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Abstract—By allowing users to erase their data’s impact on
federated learning models, federated unlearning protects users’
right to be forgotten and data privacy. Despite a burgeoning
body of research on federated unlearning’s technical feasibility,
there is a paucity of literature investigating the considerations
behind users’ requests for data revocation. This paper pro-
poses a non-cooperative game framework to study users’ data
revocation strategies in federated unlearning. We prove the
existence of a Nash equilibrium. However, users’ best response
strategies are coupled via model performance and unlearning
costs, which makes the equilibrium computation challenging.
We obtain the Nash equilibrium by establishing its equivalence
with a much simpler auxiliary optimization problem. We also
summarize users’ multi-dimensional attributes into a single-
dimensional metric and derive the closed-form characterization
of an equilibrium, when users’ unlearning costs are negligible.
Moreover, we compare the cases of allowing and forbidding
partial data revocation in federated unlearning. Interestingly, the
results reveal that allowing partial revocation does not necessarily
increase users’ data contributions or payoffs due to the game
structure. Additionally, we demonstrate that positive externalities
may exist between users’ data revocation decisions when users
incur unlearning costs, while this is not the case when their
unlearning costs are negligible.

Index Terms—Federated unlearning, data revocation strate-
gies, game theory, allowing or forbidding partial revocation

I. INTRODUCTION

A. Background and Motivations

Federated unlearning is an emerging technique designed
to erase the influence of certain users’ data from a trained
federated learning model. This is motivated by the success
of federated learning over large numbers of edge users and
the recent regulations guaranteeing data owners’ rights to be
forgotten.

Federated learning is a distributed machine learning
paradigm, where many users collaboratively train a shared
learning model under a server’s coordination. Although fed-
erated learning helps protect privacy by allowing distributed
training without sharing users’ raw data, the trained model can
still leak users’ information (e.g., through a backdoor attack)
[1], [2]. This motivates recent regulations to protect users’ data
privacy and their rights to revoke their data from a trained
model. Examples include the European Union General Data
Protection Regulation (GDPR) [3] and the California Con-
sumer Privacy Act (CCPA) [4]. A naive strategy to accomplish
this is to retrain the model from scratch using the remaining
users’ data, which is time-consuming and computationally
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expensive. Therefore, federated unlearning methods focus on
removing the influence of revoked data without retraining the
whole model from scratch. Typically, this process needs the
staying users to perform additional calculations based on the
learned model and remaining data to obtain an unlearned
model [5].

Given the right to be forgotten, users may seek to revoke
their data from the learned model for a variety of reasons;
a few examples follow. First, if users perceive their benefits
from the learned model as insufficient to offset their costs,
they may revoke their data. Second, users typically lack full
knowledge of the associated benefits (e.g., model performance)
and costs (e.g., privacy costs tied to data uniqueness) until they
participate in federated learning [6]. Consequently, if the actual
outcomes deviate from their initial estimations, users may
request their data to be unlearned. Third, users can mitigate
or even eliminate certain costs (e.g., data privacy costs) by
revoking their data after participating in federated learning [7].

It is challenging for users to optimally decide whether to
revoke data and how much data to revoke. Users need to
make complex assessments of the benefits and costs associated
with their actions. These considerations include the local
performance of the trained model, their potential privacy
leakage from participation, and federated unlearning costs if
they stay in the system (i.e., additional training for obtaining
an unlearned model). Moreover, users’ strategies for data
revocation indirectly impact each other’s payoffs. For example,
each user’s data revocation action will affect the performance
of the unlearned global model and the required efforts for
federated unlearning (e.g., required training rounds for users).
It is hard for each user to precisely anticipate such impacts
and make optimal decisions, especially given a large number
of heterogeneous users with multi-dimensional attributes on
data and payoffs. This motivates our first key question:

Question 1. What are heterogeneous users’ optimal data
revocation strategies in federated unlearning?

Furthermore, existing federated unlearning literature (e.g.,
[5], [8], [9]) usually operated under the assumption that users
either completely leave the system (i.e., revoke all their data)
or remain entirely committed (i.e., do not revoke any data).
Partial data revocation remains relatively uncharted territory.
However, this may harbor the potential to increase the total
data size remaining in the system and users’ payoffs, compared
to the scenario where partial data revocation is forbidden. This
lead to the second key question in this paper:
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Question 2. Compared with forbidding partial data revoca-
tion, is allowing partial revocation more beneficial in terms
of users’ payoffs and total remaining data size?

B. Contributions

We summarize our key contributions below.
• Data revocation in federated unlearning: We propose a

game-theoretic model to characterize the interaction among
users in federated unlearning. To the best of our knowledge,
this is the first analytical work to study users’ strategic
data revocation in federated unlearning, with partial data
revocation allowed.

• Users’ data revocation strategies at equilibrium: Given the
complicated mutual influence of users’ decisions through
model performance and unlearning costs, the problem
is challenging to analyze (e.g., with non-convex, non-
monotonic, and piece-wise best responses). We calculate the
equilibrium through a problem transformation that applies to
general payoff functions. Moreover, when users’ unlearning
costs are negligible, we summarize users’ multi-dimensional
attributes into a single-dimensional metric that enables us to
give a closed-form equilibrium.

