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The advancement of Cryogenic Electron Tomography (CryoET) makes it
possible to capture macromolecular structures with native conformations at
nanometer resolution [3]. In a typical CryoET pipeline, researchers prepare
frozen-hydrated samples and expose them to electron beams for imaging. The
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Abstract. Cryogenic Electron Tomography (CryoET) is a useful imag-
ing technology in structural biology that is hindered by its need for
manual annotations, especially in particle picking. Recent works have
endeavored to remedy this issue with few-shot learning or contrastive
learning techniques. However, supervised training is still inevitable for
them. We instead choose to leverage the power of existing 2D foun-
dation models and present a novel, training-free framework, CryoSAM.
In addition to prompt-based single-particle instance segmentation, our
approach can automatically search for similar features, facilitating full
tomogram semantic segmentation with only one prompt. CryoSAM is
composed of two major parts: 1) a prompt-based 3D segmentation sys-
tem that uses prompts to complete single-particle instance segmentation
recursively with Cross-Plane Self-Prompting, and 2) a Hierarchical Fea-
ture Matching mechanism that efficiently matches relevant features with
extracted tomogram features. They collaborate to enable the segmenta-
tion of all particles of one category with just one particle-specific prompt.
Our experiments show that CryoSAM outperforms existing works by a
significant margin and requires even fewer annotations in particle pick-
ing. Further visualizations demonstrate its ability when dealing with full
tomogram segmentation for various subcellular structures. Our code is
available at: https://github.com/xulabs/aitom.
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sample is incrementally tilted, allowing for the collection of multi-view images,
i.e., tilt-series. These images can be used for 3D reconstruction, resulting in a
3D density map, the tomogram. Further investigation requires particle picking
to accurately localize and segment sub-cellular structures. To this end, most
existing methods [6,7,17,19,23,24,27,29| resort to supervised training or tem-
plate matching [5], necessitating a large amount of laborious annotation. Some
recent works propose to adopt few-shot learning [28] or contrastive learning [§]
techniques to ameliorate this issue. However, currently, there is still a need to
train on several known categories or at least 20-50 annotations.

Looking out of the CryoET domain, recent years have witnessed a prolifer-
ation of general-purpose segmentation models. With the ability to condition on
various types of inputs and accomplish different downstream segmentation tasks
[12-16], SAM [11] and SEEM [30] have demonstrated a diverse range of capa-
bilities. Furthermore, in the three-dimensional world, SA3D [2] and LERF [10]
extend the ability of the implicit 3D representation NeRF [18] with prompt-based
segmentation and visual grounding. This progress inspires us to explore segment-
ing CryoET tomograms with general-domain foundation models. However, there
are several obstacles. While we see a tremendous number of 2D foundation mod-
els, their counterparts for 3D are relatively scarce, e.g., a general volumetric
segmentation model is still absent. Hence, bridging general-domain foundation
models to CryoET analysis is not trivial. In addition, general-purpose segmenta-
tion models [2,11] are commonly instance-specific while semantic-agnostic. This
limits their direct application to semantic-specific particle picking, which requires
picking all particles of a category simultaneously.

To overcome these challenges, we present CryoSAM, a training-free app-
roach for prompt-based CryoET tomogram segmentation. Our method intro-
duces a prompt-based 3D segmentation pipeline, bridging the gap between 2D
segmentation models and 3D volumetric segmentation. Our intuition is that the
silhouettes of a particle are similar in adjacent tomogram slices. Hence, we can
segment its 3D structure layer after layer by refining the segmentation mask
from the previous plane. Formally, we achieve this by employing a Cross-Plane
Self-Prompting mechanism, which recursively propagates and refines segmenta-
tion masks along one direction by prompting SAM [11] with segmentation results
from preceding planes. This allows us to segment one particle instance with a
single prompt. To further segment all particles of a specific category compre-
hensively, we introduce a Hierarchical Feature Matching strategy for efficient
instance-level feature matching. This approach eliminates the need for prede-
fined templates [2,25] and the extraction of subtomograms [26]. Using the mean
feature of prompted particles as the query, it filters out regions dissimilar to
the query in a coarse-to-fine manner. After filtering, it proposes point prompts
in a relatively low resolution and relies on the prompt-based 3D segmentation
pipeline to achieve final segmentation results. These designs enable semantic
segmentation over a full CryoET tomogram with a single prompt.

