
1300 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 2, FEBRUARY 2024

Age-Dependent Differential Privacy
Meng Zhang , Member, IEEE, Ermin Wei , Member, IEEE, Randall Berry , Fellow, IEEE,

and Jianwei Huang , Fellow, IEEE

Abstract— The proliferation of real-time applications has moti-
vated extensive research on analyzing and optimizing data
freshness in the context of age of information. However, classical
frameworks of privacy (e.g., differential privacy (DP)) have
overlooked the impact of data freshness on privacy guarantees,
which may provide a new tool for time-varying databases. In this
work, we introduce age-dependent DP, taking into account the
underlying stochastic nature of a time-varying database. In this
new framework, we assume knowledge of the data process’s sta-
tistical information and establish a connection between classical
DP and age-dependent DP. We use this connection to characterize
the impact of data staleness and temporal correlation on privacy
guarantees. Our characterization reveals that the total variation
distance is the sole essential statistical information. Moreover,
we demonstrate that aging, which involves utilizing stale data
inputs and/or delaying the release of outputs, can serve as a
novel strategy for safeguarding data privacy, in addition to the
traditional approach of injecting noise in the DP framework.
Furthermore, to generalize our results to a multi-query scenario,
we present a sequential composition result for age-dependent DP
under any publishing and aging policies. We then characterize the
optimal tradeoffs between privacy risk and utility and show how
this can be achieved. Finally, case studies show that to achieve
an arbitrarily small privacy risk in a single-query case, combing
aging and noise injection only leads to a bounded accuracy loss,
whereas using noise injection only (as in the benchmark case of
DP) will lead to an unbounded accuracy loss.

Index Terms— Differential privacy (DP), age of information
(AoI).
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I. INTRODUCTION

A. Background

FRESH data has become indispensable for ubiquitous
real-time applications, including Internet-of-things (IoT)

systems (e.g., healthcare wearables), cyber-physical systems
(e.g., autonomous transportation systems), and financial ser-
vices. For instance, real-time location and velocity information
of motor vehicles is the key to realize reliable and safe
autonomous driving, and real-time stock quotes are essential
for developing effective high-frequency trading strategies in
financial markets. The increasing importance of fresh data has
been driving research on a new metric, Age of information
(AoI), to measure the timeliness of information [2].

An unprecedented amount of personal data is generated
in such real-time applications. This may severely compro-
mise user privacy. Privacy sensitive information may include
user identities and user properties, whose leakage may lead
to undesirable consequences. For instance, burglars can use
real-time electricity usage readings to infer whether houses
are occupied; stalkers may access real-time GPS location data
to track mobile users.

To combat privacy leakage, researchers have proposed
numerous solutions, varying in terms of the level of data
protection and implementation complexity (see a survey in
[12]). A widely used analytical framework is differential
privacy (DP) [3], which quantifies the level of individual
privacy leakage due to releasing aggregate information from a
database. Apple [4], Google [5], Microsoft [7], and the U.S.
Census Bureau [6] have adopted DP frameworks. The key
idea of DP is to provide strong privacy guarantees by injecting
tunable levels of noise into the aggregate information before its
release, with the goal of maintaining a proper tradeoff between
privacy and statistical utility of databases.

Despite its privacy guarantees against arbitrary adversaries,
existing DP techniques (and other related classes of privacy
metrics such as k-Anonymity [8] and t-Closeness [9]) have
largely overlooked the impact of data freshness for time-
varying databases. Intuitively, as some data has diminishing
value over time, releasing outdated data may lead to less
privacy leakage if a user only focuses on protecting its real-
time status. As an example, for a mobile user trying to protect
its real-time location, the accuracy of an adversary’s inference
will significantly drop as the location data becomes outdated.
In a more concrete example in Section III, we show that the
accuracy of an adversary’s estimate diminishes quickly to a
level of no privacy concerns due to data aging, whereas the
classical DP framework can only provide a very loose upper

0018-9448 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Northwestern University. Downloaded on April 29,2025 at 02:36:43 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-4893-6946
https://orcid.org/0000-0002-8035-484X
https://orcid.org/0000-0002-1861-6722
https://orcid.org/0000-0001-6631-1096


ZHANG et al.: AGE-DEPENDENT DIFFERENTIAL PRIVACY 1301

Fig. 1. An age-dependent differential privacy mechanism.

bound (as high as 88%) for the probability an adversary’s
estimate is correct.

This observation motivates the following key question:
Question 1: How should one quantify the impact of data

timeliness on data privacy protection?
Motivated by Question 1 and the notions of AoI and

DP, this work proposes an age-related generalization of DP
that provides more meaningful guarantees for time-varying
datasets. We name it age-dependent differential privacy.

Our new framework is applicable to a wide range of
privacy-sensitive applications with time-varying datasets, such
as (i) location-based services [10], (ii) smart meter readings
[11], (iii) medical information, and (iv) stock holdings in
financial markets. Other types of privacy-sensitive information
that are time-invariant (e.g., genome information) can be well
understood under the classical DP notion, hence are not the
main focus of this paper.

Whereas existing studies largely rely on injecting noise
to achieve DP [3], our proposed framework provides a new
direction to protect privacy, namely aging, which postpones
the release of outputs. Figure 1 presents an example of an
age-dependent differentially private mechanism that combines
both the new method (aging) and the existing one (noise
injection). This also raises another challenge in designing
privacy-persevering mechanisms:

Question 2: How should one characterize age-dependent
privacy guarantees by leveraging aging along with classical
methods (e.g., noise injection)?

To answer this question, we provide theoretic guarantees
achieved by classical DP mechanisms when adopted in our
new age-dependent DP framework. This establishes a con-
nection between the classical DP notion and our proposed
age-dependent generalization. Additionally, it enables us to
derive the achievable age-dependent privacy guarantees by
exploiting both classical methods (e.g., noise injection) and
aging (e.g., timing inputs and outputs).

The operation of real-time systems involving frequent data
updates raises the necessity of understanding the performance
of privacy-preserving mechanisms with sequential queries,
a topic that has been studied for conventional DP mechanisms
through work on sequential composition [63]. Age-dependent
DP mechanisms bring two new challenges. First, our charac-

terization further depends on the timing of both inputs (how
stale the input database is for all queries) and outputs (when
to release the outputs of all queries). In contrast, the classical
composition results only depend on the number of queries.
The second challenge is that optimally trading off privacy and
utility now depends on optimizing over such timing as well as
any noise that is added, both of which may impact utility and
privacy in different ways.1 In light of the above challenges,
our final key question is

Question 3: How should one characterize the optimal trade-
offs between privacy and utility for multi-query mechanisms?

To this end, we construct multi-query mechanisms by
a combination of single-query mechanisms, and derive the
corresponding privacy guarantees over time considering the
independent guarantees achieved by these single-query mech-
anisms and the corresponding timings of inputs and outputs.
By deriving and exploiting a special structure of the optimal
solutions, we are then able to formulate a tractable optimiza-
tion problem that makes tradeoffs between privacy and utility.

B. Contributions

We summarize the key contributions of this work in the
following:

• Age-dependent DP. To the best of our knowledge, age-
dependent DP is the first performance metric of privacy
protection that accounts for the potentially diminishing
privacy leakage of delayed data.

• Privacy guarantee analysis. By establishing the connec-
tion between the classical DP notion and our proposed
age-dependent DP, we derive the achievable privacy guar-
antees when one exploits aging along with classical DP
mechanisms. We also characterize the key factor that
determines the decaying rate of age-dependent privacy
risks over time.

• Composition. We further address how age-dependent DP
guarantees compose over multiple queries, depending on
the timing of both inputs and outputs. Even for infinitely
many queries, we show that the peak privacy risk can be
upper bounded under a characterizable condition.

• Tradeoffs. We present two case studies to understand
tradeoffs between privacy and utility. Our numerical
studies reveal that, when approaching an arbitrary small
privacy risk in a single-query case, our proposed scheme
(of combing aging and noise injection) only incurs a
bounded accuracy loss, whereas the loss incurred by a
benchmark (using noise injection only) grows unbounded.

We organize the rest of this paper as follows. In Section II,
we review related studies. Section III describes the model.
In Section IV, we introduce the definition of age-dependent DP
for a single-query mechanism and characterize its properties.
In Section V, we generalize our definition and results to

1As an example, while real-time status information, such as the locations
of nearby vehicles, is crucial in autonomous driving, it is worth noting that
certain algorithms, like path planning, are less reliant on up-to-the-minute map
data. Similarly, machine learning algorithms used in autonomous driving may
also exhibit less sensitivity to the timeliness of training datasets. Therefore,
by allowing for slightly delayed updates, the system can strike a better balance
between privacy preservation and maintaining an acceptable level of utility.
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multi-query mechanisms and characterize how age-dependent
DP guarantees compose. We further present two heuristic
examples in Section VI and finally conclude in Section VII.

II. RELATED WORK

A. Age of Information

Many works in recent years considered AoI for various
queueing systems (e.g., [34], [35], [36], [37], [38], [61], [62])
and wireless networks (see references [39], [40], [41], [42],
[43], [44], [45], [46], [47], [48], [49], [51], [52], [53], [54],
[57], [60] and a survey in [2]). Many also considered the
optimization of scheduling algorithms for wireless networks
[43], [44], [52], [53], [54], [56], [57], [60]. For example, Talak
et al. [43] studied the optimization of information freshness in
wireless networks. Kadota et al. [44] studied the optimization
of information freshness in wireless networks with throughput
constraints. A few studies also considered the modeling of
aged information and proposed variants of AoI (e.g., [45], [58],
[59], [61]). For instance, Maatouk et al. in [58] proposed the
notion of age of incorrect information, which captures both the
values of freshness and correctness. Sun et al. [45] considered
a family of general data freshness metrics represented by
monotonic functions in AoI. Wang in [59] considered age of
critical information, which reflects the information freshness
quantified by changes in its critical levels. Yates [61] consid-
ered a network of observer nodes, in which timeliness at each
node is measured by update versions. Several studies examined
the economic value of information freshness from an economic
perspective, investigating the interactions between sources and
destinations through the integration of pricing and mechanism
design [46], [47], [48]. These studies have primarily focused
on the operational cost incurred by the frequent generation of
status updates, while neglecting the consideration of privacy
costs.

Most studies in this literature have not considered privacy
protection. One exception is [50], in which Jin et al. stud-
ied the an age-minimal mobile crowd sensing system for
location-based services while achieving DP. However, [50] did
not consider an age-based variant of DP, nor the impact of data
freshness or temporal correlation on privacy protection, which
we do here.

B. Differential Privacy

There has been a lot of work on DP (see [3]) and we will
only survey some related studies here.

1) Variants of Differential Privacy: While the initial work
on DP [3] makes no distributional assumption on the data,
as shown in the no-free-lunch theorem for privacy [13], it is
generally impossible to achieve a better privacy-utility tradeoff
(than DP) without making assumptions on the knowledge of
data distributions. Therefore, a number of existing variants of
DP assumed specific knowledge of data generating distribu-
tions, which can provide more meaningful privacy protection
under considered scenarios (e.g., [14], [15], [16], [17]). For
instance, Rinaldo et al. [14] studied how data distributions
affect the characterizations of privacy guarantees. Kifer et al.
[17] proposed a Bayesian framework for defining privacy, the

Pufferfish. Yang et al. [15] further studied the influence of
data correlations on privacy in the Pufferfish framework. Our
approach assumes the knowledge of an underlying probabilis-
tic model for the time-varying data, whereas these variants
mainly did not account for the impact of data timeliness.