• Comparison between allowing and forbidding partial data
revocation: We investigate whether allowing users’ partial
revocation is better than when it is forbidden. The results
counter-intuitively show that allowing partial revocation
may not increase users’ remaining data amount or payoffs
because of the strategic interactions among users.

• Insights: Our results reveal trade-offs among model per-
formance, data privacy concerns, and federated unlearning
costs, highlighting how these are influenced by factors such
as model dependency, data size, and data uniqueness. We
also show that users may follow the others’ data revocation
decisions (i.e., a positive externality) when they incur un-
learning costs but will not (i.e., a negative externality) when
unlearning costs are negligible. This is because the model
performance increases in users’ remaining data sizes while
unlearning costs increase in users’ revoked data sizes.

C. Related Work

Machine unlearning was first introduced in 2015 [10]. It
focuses on how to efficiently erase the effects of certain data
on a centrally trained machine learning model. The current
machine unlearning methods often involve properly modifying
training data or altering the trained model parameters to reduce
the model’s reliance on the deleted information (e.g., [11]).
However, the server in a federated network has no access to
the local datasets of a large number of users, which makes data
modification and manipulation impossible. Moreover, users
in a federated system contribute to the final model through
iterative training processes, which makes it not straightforward
to partition data impact and alter model parameters.

Some pioneering works have recently proposed federated
unlearning mechanisms using methods such as gradient sub-
traction (e.g., [5], [8]), gradient scaling (e.g., [7], [12]), or
knowledge distillation (e.g., [13]). These papers did not study

which user(s) will revoke data and how much data will be
revoked. This is of great importance in understanding users’
behaviors and developing related mechanisms or regulations.
To fill this gap, we focus on users’ data revocation strategies
in this paper.

Furthermore, there is a wide spectrum of literature on
studying (or incentivizing) users’ strategic data contributions
in federated learning, utilizing game theory or other economic
methodologies (e.g., [14]–[18]). However, these studies did not
incorporate the unique aspects of federated unlearning (e.g.,
unlearning costs), so it is hard to apply their results to our
context. Ding et al. in [9] proposed an incentive mechanism
for federated unlearning, aimed at retaining strategic users
intending to leave the system. Nevertheless, their assumption
of all-or-nothing user engagement fails to account for scenarios
where users may wish to partially revoke their data. They
also assumed that users do not care about the global model’s
performance. To the best of our knowledge, this paper is
the first to study users’ strategic data revocation in federated
unlearning, considering a more general scenario with users’
partial data revocation and interests in the model performance.

The rest of the paper is organized as follows. We first
introduce the system model in Section II. In Section III, we
analyze users’ equilibrium strategies on data revocation. To
give more insights, we study a special scenario in Section IV,
where users’ unlearning costs are negligible. In Section V, we
investigate whether allowing partial revocation is beneficial
compared with when it is forbidden. We present simulation
results in Section VI and conclude this paper in Section VII.

II. SYSTEM MODEL

We consider a setting in which a set of users have already
participated in federated learning using their local data and are
faced with a federated unlearning decision. The heterogeneous
users now simultaneously decide the amount of data to revoke
from the learned model and collaboratively accomplish the
unlearning process. We first introduce the objectives and
process of federated learning and unlearning, and then we
specify users’ strategies and payoffs, respectively. Finally, we
frame a non-cooperative game model, highlighting the users’
participation within the system.

A. Federated Learning and Federated Unlearning
1) Federated Learning: Consider a set I = {1, 2, ..., I} of

users. The purpose of federated learning is to compute a model
parameter w by using all users’ local data. The optimal model
parameter w∗ minimizes the global loss function, which is an
average of all users’ loss functions {Fi(w)}i∈I [19], [20]:

w∗ = argmin
w

1

I

∑
i∈I

Fi(w). (1)

During the federated learning process, each user computes a
local model update based on local data and sends the model
update to a central server. The server aggregates the local
updates and sends the global shared model back to the users
for the next round of training. The process is then repeated
until the global model converges [21].
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2) Federated Unlearning: A federated learning process
maps users’ data into a model space, while a federated
unlearning process maps a learned model, users’ data set, and
the data set that is required to be forgotten into an unlearned
model space. The goal of federated unlearning is to make
the unlearned model have the same distribution as a retrained
model (i.e., retrained from scratch using the remaining data).1

A natural method for federated unlearning is to let the
staying users (excluding leaving users) use the remaining data
to continue training from the learned model w∗. The training
continues until it converges to a new optimal model parameter
w̃∗, which minimizes the global loss function of staying users:

w̃∗ = argmin
w

1

I − Ileave

∑
i∈I\Ileave

F̃i(w), (2)

where Ileave is the set of users who leave the system through
federated unlearning. This method is typically more efficient
than training from scratch, as the minimum point may not
change much after some users leave. As in (2), the unlearned
model greatly depends on users’ data revocation strategies.

B. Users’ Strategies

We use dmax
i > 0 to denote the size of data that a user

i ∈ I has previously utilized in training a federated learning
model. Thus, dmax

i is the maximum data size that user i can
revoke through the unlearning phase.