Our contributions can be summed up as follows:

— We present a novel, training-free framework, CryoSAM, that takes a full Cry-
oET tomogram and a set of user prompts as input and segments the prompted
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Fig. 1. Framework overview. ®: We extract per-slice 2D features for three views (z,
y, and x) from CryoET tomogram I and concatenate them as F. @: After segmenting
the particle(s) prompted by P with instance segmentation mask(s), ®: we average pool
the masked features to get query feature Fg. @: To efficiently propose prompts for
further segmentation, we match Fg with F using Hierarchical Feature Matching. @:
Finally, we adopt prompt-based 3D segmentation for semantic segmentation results M.

particle and all particles of the same category. This contrasts with current
methods that require supervised training [8,23,28,29].

— We introduce Cross-Plane Self-Prompting, which enables 3D volumetric seg-
mentation with 2D foundation models, significantly reducing the labor cost
of annotation by leveraging its prompt-based nature.

— We propose a Hierarchical Feature Matching strategy to match instance-level
particle features. It cuts down the runtime by 95% compared with naive
feature matching, being more efficient and convenient to use.

2 Method

Given a volumetric CryoET tomogram I € RP*H*XW and N point prompts
P € RV*3 denoting a set of single-category particles, our goal is to segment
all particles of the same category as the prompted ones. This process predicts
a 3D semantic segmentation mask M € {0, 1}P*#*W " with the overall pipeline
depicted in Fig. 1. D, H and W denote depth, height, and width respectively.

2.1 Feature Extraction

We rely on an off-the-shelf image encoder £ to extract 2D features from tomo-
gram slices {L}2_, {I,}JL, {I.}JL,. For each view z, y, and x, we obtain
ZE — {5<Iz) ZD:1 c Rthxwa, Yé’ — {E(Iy> 5[21 c Rd><H><w><C’7 and X€ —
{EX) V| € RIXWXWXC where the lowercase d, h, w are feature resolutions in
the latent space. Then we bilinear upsample them to get Z,Y, X € RP*HxWxC/
and aggregate them with a concatenation

F = {Fzyw}z’:’z’f’yvzl’mzl — [Z,Y,X] c RDXHXWXP,C, (1)

where F,, is a feature vector in F with coordinates [z, y, z].
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Fig. 2. The pipeline of prompt-based 3D segmentation. After segmenting the
orthogonal planes intersect at the point prompt P;, we iteratively execute Cross-Plane
Self-Prompting until we get the complete mask of the particle.

2.2 Prompt-Based 3D Segmentation

We propose Cross-Plane Self-Prompting, a mechanism that can propagate seg-
mentation masks along the +z, +y, +x axes, to approach prompt-based 3D seg-
mentation, as illustrated in Fig.2. The intuition is that the segmentation mask
of one particle should be similar for neighboring slices. Hence, we can prompt
SAM [11] with the segmentation results from the previous plane to get subse-
quent results. Formally, we take as input a single point prompt P; = [z;, y;, 2]
and the three orthogonal planes intersecting at this point, namely, the YX-plane
I.,, the ZX-plane I, and the ZY-plane I ,. Then, we employ SAM to obtain
their 2D segmentation results, with the YX-plane as an example

(C;lez,) =SAM [Izz I(xzy yz)] ’ Q,Zz@ = argmaxx,y(cizi% (2)

where C? are the predicted confidence scores, M’ are the predicted segmentation
masks, and Q! are the coordinates with the highest confidence scores. We use
superscript ¢ to represent the index of the initial point prompt. Then for each
direction in {4z, +y, +x}, we prompt the next tomogram slice with Q% and M?
from the previous plane, for which we term Cross-Plane Self-Prompting. Taking
the 4z direction as an example which starts from z = z;, we have

(Ciz+17Mi+1) = SAM [Iz|Q,Zz’ M,Zz] ) Q,iz-l-l = argmaxm7y(Ci+1). (3)

Here, we benefit from SAM’s versatility, which allows it to take both point and
mask prompts as inputs. This recursive process continues until the intersection
over union (IoU) of the segmentation masks in two adjacent slices drops below
a threshold 71,y, which suggests that prompting the current plane will not get
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Fig. 3. The pipeline of Hierarchical Feature Matching. We average the tomo-
gram features in the instance segmentation masks to obtain a query feature Fg. Then
we downsample F into several coarse ones and match them with Fg in a coarse-to-fine
manner. After the last matching stage, we apply NMS and gather coordinates with top
K similarities as prompts to derive final semantic segmentation results.

