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Abstract 54 
Anthropogenic activities emit ~2000 Mg yr-1 of the toxic pollutant mercury (Hg) into the atmosphere, 55 
leading to long-range transport and deposition to remote ecosystems. Global anthropogenic emissions 56 
inventories report increases in Northern Hemispheric (NH) Hg emissions during the last three decades, in 57 
contradiction with the observed decline in atmospheric Hg concentrations at NH measurement stations. 58 
Many factors can obscure the link between anthropogenic emissions and atmospheric Hg concentrations, 59 
including trends in the re-emissions of previously released anthropogenic (“legacy”) Hg, atmospheric sink 60 
variability, and spatial heterogeneity of monitoring data. Here we assess the observed trends in gaseous 61 
elemental mercury (Hg0) in the NH and apply biogeochemical box modeling and chemical transport 62 
modeling to understand the trend drivers. Using linear mixed effects modeling of observational data from 63 
51 stations, we find negative Hg0 trends in most NH regions, with an overall trend for 2005–2020 of 64 
‑0.011 ± 0.006 ng m-3 yr-1 (±2 SD). In contrast to existing emission inventories, our modelling analysis 65 
suggests that NH anthropogenic emissions must have declined by at least 140 Mg yr-1 between the years 66 
2005 and 2020 to be consistent with observed trends. Faster declines in 95th percentile Hg0 values than 67 
median values in Europe, North America, and East Asian measurement stations corroborate that the 68 
likely cause is a decline in nearby anthropogenic emissions rather than background legacy re-emissions. 69 
Our results are relevant for evaluating the effectiveness of the Minamata Convention on Mercury, 70 
demonstrating that existing emissions inventories are incompatible with the observed Hg0 declines.  71 
 72 
Significance statement 73 
Mercury (Hg) is a global pollutant that bioaccumulates to toxic concentrations along the food chain. 74 
Anthropogenic Hg inventories suggest increasing global emissions over recent decades, which is at odds 75 
with observed declines of atmospheric Hg concentrations in the Northern Hemisphere (NH). We use 76 
statistical and process-based modeling to rule out the possibility that NH anthropogenic emissions of Hg 77 
could have increased while atmospheric Hg concentrations declined. This implies that anthropogenic 78 
emissions of Hg have very likely declined in recent years. This work informs the effectiveness evaluation 79 
of the international Minamata Convention on Mercury. Further research is required to better link emission 80 
changes with measured concentrations so that the specific causes of global Hg trends can be identified.  81 
 82 
Main Text 83 
 84 
Introduction 85 
The global Minamata Convention on Mercury is a multilateral environmental agreement that aims to 86 
“protect human health and the environment from anthropogenic emissions and releases of mercury”, a 87 
neurotoxic pollutant (1). As mercury (Hg) is volatile and long-lived (~6 months) in the atmosphere (2), 88 
trends in atmospheric mercury concentrations are one of the proposed indicators that will be used to 89 
evaluate the Convention’s effectiveness (3). However, linking trends in Hg concentrations and 90 
anthropogenic emissions is not a straightforward process. The major anthropogenic emissions sources of 91 
Hg, including artisanal and small-scale gold mining (ASGM), coal combustion, and industrial processes, 92 
are distributed heterogeneously across the globe (4, 5). At the same time, legacy re-emissions of 93 
historical anthropogenic mercury from soils, freshwater, wildfires, and oceans are diffuse background 94 
sources, which are thought to make up a larger fraction of the overall Hg source fluxes (60% for legacy 95 
re-emissions vs. 27% for primary anthropogenic) (6). Atmospheric Hg monitoring stations are also not 96 
evenly distributed globally, with more stations located in North America and Europe (7), and they cover 97 
different time periods. Therefore, statistical modeling is necessary to maximize the information present in 98 
atmospheric Hg records (8), while mechanistic modeling helps connect observed Hg concentrations with 99 
their drivers, i.e., emissions, chemical transformations, transport, and deposition (7).  100 
 101 
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The large-scale trends of atmospheric Hg over the last three decades have been under recent debate. 102 
Bottom-up inventories show increasing global anthropogenic emissions since the 1990s (5, 9, 10), which, 103 
all else being equal, should increase atmospheric Hg concentrations. However, in North America and 104 
Europe, measured gaseous elemental mercury (GEM: Hg0) concentrations have generally been declining 105 
since continuous measurements began in the 1990s (7, 11–14). There is a clear need to understand this 106 
contradiction and evaluate past trends of Hg emissions, especially after the adoption of the Minamata 107 
Convention in 2013. Zhang et al. (7), the most recent study to evaluate the consistency between emission 108 
inventories and atmospheric observations using the chemical-transport model GEOS-Chem, analyzed 109 
available data through 2014. Their comparison between the model and measurements from North 110 
America and Europe led the authors to conclude that anthropogenic Hg emissions declined by ~30% 111 
between 1990 and 2010, due to weaker increases of Hg emissions from ASGM and strong declines in Hg 112 
emissions from commercial products (7). More recent measurements from East Asian stations have also 113 
reported declines in atmospheric Hg (15–18). Long term measurements from the Southern Hemisphere 114 
(SH) remain scarce, with the latest results from the observation stations Cape Point and Amsterdam 115 
Island showing insignificant trends between 2012–2017 (19). Alternative hypotheses have been proposed 116 
to explain the decline in atmospheric Hg in the Northern Hemisphere (NH) while anthropogenic emissions 117 
rise, including increased elemental mercury (Hg0) uptake by vegetation (20) and declining Hg emissions 118 
from ocean legacy re-emissions due to reduced anthropogenic inputs after the 1970s (21, 22). However, 119 
a decline in legacy emissions of Hg is difficult to reconcile with biogeochemical box models, which 120 
suggest that legacy Hg emissions generally increase if anthropogenic emissions are constant or 121 
increasing (23).  122 
 123 
Here, we perform trend analyses on a compiled NH dataset (1992-2022) of ambient Hg0 measurements 124 
and conduct biogeochemical box model and GEOS-Chem chemistry-transport model simulations to 125 
identify emissions trends that would be compatible with observed concentration trends. We focus on Hg0 126 
measurements rather than gaseous oxidized mercury (GOM) and wet deposition measurements, as past 127 
measurements of GOM may have been biased low (24) and wet deposition is more strongly affected by 128 
meteorological variability (25). We derive trends not only in the mean or median changes in Hg0, but also 129 
in other statistical quantiles (e.g., 95th percentile) using quantile regression, which can provide additional 130 
information regarding the drivers of trends.  131 
 132 
Results and Discussion 133 
Regional trends in observed Hg0 (1992–2022). We analyzed Hg0 data from 51 long-term monitoring 134 
stations across the NH (Fig. 1). To calculate trends over wider regions, we aggregated stations based on 135 
Intergovernmental Panel on Climate Change (IPCC) regions (26) and calculated overall trends using 136 
linear mixed effect modeling (Fig. 2A–K and Table S1). Overall trends for all NH regions except 137 
Northwestern North America are declining over the available measurement periods between 1992 and 138 
2022, with declines ranging between -0.007 and -0.035 ng m-3 yr-1 (concentration units refer to standard 139 
temperature and pressure, STP). Northwestern North America (Fig. 2J) is the only NH region to show a 140 
positive trend, but this region only includes one measurement site (Little Fox Lake, Yukon, Canada). Two 141 
possible hypotheses for the positive trend in Little Fox Lake have been suggested: increasing transport 142 
from East Asia or increasing wildfire frequency in Western Canada (12). However, in our analysis, the 143 
East Asian region also shows declining Hg0 concentrations over 2006–2022 (trend ‑0.023 ± 0.005 ng m-3 144 
yr-1) (Fig. 2H). Declines have also been observed in other published shorter term measurement records 145 
from China (17, 18, 27, 28). For the regions with more available measurement stations, including Eastern 146 
North America (ENA, n = 19) and Northern Europe (NEU, n = 13), we tested a nonlinear method of 147 
obtaining an overall regional trend using generalized additive models (GAM) (8). The derived regional 148 
trends are robust, as both the linear and nonlinear approaches of deriving regional trends yield similar 149 
declines in these regions for 2005–2020 (‑0.01 to -0.02 ng m-3 yr-1) (Supplemental Information, SI, Fig. 150 
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S4). We have also calculated similar regional trends when conducting a sensitivity test where the analysis 151 
of site data is limited to the 2005–2020 period (SI Fig. S5 and Table S3). 152 
  153 
We find an overall NH Hg0 decline of -0.011 ± 0.006 ng m-3 yr-1 (± 2 standard deviations) for the period 154 
2005–2020 (Fig. 2L), calculated by averaging regional trends (Fig. 2A–K) weighted by the areas of 155 
corresponding IPCC regions. By first aggregating site trends by region, we reduce inherent biases from 156 
the uneven spatial distribution of sites (i.e., biasing toward the trends of Eastern North America and 157 
Europe) (SI Fig. S2). Our results largely agree with a previous trend assessment conducted on data from 158 
1990–2014 (7), which found regional declines in Hg0 of -0.6 to -2% yr-1 (approximately corresponding to 159 
‑0.01 to ‑0.03 ng m-3 yr-1). The current work benefits from improved statistical techniques to combine 160 
information from multiple sites and a larger number of stations and regions covered in more recent time 161 
periods. We have not included an analysis of SH regional trends in the current work due to the sparse 162 
coverage of SH long-term monitoring stations (Fig. 1). From published information, two SH monitoring 163 
stations (Cape Point, South Africa and Amsterdam Island) do not show significant trends during the 164 
2012–2017 period, while Cape Point shows a positive trend of ~0.008 ng m-3 yr-1 over 2007–2017 (19). 165 
As the NH has a wider dataset of Hg0 time series and is the principal hemisphere for anthropogenic 166 
emissions, we proceed with constraining Hg budget trends based on the NH Hg0 trend. 167 
 168 
Constraining emissions trends for 2005–2020. We ran 2 × 105 scenarios in a biogeochemical box 169 
model for 2005–2020, varying 19 Hg budget parameters including the trends in anthropogenic emissions 170 
and releases, the response of legacy emissions to recent and historical anthropogenic inputs, emissions 171 
speciation trends, and the atmospheric Hg lifetime (Table S4). Figure 3A compares the distributions of 172 
simulated Hg0 trends for specific trends in anthropogenic emissions, given the uncertainty ranges of all 173 
other factors. Note that emissions fluxes are reported in Mg yr-1, and thus trends in these fluxes are 174 
expressed as Mg yr-2. Our best estimate for the observed 2005–2020 trend in surface NH Hg0 is -0.011 ± 175 
