 14 SW and 16 LW spectral bands. We note that RRTMG only accounts for 
absorption (and not scattering) for the LW bands, while it accounts for both scattering and absorption for 
the SW bands (Dusfresne et al., 2002; Di Biagio et al., 2020). The dust DRE is determined by calculating 
the difference of the net radiative flux with and without dust at the top of the atmosphere (via a double 420 
radiation call). Dust optical properties (i.e., single scattering albedo, mass extinction efficiency, and 
asymmetry factor) are functions of the complex refractive index (CRI). The optical properties of the 
internally mixed aerosols in a mode are based upon the CRI of that mixture, calculated as the volume-
weighted CRI of the aerosol species as well as water (Ghan and Zaveri, 2007).  

In this study, we calculate dust optical properties using the dataset of CRI in the SW spectrum 425 
from Di Biagio et al. (2019). This dataset contains the real (scattering) and imaginary (absorption) 
refractive indices in the SW bands (300–1100 nm) from multiple dust samples collected across the globe. 
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We take the mean CRIs (see Table 4 in Di Biagio et al., 2019) to replace the existing CAM6 dust CRIs, 
which are originally based on the Optical Properties of Aerosols and Clouds package (OPAC; Hess et al., 
1998) and the Aerosol Robotic Network (AERONET; Dubovik et al., 2000) retrieved optical properties 430 
for the SW bands, while holding the LW CRIs unchanged (i.e., still CAM6 dust optics), since previous 
studies found that ESM-prescribed and AERONET optical properties are generally too absorbing (e.g., Di 
Biagio et al., 2019; Adebiyi et al., 2023). The CAM6 and Di Biagio CRIs are summarized in Table S2. 
Both have similar real refractive index (n = 1.56 for CAM6 and n = 1.52 for Di Biagio for the whole 
visible band), but the imaginary part (k) is smaller in the Di Biagio optics than in CAM6 (e.g., for 300 nm, 435 
k = –0.0052 for CAM6 and k = –0.0026 for Di Biagio), implying the Di Biagio optics will yield less 
absorption and thus less warming by dust aerosols. We will use the Di Biagio optics for simulations and 
results in Sect. 5. 

Atmospheric dust simulations are usually tuned to match an observational constraint, such as the 
global mean DAOD, since there are no a priori physical principles that confine the order of magnitude of 440 
the simulated dust budget from the dust emission schemes (Leung et al., 2024). Process-based dust 
emission schemes can thus only simulate the spatiotemporal dust variability and then multiply the 
emissions by a global tuning factor to scale the emissions to a global magnitude consistent with satellite 
and ground-based observations. In this study, we scale our simulations to have global mean DAOD values 
averaged across 1981–2000 to be 0.03±0.01 (95 % confidence interval), consistent with current global 445 
constraints used by CMIP6 ESMs and other previous studies (e.g., Ito et al., 2021; Klose et al., 2021; Li 
et al., 2022; Zhao et al., 2022).  

 
 

4 Datasets used for evaluating CESM simulations using the DustCOMM emission dataset 450 
 
4.1 Dust PM concentration records over Barbados and Miami from 1960s to 2000s 
 We use different datasets to evaluate the derived DustCOMM emissions in this stidy. Apart from 
the deposition fluxes from the core records, there are two long-term measurements of dust mass 
concentrations at Miami (Zuidema et al., 2019) and Barbados (Prospero et al., 2021) from the 1960s to 455 
the 2000s, which we use to evaluate the CESM dust PM simulations using the DustCOMM emissions for 
part of the covered time period. Aerosol samples were collected daily over both sites with high-volume 
filter samplers. The contribution from local sources was minimized by only sampling when there were 
easterly winds of > 1 m s-1 from the ocean.  
 460 
4.2 CMIP6 dust data for evaluation 
 We also compare our dust simulations with those from multiple ESMs within the Coupled Model 
Intercomparison Project phase 6 (CMIP6) experiments (https://esgf-node.llnl.gov/search/cmip6/; see 
Table S1 for model information). We have included both the historical runs and the amip-hist runs from 
the CMIP6 experiment. In CMIP6, “historical” refers to runs with active atmosphere–ocean coupling, 465 
while “amip-hist” refers to runs with inactive ocean components forced with HadISST. Note that not all 
CMIP6 models provided the same dust cycle variables, which means that the figures in Sect. 5 that 
evaluate different dust variables show different models for each comparison. Most ESMs provided DAOD 
fields, but only a few models provided dust PM or dust deposition fields. 
 470 
 