2) Privacy Analysis of Dynamic Databases: Related studies
of DP for dynamic databases have focused on a limited class of
problems (e.g., [19], [23], [24], [25], [30]). Both [19] and [24]
adapted the notion of DP to streaming environments, where
each entry in the database is a single bit, and bits arrive one
per unit time. In [23], Smith et al. extended this technique
to maintain private sums of real vectors arriving online in
a stream. Mechanisms proposed in [19], [23], and [24] are
non-adaptive, in the sense that they answer a single query
repeatedly on a dynamic database. Cummings et al. extended
in [25] the results to an adaptive analysis. Nevertheless, this
line of work did not characterize the impact of data timeliness
or temporal correlation on data privacy protection. Reference
[30] is the only exception, in which Cao et al. studied the
privacy leakage accounting for continuous data release with
time correlation (but not data timeliness). The composition
result in [30] did not account for different data publishing
and aging policies, which we consider in this work.

C. Time-Based Privacy Metrics

Another line of related work considers time-based metrics
for privacy, which only includes a few studies [31], [32],
[33]. In [32], Wright et al. proposed a time-based metric
that measures the time until the adversary’s success, which
in fact assumed that the adversary will eventually succeed.
On the other hand, Hoh et al. [31] considered the mean
time to confusion, which measures the time during which the
adversary’s uncertainty stays below a confusion threshold. For
an adversary aiming to track a target’s location over time,
Sampigethaya et al. [33] considered the maximum tracking
time to measure the adversary’s tracking ability. These studies
did not account for the impacts of the temporal correlation of
data or data timeliness on data privacy.

III. MODEL AND PRELIMINARY

In this section, we introduce the model of the users, the
adversary, and the stochastic processes of the users’ privacy-
sensitive and time-varying databases. After reviewing the
classical notion of DP, we use an illustrative example to show
that DP may not provide an informative description of privacy
protection for time-varying databases. We summarize all key
parameters in Table I.

A. Model

1) System Overview: We consider a set I = {1, . . . , I} of
users and an infinite-horizon discrete-time model with time
t ∈ N. The system starts to operate at time t = 0, and N
denotes the set of all non-negative integers.
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TABLE I
NOTATION SUMMARY

2) User: For each user i, its privacy-sensitive data is
captured by a discrete-time stationary process {xi,t}t∈N.2 We
assume this process take values in a finite state space, Xi.
Due to the stationarity, there exists a stationary probability
distribution πi : Xi → [0, 1], such that πi(x) = Pr(xi,t = x)
for all t ∈ N. We denote the t-step transition probability
by Pi,t(x, y) ≜ Pr[xi,t = y|xi,0 = x] for all t ∈ N and
all x, y ∈ Xi. We further use P̂i,t(x, y) to denote the t-step
transition probability of the reversed process, which satisfies
that

P̂i,t(x, y) =
πi(y)Pi,t(y, x)

πi(x)
, ∀x, y ∈ Xi, t ∈ N, i ∈ I. (1)

If P̂i,t(x, y) = Pi,t(x, y) for all t ∈ N and x, y ∈ Xi, then
{xi,t}t∈N is reversible [64].

A class of random processes of particular interest is
time-invariant Markov chains, which are characterized via a
time-invariant transition probability matrix Pi(x, y) for each
user i and states x and y.

3) Aggregate Database: We use {Xt}t∈N to denote the
aggregate data process across all users, where Xt ≜ {xi,t}i∈I
is the random variable of the (aggregate) database of all
users at time t, belonging to the (aggregate) state space
X =

∏
i∈I Xi. Throughout this paper, a database is referred

to as the aggregate data of all users sampled at a time,
Xt. Assuming that the processes are independent across
users, then the corresponding t-step transition probability is
Pt(X,Y ) =

∏
i∈I Pi,t(xi, yi), the stationary probability is

π(X) ≜
∏

i∈I πi(xi), and the t-step transition probability
of the reversed process is P̂t(X, Y ), for all X = {xi}i∈I ,
Y = {yi}i∈I , and t ∈ N.

4) Event-Level Privacy Protection Goal: Users seek to
protect their data privacy against a type of adversaries that aim
to infer about the current status Xt at each time slot t ∈ N.
That is, the key focus is to protect each user’s single data point

2We note that data processes exhibit stationary in many applications such
as location-based services (e.g., [27], [28], [29], [30]), physical activity mea-
surements and electricity (e.g., [18]). As a preliminary step in understanding
age-dependent privacy and developing the corresponding mechanisms, we will
confine our analysis to the stationary setting and will leave non-stationary data
processes for future work.

at time t ∈ N, which is referred to as the event-level privacy
protection [19], [30]. Answering a query using database Xt′

for some t′ < t thus leads to less privacy leakage than using
database Xt, even if Xt′ and Xt may be correlated.

The consideration of such adversaries is practical in a wide
range of application scenarios. Examples include real-time
electricity consumption data, real-time GPS data, and financial
data. This can be distinguished from user-level privacy protec-
tion, where an adversary is interested in obtaining the entire
history (or its subset) of a user’s location database {Xt}t∈T
for some T , e.g., to determine if a user ever visited a given
location with a given time window. We will leave the modeling
of this more general class of adversaries and the corresponding
analysis for future work.

In our analysis, we consider the worst-case scenario where
the adversary has knowledge of the underlying probability
models {Pi,t(x, y)}i∈I , which provides a strong guaran-
tee. We assume that the platform also has knowledge of
{Pi,t(x, y)}i∈I and can use it to determine how data can be
released. The platform may gain such knowledge, for example,
from analyzing historical data from the same set of users.

B. Differential Privacy

Here we review the classical notion of DP [3], which can
be viewed as if applying to databases that consist of a single
element from a joint-state space X :

Definition 1 (Differential Privacy (DP)): Given any ϵC >
0, a mechanism (algorithm) M : X → Y is ϵC-DP if for all
pairs X, X ′ ∈ X which differ only in one user’s data, the
following inequality holds

Pr[M(X) ∈ W ] ≤ exp(ϵC)Pr[M(X ′) ∈ W ], ∀W ⊂ Y ,

(2)

where the probability is taken over the randomness of the
output of mechanism M .

We use subscript C to indicate that ϵC stands for the
classical privacy risk, so as to distinguish it from the privacy
risk achievable in our framework.

DP requires that changing each user’s data will have little
impact on the output when ϵ is small. It provides a strong
and mathematically rigorous robustness against an arbitrary
adversary, but may come at the expense of the statistical utility
(e.g., the accuracy) of the output.

To achieve DP, a well-known approach is to inject Laplace
or Gaussian noise to the database output [3]. Formally,
we review the following definitions:

Definition 2 (Sensitivity): For any function f : X → Rd,
the ℓ1-sensitivity of f is defined as

S(f) = max
X,X′

∥f(X) − f(X ′)∥1 , (3)

where X and X ′ are neighbouring databases, i.e., X and X ′

differ only in one user’s data.
Definition 3 (Laplace Mechanism): For any function f :

X → RD, the Laplace mechanism (associated with f ) is
defined as

ML(X) = f(X) + n, (4)
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where n = {nk}D
k=1 are independent Laplace(S(f)/ϵC)

random variables. A random variable has a Laplace(b) dis-
tribution if its probability density function is

pL(x|b) =
1
2b

exp
(
−|x|

b

)
. (5)

Proposition 1 (Classical Privacy Guarantee [3]): For any
function f : X → RD with the sensitivity given in (3), the
corresponding Laplace mechanism is ϵC-DP.

Proof: Given any two adjacent inputs datasets X, X ′ ∈ X
which differ only in one user’s data, let y1 = f(X) and y2 =
f(X ′). By defining X ′ ≜ {y−y1 : y ∈ W}, we have:

Pr[ML(X) ∈ W ]
Pr[ML(X ′) ∈ W ]

=
pL(x|b)

pL(x − (y1 − y2)|b)

=
1
2b exp(−|x|/b)

1
2b exp(−|x − (y1 − y2)|/b)

≤ exp(|y1 − y2|/b)

≤ exp(S(f)/b) = exp(ϵC), (6)

which completes the proof of Proposition 1.
As an example, consider function f(X) =

∑
i∈I Xi/I ,

where Xi ∈ {0, 1} for every i ∈ I. From Definition 2, we have
S(f) = 1/I . We use the variance of its outcome to characterize
the L2 accuracy loss (mean square error) of the Laplace
mechanism in (4), given by Var(ML(X)) = 2/(ϵ2CI2).
This implies that a higher degree of privacy protection (i.e.,
a small ϵC) requires a larger statistical utility loss (i.e., a larger
variance Var(ML(X))).

Next we present an example to illustrate that the classical
DP privacy guarantee may not be practical for time-varying
databases, as it does not capture the impact of data freshness
on privacy leakage.

C. A Motivating Example

In this subsection, we consider an illustrative example to
motivate our alternative privacy notion.

Consider the following example.3 There are two towns: A
and B. The databases X, X ′ consist of two profiles of resident
income values of town A. There is a billionaire x′ whose
income is orders of magnitude higher than other individuals
in either town. The billionaire occasionally travels between
two towns, and the probability that the billionaire travels to the
other town after each day is 10%. An adversary wishes to track
down the current location of the billionaire. The adversary
observes the mean income w of town A sanitised by an ϵC-
DP mechanism. The result w is only published at time t = 0.
Using a Bayesian estimator, the probability of the adversary
being correct is

P (A) =
1

1 + exp(−ϵC)
. (7)

For an ϵC-DP mechanism with ϵC = 2, the attack accuracy is
as high as P (A) = 88%.

However, if the adversary obtains this message after t days
(still using the same ϵC-DP mechanism), we can express the

3Our example is the same as the motivational example in [16] except that
we consider time-varying databases.

eventual accuracy Pt(A) in the following:[
Pt(A)

1 − Pt(A)

]
=
[

P (A)
1 − P (A)

]
·
[
90% 10%
10% 90%

]t

. (8)

That is, the probability of a successful attack becomes
Pt(A) ≈ 65% when t = 3 days, Pt(A) ≈ 58% when
t = 6 days, and Pt(A) ≈ 53% when t = 10 days. Therefore,
the probability of a successful attack decreases over time and
eventually converges to 50% (which corresponds to a pure
random guess).

Moreover, the probability of a successful attack when it
receives w immediately with ϵC = 0.3 is approximately the
same as when it observes w after t = 6 days with ϵC = 2. This
shows that aging provides an alternative to increasing the noise
variance for increasing privacy protection. This motivates us
to design an age-dependent generalization that takes the data
timeliness into account in the next sections.

IV. AGE-DEPENDENT DIFFERENTIAL PRIVACY: THE
SINGLE-QUERY CASE

In this section, we start with introducing the definition of
age-dependent differential privacy for a single-query mecha-
nism. In the age-dependent DP framework, we characterize the
privacy guarantees achieved by any DP mechanism consider-
ing data freshness and the temporal correlation.

A. Definitions

Throughout Section IV, we focus on single-query (time-
invariant) mechanisms M : X → Y , where X =

∏
i∈I Xi

denotes the state space of an aggregate database (at a specific
time instance) and Y is the set of all possible outcomes.
In Section V, we will provide an extension to multi-query
mechanisms.