0.006 ng m-3 yr‑1. However, to account for potential differences between NH surface and whole 176 
troposphere trends (SI Section S3.1) we assumed an extended uncertainty range for NH tropospheric Hg0 177 
trends from -0.017 to ‑0.004 ng m-3 yr-1 (error bar in Fig. 3A).  178 
 179 
The uncertainty range for observed NH troposphere Hg0 trends is compatible (>5% overlap in histogram) 180 
only with anthropogenic emission trends that are declining by more than -9 Mg yr‑2 (Fig. 3A). Stronger 181 
declines in anthropogenic emissions lead to more overlap between the simulated and observed trend 182 
ranges, yet they become more difficult to reconcile with existing bottom-up inventories. Our box modeling 183 
analysis is consistent with a previous emissions trend estimate based on 1990–2010 observations (610 184 
Mg yr-1 total difference; -30.5 Mg yr-2 trend) (7). The positive NH anthropogenic emissions trend estimated 185 
by the Streets et al. (10) inventory for 2005–2015 (34 Mg yr-2), should result in NH Hg0 increases on the 186 
order of 0.09 ng m-3 yr-1, with no overlap in the observed trend range. Other global inventories differ in 187 
terms of their temporal coverage, yet the EDGAR v4.tox2 inventory estimates an increase of 54 Mg yr-2 188 
over 2005–2012 in the NH (9) and the AMAP/UNEP inventory estimates an NH increase of 44 Mg yr-2 189 
between 2010 and 2015 (5). The EDGAR v8.1_toxHg inventory, which was recently released but remains 190 
in draft form for speciation estimates (29), shows an NH increase of 35 Mg yr-2 for 2005–2020 (Fig. S15), 191 
We conclude that current bottom-up inventories of anthropogenic Hg emissions are inconsistent with the 192 
declines in observed NH Hg0 for 2005–2020.  193 
 194 
Previous studies (21, 22) have hypothesized that NH Hg0 may be decreasing due to broad-scale declines 195 
in legacy emissions, even as anthropogenic emissions increase or stay constant. However, our 196 
biogeochemical box model analysis illustrates that it is very unlikely for legacy emissions to decrease if 197 
recent (2005–2020) anthropogenic emissions are not also decreasing. Even if anthropogenic emissions 198 
stay constant, legacy emissions will grow due to the increasing supply of Hg (23). This effect means that 199 
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in the case of an anthropogenic emissions trend of zero, the median predicted Hg0 trend will be positive 200 
due to positive trends in re-emissions (Fig. 3A and Fig. S8B). The trend in anthropogenic emissions must 201 
be below -8 Mg yr-2 for the median predicted Hg0 trend to become negative (Fig. S8B). We explored the 202 
potential impacts of errors in the historical emission and release inventories on the recent re-emissions 203 
trend (Fig. S9). If we assume underestimates in 1970 emissions and releases, when Hg discharges were 204 
at their peak (30, 31), the recent re-emissions trend would be more negative (Fig. S9A). However, the 205 
degree to which the potential error in 1970 emissions affects the 2005–2020 re-emissions trend is smaller 206 
than the impacts of more recent errors (1990, 2000), and a factor of ~15 smaller than the influence of 207 
contemporary (2005–2020) anthropogenic emissions and releases trends (Figs. S9F and G). Therefore, 208 
although historical emissions and releases from earlier decades (>30 years) can affect the recent re-209 
emissions trend, the dominant factor for the recent re-emissions trend will be recent trends (<15 years) in 210 
anthropogenic Hg inputs to the environment. Our results take into account the uncertainties in the multiple 211 
lifetimes of legacy Hg in the surface environment (Table S4).  212 
 213 
We explored the role of trend drivers other than anthropogenic inputs by repeating the sampling of the 214 
box model throughout the parameter space, accounting for additional causes. If the oxidation lifetime of 215 
Hg0 declined between 2005–2020, it can become easier to reconcile the observed Hg0 decline with 216 
positive anthropogenic emissions trends (Fig. 3B). However, the oxidation lifetime of Hg0 would have to 217 
decline by 13% for at least a 5% likelihood of positive anthropogenic emissions trends (i.e., when the 218 
oxidation lifetime declines by 13% over 2005–2020, 5% of the simulations that are within the observed 219 
NH Hg0 trend range have positive NH anthropogenic emissions trends). A hemispheric decrease in the 220 
oxidation lifetime of this magnitude would be surprising for the 2005–2020 period, as modeling estimates 221 
for the methane (CH4) lifetime suggest only 9% declines over the longer period of 1980–2014, driven by 222 
increases in hydroxyl radical (OH) concentrations (32). In addition, the two-step Hg oxidation chemistry 223 
will be affected by other oxidants as well, including ozone, bromine radicals, and nitrogen oxides (2, 33–224 
35). A recent study has highlighted the role of anthropogenic short-lived halogens in continental Hg 225 
oxidation, with more work required to understand their trends (36). Oxidants impacted by anthropogenic 226 
pollution sources have likely trended differently in different regions, and therefore are likely not the main 227 
factor between the consistent Hg0 declines seen across the NH. In the unlikely scenario that increased 228 
Hg0 oxidation rates counteracted constant or increasing anthropogenic emissions to yield negative Hg0 229 
trends, one would still expect to see a positive trend in NH Hg wet deposition. This is because: 1) larger 230 
emissions would need to be balanced by larger deposition fluxes; and 2) the accelerated oxidation of Hg0 231 
would lead to more Hg depositing through wet deposition (the major fate of soluble HgII) rather than dry 232 
deposition of Hg0. However, previous studies have identified overall declines in wet deposition of Hg over 233 
North America (13, 14, 37) and Europe (5). 234 
 235 
Another potential factor is the increase in terrestrial primary production through global greening, which 236 
Jiskra et al. (20) estimated increased the NH dry deposition of Hg0 to vegetation by 140 Mg yr-1 between 237 
1990 and 2010; this corresponds to a decrease of approximately 13% in their estimated Hg0 lifetime due 238 
to vegetation uptake. However, the NH Hg0 dry deposition lifetime would have to decline by more than 239 
19% between 2005 and 2020 to yield a 5% likelihood of positive anthropogenic emissions trends (Fig. 240 
3C). A change of this magnitude to vegetation uptake during 2005–2020 is unrealistic, as our GEOS-241 
Chem simulation for that time period shows only a 3% decline in the Hg0 dry deposition lifetime due to 242 
vegetation changes (Fig. S11). Other climate change factors can play a role in recent legacy emissions 243 
trends, like release of Hg from melting permafrost (38), changes to ocean evasion of Hg0 through 244 
warming, acidification, and wind speed changes (39), decreased sea ice coverage allowing further Hg0 245 
evasion (40), and enhanced wildfire emissions (41). These identified climate feedbacks, however, tend to 246 
increase legacy Hg re-emissions, and thus could not explain why anthropogenic emissions in bottom-up 247 
inventories increase while Hg0 trends decline. Although further research into these factors is required to 248 
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reduce uncertainties in recent trend drivers, our conclusion remains that it is very unlikely that NH 249 
anthropogenic emissions could have increased or even stayed constant over 2005–2020, with the Hg0 250 
declines observed over this period in the NH.  251 
 252 
Spatial and quantile variability of Hg0 trends. Although the box model is useful for constraining overall 253 
hemispheric trends, it cannot capture the spatial heterogeneity of these trends driven by variability in 254 
sources, sinks, and transport. As these simulations are run with observed meteorology from the MERRA-255 
2 reanalysis product (42), the GEOS-Chem simulations account for interannual variability or potential 256 
climate change-driven trends in meteorology for 2005–2020. We ran simulations (Table 1) in the 3-D 257 
chemical-transport model GEOS-Chem (43, 44) to investigate different emissions scenarios over the 258 
2005–2020 period and calculated mean trends in NH Hg0 using area-weighted averaging of observed 259 
regions (Fig. 4A). The BASE simulation, including anthropogenic emissions increases according to 260 
Streets et al. (10) for 2005–2015 with constant emissions after 2015, shows an increase in NH Hg0 of 261 
0.006 ng m‑3 yr‑1. In the BASE+LEG simulation, we considered the feedback of legacy emissions to 262 
increasing anthropogenic emissions, leading to a stronger increase of 0.010 ng m‑3 yr‑1 in NH Hg0. 263 
Echoing the box modeling results, we thus find that increases in anthropogenic emissions found in 264 
existing inventories is inconsistent with the observed trends in NH Hg0, -0.011 ± 0.006 ng m-3 yr-1. 265 
Replacing Chinese emissions within BASE by the regional inventory trend from Zhang et al. (45), the 266 
ZHANG23 simulation shows a slight negative trend in NH Hg0 (-0.001 ng m-3 yr-1). We simulated two 267 
further scenarios for a decreasing NH emissions trend: DEC_ANT_NH, where an additional decline of 23 268 
Mg yr-2 in the NH is imposed on top of the ZHANG23 scenario, and DEC_LEG_ONLY, which considers 269 
declining ocean re-emissions of Hg in the NH and SH. Both of these emission scenarios are within 270 
uncertainties of the observed trend in mean NH Hg0 (DEC_ANT_NH: -0.009 ng m-3 yr-1; 271 
DEC_LEG_ONLY: ‑0.012 ng m‑3 yr‑1). Since it is difficult to understand the causes of the Hg0 decline 272 
based on the mean hemispheric trend alone, we also assess the spatial and quantile variations in trends. 273 
 274 
We use quantile regression to assess trends in the observed median (P50) and 95th percentile (P95) 275 
deseasonalized daily Hg0 values. Fig. 4B maps the simulated P50 trends in BASE+LEG, showing 276 
increasing concentrations across the globe, in disagreement with 8 of the 9 plotted stations (>13 years 277 
observed between 2005 and 2020), which show declines. The difference between P95 trends and P50 278 
trends (Fig. 4C) correlates with the change in anthropogenic emissions between 2005 and 2020 (Fig. 279 
S12). BASE+LEG simulates P95 declining more than P50 in Eastern North America and Central Europe 280 
(areas of emissions decreases in the global inventory), while P95 increases more than P50 in East Asia 281 
and South Africa (areas of emissions increases). Available high-resolution measurement records confirm 282 
the simulated P95 – P50 trends in Eastern North America (Egbert and Kejimkujik) and Europe (Mace 283 
Head, Schmücke, and Pallas), yet they also show declines in East Asia (Cape Hedo). In the simulations 284 
where Chinese emissions decline between 2005 and 2020 (ZHANG23 and DEC_ANT_NH), the 285 
simulated P95 – P50 trends agree with observations at Cape Hedo, showing negative values (Figs. 4E 286 
and S12D). In the DEC_LEG_ONLY simulation, declining legacy emissions lead to agreement with the 287 
observed P50 NH Hg0 trends (Fig. 4F), but the P95 – P50 trends remain similar to BASE+LEG and are 288 
opposite in sign to Cape Hedo observations (Fig. 4G). Therefore, despite showing similar P50 trends 289 
(Figs. 4D and F) in NH Hg0, DEC_ANT_NH and DEC_LEG_ONLY can be distinguished by simulated 290 
patterns in quantile trends. The current results support findings from Hg measurement studies in the 291 
1990s (46, 47), which suggested that reductions in observed extreme concentrations could be useful 292 
