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Abstract—It is common in online markets for agents to learn
from others’ actions. Such observational learning can lead to
herding or information cascades in which agents eventually

“follow the crowd”. Models for such cascades have been well
studied for Bayes-rational agents faced with deciding between
two possible actions - one “good” action and one “bad” action.
In this paper, we consider the case when these agents instead
have more than two actions, where again only one of these is
good. We show that sequential observational learning in such
settings has substantially different properties compared to the
binary action case and further show than increasing the number
of “bad” choices from 1 to 2, can improve the agents’ learning.

I. INTRODUCTION

Consider that two items, of which only one is “good”, are up

for sale in a recommendation-based market where agents arrive

sequentially and decide which of the two items to buy, with

their choice serving as a recommendation for later agents. The

identity of the good or equivalently the bad item is unknown to

the agents. Each agent then makes a pay-off optimal decision

by using its own prior knowledge of the items’ qualities and

by observing the choices of its predecessors. Such models of

“observational learning” were first studied by [1]–[3] under

a Bayesian learning framework wherein each agent has some

prior knowledge in the form of a privately observed signal

about the pay-off-relevant true state of the world, which in

this case is the identity of the good item and has two possible

realizations. In such models, an informational cascade or

herding occurs when it is optimal for an agent to ignore his

own private signal and follow the actions of the past agents.

Subsequent agents follow suit and from the onset of a cascade,

the agents’ actions do not reveal any information conveyed by

their private signals. Thus, the phenomenon of cascading could

prevent the agents from learning the socially optimal (right)

choice, i.e. the agents could herd to a wrong cascade.

In this paper, we study a Bayesian learning model similar to

[1]–[3], and others [4], [5], except we consider that agents are

faced with deciding among more than two alternatives, where

only one of these is a "good" alternative and the others are

"bad". Once again, we assume that the identity of the good

item corresponds to an unknown state of the world; agents

receive private noisy signals indicating this state and again

learn from observing other agents. The objective is to study
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the information dynamics and cascades generated by agents’

Bayes’ optimal action sequence and to compare and contrast

them with the dynamics of the binary true state models of

[1]–[3] and many others.

An important motivation of this paper is to answer the

following: how is learning affected in such models when

more alternatives are introduced to the existing binary set

of true states? For fairness of comparison, we assume both

the original and the altered models maintain the same private

signal quality. Now, if the information dynamics for a model

with more than two true states were to behave similarly to the

model with binary true states, then an intuition is that cascades

will take longer to occur in the former model. This is because,

unlike in the latter model, the statistic for the cascading action

in the former model is required to dominate not one but

all the remaining actions’ statistics. Longer times to cascade

would mean more information being revealed, leading to better

learning for subsequent agents. However, our analysis reveals

that the information dynamics for more than two true states

substantially differs from that in the basic binary true state

model, making the above intuition difficult to apply.

In related work, [6] also considers more than two true

states and provides conditions such as directionally unbounded

private beliefs, that gaurantee learning. Our model maintains

assumptions of [1]–[3], i.e., discrete bounded private signals,

which always leads to a positive probability that learning

fails. Another work with multiple true states is [7], which

considers non-Bayesian learning of the true state under re-

peated interactions of agents over a social network. Our work

remains with the Bayesian model in [1]–[3], where each agent

sequentially takes a one-time action and can observe all prior

actions. Other variations of the basic model include relaxing

the assumptions of i.i.d. binary valued signals [4], assuming

agents don’t observe all predecessors’ actions [5], [8], allowing

for imperfect observations [9]–[11], and others [12]–[14].

II. MODEL

We consider a model in which there is a countable sequence

of agents, indexed t = 1, 2, . . . where the index represents both

the time and the order of actions. Each agent t takes an action

At ∈ A = {a1, a2, . . . , an} of choosing to buy one among

n items, which are indexed by i = 1, 2, . . . , n where n ≥ 2.