5 Evaluating the new dust emission dataset in CESM2  
   
5.1 Simulated dust emission and DAOD using L23 and DustCOMM emissions in CESM2 
 475 

https://esgf-node.llnl.gov/search/cmip6/
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 We first compare how the simulated dust cycles evolves with time in the CESM2. Figure 3 shows 
the simulated dust emissions and DAOD in the CESM–L23 and the CESM2–DustCOMM runs averaged 
across 1981–2000 and their changes over the historical period (1981–2000 minus 1851–1860). The dust 
maps for the 1851–1860 periods are also shown in Fig. S1. CESM2–L23 dust emissions show a realistic 
global emission pattern mostly focused on Africa, the Middle East, Asia, Australia, and the Americas (Fig. 480 
3a). In L23, total emissions changed little over the historical period (Fig. 3b), hovering around a global 
emission rate of ~1800 Tg yr-1, although there are some regional changes in emissions. DAOD also 
remained almost the same, staying at a global mean of ~0.028 (Fig. 3c). Figure 3d shows the change in 
DAOD, indicating a slight decrease in Asia and a small increase in the Sahara. The simulated historic dust 
cycle trends in CESM2–L23 are small, possibly because of the insignificant historical trends of the 485 
simulated meteorological drivers (e.g., wind speed, soil moisture and leaf area index) or the insufficient 
simulated dust sensitivity to these drivers, as suggested by Kok et al. (2014a, 2018). This insignificant 
change in the simulated dust cycle is consistent with previous studies (e.g., Mahowald et al., 2010; Kok 
et al., 2023) showing that current ESM dust simulations generally are unable to capture the long-term 
increase in dust that is evident from sedimentary records of dust deposition (Fig. 4).  490 
  For the CESM2–DustCOMM run (Fig. 3e-h), Fig. 3e shows the dust emissions averaged over 
1981–2000, which is essentially identical to the DustCOMM emissions read in by CLM5. The largest 
emissions occur over China and the Middle East (~1 kg m-2 yr-1 or more), whereas some parts of the Sahel 
have relatively low emissions (~0.1 kg m-2 yr-1 or less). Overall, there are fewer emissions from semiarid 
regions than the L23 emissions. The 1981–2000 mean DAOD (Fig. 3g) also shows that areas with the 495 
highest DAOD are the Taklamakan Desert in China, the Rub’ al Khali Desert over the Arabian Peninsula, 
and the western Sahara. The emissions increased ~ 50 % globally relative to the 1851–1870 period (see 
Fig. S1), yielding a global total of 2140 Tg yr-1. Emissions increased over most of the globe (Fig. 3f), but 
the most significant increase in magnitude is over the Arabian Peninsula. Global DAOD (Fig. 3h) also 
increased by ~52 % from 0.022 (Fig. S1d) in 1851–1870 to 0.034 in the 1981–2000 (Fig. 3h). We thus 500 
successfully generated ~50 % more dust in the CESM2 throughout the historical period using the 
DustCOMM emissions. We summarize the dust budgets of different dust cycle variables for both the 
CESM2–L23 and the CESM2–DustCOMM runs (averaged across 1851–1870 and 1981–2000, 
respectively) in Table 1. 
 505 
 
Table 1. Simulated dust cycle budgets for the CESM2–L23 run and the CESM2–DustCOMM run in the 
preindustrial era (1851–1870) and the contemporary times (1981–2000). 
 