indicators for regional emissions changes. Incorporation of quantile trends as constraints in Hg modeling 293 
can thus help maximize the information provided by high resolution monitoring stations. 294 
 295 
 296 
 297 
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Implications for the drivers of atmospheric Hg trends.  298 
Observed Hg0 is generally declining in most NH regions, with an estimated hemispheric trend of ‑0.011 ± 299 
0.006 ng m-3 yr-1 for 2005–2020. By testing a large ensemble of parameters using box modeling and 300 
comparing with available measurements of atmospheric concentrations, we showed that NH 301 
anthropogenic emissions likely declined by more than -140 Mg yr-1 (-9 Mg yr-2) over this period (Fig. 3A). 302 
This result is at odds with existing anthropogenic emissions inventories (5, 9, 10, 29), which all show NH 303 
increases of larger than 34 Mg yr-2. Thus, there is a potential gap of 43 Mg yr-2 (~650 Mg yr-1) between 304 
estimated anthropogenic emissions trends from inventories and trends expected from observed Hg0 305 
trends. This gap could quantitatively be impacted (in both directions) by factors like the Hg0 oxidation 306 
lifetime and vegetation sink, yet it is unlikely to be substantially reduced (Fig. 3B–C). Our ZHANG23 307 
simulation showed that this gap could be partially explained by incorrect Chinese emissions trends in the 308 
global emission inventory, with Chinese national inventories including more detailed information on air 309 
pollution control device efficiencies (45, 48, 49). The hypothesis of declining Chinese emissions is 310 
supported by the observed decline in P95 Hg0 concentrations at Cape Hedo (Fig. 4E), along with 311 
observed declines in mean Hg0 values from other East Asian stations (Fig. 2H). However, additional 312 
declines in anthropogenic emissions across the NH were necessary to match the magnitude of the 313 
observed trend in the DEC_ANT_NH simulation. The gap between inventories and measurement-derived 314 
emissions trends could be due to the large uncertainties associated with several anthropogenic emissions 315 
sources. For example, ASGM is currently thought to be the largest yet highly uncertain source (globally 316 
775 Mg yr-1 in 2015) of anthropogenic Hg emissions (10), and estimated trends in this source can differ 317 
depending on whether it is estimated to change with time following different proxies such as gold demand 318 
or poverty (10, 50). High uncertainties are also linked with emissions from Hg-containing products 319 
(globally 436 Mg yr-1) (10), as the magnitudes of historically produced Hg are large (~1000 Gg) and 320 
emissions factors as well as timescales are uncertain (51). Measurement constraints are limited, and our 321 
five tested GEOS-Chem simulations are not intended to cover the entire range of uncertainty in emissions 322 
scenarios, so we cannot further identify the source types responsible for the discrepancy between 323 
emissions inventory and observed trends. Nevertheless, both our box and GEOS-Chem modeling 324 
analyses suggest that a decline in legacy emissions in the absence of anthropogenic emissions 325 
reductions is unlikely given our understanding of the Hg cycle and measured quantile trends. 326 
 327 
The amount of uncertainty in anthropogenic emissions and biogeochemical cycling of Hg emphasizes the 328 
need for continued assessment of inventories and models based on available observations and emerging 329 
constraints like Hg isotopes (52). Expansion of current monitoring networks in strategic locations and 330 
increased public availability of data would be valuable for trend quantification and attribution to sources. 331 
For example, existing SH measurement locations are largely influenced by marine rather than 332 
anthropogenic sources (53, 54), with no long-term measurement stations located nearby ASGM activities 333 
(Fig. 1). We focused here on trends in Hg0 in the NH due to the increased prevalence of NH 334 
anthropogenic emissions and monitoring, but further monitoring of atmospheric Hg in the SH is essential 335 
for constraining trends in Hg sources. For example, major differences between the simulated 336 
DEC_ANT_NH and DEC_LEG_ONLY median trends occur in the SH (Fig. 4), but we do not evaluate the 337 
accuracy of the simulated SH trends as analysis of SH measurements is out of the scope of the current 338 
study. Passive samplers (55) can enable economical Hg monitoring in remote locations, yet active 339 
continuous sampling will continue to deliver the benefits of higher time resolution (e.g., atmospheric 340 
dynamics, source identification) compared to passive samplers (~monthly resolution). Here we showed 341 
that the trends in the statistical distribution of Hg0, which can only be facilitated by active sampling 342 
methods, are a useful indicator of which sources are changing. As more data become available from sites 343 
measuring GOM using a new generation of methods with smaller biases (56, 57), it will be possible to 344 
analyze long term trends in different fractions of atmospheric Hg, providing further information about 345 
source changes. Reduced-form models (58, 59) and tools to produce emissions inventories from 346 
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socioeconomic data more quickly (60), which have been applied extensively in the climate and air 347 
pollution fields, can enable more up-to-date evaluations of the latest Hg trends and drivers. Improvements 348 
in Hg models will be essential for further analysis of Hg trends, for example refining the response of 349 
legacy re-emissions to anthropogenic emissions scenarios and global change factors. The planned 350 
analysis to support the Minamata Convention effectiveness evaluation will advance this approach by 351 
investigating the drivers of Hg trends in multiple Hg models (61). As declining atmospheric Hg inputs to 352 
ecosystems can directly impact concentrations of Hg in biota (62), understanding the trends in 353 
atmospheric Hg burden is essential for better predictions of how Hg pollution will evolve under future 354 
regulatory control scenarios and climate change. 355 
 356 
Materials and Methods 357 
Atmospheric mercury observations. Atmospheric mercury (Hg) occurs as different species: the volatile 358 
species gaseous elemental mercury (GEM: Hg0), the soluble, shorter-lived species gaseous oxidized 359 
mercury (GOM: HgI and HgII), and particulate-bound mercury (HgP). We compiled data from 51 stations 360 
which have more than 6 years of measurements of Hg0 or total gaseous mercury (TGM = Hg0 + GOM) in 361 
the period 1992 to 2022 (Table S1). Measurements reporting TGM are likely more representative of Hg0 362 
due to low biases in capturing GOM (63, 64), and therefore we do not differentiate between TGM and Hg0 363 
measurements. For the main manuscript analysis, we compare modeled Hg0 quantities to the combined 364 
TGM and Hg0 measurement dataset. As a sensitivity test, we excluded all TGM measurements from the 365 
datasets, but found no significant differences in regional trends when analyzing Hg0 measurements alone 366 
(Section S4, Fig. S6). We have also tested whether the trend results are similar if modeled TGM data are 367 
analyzed instead of modelled Hg0 and the differences are minor (< 0.001 ng m‑3 yr‑1). We analyzed data 368 
from multiple measurement networks: the US National Atmospheric Deposition Program’s (NADP) 369 
Atmospheric Mercury Network (AMNet) (65), Environment and Climate Change Canada’s network 370 
(ECCC) (37), European Monitoring and Evaluation Programme (EMEP) (66), Global Mercury Observation 371 
System (GMOS) (67), Ministry of Environment Japan (MOEJ) (15), Ministry of Environment (MOENV) 372 
Taiwan (16), and the Experimental Lakes Area (68). We also included a Mauna Loa measurement 373 
dataset from the US EPA from 2002 to 2009 (69, 70), which later transitioned into an AMNet site. Most 374 
TGM and Hg0 measurements were made with Tekran Instruments Corporation (Toronto, Canada) Models 375 
2537A/B/X systems, which capture ambient Hg by gold trap amalgamation, subsequently thermally 376 
desorbing this accumulated Hg to be detected by Cold Vapour Atomic Fluorescence Spectrometry 377 
(CVAFS) (70). Two sites in the EMEP network (Iskrba after 2017 and Lahemaa) employed Lumex 378 
Instruments (St. Petersburg, Russia) Model RA-915 mercury analyzers, which detect Hg0 through 379 
Zeeman Atomic Absorption Spectrometry using High Frequency Modulated light polarisation (ZAAS-HFM) 380 
(71). Before 2017, TGM was measured at Iskrba with Mercury Instruments Analytical Technologies 381 
(Karlsfeld, Germany) Model UT-3000 analyzers using cold vapor atomic absorption spectroscopy 382 
(CVAAS). All the continuous TGM and Hg0 measurements are made at 5–15 min intervals, which are 383 
averaged and reported hourly. Measurements from Zeppelin Station (before 2000), Birkenes (before 384 
2010), Lista, Råö, Bredkälen, Hallahus, and Pallas (the measurements from IVL, Swedish Environmental 385 
Research Institute) were made manually with a gold trap sampling technique (72). Data at lower 386 
frequencies (manual sites and the Auchencorth Moss and Iskrba timeseries) were used to compute 387 
monthly mean statistics for timeseries. At the sites with high-frequency measurements, daily mean values 388 
were calculated and used to compute means for all months with at least 10 daily values. All measurement 389 
and modeling data for Hg0 is reported in units of ng m-3 yr‑1 at standard temperature and pressure (STP, 0 390 
°C and 1 atm). 391 
 392 
Statistical methods. Monthly mean data were deseasonalized before trend analysis by fitting each 393 
station timeseries with four harmonic terms (73). In order to achieve a better evidence synthesis from 394 
individual site data, we focused our statistical analysis on calculating overall trends from wider regions. 395 
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We chose to aggregate Hg trends based on the IPCC regions (Fig. 1). These regions are standardly used 396 
in the atmospheric science community and are designed to have consistent climate features (26), 397 
providing advantages over using whole continent or country-based aggregations. There are 61 regions in 398 
total; we analyzed trends for 11 regions in the NH where stations measuring Hg over the long term (> 6 399 
years) were available. We aim to derive regionally representative trends by integrating information from all 400 
data sources, because individual sites might only provide a partial view of regional variations, as they 401 
cover different time periods, come from different measurement networks, include data gaps, and are 402 
potentially exposed to unique local sources and sinks. In previous studies on Hg trends, regional 403 
timeseries have been calculated by averaging all sites that are available in a particular year (7). However, 404 
this approach is biased when sites do not all cover the same time period, since offsets between mean site 405 
concentrations can affect the calculated trend results (SI Section S3.2). To address this heterogeneity, we 406 
explicitly modeled offsets and trend deviations between sites with linear mixed effects (LME) models (73, 407 
74). Using LME models, a time series can be described with terms representing the consensus trend and 408 
intercept for a region (“fixed effect”) and terms representing site-level deviations (“random effect”). 409 
Individual sites were modeled using Eq. 1: 410 

