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Abstract—It is common in online markets for agents to learn
from others’ actions. Such observational learning can lead to
herding or information cascades in which agents eventually
“follow the crowd”. Models for such cascades have been well
studied for Bayes-rational agents faced with deciding between
two possible actions - one ‘“good” action and one “bad” action.
In this paper, we consider the case when these agents instead
have more than two actions, where again only one of these is
good. We show that sequential observational learning in such
settings has substantially different properties compared to the
binary action case and further show than increasing the number
of “bad” choices from 1 to 2, can improve the agents’ learning.

I. INTRODUCTION

Consider that two items, of which only one is “good”, are up
for sale in a recommendation-based market where agents arrive
sequentially and decide which of the two items to buy, with
their choice serving as a recommendation for later agents. The
identity of the good or equivalently the bad item is unknown to
the agents. Each agent then makes a pay-off optimal decision
by using its own prior knowledge of the items’ qualities and
by observing the choices of its predecessors. Such models of
“observational learning” were first studied by [1]-[3] under
a Bayesian learning framework wherein each agent has some
prior knowledge in the form of a privately observed signal
about the pay-off-relevant true state of the world, which in
this case is the identity of the good item and has two possible
realizations. In such models, an informational cascade or
herding occurs when it is optimal for an agent to ignore his
own private signal and follow the actions of the past agents.
Subsequent agents follow suit and from the onset of a cascade,
the agents’ actions do not reveal any information conveyed by
their private signals. Thus, the phenomenon of cascading could
prevent the agents from learning the socially optimal (right)
choice, i.e. the agents could herd to a wrong cascade.

In this paper, we study a Bayesian learning model similar to
[1]-[3], and others [4], [5], except we consider that agents are
faced with deciding among more than two alternatives, where
only one of these is a "good" alternative and the others are
"bad". Once again, we assume that the identity of the good
item corresponds to an unknown state of the world; agents
receive private noisy signals indicating this state and again
learn from observing other agents. The objective is to study
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the information dynamics and cascades generated by agents’
Bayes’ optimal action sequence and to compare and contrast
them with the dynamics of the binary true state models of
[1]-[3] and many others.

An important motivation of this paper is to answer the
following: how is learning affected in such models when
more alternatives are introduced to the existing binary set
of true states? For fairness of comparison, we assume both
the original and the altered models maintain the same private
signal quality. Now, if the information dynamics for a model
with more than two true states were to behave similarly to the
model with binary true states, then an intuition is that cascades
will take longer to occur in the former model. This is because,
unlike in the latter model, the statistic for the cascading action
in the former model is required to dominate not one but
all the remaining actions’ statistics. Longer times to cascade
would mean more information being revealed, leading to better
learning for subsequent agents. However, our analysis reveals
that the information dynamics for more than two true states
substantially differs from that in the basic binary true state
model, making the above intuition difficult to apply.

In related work, [6] also considers more than two true
states and provides conditions such as directionally unbounded
private beliefs, that gaurantee learning. Our model maintains
assumptions of [1]-[3], i.e., discrete bounded private signals,
which always leads to a positive probability that learning
fails. Another work with multiple true states is [7], which
considers non-Bayesian learning of the true state under re-
peated interactions of agents over a social network. Our work
remains with the Bayesian model in [1]-[3], where each agent
sequentially takes a one-time action and can observe all prior
actions. Other variations of the basic model include relaxing
the assumptions of i.i.d. binary valued signals [4], assuming
agents don’t observe all predecessors’ actions [5], [8], allowing
for imperfect observations [9]-[11], and others [12]-[14].

II. MODEL

We consider a model in which there is a countable sequence
of agents, indexed t = 1,2, ... where the index represents both
the time and the order of actions. Each agent ¢ takes an action
A; € A = {ay,aq9,...,a,} of choosing to buy one among
n items, which are indexed by ¢ = 1,2,...,n where n > 2.
While it is common knowledge that only one among the n
items is “good” and all the rest are “bad”, the identity (index)
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of the good item is not known to the agents a priori. Let
w € Q =1{1,2,...,n} denote the true identity of the good
item. For simplicity, all possibilities of w are assumed to be
equally likely.