Globally 
aggregated dust 
PM10 cycle 
quantities 

CESM2–L23 
in 1851–1870 

CESM2–
DustCOMM 
in 1851–1870 

CESM2–L23 
in 1981–2000 

CESM2–
DustCOMM 
in 1981–2000 

total emission 
(Tg/yr) 

2231 1459 2201 2236 

mean dust AOD 0.0316 0.0239 0.031 0.0367 
total dust 
loading (Tg) 

22.7 17.2 22.5 26.6 

total wet 
deposition 
(Tg/yr) 

1551 858 1527 1313 
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total dry 
deposition 
(Tg/yr) 

697 611 692 939 

mean lifetime 
(days) 

3.80 4.36 3.70 4.39 

 510 
 

  
Figure 3. The CESM2 dust cycle simulation using the Leung et al. (2023; L23) dust emission scheme and 
the DustCOMM globally gridded emission dataset v1 derived in this study. (a-d) The CESM2–L23 
simulated maps averaged across 1981–2000, as well as the difference between the 1981–2000 and 1851–515 
1870 periods, for both (a, b) dust emissions and (c, d) dust AOD. (e-h) Same maps showing the historical 
dust increase, but for the CESM2–DustCOMM run. The 1851–1870 dust emission and DAOD maps are 
also shown in Fig. S1. 
 
 520 
5.2 Model–observation comparison of dust deposition flux 
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 Next, we examine our simulated CESM2 dust cycle as well as those from the CMIP6 dust 
simulations to assess whether ESM simulations capture the historical interdecadal dust variability as 
exhibited in the sedimentary records. To do this, we extract the 1851–2000 dust deposition fluxes over the 525 
19 grid cells containing the core sites from all ESM simulations, including the CESM2–L23 run, the 
CESM2–DustCOMM run, and several CMIP6 ESMs that reported dust deposition fluxes as an output. To 
focus on the variability instead of the magnitude, we take the decadal median values from the annual mean 
deposition time series and normalize all median time series by their respective values for the period 1851–
1860. All time series in Fig. 4 thus have a value of zero during the 1850s. Table S3 summarizes the 530 
temporal correlation coefficients of deposition fluxes between the core records and our two CESM2 runs 
for 1851–2000 over the 19 site locations. 
 We first discuss the historical temporal variability of the measured dust deposition fluxes (black 
lines) in Fig. 4. Most observed deposition fluxes (black lines) exhibit a rising trend (e.g., in Fig. 4e–j), 
with many showing increases of more than 100% across 1850–2000 (e.g., Fig. 4c–f). Some observed 535 
deposition flux time series exhibit strong interdecadal variability but no secular trends (Fig. 4a–b, l). Those 
locations are typically near the margins of control between several sources, as shown by the color contours 
𝑓𝑓𝑖𝑖,𝑗𝑗cc in Fig. 1. For instance, NEGIS and GISP2 (Fig. 4a–b) are located near the margins of control between 
North America, North Africa, and East Asia (see Fig. 1), and their interdecadal variability might have 
been jointly or alternately controlled by the three sources across time. Meanwhile, some deposition fluxes 540 
exhibit different variability despite being dominated by the same source region or even being adjacent to 
each other (e.g., the Lake Bastani deposition flux in Fig. 4r shows little variability while the Colle Gnifetti 
timeseries in Fig. 4q shows a strong trend). This indicates that deposition fluxes are affected by large 
experimental errors (e.g., Avila et al., 1997) and/or have large spatial variability on the length scale of a 
model gridbox, inducing representation errors when used to inform climate model simulations (Schutgens 545 
et al., 2017).  

We then examine how well different ESMs can reproduce the interdecadal variability of the 
measured dust deposition fluxes. In Fig. 4, the CESM2–L23 run (blue solid lines) and the historical CMIP6 
runs (colored dashed lines), which use mechanistic emission schemes, generally cannot replicate the dust 
trend over most of those sites. Our CESM2–L23 run shows distinct dust variability from the CESM2–550 
DustCOMM run (red solid lines) despite using the same land and atmosphere model configurations. 
CMIP6 simulations also mostly have insignificant correlations with the observed deposition fluxes. This 
shows that ESMs cannot dynamically simulate the historically strengthening dust cycle.  