𝑦𝑘 = 𝑎 + 𝑏𝑡 + 𝛼𝑘 + 𝛽𝑘𝑡    (Eq. 1) 411 
where 𝑦𝑘 are deseasonalized monthly mean Hg0 values for each site, 𝑎 is the regional intercept, 𝑏 is the 412 
regional trend, 𝑎𝑘 is the site offset, and 𝛽𝑘 is the site deviation in trend. To account for autocorrelation, we 413 
assumed that residual errors for each site follow a first-order autoregressive process (AR(1)). We 414 
calculated these trends using LME modeling in the R package lme4 (74). For the purposes of LME 415 
modeling, EPA and AMNet data for Mauna Loa, as well as Finnish Meteorological Institute (FMI) and 416 
Swedish Environmental Research Institute (IVL) data for Pallas, were treated as different sites (as 417 
different measurement networks may have offsets). We applied LME modeling to the nine NH regions 418 
where multisite data is available. For the two regions (Northwestern North America and the Arctic Ocean) 419 
where only one site is available, we calculated generalized least squares (GLS) trends with AR(1) errors 420 
on deseasonalized monthly mean values. We chose linear approaches for trend analysis as this follows 421 
recommendations for multisite analysis when only a few sites are available for a region (73). We found 422 
consistent results between LME trends and nonlinear trends calculated with generalized additive models 423 
(GAMs) for regions (Eastern North America and Northern Europe) where a larger number of sites (>12) 424 
are available (SI Fig. S4).  425 
 426 
We weighted regional trends by the areas of the corresponding IPCC regions to calculate the overall NH 427 
trend, which allowed us to compare with box model simulations. The overall NH trend was calculated for 428 
2005–2020, which is the time period with the best availability of data from all 11 regions. The error in the 429 
NH trend was calculated through Monte Carlo sampling of regional trends ± 2 standard deviation. 430 
Analogous trend calculations were performed for GEOS-Chem simulated Hg0 values, which showed that 431 
NH trends derived from regional weighted averages were more representative of the true NH surface 432 
trend than averages of all available sites without regional aggregation (SI Fig. S2). 433 
 434 
For sites where high frequency Hg0 measurements were available, we additionally calculated quantile 435 
regression (QR) trends over the 2005–2020 period (75). Other atmospheric chemistry studies (8, 76, 77) 436 
have applied QR, as it enables the quantification of trends not only in the mean values but throughout the 437 
distribution of the observed quantity. Earlier studies have observed heterogeneous changes in the 438 
statistical distribution of atmospheric Hg measurements driven by emissions changes (46, 47), yet these 439 
have not been followed up with more modern statistical techniques. We analyzed deseasonalized daily 440 
mean values at these sites and calculated trends for 5th–95th percentiles, with errors derived using 441 
bootstrapping. We applied the R package quantreg for this analysis (78). 442 
 443 
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Box model simulations. We used a 3-box model that considers atmospheric Hg0 and HgII in two 444 
tropospheric boxes (NH and SH) and one stratospheric box (79) to simulate potential scenarios for trends 445 
during 2005–2020. We constructed an ensemble of scenarios accounting for uncertainties in the 446 
atmospheric Hg lifetime, historical (pre-2005) anthropogenic emissions and releases, recent (2005–2020) 447 
anthropogenic emissions and releases, the response of legacy emissions to anthropogenic inputs, and 448 
recent (2005–2020) speciation trends. We assigned uncertainty ranges to these 19 parameters (SI Table 449 
S4) and sampled 2 × 105 scenarios within this parameter space, using Latin Hypercube Sampling (80). 450 
 451 
To address the response in legacy emissions to historical and recent anthropogenic inputs, we applied 452 
the effective anthropogenic mercury deposition (EAMD) concept (81). Our approach used two minor 453 
adaptations: (1) tracking the effective anthropogenic mercury emissions (EAME) instead of deposition 454 
(which leads to offsets of several months in lifetimes); and (2) using a two-term negative exponential 455 
model. Given primary emissions or releases of mercury in a specific year (𝜖𝑖), Eq. 2 calculates the EAME, 456 
in a future time t: 457 