The agents are Bayes-rational utility maximizers where the
pay-off received by each agent ¢, denoted by 7, depends on
the quality of the item he chooses to buy as follows. The agent
gains the amount z if the chosen item is good, i.e., if A; = a,,,
and —y if the chosen item is bad, where z > 0 and y > 0.
He also incurs a fixed cost C' > 0 for buying the item. The
agent’s net pay-off is then the gain minus the cost of buying
the item, which is

x—C, if Ay = ay,
T = . 1
—y—C, if Ay # a,.

Note that since w is equiprobable, the ex ante expected pay-off
for any agent is equal for all actions. Thus, to begin with, an
agent is indifferent to all the actions.

To incorporate agents’ private beliefs about the new items,
every agent t receives a private signal S; € {s1,82,...,5,}.
This signal, as shown in Figure 1 for n = 3, partially reveals
the information about the true identity of the good item w
through a n-ary symmetric channel (n-ary SC) with crossover
probability 1 — p. Given the true value w, S; is distributed as

D, if k=w,

(1—-p)
n—1"~

P(S; = si |w) = 2)

if k # w.

Here, 1/n < p < 1 which implies that the signal is informative
but not revealing. Moreover, the sequence of private signals
{51,52,...} is assumed to be i.i.d. given the true value w.
Each agent t takes a rational action A; that depends on his
private signal S; and the past actions {Aj, As,..., A;—1}.
Lastly, the models in [1]-[3] become special cases, with n = 2.

Fig. 1: Transition diagram of 3-ary SC through which agents receive
their private signals. Transitions with solid and dashed arrows occur
with probabilities p and (1 — p)/2, respectively.

III. OPTIMAL DECISION, SUFFICIENT STATISTICS AND
CASCADES

For the t" agent, the history of past actions H; | :=
{A1,As,...,A;_1} and its private signal S; form its infor-
mation set {Sy, H;_1}. As the first agent does not have any
observation history, he always follows his private signal, i.e.,
he chooses item ¢ if and only if the signal is s;. For agent
t > 2, the Bayes’ optimal action, A; is chosen such that it
provides the greatest expected pay-off given the information
set {StaHt—l}- Let %f(St,Ht_l) £ P(w = i|St,Ht_1)
denote the posterior probability that item ¢ is the good item.

Further, let v; := (7,77, . ..,77") be the posterior distribution
over 2. Now, it follows from (1) that for any two actions a;
and a;, with i # j, their respective 7;’s are symmetric over
the set §2. This implies that a; is optimum over a; only if
v¢ > ~]. Thus, a Bayes’ optimal decision rule is given by

a;, if M, = {i},
A; = | follows St, if |Mt| > 1 and S; € {Si}iGMﬁ 3)
QAr (M) if |Mt| > 1 and S; §é {Si}ieMt-
Here, M; := argmax;cq 'yti denotes the index set of the

optimal action(s). Note in (3) that when |M;| > 1, a tie is said
to occur and the agent is indifferent to the actions {a;};cns,-
Our decision rule in this case is to follow the private signal S,
when S; € {s;}icnm,, i-e., when following the private signal
is optimal. Otherwise, we select an action from the optimal
set {a;}icn, as per a determisitic tie-breaking rule 7(-), and
denote the tie-winning action by a,(az,)-.

Note that when n = 2, as in [1], [9], [10], there exists only
a single possibility of a tie, which is between actions a; and
as. As Sy € {s1, s2}, following the private signal S; when in
a tie, is never sub-optimal, unlike the third case in (3), which
exists as a possibility only when n > 2.

Remark 1: The third case in (3) exists as a possibility only
when n > 2. Thus, 7(-) is used only for n > 2.

An example of such a possibility is when n = 3, and an
agent sees a tie between actions a; and ag, while he receives
the signal s3. Our decision rule in (3), which is to break ties
by following Sy, only if doing so is optimal, can be viewed
as a generalization of similar decision rules in [9], [10] to
models with n > 2, where following S; when in a tie may not
always be optimal. Another choice to break ties is to employ
a randomized tie-breaking rule, given by a distribution over
the optimal action set {a;};cn,, as done in [1].

Definition 1: An information cascade is said to occur when
an agent’s decision becomes independent of his private signal.