The CESM2–DustCOMM run generally replicates the decadal deposition variability best out of 
all ESMs simulations in Fig. 4, showing increasing deposition fluxes at most cores. However, not all 555 
simulated deposition fluxes match well the measured deposition timeseries. Although the measured dust 
increases are matched well over some sites (e.g., Fig. 4n and s) that are typically closer to the defined 
source regions, the increasing rates are underestimated over sites (e.g., Fig. 4c, e, f, j) further away from 
the sources, likely because different core sites contain different dust trends although dominated by the 
same source. Thus, each source’s optimized interdecadal dust emission (and hence dust deposition) trend 560 
will be intermediate between that of the relevant sites, resulting in a relatively benign dust trend than sites 
with stronger rising trends. Furthermore, ESMs all have different 𝑓𝑓𝑖𝑖,𝑗𝑗cc values than the DustCOMM-derived 
𝑓𝑓𝑖𝑖,𝑗𝑗cc, likely augmenting the discrepancies. Overall, for sites that give clear increasing deposition trends 
(Fig. 4c, j, q, and s), the CESM2–DustCOMM run yields high correlations (r = 0.7–0.9) with the observed 
deposition fluxes. For certain sites without long-term trends but with substantial interdecadal variability 565 
(Fig. 4h–i, k), the CESM2–DustCOMM run also successfully captures their variability, although 
sometimes the magnitude could be less pronounced (e.g., the Snowy Mountain in Fig. 4k).  

The CESM2–DustCOMM run does fail to capture the measured deposition variability at some 
sites (e.g., Fig. 4a–b, d, l), which are usually co-determined by two or more source regions (Fig. 1) such 
that ESMs might not be able to simulate the same 𝑓𝑓𝑖𝑖,𝑗𝑗 as reality. In addition, these marginal sites may 570 
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contain some dust from high-latitude sources (Bory et al., 2003; Groot Zwaaftink et al., 2016), which is 
not accounted for by the prescribed emissions. For example, observed dust in NEGIS and GISP2 (Fig. 4a-
b) in Greenland exhibit only pronounced interdecadal variability, which differs from the increasing trend 
predicted by the CESM2–DustCOMM run.  

The CESM2–DustCOMM run also could not match the observed deposition flux from sites with 575 
little or no variability (e.g., Fig. 4o, p, r) although these sites are well within the source regions. For 
instance, Andros Island (Fig. 4p) and Lake Bastani (Fig. 4r) show different dust variability from other 
neighboring sites affected by North African dust, which is surprising since Lake Bastani is adjacent to 
Colle Gnifetti (Fig. 4q) with strong dust variability. Also, dust at San Juan Lakes (Fig. 4o) unexpectedly 
exhibits little influence from the Dust Bowl during the 1930s. Since sites with little observed deposition 580 
variability have smaller influences on the inversion process, the derived emissions can hardly replicate the 
observed dust variability over those sites, resulting in the correlations between simulated and measured 
dust ranging from –0.2 to –0.5.  

We summarize the correlations between simulated and measured deposition fluxes over the 19 
sites in Fig. 5 and Table S3 as boxplots. The CESM2–DustCOMM run yields a median correlation of 0.55, 585 
which is substantially higher than that of other simulations. The CESM2–L23 run and other ESM 
simulations have averaged correlations close to zero, although the CMIP6 multimodel ensemble run 
(median = 0.18) performs better than the individual CMIP6 ESMs. Figure 5 shows that model simulations 
have large ranges in the correlation coefficients, meaning that  a simulation could replicates interdecadal 
dust variability well over certain locations but not others. This is possibly because (1) certain site locations 590 
contain dust from several source regions, (2) CESM’s sensitivity 𝑓𝑓𝑖𝑖,𝑗𝑗  could change over time and be 
different from DustCOMM’s 𝑓𝑓𝑖𝑖,𝑗𝑗cc (from Kok et al. 2021a, b), and (3) there are large representation errors 
for comparing grid box-level ESM-simulated dust deposition fluxes against site-level dust depositions 
from core sites (REF). However, the CESM2–DustCOMM run clearly agrees best with measured dust 
deposition timeseries. 595 
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Figure 4. Comparisons between ESM simulations and measured deposition flux timeseries from 
sedimentary cores. The panel letters correspond to the letters of the 19 individual sedimentary site 600 
locations as shown in Fig. 1. The black lines show the deposition flux time series, the blue lines show our 
CESM2 run using a mechanistic dust emission scheme (Leung et al., 2023; CESM2–L23), and the red 
lines show our CESM2 run forced by the new DustCOMM emission inventory (CESM2–DustCOMM). 
Colored dashed lines show the CMIP6 ESM simulated dust deposition fluxes. For ESM deposition fluxes, 
we perform the comparison using the deposition time series from the grids that contain the core site 605 
locations. 
 