We first formally introduce age-dependent DP under the
single-query case:

Definition 4 (Age-Dependent Differential Privacy): A
single-query mechanism M is (ϵ, t)-age-dependent DP for
a given random process {Xt}, if, for any pair X, X ′ ∈ X
which differ only in one user’s data, the following is true:

Pr[M(X0) ∈ W|Xt = X]
≤ exp(ϵ)Pr[M(X0) ∈ W|Xt = X ′], ∀W ⊂ Y ,

(9)

where the probability takes into account the randomness of
both the output of mechanism M and the stochastic process
of {Xt}t∈N.

Different from classical DP (Definition 1), age-dependent
DP (Definition 4) also accounts for the evolution of the
stochastic process {Xt}t∈N. This also implies that the clas-
sical ϵC-DP is a special case of the age-dependent DP, i.e.,
(ϵC , t = 0)-age-dependent DP. Due to the time homogeneity
of mechanism M and the process {Xt}t∈N, inequality (9) still
holds when we replace X0 and Xt in (9) by Xk and Xk+t,
respectively, for any k ∈ N.

In (9), we interpret t as the age of the output M(X0).
In particular, for a process {Xt}t∈N satisfying some ergodicity

Authorized licensed use limited to: Northwestern University. Downloaded on April 29,2025 at 02:36:43 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: AGE-DEPENDENT DIFFERENTIAL PRIVACY 1305

or mixing properties (see Appendix A), we have Pr[X0|Xt] ≈
π(X0) as t increases (i.e., X0 becomes more outdated).
In other words, as the output data M(X0) gets outdated, the
probabilities conditional on Xt = X and Xt = X ′ become
indistinguishable and hence mechanism M asymptotically
becomes perfectly privacy-preserving.

To better understand the connection between DP and age-
dependent DP, we introduce a heuristic way to guarantee
age-dependent DP by artificially aging. The main idea is to
artificially age the input by t units of time and sequentially
apply an ϵ-DP mechanism. That is, when provided with an
input dataset X , we generate a new dataset X−t by employing
the reversed process P̂t, i.e., X−t ∼ P̂t(X, ·).

Definition 5 (Artificially Aging Mechanism): The
artificially aging mechanism M t

A associated to any arbitrary
mechanism M and a given random process {Xt}, is given by

M t
A(X) ≜ M(X−t), (10)

where X−t is a random database generated by employing the
reversed process P̂t, i.e., X−t ∼ P̂t(X, ·).

The following result formally establishes the connection.
Corollary 1: An aging mechanism M t

A is ϵC-DP if and
only if M is (ϵC , t)-age-dependent DP.

B. Properties

Age-dependent DP satisfies some basic properties of
the classical DP, including post-processing resilience (see
Appendix B). In this subsection, we will focus on presenting
analytical results to understand how privacy guarantees evolve
over time.

1) Total Variation Distance: To understand the temporal
correlation of databases, we first present an important quantity
to measure the statistical distance between two probability
distributions.

Definition 6 (Total Variation Distance): The total varia-
tion distance between probability distributions µ and π on
a finite set F is defined as

δ(µ, π) = max
A⊂F

|µ(A) − π(A)| =
1
2

∑
A∈F

|µ(A) − π(A)|.

(11)

To derive age-dependent privacy guarantees for all mecha-
nisms that satisfy the classical DP, we also need the following
definition:

Definition 7 (Maximal Total Variation Distance): The
maximal total variation distance ∆(t) (between any user’s
two t-step transition probability distributions of the reversed
process) is defined as

∆(t) ≜ max
i∈I

max
xi,0,x′

i,0∈Xi

δ
(
P̂i,t(xi,0, ·), P̂i,t(x′

i,0, ·)
)

, ∀t ∈ N,

(12)

where P̂i,t(·, ·) represents the t-step transition probability
matrix of user i’s reversed process.

We will use ∆(t) to characterize the privacy risk, i.e., ϵ
in Definition 4. A wide range of stochastic processes have
a diminishing value of ∆(t) over time at some specific rate.

As an example, a wide range of Markov chains satisfy the
following related and extensively studied property [65], [66]:

Definition 8 (Geometric Ergodicity [65]): A Markov chain
{Xt}t∈N with stationary distribution π(·) has the geometric
ergodicity property if, for all t ∈ N and Y ∈ X ,

|Pr(Xt = Y |X0 = X) − π(Y )| ≤ a(X) · ρ−t, (13)

for some function a(X) and some decay coefficient ρ < 1.
In addition to ergodicity, another related notation with a

potential property leading to a diminishing value of ∆(t) is
mixing. We present details in Appendix A.

2) Mechanism-Dependent Guarantee: We start with the fol-
lowing theorem to characterize the formal privacy protection
guarantee:

Theorem 1 (Mechanism-Dependent Guarantee): If a mech-
anism M is ϵC-DP, then it is also (ϵ(t), t)-age-dependent DP,
where ϵ(t) satisfies

ϵ(t) = ln (1 + ∆(t) · (exp(ϵC) − 1)) , ∀t ∈ N. (14)

Theorem 1 characterizes an age-dependent privacy guaran-
tee based on the maximal total variation distance ∆(t) of
the underlying process and the classical DP guarantee ϵC .
The proof of Theorem 1 mainly involves showing that two
transition probability matrices that are close (i.e., ∆(t) is
small) lead to a bounded difference in the likelihoods of the
observed value. We defer the complete proof to Section IV-C.

The significance of Theorem 1 is two-fold. First, it estab-
lishes the connection between the privacy guarantees achieved
by classical DP and age-dependent DP. This provides a
methodology to attain privacy guarantees in (14), by combin-
ing noise injection and aging. Second, it indicates that we only
need the maximal total variation distance ∆(t) of the process
{Xt}t∈N to characterize such a bound. Estimating ∆(t) is
not challenging in practice, and it can be done, for example,
by referring to [72]. Furthermore, based on the Pinsker’s
inequality, we can bound the total variation distance between
any two probability distributions µ and π the Kullback–Leibler
(KL) divergence [73]:

δ(µ, π) ≤
√

1
2
DKL(µ ∥ π). (15)

It is worth noting that the KL divergence is a well-studied
metric, and its estimation has been extensively explored in
the literature (e.g., [74]). Note that Theorem 1 holds for any
arbitrary stationary processes {Xt}t∈N. When a process has
some additional properties, such as satisfying certain mix-
ing or geometric ergodicity (aperiodic and recurrent Markov
chains on finite state spaces) properties, ∆(t) converges to
zero at a certain rate (e.g., a geometric rate). In this case,
since limx→0 ln(1 + x)/x = 1, (14) further implies that the
age-dependent privacy risk ϵ(t) converges to zero at the same
rate as (exp(ϵC)− 1)∆(t). Finally, as we will demonstrate in
Section VI, aging along with noise injection may not neces-
sarily reduce the data utility comparing with noise injection
alone.

It is also possible to achieve age-dependent DP without
requiring mechanism M to be ϵC-DP, as we show next.
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Theorem 2 (Mechanism-Independent Guarantee): If each
agent i’s time-varying database is an irreducible, aperiodic,
and reversible Markov chain {xi,t}t∈N, any mechanism M
is (ϵ(t), t)-age-dependent DP satisfying ϵ(t) = O(λt

∗). Here,
λ∗ = max{λ1, |λm−1|}, where λ1 and λm−1 are specific
eigenvalues of P (see Lemma 3 in Appendix A).

We present the proof of Theorem 2 in Appendix D. In The-
orem 2, we use a different proof technique from the one we
use in Theorem 1, which cancels out the impact of the degree
of DP achieved by M .

Theorem 2 implies that, even without noise injection, using
aging alone can ensure an age-dependent privacy guarantee
with a similar convergence rate.

C. Proof of Theorem 1

In this subsection, we present the complete proof of Theo-
rem 1. We first introduce lemmas to characterize the change
in expected value when one introduces a small change in
probability distribution (based on the maximal total variation
distance ∆(t)). We then bound the privacy risk ϵ(t) based on
the privacy risk of DP, ϵC , and ∆(t).

We start with an expected value version of a DP-like
probability distribution bound:

Lemma 1: If M is ϵC-DP, then for any zi, z
′
i ∈ Xi, we have

Ez−i∼P̂−i,t(x−i,·)[Pr(M(zi, z−i) ∈ W)]

≤ exp(ϵC)Ez−i∼P̂−i,t(x−i,·)[Pr(M(z′i, z−i) ∈ W)], (16)

where P̂−i,t(x−i, z−i) =
∏

j ̸=i P̂t(xj , zj) for all t ∈ N, x−i,
z−i, and i ∈ I.

We present the proof in Appendix C.
For presentation simplicity, we define f(zi) =

Ez−i∼P̂−i,t(x−i,·)[Pr(M(zi, z−i) ∈ W)] and p(zi) =
P̂i,t(x′

i, zi) for all i ∈ I. We set zi ≜ arg minzi∈Xi
f(zi) and

z̄i ≜ arg maxzi∈Xi
f(zi). Therefore, Lemma 1 implies that

Corollary 2: If M is ϵC-DP, then every zi ∈ Xi satisfies
1 ≤ f(zi)/f(zi) ≤ exp(ϵC).

The following Lemma 2 characterizes an upper bound for
the change in the expected value of xi ∈ Xi when the
probability distribution has a small change (characterized by
the maximal total variation distance ∆(t)):

Lemma 2: Assume that every xi ∈ Xi satisfies xi ≤
xi ≤ x̄i. For a probability distribution p(xi) satisfying∑

xi∈Xi
p(xi) = 1, consider the following optimization

problem:

max
δ={δ(xi):xi∈Xi}

∑
xi∈Xi

(p(xi) + δ(xi))xi, (17a)

s.t.
1
2

∑
xi∈Xi

|δ(xi)| = ∆(t),
∑

xi∈Xi

δ(xi) = 0.

(17b)

The optimal solution is δ∗(x̄i) = ∆(t), δ∗(xi) = −∆(t), and
δ∗(x′

i) = 0 for all other x′
i ∈ Xi. The maximal objective value

of (17) is ∑
xi∈Xi

p(xi)xi + ∆(t)(x̄i − xi). (18)

Proof: We prove Lemma 2 by contradiction. Suppose that
there exists an optimal solution δ∗ such that δ∗(xi) ̸= 0 for a
xi /∈ {x̄i, xi}. We consider the following two cases:

• Suppose that there exists an x′
i /∈ {x̄i, xi} such that

δ∗(x′
i) > 0. We can always construct a new solution δ̄ =

{δ(xi) : xi ∈ Xi} such that δ̄(x′
i) = 0, δ̄(x̄i) = δ∗(x′

i) +
δ∗(x̄i), and δ̄(xi) = δ∗(xi) for all other xi /∈ {x̄i, x

′
i}.

It is easy to check that δ̄ is feasible. In addition, since
x′

i < x̄i, we see
∑

xi∈Xi
xiδ

∗(xi) <
∑

xi∈Xi
xiδ̄(xi).

Therefore, it contradicts with existence of x′
i /∈ {x̄i, xi}

such that δ∗(x′
i) > 0 at the optimal solution.