It follows from (3) that, agent ¢ cascades to an action a;
if and only if 7/ > ~/ for all j # i and for any S; €
{s1, 82,...,8n}. This is because, when an agent cascades,
there cannot be a tie between actions, as this implies that
there always exists a different private signal, that if received,
would alter the agents’ optimal action. A more intuitive way
to present this condition is to first express the information
contained in the history H;_; observed by agent ¢ in the form
of a public likelihood ratio of true state w = 7 to w = j, for
every i,j € €, i # j defined as

a P(Hi—1|w=1)
P(Hp—1 |w=j)
Similarly, we express the information contained in the private

signal S; in the form of agent ¢’s private likelihood ratio of
true state w = 7 to w = j, for every i, j, defined as

177 (Hy-1) (4)

c, if Sy =s;,
Bl (Se) & W =q1/c, if Si=s; (5
! 1 0.W.

3
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with ¢ := (n — 1)p/(1 — p), which follows from Figure 1
or equivalently from (2). Next, using Bayes’ rule, ; can be
expressed in terms of the public and private likelihood ratios
as yf = 1/(14 3,171 87"), which can be used to show

Q) S
> 1, for any i # j. (6)

(<) S

%> e LAY

As a result, the condition on {%7 }jeq for an a; cascade to

occur translates to [;7, > 1/, for all j # 4 and for any S;.

By using the values of 3, from (5), the cascade condition
simplifies to give the following Lemma.

~Lemma 1: Agent t cascades to an action a; if and only if
;7 > cforall j # i.

If agent ¢ cascades, then the action A; does not provide any
additional information about the true value w to the successors
over what is contained in H;_1. As a result, {I;},.} = {l;7}
for all » = 0,1,2,... and hence they remain in the a; cascade,
which leads us to the following property, also exhibited by
prior models, e.g. [1]-[3], [9]-[11].

Property 1: Once a cascade occurs, it lasts forever.

A. Information dynamics until a cascade

Recall that an agent is said to follow his private signal if he
takes action a; only when the signal is s;. This implies that his
action A; “fully” reveals the private signal S; to future agents.
Assume, without loss of generality, that all agents till some
time t follow their private signals. This is a valid assumption,
as the first two agents are known to always follow their private
signals. Then, due to the mutual independence of the signals
{Sk}r<t given w, it follows from (4) and the updates in (5)
that the public likelihood ratios {l;’} can be expressed in
terms of the number of s;’s (denoted by n}), for each i € €,
revealed by the observation history H; as follows.

» i 1\
137 =c™ (—) for all 4,5 € Q. @)
c
If agent ¢ + 1 also follows its private signal which happens to
be any s;, then it trivially follows that

ny +1, if r=y,
nip = {nz o ®)

Now, given tuple {n}},cq, which denotes the number of
private signals of each type revealed till time ¢, if agent ¢t + 1
receives a private signal s;, then it can be shown from (6) and
(7) that an optimal action must satisfy the following property.

Property 2: If agent t + 1 receives a private signal s;, then
action a; is optimal only if n} + 1 upper bounds the tuple
{n%}. Otherwise, any action aj, where nf is maximal in {n}}
is optimal.

Further, by applying (7) to Lemma 1, the condition on tuple
{ny} for agent t + 1 to cascade to an action a; is as follows.

Property 3: Agent t+1 cascades to an action a; if and only
if n{ > 14+ max{n}},;. Once any cascade occurs, {n} } stops
updating.

We now explore the other cases for the tuple {nf},.cq
that agent ¢ + 1 may observe. Consider the following general
ordering of the tuple {n]},cq for some I,J, K that are
mutually exclusive and exhaustive in 2.

{nt}ier > {n{}jej > {nF}rex such that

nit =ni* for any iy,ip € I, and 0 < (ni —nj) <1

and (n! —nf)>1 forany icI,jecJ kekK.

Case (1): |I| > 2, K #0.

Here, if agent t+1 receives a signal in {sj }rex, a tie between
actions {a; };cs occurs, in which case let 7(I) = i* denote the
index of the tie-winning action. Then, based on the private
signal S;y1 observed, agent ¢ + 1 acts as per:

At+1 = {al*’

aj,

Note in (9) that the agent follows S;y; only when it belongs
to {sj}jesunfi=}. in which case {ny} updates as per (8).
Otherwise, agent takes action a;«+ which reveals not just the
signal s;« but also “equally” reveals the signals {sj}rex-

Thus, if action a;- is taken, the public likelihood ratios would
not update as per (5), but instead would update as

L (), viesun\{ith,
t+1 i*,j .
I, VjeK.

if Siyq € {54} U {sp}rex,

. 9)
if Sip1 € {sj}jequn ey

(10)