EAME𝑖  (𝑡) = 𝜖𝑖 (𝑎1 exp (−
𝑡

𝑏1
) + 𝑎2 exp (−

𝑡

𝑏2
))   (Eq. 2) 458 

 459 
where a1 and a2 are coefficients and b1 and b2 are lifetimes representing the quick and slow re-emission 460 
processes, respectively. Total legacy emissions (𝐸leg) in the year t were calculated by summing up all 461 
EAMEi resulting from previous primary emissions using Eq. 3: 462 
 463 

𝐸leg (𝑡) = ∑ EAME𝑖𝑖<𝑡     (Eq. 3) 464 
 465 
We employed pulse experiments with parameter perturbations in the Hg Global Biogeochemical Box 466 
model (GBC) (6, 82) to calculate reasonable ranges for the a and b parameters (SI Section S5). We 467 
pulsed an additional 100 Mg Hg either emitted or released to rivers in 2010 and fit the resultant additional 468 
legacy re-emissions until 2110 using Eq. 2. We conducted these pulse experiments on 1000 iterations of 469 
the GBC model, varying each of the 40 rate coefficients and parameters within the GBC model within a 470 
factor of 2 using Latin Hypercube Sampling. We found that b1 ranges between 6–15 months for 471 
atmospheric emissions and 2–10 months for releases, corresponding to the timescale of atmospheric 472 
deposition and re-emission from the surface ocean. The longer lifetime, b2, ranges between 29–97 years 473 
for atmospheric emissions and 1–117 years for releases, corresponding to the timescale of removal of Hg 474 
from the atmosphere–surface ocean–subsurface ocean system through transfer to the deep ocean or 475 
temporary storage in soils (6). We calculated ranges for the fraction of Hg re-emitted in the short 476 
timescale term and the total Hg re-emissions resulting from a pulse, which can be used to calculate a1 477 
and a2 in Eq. 2. Although longer time scales (~1000 yr) would be required to model burial of Hg in the 478 
deep ocean, Eq. 2 covers the legacy re-emission response in near-future projections (<100 years), while 479 
having only 4 parameters as opposed to 40 parameters in the GBC model (81).  480 
 481 
Anthropogenic emissions and releases of Hg were taken from the Streets et al. (31) inventory, which 482 
covers decadal points over the historical period (1510–2010). We accounted for uncertainties in 483 
emissions and releases for recent decadal points (1970, 1980, 1990, 2000, 2010) by applying 484 
perturbations between –20% and +40% to these values, which is the suggested emission inventory 485 
uncertainty range (10). We interpolated between the decadal points to calculate emissions with yearly 486 
resolution between 1510–2005. For 2005–2020, we applied varying linear trends in anthropogenic 487 
emissions for both hemispheres, restricting the trend range to ensure non-negative emissions in 2020. 488 
The anthropogenic releases for 2005–2020 were calculated based on the historical relationship between 489 
emissions and releases trends in the inventory (31), with random perturbations introduced for the 490 
hemispheric release trends (Table S4). This procedure yielded 2 × 105 potential timeseries for 491 
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anthropogenic emissions and releases over 1510–2020. Combining these scenarios with varying sets of 492 
legacy parameters (Eq. 2), we calculated the resultant global legacy re-emissions timeseries for 2005–493 
2020 for each of the 2 × 105 scenarios. For simplicity, the distribution of legacy re-emissions by 494 
hemisphere was assumed to be constant over 2005–2020 based on the ratio in GEOS-Chem (44% NH, 495 
55% SH; this is similar to the ratio of ocean coverage in the NH and SH). Speciation of the anthropogenic 496 
emissions in 2005 was set to 65% Hg0 and 35% HgII; we applied a variable linear trend in speciation so 497 
that speciation in 2020 ranged between 45% and 85% Hg0. 498 
 499 
We ran the 2 × 105 scenarios in the 3-box model for 2005 to evaluate whether the sampled combinations 500 
of emissions and atmospheric Hg lifetimes (ranging between 3–8 months) yield a reasonable Hg burden. 501 
We rejected scenarios that yield a 2005 burden in the NH troposphere outside of the range 1600–3300 502 
Mg (corresponding to average tropospheric concentrations of 0.8–1.6 ng m-3). Approximately 105 samples 503 
passed this constraint, which we then utilized for full 2005–2020 box model runs. We evaluated linear 504 
trends in NH Hg0 in each of these box model runs and compared these to the inputted total and 505 
anthropogenic emission trends for 2005–2020. 506 
 507 
To assess the impacts of other non-emissions factors in NH Hg0 trends, we repeated this procedure 508 
accounting for potential trends in Hg0 dry deposition and oxidation. We re-ran the 2 × 105 scenarios with 509 
linear trends in the dry deposition rate coefficient so that the value in 2020 varied between 100% to 170% 510 
of its value in 2005. Similarly, we ran 2 × 105 scenarios with the Hg0 oxidation rate coefficient varying in 511 
2020 between 100% and 200% of its value in 2005. 512 
  513 
GEOS-Chem simulations. We ran 3-D atmospheric simulations for the 2005–2020 period in the 514 
chemistry-transport model GEOS-Chem. We used version 12.8.1 of the Hg model (43) with improvements 515 
in the dry deposition of Hg0 (79). The model was run globally at 2.0° × 2.5° horizontal resolution and 47 516 
vertical levels up to 0.01 hPa (80 km). The model was forced with offline meteorology from the MERRA-2 517 
product (42). The model treats three species of Hg: elemental mercury (Hg0), oxidized mercury (HgII, 518 
GOM), and particulate mercury (HgP). Oxidation of Hg0 occurs through a two-step mechanism initiated by 519 
atomic bromine (Br), while photoreduction of HgII occurs in the aqueous phase as a function of the NO2 520 
photolysis rate and organic aerosol concentrations (43). The reduction rate coefficient (K_RED_JNO2) 521 
was set to 2.4 m-3 µg-1 so that modeled Hg0 concentrations agree with observed values in 2005. The Hg 522 
chemistry in GEOS-Chem has been updated in more recent model versions (v14 onwards), yet the 523 
overall atmospheric lifetime and transport of Hg remain similar (2) and the faster computational speed of 524 
v12.8.1 facilitates these 16-year simulations. Legacy re-emissions of Hg from the ocean are calculated 525 
online (depending on temperature and wind speed) through an air-sea exchange parametrization (83), 526 
with concentrations of Hg in the surface ocean taken from a previous ocean general circulation model 527 
(MITgcm) simulation (43). Soil legacy emissions are parametrized depending on solar radiation, 528 
vegetation cover, and concentrations of Hg in soil (84). The model also considers prompt recycling of HgII 529 
deposited to soils and snow (85), geogenic emissions of Hg0 (44), and transient emissions of Hg0 from 530 
biomass burning based on GFED v4.1s (86). More comprehensive descriptions of this version of the 531 
GEOS-Chem Hg model can be found elsewhere (43, 79).  532 
 533 
Five simulations (Table 1) were performed to evaluate spatial heterogeneity in atmospheric Hg trends 534 
under different emissions scenarios (SI Fig. S10), which are intended to be illustrative but do not cover 535 
the full range of potential scenarios. The BASE case used Streets et al. (10) anthropogenic emissions of 536 
Hg for 2005–2015, with 2016–2020 retaining the same emissions pattern as 2015. The BASE+LEG 537 
simulation additionally considered the median box modeled trend (Fig. S9F) in NH legacy emissions (+14 538 
Mg yr-2) due to the BASE trend in NH anthropogenic emissions (+23 Mg yr-2) over 2005–2020. This trend 539 
in legacy emissions was fully ascribed to the ocean through scaling oceanic sea surface concentrations of 540 
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Hg (43) to yield the NH trend in legacy emissions. In the ZHANG23 scenario, we replaced the trend in 541 
Chinese emissions from BASE with the national inventory in Zhang et al. (45). To distribute Chinese 542 
emissions in a consistent way with the Streets et al. (10) inventory, we scaled the emissions for 2005–543 
2020 using the equation: 544 
 545 