Each user i decides the data size di ∈ [0, dmax
i ] to remain

in the system after revocation. In other words, the data size
that user i revokes through federated unlearning is dmax

i −
di.2 We assume that the revoked data is uniformly sampled
at random from dmax

i , so that the remaining data distribution
does not change. Users’ different data revocation strategies
will inevitably result in diverse payoffs.

C. Users’ Payoffs

Each user i’s payoff from data revocation consists of three
parts.

1) Global Model’s Performance: To capture the global
model’s performance on user i’s local data, we employ a
widely-adopted model that provides a good approximation of
the experimental statistics (e.g., [14], [22]–[24]):

Pi(di,d−i) = ln

∑
j∈I

dj + ϵi

 , (3)

where d−i ≜ {dj}j∈I,j ̸=i denotes the strategies of other users
except for user i. The logarithmic concave model captures the
diminishing marginal utility of additional data. Intuitively, the
model performance increases in the total data size remaining in
the system. However, when the remaining data size is already
substantial, any further increase in the data size does not

1The distribution is due to the randomness in the training process (e.g.
randomly sampled data and random ordering of batches).

2This paper focuses on analyzing the case of allowing partial data revoca-
tion. We will compare it with the case of forbidding partial revocation (i.e.,
binary decision di ∈ {0, dmax

i }) in Section V.

significantly improve the model performance. The factor ϵi
captures the heterogeneity in model performance and bounds
user i’s cost when all of the users’ data is revoked, i.e.∑

j∈I dj = 0. We refer to ϵi as the independence index, where
a small value (e.g., ϵi → 0) implies that the user has a high
dependency on the global model.

2) Privacy Cost: A user i’s perceived data privacy cost
increases in its remaining data size and the uniqueness of its
data (e.g., [25], [26]):

Cp
i (di) = ξidiℓi, (4)

where ξi is user i’s marginal privacy cost and ℓi is user
i’s data uniqueness level. The data uniqueness level can
be characterized by the computed gradient ∥∇Fi(w

∗)∥, as
the gradient reflects the distance of user i’s data from the
average of other users’ distributions. For simplicity, we define
ℓi = ∥∇Fi(w

∗)∥.
3) Unlearning Cost: According to our previous analysis

based on Scaffold and FedAvg algorithms [9], the number of
unlearning communication rounds increases in the uniqueness
levels of the users’ revoked data:∑

j∈I

(
1− dj

dmax
j

)
ℓ2j , (5)

where (1 − dj/d
max
j ) represents the proportion of user j’s

revoked data size to its total data size dmax
j . When the distance

between the learned and unlearned models is large (as implied
by a high proportion and uniqueness of the revoked data), it
necessitates an increased number of communication rounds for
effective federated unlearning.

User i’s unlearning cost increases in the unlearning rounds
and its remained data size (used in each round’s unlearning):3

Cu
i (di,d−i) = θidi

∑
j∈I,j ̸=i

(
1− dj

dmax
j

)
ℓ2j , (6)

where θi is user i’s marginal unlearning cost.
Combining the three parts in (3), (4), and (6), each user i’s

payoff is

Ui(di,d−i) = Pi(di,d−i)− Cp
i (di)− Cu

i (di,d−i). (7)

As users’ payoffs are affected by each other’s strategies, the
users are engaged in a game.

D. Game Formulation

We formally define the resulting game as follows.

Game 1 (Users’ Data Revocation Game). This game consists
of
• Players: I users in set I.

3For tractability, we assume that the influence of each user’s revocation
decision on the unlearning communication round is negligible, due to the
significant volume of participating users. As a result, each user dismisses its
individual impact on the unlearning rounds (indicated as j ̸= i in (6)). This
assumption is not restrictive in applications like Gboard (Google’s keyboard)
which encompasses billions of users.
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• Strategy space: each user i ∈ I decides the data size to
remain in the system di ∈ [0, dmax

i ].
• Payoff function: each user i ∈ I maximizes its payoff
Ui(di,d−i) in (7).

In this game, each user needs to trade off the model perfor-
mance, privacy costs, and unlearning costs, when considering
how much data to revoke. For instance, the contribution of
additional data beyond a certain threshold may not signifi-
cantly enhance the model’s performance but lead to substantial
privacy and unlearning costs.

As we will see in the next section, each user’s revocation
strategy affects other users through the global model perfor-
mance and unlearning costs in a complex way. This makes it
challenging to analyze the Nash equilibrium of this game.

III. USERS’ DATA REVOCATION EQUILIBRIUM

In this section, we calculate the Nash equilibrium of Game
1, which is defined as follows.

Definition 1 (Equilibrium of Game 1). The Nash equilibrium
of Game 1 is a decision profile {d∗i }i∈I , such that each user
i ∈ I achieves its maximum payoff assuming other users are
following the equilibrium strategies, i.e.,

Ui(d
∗
i ,d

∗
−i) ≥ Ui(di,d

∗
−i), ∀di ∈ [0, dmax

i ]. (8)

A. Best Responses

Based on Definition 1, we first specify each user’s best
response to the other users’ revocation decisions in Lemma
1.