Observe in (10) that the ratio li*"j , for all j € K, remain
unchanged as signals: s;- and {s;}cx are equally revealed
by action a;-. Now, if the relation between /37 and the pair
(ni,n]) given in (7) for all 4, has to be ensured for time
t + 1, then the tuple {n}},cq should be updated as

- ny +0(|K|),
%:{t (IK1)

T
Ny,

if re{i"}UK,

ifresur gy, Y

where 0(+) is a function of | K|, which is the number of signals
other than s;~ that result in action a;«, and is given by

5(|K]) := log (ICIJ{FI‘fl‘) /logc € (ﬁ,l) .

Note the range of (| K|) in (12) for any ¢ > 1 or equivalently
for any p € (1/n,1). As §(]K|) < 1, this implies that action
a;~ only “partially” reveals the signals: s;» and {s;}jc k. Only
in the special case when K = (), a;- fully reveals s;«. This
can be verified by (12), where in this case, 6(|K|) = 1.
CASE (2): |I|=1, J,K #0.

In this case, as [ is a singleton set, say I = {i}, the only
change with respect to Case (1) is that if agent ¢ 4+ 1 receives
a signal in {sy }reck, there is no tie and a; is the sole optimal
action. Thus, it trivially follows that the index of the tie-
winnning action ¢* = ¢. Moreover, I \ {i*} = (). Substituting
these values in (11) yields the updates for the tuple {n}} on
observing action a;. Refer to Table I for the public updates of
tuple {n}} in this case.

12)

For all orderings of the tuple {n}} other than in Cases
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(1), (2) and the cascade ordering in Property 3, it can be
shown that agent ¢ + 1 follows any private signal that it
receives, and updates as per (8). Action A;;q thereby fully
reveals the agent’s private signal. Table I summarizes the
public updates on {n}}, for all of their possible orderings.
With these updates, equation (7) and Property 2 now hold for
any agent ¢, regardless of whether all agents k < ¢ fully reveal
their private signals. The following property thereby follows.

Property 4: The tuple {n}} cq, updated as per Table I, is
a sufficient statistic of the information contained in the public
history H;.

Ordering of {n}} A {n}} updates
e ny, ,=nl +0(K|), re {i*f}UK
e (1) b =g+ 0K, e )
any aj, jeJ UI\{i*} njg=ni+1
a. ni,,=ni +6(K|), re{ijUK
e 2 ; b =i+ a(D, e fi)
any aj, j € J nigq=ni+1
ni > 1+ max{n]} a;- cascade No further updates
i
Otherwise any a; nf = n{ +1

TABLE I: Public updates on {ni} given the observed action A¢i1
for varying orderings of {ni }. Only those n;’s that get updated are
specified. Only updates of the form nj, , = nj + 1 imply a fully
revealing action. Other update forms, where §(|K|) < 1, imply only
a partial revelation of multiple signals through the action.

Note that for n = 2, Cases (1) and (2) cannot occur and so
all agents until a cascade fully reveal their private signals.

Remark 2: For n = 2, until a cascade occurs, each agent
follows its private signal, thus fully revealing it.
The works in [9], [10], [11] study the n = 2 model with
the agents publicly observing a noisy version of the past
actions. These models also satisfy Remark 2. However, due to
noise, the observations until a cascade only partially reveal the
agents’ private signals. Interestingly, this feature of partially
revealing observations occurs in our model for n > 2, without
considering any observation noise.

B. Cascade Probabilities

An a;-cascade is correct if a; = a,, and otherwise is wrong.
A correct cascade implies that the agents eventually learn
the true value w. Now, given the true value w € (), let the
probability that an a; cascade begins be denoted by <">ng_cas.

Here, the superscript (n) refers to the cardinality of . Then,
the probability of a wrong cascade conditoned on w, denoted

by (")P‘;’mng_cas, can be expressed as
(H)P\;)rong—cas = Z (n)Ptz-casv (13)
iFw
and the unconditional probability of a wrong cascade is
n 1 n w
( )Pwrong»cas = E Z( )Pwrong—cas' (14)

For n = 2, recall from Remark 1 that the tie-breaker 7(-) is
not involved. For this reason, any agent t’s decision rule in (3)

is commutative with respect to the ordering of the posteriors
(v¢,72). As a result of this symmetry, we have for n = 2:
@p! (15)

ag-cas

_ (2)]}1)2

_ (2 P
aj-cas wrong-cas

Whereas, for n > 2, as 7(-) is involved, which is a determinis-
tic tie-breaking rule, (3) is non-commutative with respect to the
ordering of the posteriors (7}, ...,~"). Hence, the conditional
wrong cascade probability (")]P’;jrong_cas given in (13) may or
may not be equal for any distinct pair of wy,ws € 2.
Remark 3: For n > 2, the conditional wrong cascade pro-
bability given by (13) may not necessarily be equal among all

w’s in €). Whereas, for n = 2, (13) is always equal for any w.