𝐸ZHANG23
𝑖′

=  𝐸BASE
𝑖 ×

𝐸ZHANG23
𝑖

𝐸ZHANG23
2005     (Eq. 4) 546 

 547 

where 𝐸ZHANG23
𝑖′  are the distributed Chinese emissions applied in the ZHANG23 simulation for year 𝑖,  548 

𝐸BASE
𝑖  are the Chinese emissions applied in the BASE, 𝐸ZHANG23

𝑖  are the total Chinese emissions for a 549 
specific year in the Zhang et al. (45) inventory, and 𝐸ZHANG23

2005  are the total Chinese emissions in the Zhang 550 
et al. (45) inventory for 2005. In this way, the normalized China trend for 2005–2020 is taken from the 551 
Zhang et al. (45), but emissions magnitudes differ due to differences in 2005 total Chinese emissions 552 
between BASE (701 Mg yr-1) and Zhang et al. (45) (466 Mg yr-1). We also adjusted the ZHANG23 trend in 553 
NH legacy emissions (+4 Mg yr-2) by scaling ocean concentrations so that it is coherent with the NH 554 
anthropogenic emissions trend (-11 Mg yr-2) (Fig. S9F). 555 
 556 
To develop a scenario with declining anthropogenic emissions that would be compatible with observed 557 
NH Hg0 trends (DEC_ANT_NH), we imposed an additional 23 Mg yr-2 decline for 2005–2020 in the NH. 558 
Anthropogenic Hg emissions outside of China were scaled uniformly by year so that the decline is 23 Mg 559 
yr-2 more than in ZHANG23, for a total anthropogenic trend of -34 Mg yr-2 (Table 1). NH legacy emissions 560 
(-2 Mg yr‑2) were adjusted to be consistent with the DEC_ANT_NH trend in anthropogenic emissions. As 561 
a fifth scenario, we explored the possibility where anthropogenic emissions follow BASE, but a major 562 
decline (-50 Mg yr-2) in NH ocean legacy emissions occurs (DEC_LEG_ONLY). Thus, the mean NH 563 
trends in Hg0 are similar between DEC_ANT_NH and DEC_LEG_ONLY (Fig. 4A), but the source 564 
contribution and spatial distribution varies. In addition, while DEC_ANT_NH includes stagnant overall SH 565 
emissions (‑2 Mg yr-2), DEC_LEG_ONLY has SH emissions declines (-74 Mg yr-2) due to the scaling of 566 
ocean concentrations.  567 
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Figures 802 

 803 
Figure 1. Map of observation stations that measured atmospheric Hg concentrations for more than 6 804 
years (Table S1). Defined regions (26) are indicated with black lines, with corresponding numbering of 805 
included regions listed on the map. For this study, we included NH stations with openly accessible or 806 
provided datasets. 807 
  808 
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 809 
Figure 2. Trends in observed gaseous elemental mercury (Hg0) aggregated by the regions (A–K) in Fig. 1 810 
(labelled by region number). Trends are calculated with linear mixed effects modeling, with overall 811 
regional trends shown in black and shading shows the 5th to 95th percentile range. Individual site 812 
deseasonalized monthly means are shown as colored points and individual regressions as colored lines. 813 
The overall Northern Hemisphere (NH) trend (L) is calculated by taking the area-weighted average of 814 
regional trends, with the shading showing the 2σ averaging error. The red dashed curve in L is the linear 815 
regression trend for 2005–2020, with trend error representing 2σ error from resampling regional trends 816 
within their error bounds. We distinguished data from sites where measurements were made by multiple 817 
networks, i.e., Pallas (FMI and IVL) and Mauna Loa (EPA and AMNet). 818 
 819 
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 821 
Figure 3. Modeled relationships between 2005–2020 trends in NH Hg0 concentrations and drivers. (A) 822 
Histograms showing relationship between 2005–2020 trends in anthropogenic NH emissions and NH Hg0 823 
trends. We select scenarios with different anthropogenic emissions trend values from the 105 box model 824 
simulations (with a window of ±1 Mg yr-2 to yield ~2000 simulations for each trend value). Blue histograms 825 
illustrate the probability density of simulated NH Hg0 trends for each emission trend value. Observed NH 826 
Hg0 trends are shown in the horizontal black line with error bars. The shaded overlap represents the area 827 
of the histogram where the model is compatible with observed trends, with the percent of total area 828 
shown in grey. The histogram for the anthropogenic emissions trend of 34 Mg yr-2 represents the Streets 829 
et al. (10) 2005–2015 trend. (B) Impact of NH Hg0 oxidation lifetime trends on the likelihood of positive 830 
anthropogenic (ant.) trends for 2005–2020. The x-axis shows the relative decline (%) in the NH Hg0 831 
oxidation lifetime between 2005 and 2020. The y-axis refers to the percent of box model runs fitting with 832 
the observed NH Hg0 trend (± 2σ) that have positive anthropogenic emissions trends. The AerChemMIP 833 
(32) estimate for the relative change 1980-2014 methane (CH4) oxidation lifetime is shown for context. (C) 834 
Impact of NH Hg0 dry deposition lifetime on the likelihood of positive anthropogenic (ant.) trends for 2005–835 
2020. The x-axis shows the relative decline (%) in the NH Hg0 dry deposition lifetime between 2005 and 836 
2020. The estimated trend in NH dry deposition from Jiskra et al. (20) for 1990–2010 is shown for context, 837 
as well as the GEOS-Chem simulated 2005–2020 trend (Fig. S11). 838 
 839 
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 840 
Figure 4. Comparison between trends (2005–2020) in GEOS-Chem model simulations and observations 841 
for Northern Hemisphere (NH) mean Hg0 (A), calculated using linear mixed effects modeling of available 842 
NH regions and calculating the area-weighted mean (Fig. 2). The observed range in the NH Hg0 trend is 843 
shown as a black line (mean) with shaded area (±2σ). Error bars are smaller than the markers for the 844 
model simulations. Trend in median (P50) daily deseasonalized simulated values in BASE+LEG (B), 845 
DEC_ANT_NH (D), and DEC_LEG_ONLY (F) for each model grid cell. BASE+LEG is the simulation with 846 
Streets et al. (10) emissions and associated legacy feedbacks, DEC_ANT_NH is the simulation with 847 
decreasing anthropogenic emissions in the NH, and DEC_LEG_ONLY includes a decline in legacy 848 
emissions from the ocean (Table 1). Observed results are plotted in filled circles for 9 stations with more 849 
than 13 years of high frequency data. Differences between 95th percentile (P95) trend and median (P50) 850 
trend shown for BASE+LEG (C), DEC_ANT_NH (E), and DEC_LEG_ONLY (G) simulations and 851 
observations. The other simulations are shown in Fig. S13. 852 
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Table 1. Description of Hg simulations conducted in GEOS-Chem for 2005–2020. 853 