 
 
 610 

  
Figure 5. A boxplot summary of the correlations between the measured deposition flux time series and 
the deposition flux time series simulated by our runs and the CMIP6 historical runs. The boxplot for each 
model summarizes the 19 correlation coefficients between the core records of measured dust depositions 
(black lines) and the ESM-modeled dust depositions (colored lines) in Fig. 4, depicting the medium, 615 
interquatile range, and range of the 19 correlation coefficients. The CMIP6 multimodel ensemble (MME) 
gives the mean of the four CMIP6 models that provided dust deposition fields. 
 
  
5.3 Model–observation comparison of dust PM concentration 620 
 
 In another evaluation of the DustCOMM emission dataset, we compare in Fig. 6 the decadal 
variability of the simulated surface dust PM concentrations (μg m-3) against long-term measurements of 
dust concentration at the Miami and Barbados sites (Zuidema et al., 2019; Prospero et al., 2021; see 
Section 4.2). For comparison of these record against ESM simulations, we use te simulated dust 625 
concentration at the gridboxes that contain the site location. Because we again focus on the interdecadal 
variability, we assess measured and modeled relative changes in decadally averaged values.  

The dust concentration time series at the Miami site (Fig. 6a) and the Barbados site (Fig. 6b) show 
that dust concentrations (black lines) peaked during the 1981–1990 decade, consistent with the 1980s dust 
peak shown by the dust reconstruction in K23 (see the black line in Fig. 7). However, the CESM2–L23 630 
concentration time series (blue lines) shows little decadal variability. Similarly, both the CMIP6 coupled 
historical runs and amip-hist runs are unable to reproduce the variability of long-term dust concentration 
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measurements. This shows that the current generation of ESMs that employ mechanistic dust emission 
schemes cannot simulate the historical interdecadal variability of dust. In contrast, the CESM2–
DustCOMM dust concentration (red lines) increased from the 1960s to the 1980s, peaked in the 1980s, 635 
and dropped during the 1990s, showing more consistency with the measurements. Figure 6 thus further 
indicates that ESMs using the DustCOMM emissions can better simulate the temporal dust variability 
than using mechanistic emission schemes. 
 

 640 
Figure 6. Measured and simulated dust PM concentrations over (a) Miami and (b) Barbados. The thick 
black lines show the measured dust concentrations over the two locations (Zuidema et al., 2019; Prospero 
et al., 2021), and the thick blue and red lines show our CESM2 simulations. The thin dashed lines are fully 
coupled historical simulations performed by CMIP6 ESMs. The thin solid lines show amip-hist ESM 
simulations with prescribed historical SST. All time series are normalized by dividing their values by their 645 
1971–1980 mean values. 
 