• Suppose that there exists an x′
i /∈ {x̄i, xi} such that

δ∗(x′
i) < 0. We can always construct a new solution

δ̄ = {δ̄(xi) : xi ∈ Xi} such that δ̄(x′
i) = 0, δ̄(xi) =

δ∗(x′
i) + δ∗(xi), and δ̄(xi) = δ∗(xi) for all other xi /∈

{xi, x
′
i}. It is easy to check that δ̄ is feasible. In addition,

since xi < x′
i, we see

∑
i∈I xiδ

∗(xi) <
∑

i∈I xiδ̄(xi).
Therefore, it contradicts with the existence of x′

i /∈
{x̄i, xi} such that δ∗(x′

i) < 0 at the optimal solution.
Combining the above two cases, we show that all optimal
solutions δ∗ satisfy δ∗(x′

i) = 0 for all x′
i /∈ {x̄i, xi}.

It is readily verified that such an optimal solution should be
δ∗(x̄i) = ∆(t), δ∗(xi) = −∆(t), which proves Lemma 2.

That is, for any probability distribution p′ on Xi, such that
that total variation distance satisfies δ(p, p′) ≤ ∆(t), Lemma 2
provides an upper bound of

∑
xi∈X p′(xi)xi in (18).4

For all zi ∈ Xi, all pairs of x′
i and xi ∈ X , and all P̂i,t with

the maximal total variation distance given in (12), it follows
that, for all users i,

ln
(

Pr[M(X0) ∈ W|Xt = X]
Pr[M(X0) ∈ W|Xt = X ′]

)
= ln

(
Ezi∼P̂i,t(xi,·)[f(zi)]

Ezi∼P̂i,t(x′
i,·)

[f(zi)]

)
(a)

≤ ln

(∑
zi∈Xi

p(zi)f(zi) + ∆(t)f(z̄i) − ∆(t)f(zi)∑
zi

p(zi)f(zi)

)
(b)

≤ ln

( ∑
zi∈Xi

p(zi)f(zi) + ∆(t)f(z̄i) − ∆(t)f(zi)∑
zi∈Xi

p(zi)f(zi) −
∑

zi∈Xi
p(zi)(f(zi) − f(zi))

)

= ln
(

∆(t)f(z̄i) + (1 − ∆(t))f(zi)
f(zi)

)
= ln

(
1 +

∆(t)f(z̄i) − ∆(t)f(zi)
f(zi)

)
(c)

≤ ln (1 + ∆(t)(exp(ϵC) − 1)) , (19)

where (a) is from Lemma 2, (b) is due to the fact that a/b <
(a−c)/(b−c) when a > b > c > 0, and (c) is from Corollary
2. This completes the proof of Theorem 1.

D. Summary

This section introduced the notion of age-dependent DP.
We characterized how the age-dependent privacy risk evolves

4In this case, (18) is only an upper bound, but not necessarily the same
maximal value, as we still need to consider the non-negative constraint that
1 ≥ p′(xi) ≥ 0 for all xi ∈ Xi, which is not captured by Lemma 2.
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Fig. 2. Illustration of (a) privacy risks of age-dependent DP and (b) age of
information for a multi-query mechanism.

over time and how to achieve age-dependent DP by exploiting
the classical DP and aging. Our analysis reveals that the key
factor of {Xt}t∈N that determines the decaying rate is ∆(t).
The analysis in this section is only applicable to a single-
query mechanism M , whereas the deployment of real-time
applications in practice relies on publishing data updates
frequently. This motivates us to study the more general case
of multiple queries next.

V. AGE-DEPENDENT DIFFERENTIAL PRIVACY:
SEQUENTIAL COMPOSITION

In this section, we introduce a more general notion of
age-dependent DP for multi-query mechanisms (e.g., for
real-time applications that publish updates frequently) and
present a sequential composition theorem. We will further
discuss how to best trade off privacy and utility (characterized
by age of information).

A. The General Definition and Composition

In a multi-query scenario, the history of all published out-
puts are visible to the adversary, which brings a new challenge
in characterizing the privacy risk over time. A fundamental
problem in the DP literature is how the overall privacy level
degrades when combining multiple queries, where each query
meets a certain DP guarantee. Such a combination of multiple
queries is known as composition. The characterization of
classical sequential composition results typically relies on the
total number of queries (e.g., [63]). As an example, Dwork in
[3] showed that:

Proposition 2 (Basic Composition [3]): Let Mn be an
ϵC,n-DP mechanism for all n ∈ {1, . . . , N}. The composition
M ′(X) defined as M ′(X) = {Mn(X)}N

n=1 is ϵC-DP for
ϵC =

∑N
n=1 ϵC,n.

Proposition 2 can only provide a loose privacy guarantee
in our case since it does not capture the impacts of data
freshness and the temporal correlation. Another challenge of
analyzing time-varying databases comes from the need to
consider timings of both inputs and outputs: how stale is each
input database used for each query and when each output is
published.

We construct a multi-query mechanism based on incorpo-
rating an aging policy and a publishing policy into potentially
infinitely many single-query mechanisms. The aging policy
determines the age of each input dataset, while the publishing
policy dictates when the outcome of each individual query
mechanism should be made public. Specifically, letting n

denote the query index, we use A = {An}n∈N to denote the
aging policy, where An indicates the age of the n-th input
database used for the n-th query. We further use S = {Sn}n∈N
to denote the publishing policy, i.e., Sn represents the time
to publish the n-th outcome. That is, Sn − An representing
the time stamp of the input dataset used for the n-th query
as shown in Fig. 2, and the outcome of the n-the query is
denoted by Mn(XSn−An

). Given a publishing policy, we call
the time interval [Sn, Sn+1) as the n-th epoch.

Further, given the aging policy and the publishing policy,
let Ht be the history of all used input datasets up to time t,
given by

Ht(S,A) ≜ {XSn−An
: n ∈ N, Sn ≤ t}, (20)

and let

Nt ≜
∑
n≥0

1(Sn ≤ t) (21)

be the number of queries Nt up to time t. We now define
the general class of (potential multi-query) mechanisms as
follows:

Definition 9 (Multi-query Mechanism): A multi-query
mechanism Mt is given by

Mt(Ht(S,A)) ≜ {Mn(XSn−An
) : n ∈ N, Sn ≤ t}, (22)

where Mn : X → Y is a single-query mechanism used for the
n-th query.

Note that we label the multi-query mechanism with a time
stamp t so that Mt(Ht(S,A)) stands for the history of all
outputs published no later than time t. We next present the
general definition of age-dependent DP associated to Mt,
characterized by not only t and ϵ, but also the publishing and
the aging policies:

Definition 10 (Age-Dependent Differential Privacy): A
multi-query mechanism Mt is (ϵ(t), t,S,A)-age-dependent
DP for a given random process {Xt} if for all t, the following
inequality holds:

Pr[Mt(Ht(S,A)) ∈ Wt|Xt = X]
≤ exp(ϵ)Pr[Mt(Ht(S,A)) ∈ Wt|Xt = X ′], (23)

for each pair X, X ′ ∈ X which differ only in one user’s data,
and for all output histories Wt ⊂ YNt . We let S0 = 0 and
ϵ(t) = 0 for all t ∈ [0, S1).

To characterize how the information freshness evolves over
time given S and A, we consider the following definition of
age of information:

Definition 11 (Age of Information [2]): Given the publish-
ing policy S and the aging policy A, we define age of
information AoI(t) as

AoI(t + 1) ≜

{
An, if t + 1 = Sn,

AoI(t) + 1, otherwise.
(24)

In other words, age of information represents the time
elapsed since the time stamp of the input database for the
most recently published output. It has been used to estimate
the value (e.g., accuracy) of the output of Mn(XSn−An) [2].
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Before we present the formal characterization of how the
age-dependent privacy guarantee evolves over time for any
multi-query mechanisms, we present an illustrative example
of what the age of information in (24) and the privacy risk
guarantees may look like. As shown in Fig. 2, the privacy risk
ϵ(t) decreases within each epoch (for any ∆(t) diminishing
in t) and spikes at the beginning of the next epoch. Therefore,
we define ϵ(Sn) as the in-epoch peak privacy risk for the n-th
epoch. On the other hand, the age of information increases
within each epoch.

Theorem 3 (Composition): If the process {Xt}t∈N is
Markovian, for any multi-query mechanism Mt given in (22),
in which each single-query mechanism Mn is ϵC,n-DP for all
n ∈ N, then mechanism Mt is (ϵ(t), t,S,A)-age-dependent
DP, where

ϵ(t) = ln (1 + ∆(t − Sn + An)
× (exp(ϵC,n + ϵ(Sn − An)) − 1)) , (25)

for all t ∈ [Sn, Sn+1), n ∈ N, where ∆(t) is given in (12).
We present the proof of Theorem 3 in Appendix E. The

result in Theorem 3 has a recurrent form: the privacy risk ϵ(t)
in the n-th epoch (i.e., the time interval [Sn, Sn+1) depends
on some previous in-epoch privacy risk, ϵ(Sn −An)), as well
as the privacy risk of the n-th (single-query) mechanism,
ϵC,n. In addition, if ∆(t) decreases in t (as for aperiodic and
irreducible Markov chains), then ϵ(t) decreases in t during
each epoch [Sn, Sn+1), as shown in Fig. 2.

Intuitively, similar to Theorem 1, the maximal total variation
distance ∆(t − Sn + An) characterizes the impact of data
timeliness on the privacy guarantee. Theorem 1 generalizes the
result in Proposition 2, as (25) becomes ϵ(t) = ϵC,n + ϵ(Sn −
An) when ∆ (t − Sn + An) = 1 (as in a static database).
This result in fact coincides with the basic composition result
(for static databases). On the other hand, several existing
studies have provided state-of-the-art improvements on com-
position (e.g., [25], [63]) by considering more sophisticated
composition techniques (e.g. adaptive composition as in [25]).
Hence, it is also possible to obtain a tighter bound than (25)
by combining sophisticated composition techniques and the
impact of data timeliness, which will be left for future work.

B. Tradeoff Between Privacy and Utility

Theorem 3 only characterizes a privacy risk for each specific
time. To facilitate our analysis of tradeoffs, we need another
metric to capture the overall privacy protection performance
over the entire time horizon. We thus consider the (overall)
peak privacy risk:5

ϵ∗ ≜ sup
n

ϵ(Sn). (26)

To make the optimal tradeoff between the privacy and utility,
we let S̄n ≜ Sn+1−Sn denote the inter-publish time between
the n-th and the (n + 1)-th updates, for all n ∈ N.

5We note that the literature of age of information has extensively used peak
age of information as their overall performance metric as well. [2].

We further define a (noise-aware) peak age penalty, denoted
by

f(max
t

AoI(t), ϵC) = f(A + S̄, ϵC), (27)

where f(t, ϵ) is increasing in t and decreasing in ϵ. We
note that the peak age satisfies maxt AoI(t) = A + S̄.
Specifically, from [2, Sec. II-B], the peak age is given by the
sum of the expected interarrival time (S̄ in our case) and the
expected system time (A in our case). Function f measures
the accuracy loss of Mt(Ht(SE ,AE)) due to data staleness
(characterized by the peak age of information A + S̄) and the
injected noise (characterized by ϵC).

We consider the following optimization problem:

min sup
n∈N

ϵ(Sn) (28a)

s.t. f(An + S̄n, ϵC,n) ≤ f̄ , ∀n ∈ N, (28b)
var. ϵn ≥ 0, An ≥ 0, S̄n ≥ 0, ∀n ∈ N, (28c)

where f̄ represents the maximum allowable penalty defined in
(28b). We introduce (28b) to facilitate the trade-offs between
privacy and utility. The challenge in solving Problem (28)
mainly lies in the difficulty of dealing with the recurrent form
of ϵ(Sn). To optimally solve Problem (28), we will show in
the following that a specific class of solutions (S,A, ϵ) are
optimal. We can then express sup ϵ(Sn) in a closed form.