Simulation  
Anthropogenic 
emissions 

Legacy re-emissions 
Anthropogenic 
NH emissions 
trend (Mg yr-2) 

Overall NH 
emissions 

trend (Mg yr-2) 

BASE 
2005–2015: Streets et 
al. (10) 
2016–2020: repeat 2015 

Constant interannually; 
based on Horowitz et al. 
(43) 

+23 +18 

BASE+LEG 
2005–2015: Streets et 
al. (10) 
2016–2020: repeat 2015 

Trend from median 
response to BASE 
anthropogenic emissions 
trend (Fig. S9F) 

+23 +31 

ZHANG23 

2005–2020 Chinese 
emissions from BASE 
are scaled by emission 
inventory trend from 
Zhang et al. (45) 

Trend from median 
response to ZHANG23 
anthropogenic emissions 
trend (Fig. S9F) 

–11 –12 

DEC_ANT_NH 

ZHANG23 emissions 
with additional 23 Mg yr-2 
decrease in 
anthropogenic emissions 
spread across NH 
outside China 

Trend from median 
response to 
DEC_ANT_NH 
anthropogenic emissions 
trend (Fig. S9F) 

–34 –41 

DEC_LEG_ONLY 
2005–2015: Streets et 
al. (10) 
2016–2020: repeat 2015 

Decline imposed 
+23 –30 
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Section S1. Observation station information 38 
Table S1. List of sites measuring gaseous elemental mercury (GEM: Hg0) or total gaseous mercury (TGM) 39 
included in this study.  40 

Site 
code 

Location Latitude Longitude Measurement 
network 

IPCC 
regiona 

Years 
available 

Measured 
quantity 

AL19 Birmingham, USA 33.6 -86.8 AMNetb 5 2009–2015 Hg0 
FL96 Pensacola, USA 30.5 -87.4 AMNetb 5 2009–2015 Hg0 
GA40 Yorkville, USA 33.9 -85.0 AMNetb 5 2009–2015 Hg0 
MD08 Piney Reservoir, USA 39.7 -79.0 AMNetb 5 2009–2021 Hg0 
MD98 Beltsville, USA 39.0 -76.8 AMNetb 5 2009–2021 Hg0 
MS99 Grand Bay, USA 30.4 -88.4 AMNetb 5 2009–2020 Hg0 
NY06 Bronx, USA 40.9 -73.9 AMNetb 5 2008–2020 Hg0 
NY20 Huntington Forest, USA 44.0 -74.2 AMNetb 5 2009–2021 Hg0 
NY43 Rochester, USA 43.1 -77.5 AMNetb 5 2008–2020 Hg0 
OH02 Athens, USA 39.3 -82.1 AMNetb 5 2009–2020 Hg0 
OH52 South Bass Island, USA 41.7 -82.8 AMNetb 5 2013–2021 Hg0 
OK99 Stilwell, USA 35.8 -94.7 AMNetb 4 2009–2015 Hg0 
UT97 Salt Lake City, USA 40.7 -112.0 AMNetb 3 2008–2017 Hg0 
VT99 Underhill, USA 44.5 -72.9 AMNetb 5 2009–2016 Hg0 
WI07 Horicon Marsh, USA 43.5 -88.6 AMNetb 5 2011–2017 Hg0 
MLO Mauna Loa, USA 19.5 -155.6 AMNetb/EPAc/NOAA 47 2002–2021 Hg0 
MBA Mt. Bachelor, USA 44.0 -121.7 GMOSd 3 2004–2012 Hg0 / TGM* 

ALT Alert, Canada 82.5 -62.3 ECCCe 0 1995–2021 Hg0 / TGM† 
BNT Burnt Island, Canada 45.8 -82.9 ECCCe 5 1998–2007 TGM 
BRL Bratt’s Lake, Canada 50.2 -104.7 ECCCe 2 2001–2013 TGM 
EGB Egbert, Canada 44.2 -79.8 ECCCe 5 1996–2018 TGM 
KEJ Kejimkujik, Canada 44.4 -65.2 AMNetb/ ECCCe 5 1996–2018 Hg0 / TGM‡ 
LFL Little Fox Lake, Canada 61.4 -135.6 ECCCe 1 2007–2021 TGM 
PPT Point Petre, Canada 43.8 -77.1 ECCCe 5 1996–2007 TGM 
SAT Saturna, Canada 48.8 -123.2 ECCCe 3 2009–2018 TGM 
STA Huntsman Science 

Centre, Canada 
45.1 -67.1 ECCCe 5 1995–2007 TGM 

WBZ St. Anicet, Canada 45.1 -74.3 ECCCe 5 1994–2009 TGM 
YGW Kuujuarapik, Canada 55.3 -77.7 ECCCe 2 1999–2009 TGM 
ELA Experimental Lakes Area, 

Canada 
49.7 -93.7 IISDf 4 2005–2013 Hg0 

AND Andøya, Norway 69.3 16.0 EMEPg 16 2004–2021 Hg0 
AUC Auchencorth Moss, UK 55.8 -3.2 EMEPg 16 2006–2022 Hg0 / TGM# 
BIR Birkenes, Norway 58.4 8.3 EMEPg 16 2004–2023 Hg0 / TGM§ 
BRE Bredkälen, Sweden 63.9 15.3 EMEPg 16 2009–2021 TGM 
HAL Hallahus/Vavihillh, 

Sweden 
56.0 13.1 EMEPg 16 2009–2021 TGM 

HYY Hyytiälä, Finland 61.6 24.0 EMEPg 16 2009–2021 TGM 
ISK Iskrba, Slovenia 45.6 14.9 EMEPg 17 2009–2021 TGM 
LAH Lahemaa, Estonia 59.5 25.9 EMEPg 16 2012–2021 Hg0 
LST Lista, Norway 58.1 6.6 EMEPg 16 1992–2004 TGM 
MHD Mace Head, Ireland 53.3 -9.9 EMEPg/GMOSd 16 1996–2022 TGM 
PAL  Pallas, Finland 68.0 24.4 EMEPg/GMOSd 16 1996–2021 TGM 
RAO Råö, Sweden 57.4 11.9 EMEPg/GMOSd 16 2002–2020 TGM 
SCA Schauinsland, Germany 47.9 7.9 EMEPg 17 2011–2021 TGM 
SCK Schmücke, Germany 50.7 10.8 EMEPg 17 2007–2021 TGM 
STN Station Nord/Villum, 

Greenland 
81.6 -16.6 EMEPg 0 2000–2021 TGM 

VIR Virolahti, Finland 60.5 27.7 EMEPg 16 2008–2021 TGM 
WAL Waldhof, Germany 52.8 10.8 EMEPg 17 2002–2021 TGM 
ZEP Zeppelin, Norway 78.9 11.9 EMEPg 46 1996–2022 Hg0 / TGM¶ 
ZIN Zingst, Germany 54.4 12.7 EMEPg 16 1999–2021 TGM 
TW01 Mt. Lulin, Taiwan 23.5 120.9 AMNetb /  

MOENV Taiwani 
35 2006–2020 Hg0 

CHE Cape Hedo, Japan 26.9 128.3 MOEJj 35 2007–2022 Hg0 
OGA Oga Peninsula, Japan 39.9 139.9 MOEJj 35 2014–2022 Hg0 

a IPCC regions are defined with the numbering in Fig. 1, taken from Iturbide et al. (1)    b Gay et al. (2)    c Carbone et al. (3)         41 
d Sprovieri et al. (4)    e Cole et al. (5)    f St. Louis et al. (6)    g Tørseth et al. (7)     h Site changed location in 2016, but due to nearby locations 42 
(<3 km apart), they are combined in this analysis    i Nguyen et al. (8)     j Marumoto et al. (9)  43 
* MBA: TGM (2004) and Hg0 (2005–2012)    † ALT: TGM (1995–2021) and Hg0 (2002–2021); analyzed TGM 44 
‡ KEJ: TGM (1996–2018) and Hg0 (2009–2018); analyzed TGM    # AUC: TGM (2006–2013) and Hg0 (2012–2022) 45 
§ BIR: TGM (2004–2010) and Hg0 (2011–2023)    ¶ ZEP: TGM (1996–2000) and Hg0 (2000–2022)46 
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 47 
Figure S1. Timeseries showing count of measurement sites included in this study by operation year. The 48 
orange curve shows the number of sites measured in each year and the purple curve shows the number 49 
of Northern Hemisphere (NH) IPCC regions (Fig. 1) measured in each year. Note that 2022 and 2023 50 
data may still be undergoing quality control procedures by networks and therefore was not yet released at 51 
the time of analysis; more data from these years will likely be made available in the future. 52 
 53 
Section S2. Trend results by region  54 
 55 
Table S2. Tabulated overall regional trends (± 2σ) calculated through linear mixed effects modelling for 56 
full available time period of each region. 57 