While it is common knowledge that only one among the n
items is “good” and all the rest are “bad”, the identity (index)
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of the good item is not known to the agents a priori. Let

ω ∈ Ω = {1, 2, . . . , n} denote the true identity of the good

item. For simplicity, all possibilities of ω are assumed to be

equally likely.

The agents are Bayes-rational utility maximizers where the

pay-off received by each agent t, denoted by πt, depends on

the quality of the item he chooses to buy as follows. The agent

gains the amount x if the chosen item is good, i.e., if At = aω,

and −y if the chosen item is bad, where x > 0 and y ≥ 0.

He also incurs a fixed cost C > 0 for buying the item. The

agent’s net pay-off is then the gain minus the cost of buying

the item, which is

πt =

{

x− C, if At = aω,

−y − C, if At 6= aω.
(1)

Note that since ω is equiprobable, the ex ante expected pay-off

for any agent is equal for all actions. Thus, to begin with, an

agent is indifferent to all the actions.

To incorporate agents’ private beliefs about the new items,

every agent t receives a private signal St ∈ {s1, s2, . . . , sn}.

This signal, as shown in Figure 1 for n = 3, partially reveals

the information about the true identity of the good item ω
through a n-ary symmetric channel (n-ary SC) with crossover

probability 1− p. Given the true value ω, St is distributed as

P(St = sk |ω) =







p, if k = ω,

(1−p)
n−1 , if k 6= ω.

(2)

Here, 1/n < p < 1 which implies that the signal is informative

but not revealing. Moreover, the sequence of private signals

{S1, S2, . . .} is assumed to be i.i.d. given the true value ω.

Each agent t takes a rational action At that depends on his

private signal St and the past actions {A1, A2, . . . , At−1}.

Lastly, the models in [1]–[3] become special cases, with n = 2.

1 2 3

ω

s1 s2 s3

St

Fig. 1: Transition diagram of 3-ary SC through which agents receive
their private signals. Transitions with solid and dashed arrows occur
with probabilities p and (1− p)/2, respectively.

III. OPTIMAL DECISION, SUFFICIENT STATISTICS AND

CASCADES

For the tth agent, the history of past actions Ht−1 :=
{A1, A2, . . . , At−1} and its private signal St form its infor-

mation set {St, Ht−1}. As the first agent does not have any

observation history, he always follows his private signal, i.e.,

he chooses item i if and only if the signal is si. For agent

t ≥ 2, the Bayes’ optimal action, At is chosen such that it

provides the greatest expected pay-off given the information

set {St, Ht−1}. Let γi
t(St, Ht−1) , P(ω = i |St, Ht−1)

denote the posterior probability that item i is the good item.

Further, let γt := (γ1
t , γ

2
t , . . . , γ

n
t ) be the posterior distribution

over Ω. Now, it follows from (1) that for any two actions ai
and aj , with i 6= j, their respective πt’s are symmetric over

the set Ω. This implies that ai is optimum over aj only if

γi
t > γj

t . Thus, a Bayes’ optimal decision rule is given by

At =











ai, if Mt = {i},

follows St, if |Mt| > 1 and St ∈ {si}i∈Mt
,

aτ(Mt), if |Mt| > 1 and St /∈ {si}i∈Mt
.

(3)

Here, Mt := argmaxi∈Ω γi
t denotes the index set of the

optimal action(s). Note in (3) that when |Mt| > 1, a tie is said

to occur and the agent is indifferent to the actions {ai}i∈Mt
.

Our decision rule in this case is to follow the private signal St,

when St ∈ {si}i∈Mt
, i.e., when following the private signal

is optimal. Otherwise, we select an action from the optimal

set {ai}i∈Mt
as per a determisitic tie-breaking rule τ(·), and

denote the tie-winning action by aτ(Mt).

Note that when n = 2, as in [1], [9], [10], there exists only

a single possibility of a tie, which is between actions a1 and

a2. As St ∈ {s1, s2}, following the private signal St when in

a tie, is never sub-optimal, unlike the third case in (3), which

exists as a possibility only when n > 2.

Remark 1: The third case in (3) exists as a possibility only

when n > 2. Thus, τ(·) is used only for n > 2.