a result consistent with previous ones. After getting the segmentation masks
{M. 1}, {M, }yy, {M, }Y for all 6 directions sequentially, we aggregate a union

of all segmentation masks in 3D, i.e., M = {Mz}itZ U {My}ziy U {MI}Ztx

2.3 Hierarchical Feature Matching

Shown in Fig. 3, Hierarchical Feature Matching aims to efficiently search for
voxel regions with similar features as the query. For input point prompts P =
{P;} € RV*3 we obtain an instance segmentation mask for each prompt through
prompt-based 3D segmentation, resulting in {M*}. Then, we derive the query
feature F¢ via masked average pooling (MAP)

Zz’ Zzyz zyw © FZ.W?
22 IME g ’

where ® is the Hadamard product with broadcasting and ||-||, is the 0-norm indi-
cating the number of non-zero voxels. This operation averages features masked
by the instance segmentation masks to obtain a mean feature representing the
prompted particles. While a brute-force approach can achieve voxel-precise fea-
ture matching between Fg and F, we empirically show this is neither efficient nor
necessary. Instead, we propose to match Fg with multi-resolution features in F
in a coarse-to-fine manner, each time keeping only the most similar proportion.
We begin with building a feature pyramid

Fo= (4)

{FT} = {[erYrvxr]}v (5)

where r E {16,8,4} is the downsampling ratio, and F" € RZXTXTx3C 75

R¥XF X5 XC gtands for an r times downsampled version of Z, with similar
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Table 1. Comparison results for particle picking on EMPIAR-10499 [22].

Method Annotation Ratio PrecisionRecall|F1 Score Runtime (min)
EMAN?2 [21] - 26.1 55.3 35.5 2-5
crYOLO [24] 100% 47.8 56.8 [52.0 30-40
Huang et al. [8] 5% 49.6 58.1 |53.5 5-10

10% 50.1 58.2 [53.8

30% 55.9 60.3 |58.0

50% 53.0 65.1 |58.4

70% 54.9 66.7 60.2
CryoSAM (Ours) /< 1% (single prompt)/53.1 55.3 |54.2 10-15

5% 57.8 74.3 165.0

10% 58.2 75.1 |65.5

30% 58.1 75.4 |65.6

50% 58.0 75.3 |65.5

70% 58.5 79.4 674

definitions for Y” and X". Then from the lowest resolution of {F"}, we calculate

its point-wise cosine similarity S = {S7, yl}z’ ’1’ Y ’1 =1 With query Fg

Fg - (FT )
st - 6
v = Fally TFom ]l ©)

For the lowest resolution, we calculate the similarity for all %g% features.

Subsequently, we build a mask K" = 8" > 7, that filters out regions with low
similarity scores and propagates this mask to the next resolution with upsam-
pling. This allows the next round of feature matching to be conducted only on
the high-similarity features, thereby greatly reducing the computational com-
plexity. After iterating through the whole downsampling ratio list, we apply
non-maximum suppression (NMS) on the coordinates with their similarity scores
and keep the top K of them as point prompts. These prompts are then fed into
the prompt-based 3D segmentation pipeline for semantic segmentation.

3 Experiment

3.1 Experimental Settings

Datasets and Evaluation Metrics. Due to the scarcity of CryoET segmentation
annotations, we mainly assess the quantitative performance of CryoSAM for
particle picking. To this end, we utilize the EMPIAR-10499 dataset [9,22], which
comprises 65 tilt-series of native M. pneumoniae cells with annotated ribosomes.
We use the prediction from each proposed prompt as an instance segmentation
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Table 2. Ablation study for different feature extractors.

2D Feature Extractor/Annotation Ratio Precision Recall F'1 Score
SAM [11] < 1% (single prompt)(37.4 38.8 [38.1
10% 44.1 60.0 |50.8
DINO [1] < 1% (single prompt)|56.3 52.8 |54.5
10% 63.2 74.4 68.3
DINOv?2 [20] < 1% (single prompt)[55.4 58.8 |57.1
10% 59.8 80.1 |68.5

Table 3. Ablation study for different feature matching strategies.