Lemma 1. The best response of user i ∈ I is

d∗i (d−i) =
[
d̃i

]dmax
i

0
= min

{
dmax
i ,max

{
d̃i, 0

}}
, (9)

where

d̃i ≜

ξiℓi + θi
∑

j∈I,j ̸=i

(
1− dj

dmax
j

)
ℓ2j

−1

−
∑

j∈I,j ̸=i

dj−ϵi. (10)

Lemma 1 shows that users with larger costs (i.e., ξi and
θi), data uniqueness level ℓi, and independency index ϵi tend
to revoke more data (i.e., smaller d∗i (d−i)). However, users’
data revocation decisions d influence each other in a complex
way. To provide more insights into this interdependency, we
consider two extreme cases of Lemma 1.
• If all other users do not revoke any data, i.e., dj =
dmax
j , ∀j ∈ I, j ̸= i, then user i’s best response is

d∗i (d−i) =

(ξiℓi)−1−
∑

j∈I,j ̸=i

dmax
j − ϵi

dmax
i

0

. (11)

When the marginal privacy cost ξi and data uniqueness level
ℓi are large, user i will revoke all its data (i.e., d∗i = 0) and
be a free rider. However, this may not be an equilibrium, as
other users may have the incentive to deviate.

• If all other users fully revoke data, i.e., dj = 0, ∀j ∈ I, j ̸=
i, then user i’s best response is

d∗i (d−i) =


ξiℓi + θi

∑
j∈I,j ̸=i

ℓ2j

−1

− ϵi


dmax
i

0

. (12)

When user i has a high dependency on the global model
(i.e., small ϵi), it will achieve the unlearning by itself.4

Specifically, if user i incurs high costs, it will use partial
data; if its costs are small, it will not revoke any data.
Conversely, when user i does not really value the global
model (i.e., large ϵi), it will also revoke all its data (i.e.,
d∗i = 0) like others. Thus, when users’ independence indexes
{ϵi}i∈I are sufficiently high, all users revoking all their data
is an equilibrium.

Based on Lemma 1, we can also analyze the mutual
influence of users’ data (i.e., the externality) as follows:

Corollary 1 (Externality). When d∗i (d−i) ∈ (0, dmax), if

θi
djℓ

2
j

dmax
j

≥ ξiℓi + θi
∑

k∈I,k ̸=i,j

(1− dk
dmax
k

)ℓ2k, (13)

then we have
∂d∗i (d−i)

∂dj
≥ 0; (14)

otherwise, we have

∂d∗i (d−i)

∂dj
< 0. (15)

Corollary 1 demonstrates that if user j’s data uniqueness
level ℓj and remaining data size dj are sufficiently large (as
indicated by (13)), user i’s partial contribution will increase
in user j’s remaining data size (i.e., (14)). This suggests that
users may follow others’ data revocation decisions, potentially
leading to cascaded revocations among users. We will provide
illustrative numerical examples of this phenomenon in Section
VI-B.

As shown in Lemma 1, the best responses of users are com-
plex piece-wise functions that incorporate multi-dimensional
parameters for user attributes. It is hard to directly calculate
the equilibrium based on these best responses, as there will be
many possible non-convex and non-monotonic cases depend-
ing on the parameters’ values. We will illustrate the challenge
through simulations in Section VI-A. Next, we first present
the Nash equilibrium of homogeneous users in Section III-B
and then for heterogeneous users in Section III-C.

4Note that when only one user remains within the system, the consequences
of leaving or staying are different. By choosing to stay, the user can benefit
from a warm starting point provided by the platform, facilitating the training
process. However, in this situation, the user still incurs privacy costs. This is
because the platform (or server) still can access the model, thus presenting a
potential privacy risk.
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B. Nash Equilibrium of Homogeneous Dependent Users

In the homogeneous dependent case, all I users have the
same θ, ℓ, ξ, ϵ, and dmax, and they depend on the global
model, i.e., ϵ → 0.

The equilibrium in this case is in Proposition 1.

Proposition 1. The Nash equilibrium of homogeneous depen-
dent users is
• If dmax > 1

Iξℓ , then ∀i ∈ I,

d∗i =
1

2θℓ(I − 1)

(
dmax(ξ + θℓ(I − 1))−√

dmax2(ξ + θℓ(I − 1))2 − 4θ(I − 1)dmax/I

)
∈ (0, dmax).

(16)
• If dmax ≤ 1

Iξℓ , then

d∗i = dmax, ∀i ∈ I. (17)

Proposition 1 shows that if the data size used in federated
learning dmax and the costs ξℓ are excessively large, users
will partially revoke their data (as in (16)). This is because
contributing more data will not significantly improve the
global model’s local performance but will lead to high costs on
privacy and unlearning. Conversely, when the amount of data
utilized in federated learning and the costs are relatively small,
users will not revoke any data to ensure the good performance
of the global model (i.e., (17)).

C. Nash Equilibrium of Heterogeneous Users

In this subsection, we focus on the more complex case with
heterogeneous users. We first prove the existence and non-
uniqueness of the equilibrium. We next present some special
equilibria and finally obtain the equilibrium under general
conditions.