Specifically, we consider the following simplified mecha-
nism, defined as:

Definition 12 (Simplified Multi-Query Mechanism): A
simplified multi-query mechanism (SE = {SE

n }n∈N,AE =
{AE

n }n∈N) is a mechanism in which

AE
n = A, SE

n+1 − SE
n = S̄, and ϵC,n = ϵC , ∀n ∈ N,

(29)

for some (A, S̄, ϵC).
In other words, a simplified mechanism publishes updates

periodically, ages updates equally, and uses the same
single-query DP mechanism for each update. By exploiting the
monotonicity of ϵ(Sn) in n and the existence of an optimal
solution that have identical values of (A∗

n, S̄∗
n, ϵ∗C,n), we can

prove the existence of an optimal solution satisfying (29) in
the following theorem:

Theorem 4: If the process {Xt}t∈N is Markovian, and
∆(t) decreases in t, then there exists an optimal solution to
(28) that is a simplified multi-query mechanism, i.e., A∗

n =
A∗, S̄∗

n = S̄∗ and ϵ∗C,n = ϵ∗C for some (A∗, S̄∗, ϵ∗C).
We present the complete proof of Theorem 4 in Appendix G.

Theorem 4 indicates that there is no need to vary polices
across different epoches, and hence we only need to focus
on optimizing three variables (A, S̄, ϵC).

In light of Theorem 4, the following shows the peak privacy
risk in (26) for a simplified multi-query mechanism:

Proposition 3 (Peak Privacy Risk): If the process {Xt}t∈N
is Markovian and ∆(t) decreases in t, for a simpli-
fied multi-query mechanism Mt(Ht(SE ,AE)) with an
equal-spacing policy (SE ,AE) and each single-query mech-
anism Mn being ϵC-DP for all n ∈ N , the peak privacy risk
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Fig. 3. An illustrative example of the privacy risk ϵ(t) and the peak privacy
risk for equal-spacing policies. We set A = 2, S̄ = 4, and ϵC = 0.5.

is given by the unique fixed point satisfying

ϵ∗ = ln
(

1 +
∆(A) · (exp(ϵC) − 1)

1 − ∆(S̄) exp(ϵC)

)
, (30)

whenever

∆(S̄) exp(ϵC) < 1. (31)

Furthermore, the following fixed-point iteration constitutes a
contraction mapping:

ϵ(Sn+1 − A)
= ln

(
1 + ∆(S̄) · (exp(ϵC) exp(ϵ(Sn − A)) − 1)

)
. (32)

From (30), we note that ∆(S̄) exp(ϵC) < 1 is the condition
for the existence of a finite value of ϵ∗. That is, when the
inter-publishing time S̄ is sufficiently long and the privacy
leakage for each query ϵC is sufficiently small, then such a
unique fixed point in (30) exists. Otherwise, the privacy risk
ϵ(Sn) diverges to infinity.

Proof: First, define

F (ϵ) ≜ ln
(
1 + ∆(S̄) · (exp(ϵC) exp(ϵ) − 1)

)
. (33)

It follows that

0 <
dF (ϵ)

dϵ
=

∆(S̄) · exp(ϵC) exp(ϵ)
∆(S̄) · (exp(ϵC) exp(ϵ) − 1) + 1

< 1, (34)

which implies that F (ϵ) has a Lipschitz constant 0 < L < 1.
Therefore, (32) is a contraction mapping. This implies that,
for a simplified multi-query mechanism Mt(Ht(SE ,AE)),
lim→∞ ϵ(Sn − A) converges and so does lim→∞ ϵ(Sn). Let
ϵ∗ = limn→∞ ϵ(Sn) and ϵ′ ≜ limn→∞ ϵ(Sn−A). Substituting
Sn and Sn+1 − A into t in (25), we have

exp(ϵ∗) − 1
exp(ϵ′) − 1

=
∆(A)
∆(S̄)

. (35)

Following Theorem 3, we have

exp(ϵ∗) − 1
= ∆(A)(exp(ϵC) exp(ϵ′) − 1)

= ∆(A)
(

exp(ϵC)
(

1 +
∆(S̄)
∆(A)

(exp(ϵ∗) − 1)
)
− 1
)

,

(36)

which implies that

(exp(ϵ∗) − 1)(1−∆(S̄) exp(ϵC)) = ∆(A)(exp(ϵC) − 1)

=⇒ exp(ϵ∗) = 1 +
∆(A)(exp(ϵC) − 1)
1 − ∆(S̄) exp(ϵC)

. (37)

We note that ϵ(t) ≥ 0 for all t ≥ 0 from Definition 10.
Therefore, from (33), we must have ∆(A)(exp(ϵC)−1)

1−∆(S̄) exp(ϵC)
≥ 0,

implying (31).
We completed the proof.
We present an illustration in Figure 3. We observe that the

in-epoch peak privacy risk ϵ(Sn) increases in n and converges
to the fixed point in (30). It only takes 5 epoches for the
privacy risk to approximately attain the fixed point.

C. Optimization Algorithms

In the following, we consider an optimization problem that
accounts for tradeoffs between privacy and utility. Since many
practical stochastic processes may have a geometrically decay-
ing ∆(t) as we have shown in Appendix A and Section IV,
we are motivated to focus on the following specific form:

∆(t) = c · ρt, ∀t ∈ N, (38)

for coefficients ρ ∈ (0, 1) and c ≥ 1.
Instead of (28), we consider the following peak age risk

minimization problem:

min ln
(

1 +
cρA(exp(ϵC) − 1)
1 − cρS̄ exp(ϵC)

)
(39a)

s.t. cρS̄ exp(ϵC) < 1, (39b)
f(A + S̄, ϵC) ≤ f̄ , (39c)

var. ϵC ≥ 0, A ≥ 0, S̄ ≥ 0, (39d)

where the constraint in (39b) is from (31) in order to make
sure that the denominator of the term in (39a) remains positive
and the peak age-of-information penalty constraint in (39c)
serves the purpose of making tradeoffs. Note that we can
drop constraint S̄ ≥ 0 because (39b) implies that S̄ must
be positive. For trackability in (39), we relax the integer
constraints on A and S̄. After obtaining the optimal solution
(ϵ∗C , A∗, S̄∗) to (39), we can round A∗ and S̄∗ to their
respective nearest integers to obtain an approximate solution.

Proposition 4: When the constraint, A ≥ 0, is not binding,
the optimal solution to Problem (39) satisfies

ρS̄ exp(ϵC) =
1
2c

, (40)

or equivalently, ln(ρ−1)S̄ = ln(2c) + ϵC .
This shows that when aging is used (A > 0), S̄ should

decrease as ϵC decreases. We prove Proposition 4 by exploit-
ing the Karush–Kuhn–Tucker conditions of Problem (39), and
present the proof in Appendix F.

In light of Proposition 4, we solve the reduced optimization
problems of (39) in the following two cases, depending on
whether constraint A ≥ 0 in (39) is binding or not:

1) When the Constraint A ≥ 0 Is Not Binding: Substituting
(40) into Problem (39), we have the following equivalent
reformulated problem:

min ρA · (exp(ϵC) − 1) (41a)

s.t. ln(ρ−1)S̄ = ln(2c) + ϵC , (41b)
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Algorithm 1 Heuristic Solution to (41)

1 Initialize ϕ, K, and ϵ̄; for k = {1, 2, . . . ,K} do
2 Set ϵC(k) = ϵ̄k

K and
S̄(k) = (ln(2c) + ϵC(k))/ ln(ρ−1);
// Exhaustive search for ϵC

3 Set AL = 0 and AH = Ã, where Ã satisfies that
limϵC→∞ f(Ã, ϵC(k)) = f̄ ;

4 while AH − AL ≤ ϕ do
// Bisection search for A

5 if f(A + S̄, ϵC(k)) ≤ f̄ then
6 Set AL = A(k);
7 else
8 Set AH = A(k);
9 end

10 end
11 end
12 Select k∗ = arg min ρA(k) · (exp(ϵC(k)) − 1);
13 return the solution {ϵC(k∗), A(k∗), S̄(k∗)}.

f(A + S̄, ϵC) ≤ f̄ , (41c)
var. ϵC ≥ 0, A ≥ 0, S̄ ≥ 0. (41d)

Problem (41) is a convex problem whenever f(t, ϵC) is convex
in (t, ϵC), in which case Problem (41) can be readily solved
by standard solvers (e.g., CVX [70]). When f(t, ϵC) is non-
convex, we present a heuristic algorithm to solve Problem
(41) as shown in Algorithm 1. The computational complexity
of Algorithm 1 is O(K log(1/ϕ)), where K comes from
the exhaustive search for ϵC and log(1/ϕ) comes from the
bisection search for A.

2) When the Constraint A ≥ 0 Is Binding: Substituting
A = 0 into Problem (39), we have the following equivalent
reformulated problem:

min
exp(ϵC) − 1

1 − cρS̄ exp(ϵC)
(42a)

s.t. cρS̄ exp(ϵC) < 1, (42b)

f(S̄, ϵC) ≤ f̄ , (42c)

var. ϵC ≥ 0, S̄ ≥ 0. (42d)

We solve Problem (42) in Algorithm 2, in which we set
A = 0 and search for the optimal ϵC exhaustively and use a
bisection search for the optimal S̄. Specifically, for each ϵC ,
we use a bisection method to search for the corresponding
S̄ such that f(S̄, ϵC) = f̄ . We then select ϵC and the
corresponding optimal S̄ to attain the minimal value of the
objective in (42a). Similarly, the complexity of Algorithm 2
is also O(K log(1/ϕ)).

D. Possibility of No Tradeoffs

Intuitively, increasing privacy should lead to a decrease in
data utility (measured by an increase in the peak age penalty
function f ). However, unlike the single-query mechanism, this
tradeoff between privacy and utility in the multi-query scenario
may not exist, i.e., there may be cases where increasing the

Algorithm 2 Heuristic Solution to (42)

1 Initialize ϕ, K, and ϵ̄;
2 for k ∈ {1, 2, . . . ,K} do

// Exhaustive search for ϵC

3 Set ϵC(k) = kϵ̄/K;
4 Set S̄L = 0 and S̄H = B̄, where B̄ satisfies that

limϵC→∞ f(B̄, ϵC) = f̄ ;
5 while S̄H − S̄L ≤ ϕ do

// Bisection search for S̄
6 if f(S̄, ϵC) ≤ f̄ then
7 Set S̄L = S̄(k);
8 else
9 Set S̄H = S̄(k);

10 end
11 end
12 end
13 Select k∗ = arg min exp(ϵC(k))−1

1−cρS̄(k) exp(ϵC(k))
;

14 return the solution {ϵC(k∗), A = 0, S̄(k∗)};

bound on the penalty (f̄ ) does not lead to greater peak privacy
risk. We provide a sufficient condition for the non-existence
of a tradeoff in the following corollary:

Corollary 3: If f
(

ln(exp(ϵC)−1)+ϵC

ln(ρ−1) + a, ϵC

)
decreases in

ϵC for any coefficient a, then an increase in f̄ does not
decrease the minimal objective value in Problem (39).