Feature Matching Strategy Annotation Ratio PrecisionRecall F1 ScoreRuntime (min)
Naive < 1% (single prompt)/53.5 56.4 [54.9 60-65

10% 60.8 80.7 169.4
Hierarchical < 1% (single prompt)|55.4 58.8 [57.1 10-15

10% 59.8 80.1 |68.5

mask to compare with other detection methods [8,21,24] in terms of precision,
recall, and F1 score. Results from all 65 tilt-series with 5 random sets of input
prompts are averaged in our comparison results reported in Table 1, while the
first 20 tilt-series and a fixed set of input prompts are used in our ablation
study. We do not calculate mean average precision (mAP) as our method does
not output an explicit score for each segmentation mask.

Implementation Details. We use DINOv2 [20] with a ViT-L/14 [4] backbone as
the default 2D encoder £ of CryoSAM and SAM [11] with ViT-H as our 2D
segmentation model. The IoU threshold 71,y to determine the end of segmenta-
tion mask propagation and the similarity threshold 7y, to filter out dissimilar
regions in Hierarchical Feature Matching are both set to 0.5. Top K = 512 coor-
dinates in the final stage of Hierarchical Feature Matching are used as proposed
prompts for full tomogram semantic segmentation. In all experiments, we do not
require any training for CryoSAM. We use a subset of all ground truth coordi-
nates as input prompts. The annotation ratio in tables refers to the proportion
of prompted particles to all particles in our scenario.

3.2 Comparison Results

In Table1, CryoSAM demonstrates significant advancements in particle pick-
ing compared to three baselines under the same annotation ratio. Using 5 ran-
dom sets of input prompts, we conducted one-tailed paired t-tests to assess the
significance of our improvements over Huang et al. [8], consistently yielding p-
values below 0.01. It is also noteworthy that our single-prompt result is better
than [8] under 10% annotation, which shows the annotation-efficient property of
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Fig. 4. Intermediate and final results of CryoSAM. In (d) and (f), we show
points with coordinates ranging from z — 20 to z + 20 for demonstration.

Precision w512 1024w All Recall w512 1024 wAll FlScore  wsi2 1024 mAll
0.80 1.00 0.80
0.60 0.60
0.40 0.50 0.40
AN
0.00 0.00 0.00
Single 5%  10% 30% S50% 70% Single 5%  10% 30% 50% 70% Single 5%  10% 30% S50% 70%
Prompt Prompt Prompt

Fig.5. Ablation study for the number of proposed prompts. 512/1024/All:
number of proposed prompts selected for prompt-based semantic segmentation.

CryoSAM. Our performance also improves as the number of available prompts
increases. This is probably because the averaged features are more robust with
the addition of different particle instances in similarity-based matching.

3.3 Ablation Study and Analysis

Impact of Feature Extractors. We ablate the particle picking performance over
different 2D feature extractors in Table 2. Our results show that using DINO [1]
and DINOv2 [20] achieves significantly better results than using the SAM [11]
encoder. It follows that DINO and DINOv2 learn more discriminative features
with self-supervised training, which is beneficial for accurate feature matching.

Impact of Feature Matching Strategies. We evaluate the effectiveness of Hierar-
chical Feature Matching in Table 3 by replacing it with naive feature matching
that only computes voxel-wise similarity in the highest DHW resolution. We
see our hierarchical strategy retains a comparable performance while taking a
notably shorter time to process. This reflects the robustness of our prompt-based
3D segmentation pipeline, which does not require the input to be voxel-precise.

Impact of the Number of Proposed Prompts. In Fig. 5, we analyze the precision-
recall trade-off by varying K. Generally, smaller values of K result in lower recall
and higher precision. We make our design choice to set K = 512 by selecting the
model with the best overall F1 score.
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Qualitative Analysis. We visualize the whole process of CryoSAM in Fig. 4, which
shows it can conduct 3D semantic segmentation with just a single point prompt.
See the supplementary for more qualitative results and failure cases.

4 Conclusion

We present CryoSAM, a training-free framework that segments full CryoET
tomograms with given prompts. It has two core innovations. First, the proposed
Cross-Plane Self-Prompting mechanism bridges the gap between 2D segmenta-
tion foundation models and 3D volumetric segmentation. Second, we introduce
Hierarchical Feature Matching, which is capable of efficient search for one cat-
egory of particles. Combining both shows positive synergy in prompt-based full
tomogram semantic segmentation, leading to SOTA results in particle picking.
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