 
5.4 Model–observation comparison of global DAOD 
 650 
 

Finally, we examine the historical evolution of simulated DAOD in Fig. 7 below. Here we compute 
the 10-year running mean for all dust time series. Furthermore, we focus on the variability of dust instead 
of its absolute magnitude, since the global mean of dust could always be tuned and rescaled with a global 
tuning factor to match the observed dust budgets (Zender et al., 2003; Mahowald et al., 2010; Li et al., 655 
2021; Leung et al., 2023). We subtract the DAOD time series by their own decadal 1851–1860 averages, 
then divide the time series by the same reference values. Figure 7 shows the relative changes of the 10-
year running mean DAOD for our simulations and the CMIP6 simulations. The dashed lines show the 
CMIP6 models with historical simulations, whereas the solid lines show ESMs driven by the prescribed 
SST.  Most CMIP6 models show moderate interdecadal variability, but there are no significant increasing 660 
dust trends for both historical and amip-hist runs, meaning that the observed dust trends cannot be 
reproduced with current models using either simulated or reconstructed historical SSTs. The CESM2–L23 
dust time series (solid blue) also has no significant increasing trend and only contains modest interdecadal 
variability. Only the CESM2–DustCOMM run generates the historical increasing dust trend highly 
consistent with the sedimentary records. The decadal variability in the CESM2–DustCOMM time series 665 
is consistent with that in the dust reconstruction, with a ~50 % increase in dust from 1851–1870 to 1981–
2000, peaking in the 1980s. Using the prescribed emission dataset is thus likely more accurate for 
simulating the historical RFs of dust than using mechanistic emission schemes, provided that the spatial 
variability and microphysics (size distribution and optical properties) of dust are sufficiently accurate in 
ESMs. 670 
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Figure 7. Changes in global dust aerosol optical depth (DAOD) relative to the 1850s/1870s. The thick 675 
solid blue and red lines show our CESM2 simulations using the Leung et al. (2023; L23) emission scheme 
and using the derived DustCOMM emission dataset, respectively. The thin dashed and solid lines show 
the CMIP6 fully coupled historical run and amip-hist runs using simulated and reconstructed historical 
SSTs, respectively. All the model time series are the 10-year running means from the original annual time 
series. The time series from the CMIP6 historical runs and our CESM runs are centered at their 1850s 680 
mean values; the DAOD time series from the amip-hist runs are centered at their 1870s means since amip-
hist runs start from 1870. The solid black line shows the reconstructed DAOD time series centered at its 
1850s value, and the grey shading denotes the one standard error (68% confidence) range of the 
reconstruction. 
 685 
 
 
6 Dust historical direct radiative effects and forcings in CESM2 runs 
 

The above results show that ESMs using the derived historical emissions can produce dust cycle 690 
simulations that are more consistent with trends shown in sedimentary records of dust deposition. We then 
use the CESM2 to simulate the radiative effects and forcings of dust. Figure 8 shows the simulated DREs 
and DRFs of dust PM10 for the two runs. We first discuss the simulated DREs for the CESM2–L23 run, 
in which dust remained approximately constant over time (Fig. 7). The 1851–1870 dust DRE (Fig. 8a) is 
large over areas where the DAOD is high (in Fig. S1b), as expected. Most of the globe exhibits negative 695 
DRE values, primarily because of dust scattering SW radiation back to space. Dust also absorbs LW 
radiation, but the overall warming effect is relatively weak. The only areas with positive DRE values are 
the most prominent dust sources (e.g., the Bodélé Depression, El Djouf, and the Rub’ al Khali Desert) as 
they already have very high land-surface albedo for reflecting SW radiation, mitigating the SW cooling 
of dust aloft (e.g., Liao and Seinfeld, 1998). The late 20th century dust DRE (Fig. 8b) shows a very similar 700 
pattern as in the preindustrial period, as we would expect due to the lack of a clear dust emissions trends.    