An example of such a possibility is when n = 3, and an

agent sees a tie between actions a1 and a2, while he receives

the signal s3. Our decision rule in (3), which is to break ties

by following St, only if doing so is optimal, can be viewed

as a generalization of similar decision rules in [9], [10] to

models with n ≥ 2, where following St when in a tie may not

always be optimal. Another choice to break ties is to employ

a randomized tie-breaking rule, given by a distribution over

the optimal action set {ai}i∈Mt
, as done in [1].

Definition 1: An information cascade is said to occur when

an agent’s decision becomes independent of his private signal.

It follows from (3) that, agent t cascades to an action ai
if and only if γi

t > γj
t for all j 6= i and for any St ∈

{s1, s2, . . . , sn}. This is because, when an agent cascades,

there cannot be a tie between actions, as this implies that

there always exists a different private signal, that if received,

would alter the agents’ optimal action. A more intuitive way

to present this condition is to first express the information

contained in the history Ht−1 observed by agent t in the form

of a public likelihood ratio of true state ω = i to ω = j, for

every i, j ∈ Ω, i 6= j defined as

li,jt−1(Ht−1) ,
P(Ht−1 |ω = i)

P(Ht−1 |ω = j)
. (4)

Similarly, we express the information contained in the private

signal St in the form of agent t’s private likelihood ratio of

true state ω = i to ω = j, for every i, j, defined as

βi,j
t (St) ,

P(St |ω = i)

P(St |ω = j)
=











c, if St = si,

1/c, if St = sj ,

1, o.w.

(5)
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with c := (n − 1)p/(1 − p), which follows from Figure 1

or equivalently from (2). Next, using Bayes’ rule, γi
t can be

expressed in terms of the public and private likelihood ratios

as γi
t = 1/(1 +

∑

j 6=i l
j,i
t−1β

j,i
t ), which can be used to show

γi
t

(<)
> γj

t ⇔ li,jt−1β
i,j
t

(<)
> 1, for any i 6= j. (6)

As a result, the condition on {γj
t }j∈Ω for an ai cascade to

occur translates to li,jt−1 > 1/βi,j
t for all j 6= i and for any St.

By using the values of βi,j
t from (5), the cascade condition

simplifies to give the following Lemma.

Lemma 1: Agent t cascades to an action ai if and only if

li,jt−1 > c for all j 6= i.

If agent t cascades, then the action At does not provide any

additional information about the true value ω to the successors

over what is contained in Ht−1. As a result, {li,jt+r} = {li,jt−1}
for all r = 0, 1, 2, . . . and hence they remain in the ai cascade,

which leads us to the following property, also exhibited by

prior models, e.g. [1]–[3], [9]–[11].

Property 1: Once a cascade occurs, it lasts forever.

A. Information dynamics until a cascade

Recall that an agent is said to follow his private signal if he

takes action ai only when the signal is si. This implies that his

action At “fully” reveals the private signal St to future agents.

Assume, without loss of generality, that all agents till some

time t follow their private signals. This is a valid assumption,

as the first two agents are known to always follow their private

signals. Then, due to the mutual independence of the signals

{Sk}k≤t given ω, it follows from (4) and the updates in (5)

that the public likelihood ratios {li,jt } can be expressed in

terms of the number of si’s (denoted by ni
T ), for each i ∈ Ω,

revealed by the observation history Ht as follows.

li,jt = cn
i
t

(

1

c

)n
j
t

for all i, j ∈ Ω. (7)

If agent t+1 also follows its private signal which happens to

be any sj , then it trivially follows that

nr
t+1 =

{

nr
t + 1, if r = j,

nr
t , o.w.

(8)

Now, given tuple {nr
t}r∈Ω, which denotes the number of

private signals of each type revealed till time t, if agent t+ 1
receives a private signal si, then it can be shown from (6) and

(7) that an optimal action must satisfy the following property.

Property 2: If agent t+ 1 receives a private signal si, then

action ai is optimal only if ni
t + 1 upper bounds the tuple

{nr
t}. Otherwise, any action ak where nk

t is maximal in {nr
t}

is optimal.