We present the proof of Corollary 3 in Appendix H. The
main idea of the proof involves showing the possibility of
constructing a new solution f(A′ + S̄′, ϵ′C) < f(A + S̄, ϵC)
while maintaining the peak privacy risk under the condition
in Corollary 3. Corollary 3 implies that sacrificing one of
the metrics (privacy or utility) does not necessarily improve
the performance of another. In Section VI-A, we will present
concrete examples that satisfy and violate the condition in
Corollary 3.

VI. NUMERICAL AND EXPERIMENTAL EXAMPLES

In this section, we consider two concrete examples of
modeling the process {Xt}. We first consider a two-state
Markov chain, to study the tradeoffs between age-dependent
DP and accuracy loss achieved by our proposed scheme (by
aging and noise injection) and the classical scheme. We further
consider an experiment of our proposed scheme applied to
electricity consumption data. We also consider an autoregres-
sive model and show how our analysis can also be extended
to continuous-valued processes in Appendix I.

A. Two-State Markov Chain

In this subsection, we first consider the following example
with two states [18]:

Example 1: Consider a system of I agents and two loca-
tions. We use xi,t ∈ {−1, 1} to denote the location at time t
of agent i and let Xt = {xi,t}i∈I . Each agent i’s time-varying
database is given by an identical discrete-time Markov chain,
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with the following transition probability matrix:6

P =
(

1 − p p
q 1 − q

)
, (43)

which can be verified to be reversible. Assuming |1−p−q| <
1,7 it follows that the stationary distribution is π(0) = q

p+q

and π(1) = p
p+q , and the t-step transition probability matrix

is:

Pt =
1

p + q

(
q p
q p

)
+

(1 − p − q)t

p + q

(
p −p
−q q

)
. (44)

It follows that

∥Pt,−1 − π∥ =
p

p + q
|1 − p − q|t, (45)

∥Pt,1 − π∥ =
q

p + q
|1 − p − q|t, (46)

where Pt,x(y) = Pt(x, y) for all x, y ∈ {−1, 1}. Therefore,
the maximal total variation distance satisfies

∆(t) = |1 − p − q|t, ∀t ∈ N. (47)

Such a two-state Markov chain model may capture several
practical scenarios, e.g., i) the status of a home being empty or
not, ii) a user being on a road at one of two locations. In the
latter example, an analyst aims at designing a mechanism
to estimate the current aggregate traffic congestion levels of
two locations (e.g., to estimate the traffic conditions), whereas
users may try to preserve their own location privacy.

We consider a common single-query aggregation mecha-
nism M that estimates the average value of xi,t across all
users, e.g., to analyze the overall traffic conditions:

M(X0) =
1
I

∑
i∈I

xi,0 + n, (48)

where n is a Laplace( 1
ϵCI ) random variable (which ensures

M to be ϵC-DP by Proposition 1). Based on (48), we consider
two utility metrics:8

• Mean-Square Error: We assume no prior information is
available and simply use the given released data M(X0)
as the estimate. The mean-square error (MSE) is given
by [69]:

fMSE(t, ϵC) = E

(M(X0) −
1
I

∑
i

xi,t

)2
 . (49)

Such a mean-squared (estimation) accuracy loss is a
commonly used age penalty function (e.g., [2], [35]).

• Failure Rate: Motivated by the age of incorrect informa-
tion proposed in [58], we consider a binary estimator.

6We drop the index i in the matrices for Example 1, as agents’ time-varying
databases are identical.

7If p = q = 0, the Markov chain is reducible. If p = q = 1, the Markov
chain is periodic.

8It is worth noting that analytically quantifying the benefits of our proposed
mechanism compared to the noise only benchmark in the general setting
is highly challenging. This challenge arises due to the significant disparity
between the metrics used to quantify “data utility” and “accuracy,” resulting in
diverse observations across different settings. Consequently, studying utility-
privacy tradeoffs and their corresponding benefits usually requires an approach
tailored to each specific case.

Specifically, based on the outcome of the mechanism
M(X0), we seek to determine whether

∑
i xi,t/I ≥ 0 is

true (e.g., whether a the traffic at a specific location is
congested). Let zt be an indicator random variable for
the event that

∑
i xi,t/I ≥ 0. The maximum likelihood

estimate of zt is given by:

gMLE(M(X0)) ≜ arg max
x∈{0,1}

Pr[zt = x|M(X0)]. (50)

We use the following definition of the failure rate (con-
ditional on the initial state X0) as our noise-aware age
penalty:

fMLE(t, ϵc) = Pr[gMLE(M(X0)) ̸= zt|X0]. (51)

1) The Single-Query Case: Combining (47) and Theorem 2,
we can characterize the achievable privacy guarantee in the
single-query case as follows:

Corollary 4: Any ϵC-DP single-query M under (48) is
(ϵ(t), t)-age-dependent DP, where ϵ(t) satisfies

ϵ(t) = ln
(
1 + |1 − p − q|t(exp(ϵC) − 1)

)
, ∀t ∈ N. (52)

2) The Multi-Query Case: We further consider a
multi-query mechanism with an equal-spacing policy
described in (29). The privacy guarantee result follows from
Proposition 5:

Corollary 5: Any ϵC-DP multi-query Mt based on (48)
is (ϵ(t), t,S,A)-age-dependent DP with a peak privacy risk
given by

ϵ∗ = ln
(

1 +
|1 − p − q|A · (exp(ϵC) − 1)

1 − |1 − p − q|S̄ exp(ϵC)

)
. (53)

3) Numerical Results: To understand the tradeoffs between
privacy and utility for Example 1, we present numerical results
for the mean-squared error and the failure rate scenarios in
Figs. 4 and 5, respectively.

In the mean-square error scenario, we present the accuracy
loss and privacy risk at different ages t in Figs. 4(a) and
4(b), respectively, and the tradeoffs between privacy risk and
accuracy loss in Figure 4(c). In Figure 4(a), we show that the
accuracy loss increases in t, and for a given ϵC , it converges
to an upper bound as t → ∞. This implies that aging
does not necessarily incur significant accuracy loss in terms
of the mean-square error. On the other hand, Figure 4(b)
shows that privacy risks decrease in t and converge to 0,
which is mainly because ∆(t) converges to 0. In Figure 4(c),
we compare our proposed mechanisms against a classical
noise only benchmark that only injects Laplace noise, whose
accuracy loss is given by 2/(ϵ2CI2). We show that, to achieve
an arbitrary small privacy risk, the accuracy loss incurred by
the benchmark grows unbounded. The large loss is partially
because of the lack of prior information in the considered
mean-square error scenario. Our proposed scheme combines
both aging and noise injection and is able to achieve a finite
accuracy loss, as the privacy risk approaches 0. We note that
this is partially because our age-dependent DP protects privacy
specifically from adversaries seeking to infer Xt, whereas DP
does not assume any type of data distributions or adversaries.

In the failure rate scenario, we present the accuracy loss
and privacy risk for a single query mechanism at different
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Fig. 4. Numerical results for Example 1 with mean-square errors for single-query mechanisms. We set p = q = 0.1 and I = 20.

Fig. 5. Numerical results for Example 1 with the failure rate for single-query mechanisms. Here p = q = 0.1 and I = 20.

ages t in Figure 5(a), and the tradeoffs between privacy risk
and accuracy loss in Figures 5(b)(c). Figure 5(a) shows that
the accuracy loss increases in t as it does in Figure 4(a), but
at a different rate. The accuracy loss eventually converges
to 0.5 as t → ∞. We note that the privacy risks for a
given t and ϵC are the same as in the mean-squared error
scenario (Figure 4(b)). In terms of the tradeoffs between
privacy and accuracy loss, we show that our proposed scheme
can achieve less accuracy loss compared to the noise only
benchmark. In addition, Figure 5(b) also shows that different
utility-privacy pairs require different t and ϵC . In Figure 5(c),
we present the optimal tradeoffs between privacy and accuracy
loss. Compared to the noise only benchmark, this shows that
our proposed scheme can achieve a reduction up to 1/3 in
accuracy loss given the same privacy risk.

Finally, Figure 6 presents the tradeoffs between privacy and
utility in the multi-query scenario. Figure 6(a) show that there
exists a pair that minimizes both the peak accuracy loss and
the peak privacy risk. This is mainly because the condition in
Corollary 3 holds in this case and hence the tradeoff between
privacy and utility does not exist. Figure 6(b) demonstrates the
existence of the optimal tradeoffs between privacy and utility
for multi-query mechanisms in the failure rate scenario. That
is, a smaller achievable peak privacy risk leads to a larger
achievable peak accuracy loss.

B. Electricity Consumption Forecast

In this experiment, we use electricity consumption read-
ings of households in London provided in [75] to evaluate

our proposed scheme. UK Power Networks recorded Power
consumption (in kWh) every 30 minutes between November
2011 and February 2014. We selected 40 households, with
28, 000 readings per household on average. We quantized
the power values into 12 intervals, resulting in a Markov
chain with 12 states for each household. Related studies
also considered such a Markov chain formulation of elec-
tricity consumption readings [18]. Our goal is to publish
a privacy-preserving approximation to forecast households’
average electricity consumption. In particular, to evaluate the
privacy risks, we use the following result to estimate an upper
bound for the total variation distance between the transition
probability and the stationary probability:

Proposition 5 (Bounds on Variation Distance [66]): Let
{Xt}t∈N be an irreducible, aperiodic, and reversible Markov
chain on a finite set X . Then for all X ∈ X , t ∈ N,

4 · δ(Pt(X, ·), π)2 ≤ 1 − π(X)
π(X)

λ2t
∗ . (54)

Based on Proposition 5, we can bound the maximal total
variation distance ∆(t), i.e.,

∆(t) ≤ min

{
1, max

i∈I
max
xi∈Xi

√
1 − πi(xi)

πi(xi)
λt

i,∗

}
, (55)

where 1 − λi,∗ represents the spectral gap of household i’s
time-varying database {xi,t}t∈N.

In Figure 7, we study the accuracy loss (measured by the
MSE between the released data mean usage and the true mean
usage) and the privacy risks of our single-query mechanism
applied to the electricity power dataset for different ϵC values.
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Fig. 6. Numerical results for Example 1 with for multi-query mechanisms with (a) mean-square errors and (b) the failure rate. We set p = q = 0.1 and
I = 20.

Fig. 7. Experimental results for electricity consumption data of London households.

As shown in Figure 7(a), the accuracy loss first increases
rapidly in t and then remains a relatively constant level, for
all choices of ϵC values. In Figure 7(b), we observe that the
upper bound on the privacy risks in (55) are first the same as
their corresponding classical DP risks and then decrease when
the age is greater than 18 hours. This mainly results from (55),
in which the second term maxi∈I maxxi∈Xi

√
1−πi(xi)

πi(xi)
only

becomes less than 1 when t ≥ 18 hours.9 Finally, Figure 7(c)
depicts the tradeoffs between privacy and accuracy loss. Sim-
ilarly, the accuracy loss incurred by the DP benchmark grows
unbounded as the privacy risk approaches zero, while a finite
accuracy loss is always achievable under our proposed scheme
that combines both noise injection and aging.