For the CESM2–L23 run, dust in the mid-19th century produced an overall global cooling effect 
of ~ –0.35 W m-2 when summing both the SW and the LW DREs. In the 1990s, the global mean dust DRE 
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was –0.33 W m-2, slightly smaller than the global mean dust DRE for 1851–1870. This cooling effect is 
in agreement with other previous CESM studies using the original CAM dust optics (e.g., Ke et al., 2021; 705 
Li et al., 2021) and overall consistent with other modeling studies (e.g., Tegen and Lacis, 1996; Sokolik 
and Toon, 1996; Mahowald et al., 2010; Kok et al., 2023). The number is more negative than the –0.15 ± 
0.35 W m-2 estimated by Kok et al. (2023) for the present-day dust DRE, likely because they accounted 
for super-coarse dust (which net warms; Adebiyi and Kok, 2020) and for the warming due to LW 
scattering. The small change in the DRE throughout 1851–2000 is also consistent with the small decrease 710 
in the simulated historical DAOD change in Fig. 3.  
 When dust emissions are prescribed (the CESM2–DustCOMM run), the magnitude of the dust 
DRE increased substantially across 1851–2000 (Fig. 8d-e). The DRE spatial distributions are overall 
similar to those of the L23 run. The dust cooling effect still dominates, giving a global mean DRE of –
0.27 W m-2 for 1851–1870. Given the ~55 % increase in the historical dust, the global DRE increases to 715 
–0.38 W m-2 for 1981–2000, giving a 41 % increase in cooling. The DRE does not necessarily need to 
increase by also 55 %, since DAOD increases over different geographical locations with different surface 
albedo values, causing warming and cooling across different regions. Furthermore, DRE is not directly 
proportional to AOD due to multiple scattering (e.g., Di Biagio et al., 2020).  
 We finally discuss the simulated historical direct RF (Fig. 8c and f), which is equal to the 1981–720 
2000 DRE minus 1851–1870 DRE for both runs. For the CESM2–L23 run (Fig. 8c), since the global 
DAOD slightly changed by < 1% from 1851–1870 to 1981–2000 (Fig. 3), the dust DRF is also small 
(+0.019 W m-2). The spatial pattern of the dust DRF in Fig. 8c is consistent with that of the map of DAOD 
changes in Fig. 3d but opposite in sign. For the CESM2–DustCOMM run (Fig. 8f), its spatial pattern is 
very similar to its two DRE patterns (Fig. 7b and d). The global mean historical DRF is –0.103 W m-2, 725 
within the range of values predicted by previous studies. For instance, Mahowald et al. (2010) predicted 
a 1905–1999 historical dust DRF of –0.07 W m-2, Stanelle et al. (2014) predicted an 1885–2010 historical 
forcing of –0.14 W m-2 (clear-sky condition), and Kok et al. (2023) estimated an 1841–2000 DRF of –
0.08 W m-2. Our value could be more accurate than previous work for PM10 dust since we use 
observationally based refractive indices from Di Biagio et al. (2019) and because the prescribed 730 
DustCOMM emissions could more accurately account for regional historical dust changes.  
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Figure 8. Dust direct radiative effects (DREs) and forcings (DRFs) simulated using the Leung et al. (2023; 
L23) emission scheme (left columns) and the new DustCOMM emission dataset (right columns). (a-c) 735 
CESM simulated dust DREs using the L23 emission scheme averaged across (a) 1851–1870 and (b) 1981–
2000, and (c) the 1981–2000 DRE minus 1851–1870 DRE, which equals the dust DRF for the historical 
period. (d-f) As for panels (a-c) but for the CESM simulation using the DustCOMM emissions. 
 
 740 
 

Although we have successfully used the dust reconstruction to more realistically estimate the DRF 
due to the historical dust increase, this estimation is subject to several uncertainties and limitations. First, 
the estimated DRF is sensitive to the assumed emitted dust PSD, which is based on the brittle 
fragmentation theory in the CESM2 (BFT; Kok, 2011; Li et al., 2022). Although BFT produces a dust 745 
PSD that is in good agreement with measurements for fine and coarse dust (Dve < 10 μm), CESM itself 
does not simulate super-coarse dust, limiting the realistic representation of the dust PSD in CESM2. 
Previous studies indicated that super-coarse dust accounts for 38 (± 15%) of total atmospheric dust mass 
(Kok et al., 2021a; Adebiyi et al., 2023). Because super-coarse dust tends to warm by absorbing SW 
radiation and both scattering and absorbing LW radiation (Adebiyi and Kok, 2020), neglecting super-750 
coarse dust might overestimate dust radiative cooling by ~0.05–0.10 W m-2 (Adebiyi et al., 2023). Thus, 
improving the emitted dust PSD in ESMs by including dust up to ~ 50 μm in size is preferred for 
adequately representing the dust DRE and DRF. Second, although we used global dust refractive indices 
based on recent laboratory measurements (from Di Biagio et al., 2019), the amount of absorption, and thus 
warming, produced by dust in the SW spectrum is uncertain (Li et al., 2021; Adebiyi et al., 2023). 755 
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Moreover, dust CRI could change based on dust source region (Di Biagio et al., 2019), which indicates 
spatially varying optical properties of dust aerosols (e.g., Journet et al., 2014; Green et al., 2020; Li et al., 
2021a). The use of spatially varying dust optics in ESMs, or optics as a function of mineral dust species, 
can thus further improve DRE and DRF predictions. Third, as mentioned above, the RRTMG in ESM 
simulations, including ours, do not include LW scattering by aerosols, which accounts for ~half of the 760 
warming from dust interactions with LW radiation (Di Biagio et al., 2020; Dufresne et al., 2002). This 
might possibly be overcome by employing newer radiative transfer models in CESM2 in the future (e.g., 
RTE+RRTMGP; Pincus et al., 2019). 
 To better evaluate the historical dust RFs and climate impacts due to historical dust changes, we 
recently initiated a new dust modeling intercomparison project, namely “dust radiative forcing from 765 
reconstructed dust changes since preindustrial times” (DURF), as part of the AeroCom phase III 
experiments. Employing multiple ESMs, dust modelers will use the DustCOMMv1 emission dataset 
obtained here to estimate more realistic historical dust REs and RFs.  
 