Further, by applying (7) to Lemma 1, the condition on tuple

{nr
t} for agent t+ 1 to cascade to an action ai is as follows.

Property 3: Agent t+1 cascades to an action ai if and only

if ni
t > 1+max{nr

t}r 6=i. Once any cascade occurs, {nr
t} stops

updating.

We now explore the other cases for the tuple {nr
t}r∈Ω

that agent t+ 1 may observe. Consider the following general

ordering of the tuple {nr
t}r∈Ω for some I, J,K that are

mutually exclusive and exhaustive in Ω.

{ni
t}i∈I > {nj

t}j∈J > {nk
t }k∈K such that

ni1
t = ni2

t for any i1, i2 ∈ I, and 0 < (ni
t − nj

t ) ≤ 1

and (ni
t − nk

t ) > 1 for any i ∈ I, j ∈ J, k ∈ K.

CASE (1): |I| ≥ 2, K 6= ∅.

Here, if agent t+1 receives a signal in {sk}k∈K , a tie between

actions {ai}i∈I occurs, in which case let τ(I) = i∗ denote the

index of the tie-winning action. Then, based on the private

signal St+1 observed, agent t+ 1 acts as per:

At+1 =

{

ai∗ , if St+1 ∈ {si∗} ∪ {sk}k∈K ,

aj , if St+1 ∈ {sj}j∈J∪I\{i∗}.
(9)

Note in (9) that the agent follows St+1 only when it belongs

to {sj}j∈J∪I\{i∗}, in which case {nr
t} updates as per (8).

Otherwise, agent takes action ai∗ which reveals not just the

signal si∗ but also “equally” reveals the signals {sk}k∈K .

Thus, if action ai∗ is taken, the public likelihood ratios would

not update as per (5), but instead would update as

li
∗,j
t+1 =







li
∗,j
t

(

c+|K|
|K|+1

)

, ∀ j ∈ J ∪ I \ {i∗},

li
∗,j
t , ∀ j ∈ K.

(10)

Observe in (10) that the ratio li
∗,j
t , for all j ∈ K , remain

unchanged as signals: si∗ and {sj}j∈K are equally revealed

by action ai∗ . Now, if the relation between li,jt and the pair

(ni
t, n

j
t ) given in (7) for all i, j has to be ensured for time

t+ 1, then the tuple {nr
t}r∈Ω should be updated as

nr
t+1 =

{

nr
t + δ(|K|), if r ∈ {i∗} ∪K,

nr
t , if r ∈ J ∪ I \ {i∗},

(11)

where δ(·) is a function of |K|, which is the number of signals

other than si∗ that result in action ai∗ , and is given by

δ(|K|) := log
(

c+|K|
|K|+1

)

/ log c ∈
(

1
|K|+1 , 1

)

. (12)

Note the range of δ(|K|) in (12) for any c > 1 or equivalently

for any p ∈ (1/n, 1). As δ(|K|) < 1, this implies that action

ai∗ only “partially” reveals the signals: si∗ and {sj}j∈K . Only

in the special case when K = ∅, ai∗ fully reveals si∗ . This

can be verified by (12), where in this case, δ(|K|) = 1.

CASE (2): |I| = 1, J,K 6= ∅.

In this case, as I is a singleton set, say I = {i}, the only

change with respect to Case (1) is that if agent t+1 receives

a signal in {sk}k∈K , there is no tie and ai is the sole optimal

action. Thus, it trivially follows that the index of the tie-

winnning action i∗ = i. Moreover, I \ {i∗} = ∅. Substituting

these values in (11) yields the updates for the tuple {nr
t} on

observing action ai. Refer to Table I for the public updates of

tuple {nr
t} in this case.

For all orderings of the tuple {nr
t} other than in Cases
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(1), (2) and the cascade ordering in Property 3, it can be

shown that agent t + 1 follows any private signal that it

receives, and updates as per (8). Action At+1 thereby fully

reveals the agent’s private signal. Table I summarizes the

public updates on {nr
t}, for all of their possible orderings.