VII. CONCLUSION

In this paper, we proposed an age-dependent general-
ization of differential privacy. We characterized the impact
of data staleness on data privacy guarantees and showed
that aging provides a new direction to protect data privacy
(in addition to noise injection). Motivated by frequent data
updates in real-time applications, we further characterized how
age-dependent privacy risks compose, given any publishing
and aging policies. Finally, our case studies showed that mech-
anisms combining aging and noise injection may significantly
outperform the classical mechanisms (that inject noise only),
when making tradeoffs between privacy and utility.

As the first study on understanding the impact of data
freshness on privacy, there are many future research directions.

9It is possible to derive a tighter bound than (55), which is, however, out
of the scope of this paper.

First, our work assumes that the adversary is only interested
in keeping track on the most current state of some user.
An important potential direction is to extend our results to
different adversary models, e.g., adversaries that aim to infer
a subset of the entire history of users’ databases. Second,
important future research directions include the extensions of
our results to the (ϵ, δ)-DP setting10 and the non-stationary
setting. Third, it is interesting to study adaptive composition
to enhance the privacy guarantees for multi-query mechanisms.

APPENDIX

A. Preliminaries: Mixing, Ergodicity, and Markov Chains

In order to characterize how privacy guarantees change
over time under the new framework of age-dependent DP,
we introduce several related concepts and preliminary results
from the literature in this subsection.

1) Geometric Ergodicity: To understand under what con-
ditions a Markov chain satisfies the geometric ergodicity,
we first introduce the following important result in analyzing
the transition probability matrix P (·, ·):

Lemma 3 (Bounds on Eigenvalues [66]): Let P (·, ·) be the
transition matrix of an irreducible Markov chain {Xt}t∈N.

10We would like to emphasize that extending our analysis to the new
setting is not straightforward. One of the main challenges is that the proof of
Theorem 1 explicitly requires f(zi) to be non-zero. While this condition can
be automatically satisfied under ϵ-differential privacy, it may not hold under
(ϵ, δ)-differential privacy.

Nevertheless, a potential approach for analyzing the two-parameter version
of age-dependent differential privacy is through a closely related privacy
notion called zero concentrated differential privacy (zCDP) [76]. By estab-
lishing an age-dependent version of zCDP, it may be possible to conduct the
analysis of the two-parameter version of age-dependent differential privacy.

Authorized licensed use limited to: Northwestern University. Downloaded on April 29,2025 at 02:36:43 UTC from IEEE Xplore.  Restrictions apply. 



1314 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 2, FEBRUARY 2024

Then the eigenvalues of P , {λk}, satisfy:

1 = λ0 > λ1 ≥ . . . ≥ λm−1 ≥ −1, (56)

where m = |X | denotes the total number of states.
The largest eigenvalue λ0 being 1 results from irreducibility.

It is known that the convergence rate largely depends on the
value λ∗ = max(λ1, |λm−1|).

There are a few studies in the literature of applied proba-
bility on analysis of the value of λ∗ (e.g., [66], [67]). As an
example, Landau and Odlyzko in [67] provided a bound for a
random walk on a connected graph and showed the following
result:

Proposition 6 [67]: Let {Xt}t∈N be a random walk on a
connected graph, it follows that

λ∗ ≤ 1 − 1
|X |d∗(1 + γ∗)

< 1 − 1
|X |3

, (57)

where |X | is the number of vertices in the graph, d∗ is the
maximum degree of the graph, and γ∗ is the diameter of the
graph.

B. Basic Properties

Proposition 7 (Post-Processing): Let M : X → Y be a
single-query (ϵ, t)-age-dependent differentially private mech-
anism. Then, for any mapping f : Y → Y ′, f(M(X0)) is
(ϵ, t)-age-dependent differentially private.

Proof: By the definition of age-dependent DP in Definition
4, we have:

Pr[M(X0) ∈ W|Xt =x]≤exp(ϵ)Pr[M(X0) ∈ W|Xt = x′],

(58)

for any set of outcomes W ⊂ Y .
For a mapping f(·), it follows that

Pr[f(M(X0)) ∈ T |Xt = x]

= Pr[M(X0) ∈ W|Xt = x]

≤ exp(ϵ)Pr[M(X0) ∈ W|Xt = x′]

= exp(ϵ)Pr[f(M(X0)) ∈ T |Xt = x′] (59)

where W = f−1[T ], i.e. S is the preimage of T under
mapping f .

C. Proof of Lemma 1

It follows from the definition of ϵC-DP that

P̂−i,t(x−i, z−i)Pr(M(zi, z−i) ∈ W)

≤ exp(ϵC)P̂−i,t(x−i, z−i)Pr(M(z′i, z−i) ∈ W) (60)

for all x−i, z−i ∈ X−i ≜
∏

j ̸=i Xj , and any pair of zi and
z′i ∈ Xi. Summing (60) over all z−i ∈ X−i yields Lemma 1.

D. Proof of Theorem 2

In Lemma 2, we bound
∑

i∈Xi
(p(xi) + δ(xi)) xi based on

both the constraint on δ(xi) and the bound of xi. The key
difference in this proof from that of Theorem 1 is that we
consider a lemma which does not require the bound of xi,
based on which we can prove Theorem 2. We start with such
a lemma:

Lemma 4: For any part of vectors with lengths K denoted
by {a1, a2, . . . , ak} and {b1, b2, . . . , bk}, if g ≤ ak

bk
≤ G,

then g ≤
∑K

k=1 ak∑K
k=1 bk

≤ G.

Proof: We can prove Lemma 4 by summing bkg ≤ ak ≤
bkG all over 1 ≤ k ≤ K, and the dividing the all sides of the
resultant inequality by

∑K
k=1 bk.

Without loss of generality, we assume that X and X ′ only
differs in the i-th user’s data, i.e., we have X = {xi}i∈I and
X ′ = {x1, . . . , xi−1, x

′
i, xi, . . . , xI}. It follows that

ln
(

Pr[M(X0) ∈ W|Xt = X]
Pr[M(X0) ∈ W|Xt = X ′]

)
= ln

(∑
z∈X Pr[M(z) ∈ W ]Pr[X0 = z|Xt = X]∑
z∈X Pr[M(z) ∈ W ]Pr[X0 = z|Xt = X ′]

)

= ln

(
Ezi∼P̂i,t(xi,·){Ez−i∼P̂i,t(x−i,·)[Pr(M(z) ∈ W)]}
Ezi∼P̂i,t(x′

i,·)
{Ez−i∼P̂i,t(x−i,·)[Pr(M(z) ∈ W)]}

)
(a)

≤ ln

(
max

xi,x′
i,zi

P̂i,t(xi, zi)
P̂i,t(x′

i, zi)

)
(b)

≤ max
xi,x′

i,zi

Pi,t(zi, xi) − Pi,t(zi, x
′
i)

Pi,t(zi, x′
i)

(c)

≤ max
zi

√
1−π(zi)

π(zi)
λt
∗

π(zi) −
√

1−π(zi)
4π(zi)

λt
∗

= O(λt
∗), (61)

where (a) is due to Lemma 4 and the fact that X and X ′ only
differs in the i-th user’s data; (b) is because ln(1 + x) ≤ x;
(c) is from Proposition 1.

This completes the proof of Theorem 2.

E. Proof of Theorem 3

We first rewrite Mt(Ht(S,A)) into
[MSn−1(HSn−1(S,A)) Mn(XSn−An

)] for t ∈ (Sn−1, Sn].
For notational simplicity, in this proof, we denote MSn−1 by
M′ and Mn by M , respectively. We further denote Ht(S,A)
and XSn−An by z(1) and z(2), respectively.

We present the analysis of the privacy risk relation in
(62) shown at the bottom of the next page, where t2 =
t − Sn + An, h1(X) = Pr(M(X) ∈ W2) and h2(X) =
Pr[M′(XSn−An

) ∈ W1|XSn−An
= X]. Note that

h1(X) ≤ exp(ϵC,n)h1(X ′), (63a)

h2(X) ≤ exp(ϵ(Sn − An))h2(X ′) (63b)

for all X, X ′ ∈ X that differ only in one entry. Substituting
(63) into (19) yields the last inequality of (62). This completes
the proof.

Authorized licensed use limited to: Northwestern University. Downloaded on April 29,2025 at 02:36:43 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: AGE-DEPENDENT DIFFERENTIAL PRIVACY 1315

F. Proof of Proposition 4

Since ln(1 + x) is monotonically increasing in x, we can
rewrite (39) as

min
cρA · (exp(ϵC) − 1)

1 − cρS̄ exp(ϵC)
(64a)

s.t. cρS̄ exp(ϵC) < 1, (64b)

f(A + S̄, ϵC) ≤ f̄ , (64c)

var. ϵC ≥ 0, A ≥ 0, S̄ ≥ 0, (64d)

We first drop the constraint in (64b) and formulate the corre-
sponding Lagrangian:

L(A, S̄, ϵC) =
cρA · (exp(ϵC) − 1)

1 − cρS̄ exp(ϵC)
− λ(f(A + S̄, ϵC) − f̄),

(65)

where λ is the dual variable corresponding to the constraint
in (64c). The Karush–Kuhn–Tucker conditions (necessary for
all local optima) are [71]

−cρA ln(ρ)(exp(ϵC)−1)
cρS̄ exp(ϵC) − 1

−λ
∂f(A + S̄, ϵC)

∂A
=0,

(66a)

c2ρA+S̄ ln(ρ) exp(ϵC)(exp(ϵC) − 1)
(cρS̄ exp(ϵC) − 1)2

− λ
∂f(A + S̄, ϵC)

∂S̄
=0.

(66b)

Combining (66) and the fact that ∂f(A+S̄,ϵC)
∂S̄

= ∂f(A+S̄,ϵC)
∂A

leads to (40). We note that i) (40) is necessary even if the
problem in (64) is not convex; ii) (40) automatically satisfies
(64b), which implies that the relaxation of (64b) does not lose
any feasibility.

G. Proof of Theorem 4

To prove Theorem 4, we will first prove that the mono-
tonicity of ϵ(Sn) in n (Lemma 5). We will then present the
intermediate result of the existence of an optimal solution that
have identical (A∗

n, S̄∗
n, ϵ∗C,n) after n ≥ m in Lemma 6, based

on which we complete the whole proof.
Define

F (An, S̄n, ϵC,n, ϵ)

≜ ln
(
1+∆

(
S̄n+An

)
(exp(ϵC,n)[∆(A) · (ϵ − 1) + 1] − 1)

)
,

(67)

for all t ∈ [Sn, Sn+1), n ∈ N. We have ϵn+1 =
F (An, S̄n, ϵC,n, ϵn), which is strictly increasing in ϵ and ϵC,n.
For any m ∈ N, if we fix An, S̄n, ϵC,n for all n ≥ m, it follows
that ϵm + 1 strictly increases in ϵm.

Let the maximal objective value of (28) be ϵ∗. Let m ∈
N ∪ {+∞} be the first epoch that the peak age-dependent
privacy risk such that ϵ(Sm) = ϵ∗.

We first introduce the following lemma:
Lemma 5: For any optimal solution Z∗ =

({A∗
n}, {S̄∗

n}, {ϵ∗C,n}), the sequence {ϵn}n is non-decreasing
in n.