1) Existence and Non-Uniqueness:

Lemma 2. Pure strategy Nash equilibrium exists but may not
be unique in Game 1.

Game 1 is a concave game, so a pure strategy Nash
equilibrium exists [27]. To illustrate the non-uniqueness, we
next present multiple special equilibria that can coexist in
Proposition 2.

2) Special Nash Equilibrium: We first specify the condi-
tions for two special Nash equilibria, where all users have the
same strategies: fully revoke or not revoke their data.

Proposition 2 (Same strategies at equilibrium). If and only if

ϵi ≥

ξiℓi + θi
∑

j∈I,j ̸=i

ℓ2j

−1

, ∀i ∈ I, (18)

there exists an equilibrium where all users fully revoke their
data, i.e.,

d∗i = 0, ∀i ∈ I. (19)

If and only if

ϵi ≤ (ξiℓi)
−1 −

∑
j∈I

dmax
j , ∀i ∈ I, (20)

there exists an equilibrium where no user revokes any data:

d∗i = dmax
i , ∀i ∈ I. (21)

Note that it is possible for the two conditions (18) and (20)
to simultaneously hold, so the two equilibria in (19) and (21)
may coexist. This happens when users have highly hetero-
geneous data (i.e., large data uniqueness ℓ), large unlearning
costs θ, small data sizes d, and small privacy concerns ξ.

Proposition 2 shows that when the trained model is not very
valuable to users (i.e., large independence indexes {ϵi}i∈I)
and users’ costs are significant (i.e., small right-hand side of
(18)), users will revoke all their data. On the other hand, if
users really depend on the global model (i.e., small {ϵi}i∈I
in (20)), privacy costs ξiℓi are small, and there is still room
for improving model performance (i.e., contributed data sizes∑

j∈I dmax
j are small), then all user fully contributing their

data without any revocation is an equilibrium. This finding is
consistent with the homogeneous dependent case where ϵ → 0,
as described in Proposition 1.

There also exists Nash equilibrium where some users fully
revoke their data, some users partially revoke data, and others
do not revoke any data. Proposition 3 is an example.

Proposition 3 (Different strategies at equilibrium). If condi-
tions (22), (23), and (24) on the next page hold, there exists
an equilibrium:

d∗i = 0, ∀i ∈ I1,

d∗k =

(
ξkℓk + θk

∑
i∈I1

ℓ2i

)−1

−
∑
j∈I2

dmax
j − ϵk ∈(0, dmax

k ),

d∗j = dmax
j , ∀j ∈ I2.

(25)

Proposition 3 shows that heterogeneous users may employ
different strategies at equilibrium, including full, partial, and
no data revocations. Each user’s strategy depends on both its
and others’ attributes. Specifically, conditions (22) and (23)
share similar insights with (18) and (20), where users need
to trade off model independence indexes, costs, and model
performance. For the right-hand side of (22) and (23), the
first term represents user i’s costs (including privacy cost and
unlearning cost), and the remaining two terms reflect the model
performance. Condition (24) represents a middle case between
(22) and (23) (i.e., user k has medium model independence,
costs, and model performance), so user k chooses partial
revocation. Note that there can be multiple users who partially
revoke data (as in Section VI-B), but we refrain from including
the complex conditions when this occurs for brevity.

We next present a general approach to computing Nash
equilibria.

3) General Approach for Nash Equilibrium Computation:
Many methods in the literature for calculating Nash equilibria
are not applicable to our problem.
• A typical method involves best response updates simultane-

ously or sequentially (e.g., [28]). However, such a method
does not necessarily converge for our problem, as shown by
the example in Fig. 1.
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ϵi ≥

ξiℓi + θi
∑

i′∈I1\{i}

ℓ2i′ + θi

1−

ξkℓk + θk
∑
i′∈I1

ℓ2i′

−1

−
∑
j∈I2

dmax
j − ϵk

 /dmax
k

 ℓ2k

−1

−

ξkℓk + θk
∑
i′∈I1

ℓ2i′

−1

+ ϵk, ∀i ∈ I1,

(22)

ϵj ≤

ξjℓj + θj
∑
i∈I1

ℓ2i + θj

1−

(ξkℓk + θk
∑
i∈I1

ℓ2i

)−1

−
∑
j′∈I2

dmax
j′ − ϵk

 /dmax
k

ℓ2k
−1

−

(
ξkℓk + θk

∑
i∈I1

ℓ2i

)−1

+ ϵk, ∀j ∈ I2, (23)

(
ξkℓk + θk

∑
i∈I1

ℓ2i

)−1

−
∑

j∈I2∪{k}

dmax
j < ϵk <

(
ξkℓk + θk

∑
i∈I1

ℓ2i

)−1

−
∑
j∈I2

dmax
j , (24)

where I1 ∪ I2 ∪ {k} = I.
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Fig. 1. Divergence of sequential best response update: an example of two
users. The two users’ best responses keep circulating among the four red
points along the green trajectory, unable to converge to a Nash equilibrium
where no user has an incentive to alter its strategy.