 770 
7 Conclusions  
 
 In this study, we have derived a gridded 1841–2000 dust emission dataset 𝐹𝐹EI  (DustCOMM 
emissions v1) using an inverse analysis for driving historical dust cycle simulations in ESMs. We did so 
by combining 19 sedimentary records of dust depositions 𝛽𝛽𝑗𝑗  for 1841–2000 across the globe with 775 
reanalyzed model constraints on the present-day dust cycle 𝑓𝑓𝑖𝑖,𝑗𝑗cc to infer the changes in dust emissions for 
each of seven major source regions (Sect. 2). This DustCOMM emission dataset contains decadal 
variability of historical dust as inferred from the dust sedimentary records. It’s important to note that the 
DustCOMM emissions required important assumptions to derive (see Sect. 2) and that it could be subject 
to systematic errors, and the deposition fluxes from core records also contain large uncertainties. Therefore, 780 
more dust deposition timeseries that resolve the preindustrial-to-modern time period are urgently needed 
to better constrain the historical evolution of the global dust cycle. We provided 100 realizations of the 
historical dust emissions to characterize the uncertainties of the DustCOMMv1 emissions. We further 
made three scenarios of future dust emissions for 2000–2100. Future versions of DustCOMM emissions 
will be focused on reducing uncertainties in both 𝑓𝑓𝑖𝑖,𝑗𝑗cc and 𝛽𝛽𝑗𝑗, using satellite measurements to improve 785 
2000–2020 emissions, and using DustCOMM emissions to inform process-based dust model 
developments, such as a better representation of historical dust changes in ESMs and partitioning 
contributions from natural and anthropogenic dust sources. 

To evaluate the derived DustCOMMv1 emission dataset, we used the derived emissions to drive 
an 1851–2000 historical dust cycle simulation in the CESM2. The simulation results revealed that the 790 
simulated dust cycle captured the historical increasing dust trend. The simulated trends in dust deposition 
matched moderately well against the sedimentary records and the simulated dust PM concentrations were 
in reasonable agreement with long-term measurements of dust concentration over Miami and Barbados. 
In contrast, CESM2 and other ESMs employing process-based dust emission schemes showed little or no 
long-term increase in dust across 1851–2000. A modeling development study on enabling process-based 795 
models to capture the historical dust trend will be the topic of a future paper. 

Here we showed that ESMs using our derived DustCOMM emissions can reproduce the observed 
historical dust increase and thus can better estimate the radiative forcing (RF) due to this dust increase. 
Because CMIP6 ESMs are unable to reproduce the observed historical dust trend, it could be greatly 
beneficial for ESMs to use these prescribed emissions improve simulated aerosol radiative forcings and 800 
the resulting climate impacts.Indeed, using these prescribed emissions in CESM2 yielded an 1851–2000 
dust direct RF of –0.10 W m-2 (cooling), primarily due to the scattering of shortwave radiation back to 
space, which is especially strong over the oceans. This value is consistent with the calculations in previous 
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studies (e.g., Mahowald et al., 2010; Stanelle et al., 2014; Kok et al., 2023). These results suggest that 
historical dust changes have likely partially counteracted the historical global warming caused by the 805 
anthropogenic increase in greenhouse gases.  
 
 
 
  810 
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