To prove Lemma 5, suppose that there exists an optimal
solution Z∗ = ({A∗

n}, {S̄∗
n}, {ϵ∗C,n}) such that ϵk+1 < ϵk for

some k. In this case, we replace (A∗
n, S̄∗

n, ϵ∗C,n) for all n ≥ k
by (A∗

k, S̄∗
k , ϵ∗C,k), i.e., we construct the following new solution

Z ′ = ({A′
n}, {S̄′

n}, {ϵ′C,n}) satisfying:

(A′
n, S̄′

n, ϵ′C,n) =

{
(A∗

k, S̄∗
k , ϵ∗C,k), if n ≥ k,

(A∗
n, S̄∗

n, ϵ∗C,n), otherwise.
(68)

For the new sequence {ϵ′n} generated by Z ′, it follows that

F (A∗
k, S̄∗

k , ϵ∗C,k, ϵ′n) < F (A∗
k, S̄∗

k , ϵ∗C,k, ϵn), (69)

ln
(

Pr[M′ ∈ Wt, M(XSn−An) ∈ WSn−An |Xt = X]
Pr[M′ ∈ Wt, M(XSn−An

) ∈ WSn−An
|Xt = X ′]

)

= ln

(∑
z(1)

∑
z(2) Pr[M′(z(1)) ∈ W1]Pr[M(z(2)) ∈ W2]Pr[XSn−1 = z(1), XSn−An

= z(2)|Xt = X]∑
z(1)

∑
z(2) Pr[M′(z(1)) ∈ W1]Pr[M(z(2)) ∈ W2]Pr[XSn−1 = z(1), XSn−An

= z(2)|Xt = X ′]

)

= ln
(∑

z(2) Pr[XSn−An = z(2)|Xt = x]Pr[M(z(2)) ∈ W2]Pr[M′(XSn−An) ∈ W1|XSn−An = z(2)]∑
z(2) Pr[XSn−An = z(2)|Xt = x′]Pr[M(z(2)) ∈ W2]Pr[M′(XSn−An) ∈ W1|XSn−An = z(2)]

)

= ln

(
Ez(2)∼P̂t2 (x,·)

[
Pr(M(z(2)) ∈ W2) · Pr[M′(XSn−An

) ∈ W1|XSn−An
= z(2)]

]
Ez(2)∼P̂t2 (x′,·)

[
Pr(M(z(2)) ∈ W2) · Pr[M′(XSn−An) ∈ W1|XSn−An = z(2)]

])

= ln

E
z
(2)
i ∼P̂i,t2 (xi,·)

{
E

z
(2)
−i∼P̂−i,t2 (x−i,·)

[
Pr(M(z(2)) ∈ W2) · Pr[M′(XSn−An) ∈ W1|XSn−An = z(2)]

]}
E

z
(2)
i ∼P̂i,t2 (x′

i,·)

{
E

z
(2)
−i∼P̂−i,t2 (x−i,·)

[
Pr(M(z(2)) ∈ W2) · Pr[M′(XSn−An

) ∈ W1|XSn−An
= z(2)]

]}


= ln

E
z
(2)
i ∼P̂i,t2 (xi,·)

{
E

z
(2)
−i∼P̂−i,t2 (x−i,·)

[
h1(z(2)) · h2(z(2))

]}
E

z
(2)
i ∼P̂i,t2 (x′

i,·)

{
E

z
(2)
−i∼P̂−i,t2 (x−i,·)

[
h1(z(2)) · h2(z(2))

]}


≤ ln (1 + ∆ (t − Sn + An) · (exp(ϵC,n + ϵ(Sn − An)) − 1)) , ∀t ∈ [Sn, Sn+1), n ∈ N, (62)
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i.e., ϵ′n+1 < ϵn+1. Similarly, we have

ϵ′n+1 < ϵ′n, ∀n ≥ k. (70)

Therefore, we have ϵ∗ > ϵk > ϵ′k > ϵn for all n ∈ N, which
is a contradiction to the fact that Z∗ is optimal.

We have the new solution Z ′ is also feasible (as f(Am +
S̄m, ϵC,m) ≤ f̄ ).

F (A∗
k, S̄∗

k , ϵ∗C,n) = ln
(
1 + ∆

(
S̄∗

k + A∗
k

)
·
(
exp(ϵ∗C,n)[∆(A∗

k) · (ϵn − 1) + 1] − 1
))

, n ∈ N. (71)

In addition, we must have
Lemma 6: For any optimal solution Z∗ =

({A∗
n}, {S̄∗

n}, {ϵ∗C,n}), the sequence {ϵn}n, let ϵm = ϵ∗n
for m, then there exists another new optimal solution such
that A∗

n = A∗, S∗
n = S∗, and ϵ∗C,n = ϵ∗C for all n ≥ m.

For any optimal solution Z∗ = ({A∗
n}, {S̄∗

n}, {ϵ∗C,n}),
we construct a new solution such that

(A′
n, S̄′

n, ϵ′C,n) =

(A∗
m, S̄∗

m, ϵ∗C,m), if n ≥ m,

(A∗
n, S̄∗

n, ϵ∗C,n), otherwise.
(72)

It follows that

F (A∗
m, S̄∗

m, ϵ∗C,m, ϵm) = ϵm+1 = ϵ∗. (73)

Now, we focus on the optimal solution Z∗ such that A∗
n =

A∗
n+1 = A∗, and S̄∗

n = S̄∗
n+1S̄

∗, ϵ∗C,n = ϵ∗C,n+1 = ϵ∗C for
all n ≥ m. Now, we consider a new solution such that Z ′ =
({A′

n}, {S̄′
n}, {ϵ′C,n}) such that A′

n = A∗, S̄′
n = S̄∗, and

ϵ′C,n = ϵ∗C for all all n ∈ N.
Note that, since

F (A∗, S̄∗, ϵ∗C , ϵ∗) = ϵ∗, (74)

and F (A∗, S̄∗, ϵ∗C , ϵ) in strictly increasing in ϵ. We have
that, for the sequence {ϵn} generated according to ϵn+1 =
F (A∗, S̄∗, ϵ∗C , ϵn) for all n ∈ N with ϵ0 = 0, ϵn ≤ ϵ∗ for all
n ∈ N. Therefore, the new solution Z ′ must be optimal as
well.

H. Proof of Corollary 3

Let (A, S̄, ϵC) be any feasible solution, we construct another
solution (A′, S̄′, ϵ′C) such that

A′ > A, S̄′ > S, ϵ′C > ϵC , (75)

ρA(exp(ϵC) − 1) = ρA′
(exp(ϵ′C) − 1), (76)

ρS̄ exp(ϵC) = ρS̄′
exp(ϵ′C). (77)

From (39a), we can show that (A′, S̄′, ϵ′C) leads to the same
objective value as (A, S̄, ϵC) does.

On the other hand, we have that

A′ = A +
ln(exp(ϵ′C) − 1)

ln(ρ−1)
− ln(exp(ϵC) − 1)

ln(ρ−1)
, (78)

S̄′ = S̄ +
ϵ′C

ln(ρ−1)
− ϵC

ln(ρ−1)
. (79)

Therefore, the new value of the peak age penalty is given by

f
(
A′ + S̄′, ϵ′C

)
=f

(
ln(exp(ϵ′C) − 1)

ln(ρ−1)
+

ϵ′C
ln(ρ−1)

+ a, ϵ′C

)
,

(80)

where a = A − ln(exp(ϵC)−1)
ln(ρ−1) + S̄ − ϵC

ln(ρ−1) .
The assumption that (80) is decreasing in ϵ′C means that the

new solution will satisfy f(A′+ S̄′, ϵ′C) < f(A+ S̄, ϵC) while
achieving the same peak privacy guarantees.

I. Autoregressive Model

We further consider a continuous-state autoregressive (AR)
models, expressed as

xi,t+1 = ρ1xi,t + ρ2xi,t−1 + ρ3xi,t−2 . . . + ϵi,t, (81)

where ϵi,t follows an i.i.d. Gaussian distribution N (0, σ2).
We start with the following time reversibility result:
Lemma 7 [68]: When ϵi,t follows i.i.d. Gaussian distribu-

tions, the process in (81) is time reversible.
In the following, we focus on an AR(1) model for tracka-

bility, i.e., among all {ρt} only the first coefficient ρ1 takes a
non-zero value. Therefore, we drop the index 1 in ρ1 in the
following.

When ϵi,t has mean zero and variance σ2, it follows that

E[xi,t+n|xi,n] = ρtxi,n, ∀t, n ∈ N+, (82)

and

Var[xi,t|xi,0] =
(1 − ρ2t)σ2

1 − ρ2
, ∀i ∈ I, ∀n ∈ N+. (83)

Lemma 8: When ϵ follows N (0, σ2) for all i ∈ I and t ∈
N, the probability distribution of Xi,t conditional on Xi,0 is
expressed as

xi,t|xi,0 ∼ N
(

ρtxi,0,
(1 − ρ2t)σ2

1 − ρ2

)
, ∀i ∈ I, t ∈ N+.

(84)

In addition, as in (15) the total variation distance is closely
related to the KL divergence:

DKL(µ ∥ π) ≜
∑
x∈X

π(x) log
(

µ(x)
π(x)

)
, (85)

and its relation to the total variation distance can be expressed
in the following:

Lemma 9: The total variation distance is related to the
Kullback–Leibler divergence by the Pinsker’s inequality:

δ(π, µ) ≤
√

1
2
DKL(π ∥ µ), ∀π, µ. (86)

It follows that the KL divergence is

DKL(Pt(xi,0, ·) ∥ Pt(x′
i,0, ·))

=
1
2

{
(µ1 − µ0)2

σ2

}
=

(1 − ρ2)ρ2t(xi,t − x′
i,t)

2

2σ2(1 − ρ2n)

≤
ρ2t(xi,0 − x′

i,0)
2

2σ2
= O(ρ2t). (87)
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Fig. 8. Numerical results for the autoregressive model.

Based on the relation between the KL divergence and the total
variation distance in Lemma 9, it follows that

∆(t) = δ(Pt(xi,0, ·), Pt(x′
i,0, ·))

≤
√

1
2
DKL(Pt(xi,0, ·) ∥ Pt(x′

i,0, ·)) ≤
ρt|xi,0 − x′

i,0|
2σ

.

(88)

The convergence rate of ∆(t) again is O(ρt).
From Theorem 2, we conclude that any ϵC-DP mechanism

M is also (ϵ(t), t)-age-dependent DP, satisfying

ϵ(t) = ln
(

1 +
ρt|xi,0 − x′

i,0|
2σ

· (exp(ϵC) − 1)
)

. (89)

The single-query mechanism M∗ that estimates the average
value of xi,t over all users, i.e.,

M(X0) =
[∑

i xi,0

I

]
+ n, (90)

where n is a Laplace (1/ϵC) random variable. Similarly,
we use the mean-squared estimation error as the accuracy loss
metric, given by

fMMSE(t, ϵC) = E

(M(X0) −
1
I

∑
i

xi,t

)2
 , (91)

=
(1 − ρ2t)σ2

I(1 − ρ2)
+

1
ϵ2CI2

. (92)

We present numerical results in Figure 8 which are similar
to those in Figure 4. In Figure 8(a), we show that the accuracy
loss increases in t, and for a given ϵC , it converges to an upper
bound as t → ∞. In Figure 8(b), we compare our proposed
mechanisms against a classical DP benchmark that only injects
Laplace noise. To achieve an arbitrary small privacy risk, the
accuracy loss incurred by the benchmark grows unbounded.
Compared to the benchmark, combining both aging and noise
injection does not incur meaningful accuracy loss, which is
upper bounded as the privacy risk approaches 0.
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