• Another widely-adopted method is gradient (better) response
updates (e.g., [29]). However, the identification of appro-
priate stepsizes under different parameter settings for this
problem remains unclear. A small stepsize can cause very
slow convergence while a large stepsize may fail to con-
verge at all. Moreover, the literature usually requires some
technical assumptions for convergence (such as diagonally
strictly concave and asymptotically stable), which do not
apply in our context.
To ensure efficient convergence without requiring any as-

sumption, we propose a general approach for obtaining the
Nash equilibrium next. We first define the following function
for the convenience of presentation:

Wi(d−i) ≜ ln

d∗i (d−i) +
∑

j∈I,j ̸=i

dj + ϵi


− ξid

∗
i (d−i)ℓi − θid

∗
i (d−i)

∑
j∈I,j ̸=i

(
1− dj

dmax
j

)
ℓ2j .

(26)

This function is obtained by substituting each user i’s best
response d∗i (d−i) in (9) into its payoff function Ui(di,d−i)
in (7).

Inspired by [30], we transform calculating the equilibrium
of Game 1 into solving the following optimization problem:
Problem 1.

min
∑
i∈I

(Wi(d−i)− Ui(di,d−i))

s.t. 0 ≤ di ≤ dmax
i , i ∈ I

var. {di}i∈I

Theorem 1. Problem 1 has a global solution and the corre-
sponding objective value (i.e., minimum value) is 0. Moreover,
each global minimum point of Problem 1 is a Nash equilibrium
of Game 1.

Consequently, it suffices to describe a method to solve
Problem 1. The minimum point can be easily found through
numerous global optimization methods (e.g., [31]–[33]) and
optimization toolboxes (e.g., surrogateopt of MATLAB [34]).

There are several advantages of this approach for finding
the equilibrium. First, this approach applies without requiring
any additional assumptions on the payoff functions or decision
variables. Second, it gives simple stopping criteria for iterative
algorithms, as we seek to make the objective value equal to
zero. Third, it also enables the use of local optimization meth-
ods. By checking whether a local optimum has an objective
value of zero, one can verify if it is also a global optimum.
Lastly, instead of tackling I separate problems and searching
for a fixed point, we obtain the equilibrium by solving a single
optimization problem.

We will show the corresponding numerical results in Section
VI. Next, to present more insights, we consider a special
scenario with negligible unlearning costs.

IV. SPECIAL SCENARIO: NEGLIGIBLE UNLEARNING COST

In this section, we consider a special scenario where users’
unlearning costs are negligible (e.g., when users have abundant
or even surplus computation resources). We formally state this
in Assumption 1.

Assumption 1. Users’ unlearning costs are negligible, i.e.,

θidi
∑

j∈I,j ̸=i

(
1− dj

dmax
j

)
ℓ2j → 0, ∀di ∈ [0, dmax

i ], ∀i ∈ I. (27)

In this case, the payoff function of user i ∈ I is

Ui(di,d−i) = ln

∑
j∈I

dj + ϵi

− ξidiℓi, (28)

i.e., users only care about the model performance and privacy
concerns when deciding how much data to revoke.

The results and analysis in Section III still hold after setting
θ = 0. Next, we present some additional results and insights.
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Lemma 3. Under Assumption 1, the best response of user
i ∈ I is

d∗i (d−i) =

(ξiℓi)−1 −
∑

j∈I,j ̸=i

dj − ϵi

dmax
i

0

. (29)

Lemma 3 shows that when unlearning costs are negligible,
a user’s remaining data size d∗i tends to decrease in other
users’ remaining data sizes

∑
j∈I,j ̸=i dj . That is, a user will

revoke more data if the others revoke less. This is different
from the scenario with considerable unlearning costs where
users may follow others’ revocation decisions (Corollary 1).
This is because when unlearning costs are not negligible, users
affect each other through both the model performance and the
unlearning costs. The former increases in users’ remaining data
sizes while the latter increases in users’ revoked data sizes.

In this context, the users’ multi-dimensional heterogeneity
still poses challenges to computing the equilibrium. To over-
come this, we propose to summarize it into a one-dimensional
metric, which can greatly streamline the equilibrium calcula-
tion process. We define (ξℓ)

−1 − ϵ as the remaining metric
and proceed to rank users based on this metric, as per the
guidelines set in Assumption 2.

Assumption 2. Users follow a strict ascending order of the
remaining metric:

(ξ1ℓ1)
−1 − ϵ1 < ... < (ξIℓI)

−1 − ϵI (30)

and have the same maximum data size:

dmax
i = dmax, ∀i ∈ I. (31)

Given Assumption 2, we have the following relationship
among the users’ data revocation strategies.

Proposition 4. Under Assumptions 1 and 2, users’ remaining
data sizes in equilibrium satisfy:

d∗1 ≤ d∗2 ≤ ... ≤ d∗I . (32)

Proposition 4 shows that a user possessing a smaller re-
maining metric (i.e., a smaller index i) will revoke more data
in equilibrium (i.e., a smaller d∗i ). This is due to its larger
privacy cost ξ, data uniqueness ℓ, and model independence ϵ.