With these updates, equation (7) and Property 2 now hold for

any agent t, regardless of whether all agents k < t fully reveal

their private signals. The following property thereby follows.

Property 4: The tuple {nr
t}r∈Ω, updated as per Table I, is

a sufficient statistic of the information contained in the public

history Ht.

Ordering of {nr

t
} At+1 {nr

t
} updates

Case (1)
ai∗ nr

t+1 = nr
t + δ(|K|), r ∈ {i∗} ∪K

any aj, j∈J ∪ I\{i∗} nj
t+1 = nj

t + 1

Case (2)
ai nr

t+1 = nr
t + δ(|K|), r ∈ {i} ∪K

any aj , j ∈ J nj
t+1 = nj

t + 1

ni
t > 1 + max

j 6=i
{nj

t} ai- cascade No further updates

Otherwise any aj nj
t+1 = nj

t + 1

TABLE I: Public updates on {nr
t} given the observed action At+1

for varying orderings of {nr
t }. Only those nr

t ’s that get updated are

specified. Only updates of the form nj
t+1 = nj

t + 1 imply a fully
revealing action. Other update forms, where δ(|K|) < 1, imply only
a partial revelation of multiple signals through the action.

Note that for n = 2, Cases (1) and (2) cannot occur and so

all agents until a cascade fully reveal their private signals.

Remark 2: For n = 2, until a cascade occurs, each agent

follows its private signal, thus fully revealing it.

The works in [9], [10], [11] study the n = 2 model with

the agents publicly observing a noisy version of the past

actions. These models also satisfy Remark 2. However, due to

noise, the observations until a cascade only partially reveal the

agents’ private signals. Interestingly, this feature of partially

revealing observations occurs in our model for n > 2, without

considering any observation noise.

B. Cascade Probabilities

An ai-cascade is correct if ai = aω and otherwise is wrong.

A correct cascade implies that the agents eventually learn

the true value ω. Now, given the true value ω ∈ Ω, let the

probability that an ai cascade begins be denoted by (n)
P

ω
ai-cas.

Here, the superscript (n) refers to the cardinality of Ω. Then,

the probability of a wrong cascade conditoned on ω, denoted

by (n)
P

ω
wrong-cas, can be expressed as

(n)
P

ω
wrong-cas :=

∑

i6=ω

(n)
P

ω
ai-cas, (13)

and the unconditional probability of a wrong cascade is

(n)
Pwrong-cas :=

1

n

∑

ω

(n)
P

ω
wrong-cas. (14)

For n = 2, recall from Remark 1 that the tie-breaker τ(·) is

not involved. For this reason, any agent t’s decision rule in (3)

is commutative with respect to the ordering of the posteriors

(γ1
t , γ

2
t ). As a result of this symmetry, we have for n = 2:

(2)
P
1
a2-cas =

(2)
P
2
a1-cas =

(2)
Pwrong-cas (15)

Whereas, for n > 2, as τ(·) is involved, which is a determinis-

tic tie-breaking rule, (3) is non-commutative with respect to the

ordering of the posteriors (γ1
t , . . . , γ

n
t ). Hence, the conditional

wrong cascade probability (n)
P

ω
wrong-cas given in (13) may or

may not be equal for any distinct pair of ω1, ω2 ∈ Ω.

Remark 3: For n > 2, the conditional wrong cascade pro-

bability given by (13) may not necessarily be equal among all

ω’s in Ω. Whereas, for n = 2, (13) is always equal for any ω.

IV. COMPARISON BETWEEN n = 2 AND n = 3

In this section, we compare the probability of learning the

true value ω ∈ Ω between a model with n = 2 and one with

n = 3, when they have the same private signal quality p. Let

M2 and M3 denote the respective models. Here, we assume

p ∈ (1/2, 1) to ensure that the private signal is informative in

both models. To differentiate between M2 and M3, let {s
′

1, s
′

2}
and {s1, s2, s3} denote their respective sets of private signals.