IV. COMPARISON BETWEEN T = 2 AND N = 3

In this section, we compare the probability of learning the
true value w € Q) between a model with n = 2 and one with
n = 3, when they have the same private signal quality p. Let
My and M3 denote the respective models. Here, we assume
p € (1/2,1) to ensure that the private signal is informative in
both models. To differentiate between M, and Ms, let {s), s, }
and {s1, s2, s3} denote their respective sets of private signals.

Proposition 1: For any private signal quality p € (1/2,1)
and tie-breaking rule 7(-), ) Pyrongcas < P Pyrong-cas-

We prove Proposition 1 using a sequence of claims that
follow. First, for the sake of discussion, consider the realization
w = 1 under both models. For this w, we construct a coupling,
depicted in Figure 2a, through which signals in {s;,s,} can
be generated from the signals in {s1, s2, s3} of the Ms-model.

Claim 1: Given w = 1 and the coupling in Figure 2a, any
as or as (wrong) cascade in the M3-model is sufficient for an
as (wrong) cascade to occur in the My-model.

Proof: In the Ms-model, let (a;,a;)-sequences refer to
all sequences comprising only of actions a; and a;, where
it # j. To prove Claim 1, let us enumerate all possible (a1, as)-
sequences in M3, that would result in an a3-cascade. We aim
to show that these sequences, under the coupling in Fig. 2a,
result in an ay cascade in M,. Here, we choose the tie-breaking
rule 7(1,3) = 1. Fig. 3 depicts these enumerations and shows
the corresponding sequence of actions, that are generated in
M, as a result of the coupling between the private signals of
the two models, defined as per Fig. 2a. The arguments that
follow similarly hold for (aq,as)-sequences that result in an
as-cascade in M3 due to the associated symmetry of signals so

w=1 w=2 w=3

N\ N\ N\

IO IO IO
URERT oN TS NN
Y A Ta Y A Ta Y A Ta
S1 S9 S92 S1 S9 S1
! ’ ! ’ ’
S1 Sy S9 8 Eh

(a) w=1 (b)) w=2 (c)w=3

Fig. 2: Coupling between the private signals in models Ms and
Mo for different values of w, such that signals in M2 are generated
through signals in Ms. For w = 3, we assume Mo has state space

Q= {1,3).
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START
$_> as, a3—> a3 cascade

as cascade
P(ay,a3) (

SQJ Tie: ( HZJ
az, ag as

"3 =1
| (51,52) (53.52) \
\P(ar, az) (as,a1)™ > ay, as, (a1,a3)™, as, ai,+

A .
\
Stage (1) Stage (2)
M3 Model
Coupling
as per Fig. 2a
START
$_>a2,a24> ao cascade ag cascade ao cascade

Plar,a,) <s;>JA (s3) j <s;>j
az, az az, az az

| %Sl) (s;)£ \

:P(a17a2) (a27a1)m ‘ ay, a2z, (a17a2)m7 az, ai, -

M5 Model

Fig. 3: An enumeration of all possible (a1, as)-sequences that lead
to an as-cascade in M3 and the corresponding sequence of actions,
generated in Ms as a result of the coupling between private signals
of the two models, given in Fig. 2a. In M3, we assume 7(1,3) = 1.

and s3 in Fig. 2a and by noting that both a3 and as cascades
are wrong, given that w = 1. Lastly, any (a2, az)-sequence in
M3 trivially results in an as-cascade in My at time ¢ = 3,
hence need not be considered further.