Based on Proposition 4, Theorem 2 shows that there is a
unique equilibrium and that the remaining metric (ξℓ)

−1 − ϵ
determines the users’ data revocation decisions at this equilib-
rium.5

Theorem 2. Under Assumptions 1 and 2, there exists a unique
Nash equilibrium and it falls into one of the following two
cases:
(i) If there exists a user j satisfying

(I − j)dmax ≤ (ξjℓj)
−1 − ϵj ≤ (I − j + 1)dmax, (33)

5Note that as we consider a strict order of users in (30), Theorem 2 shows at
most one user who partially revokes data at the equilibrium. Otherwise, users
with the same remaining metric can simultaneously choose partial revocation
in equilibrium.

then the Nash equilibrium is

d∗i =


0, if i < j,

(ξiℓi)
−1 − (I − j)dmax − ϵi, if i = j,

dmax, if i > j.

(34)

(ii) If no user satisfies (33), there must exist a user j satisfying

(ξjℓj)
−1 − ϵj < (I − j)dmax < (ξj+1ℓj+1)

−1 − ϵj+1, (35)

and the Nash equilibrium is

d∗i =

{
0, if i ≤ j,

dmax, if i > j.
(36)

In the next section, we investigate whether allowing partial
revocation is beneficial to users.

V. IS ALLOWING PARTIAL REVOCATION BENEFICIAL?

In this section, we compare users’ payoffs and total remain-
ing data size in the two cases of allowing and forbidding partial
data revocation.6 Specifically, we first focus on the general
scenario where users have unlearning costs in Section V-A.
Then, we use the special scenario with negligible unlearning
costs to further provide insights in Section V-B.

A. General Scenario: Considerable Unlearning Cost

One might presume that allowing partial revocation will lead
to more contributed data. This is because users who might
have chosen to fully revoke their data without this option,
might now opt for partial revocation instead. One might also
presume that allowing partial revocation will increase users’
payoffs as users have more choices. However, as shown in
Proposition 5, the intuition may not hold.

Proposition 5. Compared with forbidding partial revocation,
allowing partial revocation can increase, decrease, or not
change the total amount of remaining data and users’ payoffs.

This counter-intuitive phenomenon arises due to the strate-
gic interactions of the users in the underlying game. Specif-
ically, allowing partial revocation can also make some users
who do not revoke data in the forbidding partial revocation
case revoke some data, leading to possibly reduced total
remaining data size. The resulting potential loss in payoffs
from increasing the users’ action space is similar to Braess’s
paradox in transportation networks [35].

B. Special Scenario: Negligible Unlearning Cost

In the following corollary, we give examples of the possible
outcomes in Proposition 5 under the assumption of negligible
unlearning costs. These examples show that users’ payoffs
and the remaining data sizes can either increase, decrease, or
remain unchanged when partial revocation is allowed.

Corollary 2. When users have negligible unlearning costs and
are forbidden to partially revoke data,

6For the forbidding partial revocation case, we just need to change each
user i’s strategy space from continuous actions [0, dmax

i ] to discrete actions
{0, dmax

i } and conduct a similar analysis as in previous sections.
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Fig. 2. Three examples of users’ best responses to other users’ data revocation strategies when there are two users (I = 2). The intersection of the two best
response functions (i.e., red dot) in each figure is the Nash equilibrium. The caption of each sub-figure indicates the equilibrium choices of user 1 and user
2, e.g. “no-full” means that user 1 chooses no revocation while user 2 chooses full revocation.

• if the following conditions hold:

ln
(I − j + 1)dmax + ϵi
(I − j)dmax + ϵi

≥ξiℓid
max, ∀i∈{j, j + 1, ..., I}, (37)

user j in Theorem 2 case (i) will not revoke any data at the
equilibrium and other users’ equilibrium strategies remain
unchanged, i.e.,

d∗i,forbid =

{
0, if i < j,

dmax, if i ≥ j.
(38)

Moreover, compared to allowing partial revocation, user j’s
payoff decreases while the other users’ payoffs increase, and
the total remaining data size also increases.

• if the following conditions hold:

ln
(I − j + 1)dmax + ϵi
(I − j)dmax + ϵi

≤ ξiℓid
max, ∀i ∈{1, 2, ..., j}, (39)

user j in Theorem 2 case (i) will fully revoke its data at
the equilibrium and the other users’ equilibrium strategies
remain unchanged, i.e.,

d∗i,forbid =

{
0, if i ≤ j,

dmax, if i > j.
(40)

Compared to allowing partial revocation, all users’ payoffs
will decrease, and the total remaining data size will also
decrease.

• for Theorem 2 case (ii), the equilibrium strategies of users
do not change. Moreover, all users’ payoffs and the total
remaining data size also remain unchanged.

The condition (37) indicates that users with indexes larger
than or equal to j will not deviate from the equilibrium in
(38). The conditions for users with indexes smaller than j
are naturally satisfied. In this case, user j’ strategy changes
from partial revocation (when allowing partial revocation)
to no revocation (when forbidding partial revocation), while
the strategies of other users remain constant. This results in
more data remaining in the system. As a consequence of
the improved model performance, other users experience an
increase in their payoffs. Nevertheless, due to the constraints
imposed on the strategic space, the payoff for user j sees a
reduction. The insights are similar for the remaining two cases.