Proposition 1: For any private signal quality p ∈ (1/2, 1)
and tie-breaking rule τ(·), (3)

Pwrong-cas <
(2)

Pwrong-cas.

We prove Proposition 1 using a sequence of claims that

follow. First, for the sake of discussion, consider the realization

ω = 1 under both models. For this ω, we construct a coupling,

depicted in Figure 2a, through which signals in {s
′

1, s
′

2} can

be generated from the signals in {s1, s2, s3} of the M3-model.

Claim 1: Given ω = 1 and the coupling in Figure 2a, any

a2 or a3 (wrong) cascade in the M3-model is sufficient for an

a2 (wrong) cascade to occur in the M2-model.

Proof: In the M3-model, let (ai, aj)-sequences refer to

all sequences comprising only of actions ai and aj , where

i 6= j. To prove Claim 1, let us enumerate all possible (a1, a3)-
sequences in M3, that would result in an a3-cascade. We aim

to show that these sequences, under the coupling in Fig. 2a,

result in an a2 cascade in M2. Here, we choose the tie-breaking

rule τ(1, 3) = 1. Fig. 3 depicts these enumerations and shows

the corresponding sequence of actions, that are generated in

M2 as a result of the coupling between the private signals of

the two models, defined as per Fig. 2a. The arguments that

follow similarly hold for (a1, a2)-sequences that result in an

a2-cascade in M3 due to the associated symmetry of signals s2

s1 s2 s3

s
′

1 s
′

2

ω = 1

(a) ω = 1

s2 s1 s3

s
′

2 s
′

1

ω = 2

(b) ω = 2

s3 s2 s1

s
′

3 s
′

1

ω = 3

(c) ω = 3

Fig. 2: Coupling between the private signals in models M3 and
M2 for different values of ω, such that signals in M2 are generated
through signals in M3. For ω = 3, we assume M2 has state space
Ω = {1, 3}.
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START

a3, a3

P (a1, a3)

P (a1, a3) (a3, a1)
m

a3, a3
(s3, s2)

a1, a3, (a1, a3)
m, a3,

(s1, s2)

τ(1, 3) = 1
Tie:

(s3, s2)
a1,

a3
(s3, s2)

a3 cascade a3 cascade

Stage (1) Stage (2)

M3 Model

Coupling

as per Fig. 2a
START

a2, a2

P (a1, a2)

P (a1, a2) (a2, a1)
m

a2, a2
(s

′

2)

a1, a2, (a1, a2)
m, a2,

(s
′

1) (s
′

2)

a2, a2
(s

′

2)

a2 cascade

a1,

a2
(s

′

2)

a2 cascade a2 cascade

Stage (1) Stage (2)

M2 Model

Fig. 3: An enumeration of all possible (a1, a3)-sequences that lead
to an a3-cascade in M3 and the corresponding sequence of actions,
generated in M2 as a result of the coupling between private signals
of the two models, given in Fig. 2a. In M3, we assume τ (1, 3) = 1.

and s3 in Fig. 2a and by noting that both a3 and a2 cascades

are wrong, given that ω = 1. Lastly, any (a2, a3)-sequence in

M3 trivially results in an a2-cascade in M2 at time t = 3,

hence need not be considered further.

In any sequence in Fig. 3, the function P (·) denotes any

permutation of its arguments, which are a set of actions. The

notation (ai, aj)
m depicts the sub-sequence (ai, aj), succes-

sively repeated m ≥ 0 number of times. In M3, actions that

only partially reveal multiple private signals are highlighted

by indicating these signals above them. As per Table I, such

actions only occur under Cases 1 and 2, where in M3, the

only possible value that |K| can take is 1. Thus, a partially

revealed signal sr results in the update: nr
t+1 = nr

t + δ(1),
where δ(1) ∈ (0.5, 1). All other actions in M3 until a cascade

are fully revealing, i.e., any such action ai fully reveals signal

si, resulting in the update: ni
t+1 = ni

t + 1. In M2, as per

Remark 2, all actions until a cascade are fully revealing.