In any sequence in Fig. 3, the function P(-) denotes any
permutation of its arguments, which are a set of actions. The
notation (a;,a;)™ depicts the sub-sequence (a;,a;), succes-
sively repeated m > 0 number of times. In M3, actions that
only partially reveal multiple private signals are highlighted
by indicating these signals above them. As per Table I, such
actions only occur under Cases 1 and 2, where in M3, the
only possible value that |K| can take is 1. Thus, a partially
revealed signal s, results in the update: ny,; = nj + §(1),
where (1) € (0.5,1). All other actions in M3 until a cascade
are fully revealing, i.e., any such action a; fully reveals signal
s, resulting in the update: nj , = n} 4+ 1. In Ma, as per
Remark 2, all actions until a cascade are fully revealing.

Stage (1) in M3 either starts with as, as, resulting directly
in an ag cascade, or begins with P(a1,a3) and then either
terminates in an a3 cascade through as, a3 or continues further
with another P (a1, as). At this point, a fully revealing pattern
(as,a1)™ is possible, until we observe an a;, which begins
Stage (2). Here, an a; results not only from receiving s; but
also from so. This is because receiving an sy would cause a tie
between actions a; and as, which a; would win as 7(1,3) =
1. Next, if again an a; occurs, it would begin an a; cascade
which we do not want to enumerate. So, the viable choice
is that a3 occurs. At this point, n3 > ny > (ng + 1) with
ny —ny < 1. Here, Case (1) applies, thus an ay is fully
revealing whereas an ag is not. So, a fully revealing pattern
(a1,a3)™ is possible, until we observe an a3, which partially

reveals s3 and sy. At this point, ng = n1+1 and so an a; then
equalizes n; with ng such that ng = ny > (ng + 1), which
ties back to a point in Stage (1) as shown in Fig. 3. Otherwise,
an ag starts an a3 cascade. In this way, all sequences that lead
to a a3 cascade are enumerated.

Applying the possible sequences of private signals, that
realise the action sequence in M3, to the coupling in Figure
2a generates the corresponding possible sequences of private
signals and resulting actions in M5, depicted in Fig. 3. Observe
that an a3 cascade in M3 gaurantees an ag cascade in Ms.
Similar arguments hold for the alternate choice of tie-breaking
rule 7(1,3) = 3, or if an as cascade occurs in Ms (by
symmetry), thus proving Claim 1. [ ]

For the realization w = 2, we consider a different coupling,
shown in Figure 2b. Then, by using similar arguments as done
for w = 1, the following claim can be proven.

Claim 2: Given w = 2 and the coupling in Figure 2b, an a;
or a3 cascade in Ms is sufficient for an a; cascade in M.

Lastly, for the realization w = 3, we assume that model Ms
has a state space 2 = {1, 3}. This is required to make w = 3 a
common possibility under both models. It also follows that we
should consider the coupling in Figure 2c, which unlike the
couplings for other w’s, maps {s1, 52,53} to {s},s5}. Then,
by using similar arguments as done for w = 1, the following
claim can be proven.

Claim 3: For w = 3 and the coupling in Figure 2c, an a;
or ag (wrong) cascade in M3 is sufficient for an a; (wrong)
cascade in Mo, that has a state space Q2 = {1, 3}.

Note that when w = 3, the chances of an a; cascade in M
with state space {1, 3} is equal to the chances of an a; cascade
in M, with state space {1,2} when w = 2. This is due to the
fact that for n = 2, there are no state index-dependent changes
in agent’s decision making. Thus, Claim 3 also implies that
P ngcas < PP Zong.cas- This inequality along with Claims
1 and 2 being valid yield the following relation, in which the
equality holds due to Remark 3.
< @p! — @p2

wrong-cas wrong-cas ?

Bpw

wrong-cas

Yw e {1,2,3}. (16)

It then follows from the inequality in (16), that the uncondi-
tional wrong cascade probabilites for n = 3 and n = 2, defined
by (14), are related as per Proposition 1. Thus, despite M3
having partially revealing actions, while no such possibility
exists in Mo (Remark 2), we show that learning in Ms is
strictly better than in Ms.

V. CONCLUSIONS AND FUTURE WORK

We considered the impact of increasing the number of
actions in a Bayesian social learning setting and showed that
compared to a setting with only two actions, different behavior
can emerge. Further, we showed that increasing the number of
actions from two to three results in strictly improved learning.
This is driven in part because we are keeping the signal quality
for the good action fixed as the number of actions increases.
One avenue of future study would be to allow this to decrease
as the number of actions grows. Extending our analysis to
more than three actions is another direction of interest.
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