VI. SIMULATIONS

In this section, we perform numerical experiments to val-
idate our analytical results and reveal more insights. Specif-
ically, we first illustrate the best responses of users and the
complexity of computing Nash equilibria in Section VI-A, then
we calculate users’ revocation strategies at the equilibrium
in Section VI-B, and finally we compare the allowing and
forbidding partial revocation in Section VI-C.

A. Best Response

To illustrate the complexity of calculating Nash equilibria
based on users’ best responses, we first consider I = 2 users
in the system with randomly generated attribute parameters
(i.e., ℓi, ξi, θi, ϵi, and dmax

i ).7

Each user may adopt one of three types of strategies at
the equilibrium: full revocation, partial revocation, and no
revocation, each with different expressions as in Lemma 1.
Thus, even for only two users, we can generally divide the
equilibrium calculation into nine categories. Examples in three
of these categories are shown in Fig. 2. Moreover, when their
attribute parameters take different values, users’ best response
expressions can have different properties, such as non-convex
(e.g., Fig. 2(a) and Fig. 2(c)), non-linear (e.g., Fig. 2(b)),
or non-monotonic (e.g., Fig. 1), complicating analysis of the
equilibrium.

B. Users’ Data Revocation Strategies

We use the approach in Theorem 1 to calculate the equilibria
with I = 10 users. We randomly generate users’ different data
uniqueness levels ℓ keeping the other parameters fixed.8

Fig. 3 shows users’ data revocation strategies at the equilib-
rium when they have or do not have unlearning costs. When
unlearning costs are negligible (green bar), users with smaller
data uniqueness ℓi (i.e., users 7-10) keep more data in the
system, and all users either fully revoke or do not revoke data
at equilibrium. This validates the results in Proposition 4 and

7The results and insights under different groups of randomly generated
parameters are similar, so we only present representative groups of them in
this paper. Moreover, unless otherwise specified, we focus on the general
scenario where users have unlearning costs in simulations.

8Besides the data uniqueness level, we have similarly explored varying
the other parameters. The results are similar and are omitted due to space
limitations.
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Fig. 3. Users’ data revocation strategies at the equilibrium with or without unlearning
costs.
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Fig. 4. Users’ data revocation strategies at the Nash equilibrium (NE)
before and after user 9’s data uniqueness level changes, when users
have unlearning costs.
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(a) Difference of total remaining data sizes in two cases (allow−forbid) and
difference of users’ total payoffs in two cases (allow−forbid), when users’ data
uniqueness levels are multiplied by k.
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Fig. 5. Comparison between allowing and forbidding partial data revocation in terms of users’ payoffs and total remaining data size.

Theorem 2. When users have unlearning costs (orange dot),
users’ remaining data sizes do not follow a strict order but
roughly show that users with larger data uniqueness revoke
more data, as indicated in Lemma 1. The lack of ordering in
terms of data sizes is because, as shown in (10), users’ data
sizes and data uniqueness levels affect each other in a non-
monotonic way.

Fig. 4 shows how a user’s data uniqueness level affects
the other users’ data revocation strategies when users have
unlearning costs. After we increase user 9’s data uniqueness
level by 50 times, user 9’s equilibrium strategy changes from
no revocation (blue bar) to partial revocation (redpoint). Users
8 and 10 also revoke more data, i.e., they change their
strategies from partial revocation to full revocation. Other
users still revoke all their data. This validates the insights of
Corollay 1 that when users have unlearning costs, users may
follow the data revocation decisions of others who have large
data uniqueness levels and remaining data sizes.

C. Compare Allowing and Forbidding Partial Revocation

We numerically compare users’ payoffs and remaining data
sizes in the two cases of allowing and forbidding partial
revocation. Fig. 5(a) shows the differences in payoffs and
remaining data sizes between the two cases (allowing case
minus forbidding case), when users’ randomly generated data
uniqueness levels are multiplied by k. The differences can take

positive, zero, or negative values. This confirms that allowing
partial data revocation can either enhance, leave unchanged, or
diminish users’ total payoff and remaining data size compared
with when it is forbidden.

Fig. 5(b) further shows that 10 users may have different
preferences on the two revocation cases. User 5 prefers
forbidding partial revocation while others prefer allowing
partial revocation. The comparison insights are consistent with
Propositions 5 and Corollary 2.

VII. CONCLUSION

This paper focuses on data revocation in federated unlearn-
ing. To the best of our knowledge, this is the first study
of users’ strategic data revocation in federated unlearning
with partial revocation allowed. We propose a game theoretic
framework to capture users’ decision-making trade-offs among
the model performance, data privacy concerns, and federated
unlearning costs. Despite inherent challenges, we obtain the
Nash equilibrium of the game through both analytical and
numerical methods. We use this equilibrium to deliver some
interesting insights, such as that allowing partial data revoca-
tion may not always benefit users compared to when it is not
allowed, and users’ unlearning costs can cause their cascaded
data revocation. Possible future work includes the design of
incentive mechanisms to improve the users’ payoffs.
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