Stage (1) in M3 either starts with a3, a3, resulting directly

in an a3 cascade, or begins with P (a1, a3) and then either

terminates in an a3 cascade through a3, a3 or continues further

with another P (a1, a3). At this point, a fully revealing pattern

(a3, a1)
m is possible, until we observe an a1, which begins

Stage (2). Here, an a1 results not only from receiving s1 but

also from s2. This is because receiving an s2 would cause a tie

between actions a1 and a3, which a1 would win as τ(1, 3) =
1. Next, if again an a1 occurs, it would begin an a1 cascade

which we do not want to enumerate. So, the viable choice

is that a3 occurs. At this point, n3 > n1 > (n2 + 1) with

n3 − n1 < 1. Here, Case (1) applies, thus an a1 is fully

revealing whereas an a3 is not. So, a fully revealing pattern

(a1, a3)
m is possible, until we observe an a3, which partially

reveals s3 and s2. At this point, n3 = n1+1 and so an a1 then

equalizes n1 with n3 such that n3 = n1 > (n2 + 1), which

ties back to a point in Stage (1) as shown in Fig. 3. Otherwise,

an a3 starts an a3 cascade. In this way, all sequences that lead

to a a3 cascade are enumerated.

Applying the possible sequences of private signals, that

realise the action sequence in M3, to the coupling in Figure

2a generates the corresponding possible sequences of private

signals and resulting actions in M2, depicted in Fig. 3. Observe

that an a3 cascade in M3 gaurantees an a2 cascade in M2.

Similar arguments hold for the alternate choice of tie-breaking

rule τ(1, 3) = 3, or if an a2 cascade occurs in M3 (by

symmetry), thus proving Claim 1.

For the realization ω = 2, we consider a different coupling,

shown in Figure 2b. Then, by using similar arguments as done

for ω = 1, the following claim can be proven.

Claim 2: Given ω = 2 and the coupling in Figure 2b, an a1
or a3 cascade in M3 is sufficient for an a1 cascade in M2.

Lastly, for the realization ω = 3, we assume that model M2

has a state space Ω = {1, 3}. This is required to make ω = 3 a

common possibility under both models. It also follows that we

should consider the coupling in Figure 2c, which unlike the

couplings for other ω’s, maps {s1, s2, s3} to {s
′

1, s
′

3}. Then,

by using similar arguments as done for ω = 1, the following

claim can be proven.

Claim 3: For ω = 3 and the coupling in Figure 2c, an a1
or a2 (wrong) cascade in M3 is sufficient for an a1 (wrong)

cascade in M2, that has a state space Ω = {1, 3}.

Note that when ω = 3, the chances of an a1 cascade in M2

with state space {1, 3} is equal to the chances of an a1 cascade

in M2 with state space {1, 2} when ω = 2. This is due to the

fact that for n = 2, there are no state index-dependent changes

in agent’s decision making. Thus, Claim 3 also implies that
(3)

P
3
wrong-cas <

(2)
P

2
wrong-cas. This inequality along with Claims

1 and 2 being valid yield the following relation, in which the

equality holds due to Remark 3.

(3)
P

ω
wrong-cas <

(2)
P
1
wrong-cas =

(2)
P
2
wrong-cas, ∀ω ∈ {1, 2, 3}. (16)

It then follows from the inequality in (16), that the uncondi-

tional wrong cascade probabilites for n = 3 and n = 2, defined

by (14), are related as per Proposition 1. Thus, despite M3

having partially revealing actions, while no such possibility

exists in M2 (Remark 2), we show that learning in M3 is

strictly better than in M2.

V. CONCLUSIONS AND FUTURE WORK

We considered the impact of increasing the number of

actions in a Bayesian social learning setting and showed that

compared to a setting with only two actions, different behavior

can emerge. Further, we showed that increasing the number of

actions from two to three results in strictly improved learning.

This is driven in part because we are keeping the signal quality

for the good action fixed as the number of actions increases.

One avenue of future study would be to allow this to decrease

as the number of actions grows. Extending our analysis to

more than three actions is another direction of interest.
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