Region name (number) 
Number 
of sites 

Area  
(106 km2) 

Trend (ng m-3 yr-1) 
Time 

period 

Eastern North America (5) 19 5.69 -0.016 ± 0.011 1994–2022 

Northern Europe (16) 13 5.00 -0.018 ± 0.004 1992–2023 

West & Central Europe (17) 4 3.79 -0.024 ± 0.010 2002–2021 

Western North America (3) 3 3.14 -0.035 ± 0.025 2004–2018 

Central North America (4) 2 2.93 -0.035 ± 0.007 2005–2015 

Northeastern North America (2) 2 7.66 -0.032 ± 0.009 1999–2013 

Greenland/Iceland (0) 2 4.77 -0.015 ± 0.003 1995–2021 

East Asia (35) 3 9.46 -0.023 ± 0.005 2006–2022 

North Pacific Ocean (47) 1 51.61 -0.010 ± 0.011 2002–2021 

Northwestern North America (1) 1 7.51 0.007 ± 0.003 2007–2021 

Arctic Ocean (1) 1 6.35 -0.007 ± 0.002 1996–2022 

Northern Hemisphere (NH)  
area-weighted average 51  -0.011 ± 0.006 2005–2020 

 58 
  59 
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Section S3. Sensitivity of trends to statistical approach 60 
Section S3.1 Modelled differences between site, surface, and troposphere NH trends 61 
We used the five GEOS-Chem simulations to test different approaches for calculating overall trends in NH 62 
Hg0 (Fig. S2). We calculated annual averages of the model results over the entire NH troposphere 63 
(orange lines), representative of the NH tropospheric box in the 3-box model simulations. We compared 64 
this to simulated NH surface Hg0 concentrations (purple lines), which is the quantity that can actually be 65 
measured by surface observation stations. The calculated 2005–2020 trends in surface Hg0 agree within 66 
0.0007 ng m-3 yr-1 of tropospheric Hg0 trends for all simulations except DEC_ANT_NH, where surface 67 
declines are faster than tropospheric declines by 0.0015 ng m-3 yr-1. This can be explained by enhanced 68 
dilution of the negative emissions trends when considering the whole troposphere versus the surface 69 
level. To approximate the real situation where only a small fraction of the NH surface is measured, we 70 
averaged only the model grid cells that contain the 51 observation sites (magenta line in Fig. S2). This 71 
approach leads to biases of up to 0.0044 ng m-3 yr-1 due to the uneven distribution of observation stations 72 
(Fig. 1) throughout the NH, with some regions covered more than others and other regions having no 73 
observations. This bias can be reduced to below 0.0006 ng m-3 yr-1 by first averaging by IPCC region the 74 
grid cells that correspond to observation sites (Fig. 1) and then calculating an area-weighted average for 75 
the NH (green line), similar to what was done for the observation analysis in the main manuscript (Fig. 2). 76 
Therefore, it is best to use the approach of area-weighted site averages when limited observation stations 77 
are available, leading to good agreement with the surface trends in Hg0. We expanded the observed trend 78 
uncertainty in Figs. 3A and B upwards by 0.0021 ng m-3 yr-1 (max error between area-weighted and 79 
tropospheric trends, DEC_ANT_NH), due to the potential overestimate of NH tropospheric trends by only 80 
having surface observations (Fig. S2). 81 
  82 
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 83 
Figure S2. Different methods of calculating hemispheric average trends applied to GEOS-Chem 84 
simulated Hg0. We compared annual mean simulated timeseries of: 1) NH tropospheric averages, 2) NH 85 
surface averages, 3) averaging model grid cells where observation sites are located, and 4) area-86 
weighted averaging of regional averages of model grid cells where observation sites are located. Linear 87 
regression trends over 2005–2020 are listed in units of ng m-3 yr-1. 88 
 89 
Section S3.2 Aggregation of observation stations into overall NH annual averages using “bucket” method 90 
Previous studies (e.g., 10) have calculated overall timeseries for regions by averaging all available 91 
stations for each specific year (“bucket” method). Biases can arise in this approach from multiple sources 92 
of error: 1) sites have individual offsets and trends due to measurement method differences or specific 93 
local sources, leading to biases in a “bucket” average because sites do not all cover the same time 94 
period; 2) sites are unevenly distributed, with certain regions over- or under-represented; and 3) certain 95 
months can be missing in a specific year, which due to the strong seasonality of Hg0 can bias the annual 96 
mean. We aimed to address the drawbacks of the “bucket” approach by explicitly modeling offsets 97 
between sites using linear mixed effects models, deseasonalizing monthly means from all observations, 98 
and aggregating results by IPCC regions before calculating area-weighted averages. To compare our 99 
methods with approaches applied in previous papers, we use the bucket approach to calculate 2005–100 
2020 trends in Eastern North America (19 sites), Northern Europe (13 sites), and the NH (51 sites) (Fig. 101 
S3) in a sensitivity test. Overall, the derived trends are similar for the NH between our approach (-0.011 ± 102 
0.006 ng m-3 yr-1) and the “bucket” approach (‑0.015 ng m-3 yr-1). Issues with the bucket method were 103 
observed for periods when less sites are available (e.g., before the year 2000 in Fig. S3), which show 104 
high variability due to differences in the number and characteristics of averaged sites for each year. 105 

https://doi.org/10.1073/pnas.2401950121


Post print of accepted manuscript in PNAS, doi: 10.1073/pnas.2401950121 

 S6 

Therefore, we recommend that caution be exercised with such an approach, as the derived aggregated 106 
timeseries may be misleading and could be misinterpreted as real variability rather than changes in site 107 
availability. 108 
 109 

 110 
Figure S3. “Bucket” method trends calculated by averaging all available station data (not 111 
deseasonalized) for each year for Eastern North America (A), Northern Europe (B), and the overall 112 
Northern Hemisphere (C). Error bars show the 2σ variation in station averages. Shading shows the years 113 
where at least 30% (light gray) and 50% of the stations (dark gray) are available. Linear regression trends 114 
are calculated over 2005–2020 and listed on the plot.  115 
 116 
Section S3.3 Using Generalized Additive Models (GAM) to aggregate multisite data 117 
To test the robustness of our regional trend results to other approaches, we applied the approach of 118 
Chang et al. (11) to use Generalized Additive Models (GAM) to aggregate multisite data into an overall 119 
trend. In this regression-based approach, we modeled the deseasonalized Hg0 monthly mean values at 120 
multiple sites as a function of site (s ) and time (t ): 121 
 122 

obs(s,t ) = regional trend(t ) + regional seasonality(t ) + site offset(s ) + site-specific trend(s,t ) + 123 
   site-specific seasonality(s,t ) + AR(1) error 124 

(Eq. S1) 125 
 126 

The GAM approach fits smooth functions of the predictor variables, which include time, month-of-year (for 127 
seasonality), and the categorical site ID (for site-specific terms). We used the implementation of GAM in 128 
the R package mgcv (12) and calculated fits using the restricted maximum likelihood (REML) method to 129 
avoid overfitting.  130 
 131 
The GAM method is not suitable when only a few sites are available within a region (13), so in the main 132 
manuscript we focused on linear mixed effect models of regional trends. For the GAM analysis here, we 133 
investigated the two regions with more than 10 sites (Eastern North America and Northern Europe). GAM 134 
helped to identify nonlinearities in the overall regional trend, for example, a deceleration in the Eastern 135 
North America Hg0 decline occurred after ~2009. A previous study has suggested a deceleration in Hg0 136 
trends in North America around 2008, although different statistical methods were applied on a smaller set 137 
of stations (14). We calculated the 2005–2020 linear trend obtained from the GAM curves for Eastern 138 
North America (-0.011 ng m-3 yr-1) and Northern Europe (‑0.019 ng m-3 yr-1). Since both of these trends 139 
are within the error of the results obtained for linear mixed effects modeling (Eastern North America: -140 
0.016 ± 0.011 ng m-3 yr-1; Northern Europe: -0.018 ± 0.004 ng m-3 yr-1), we conclude that the derived 141 
regional declines are relatively robust to the choice of statistical approach. 142 
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 143 
Figure S4. Generalized additive model (GAM) regional trends for multisite deseasonalized total gaseous 144 
mercury (Hg0) data in Eastern North America (A) and Northern Europe (B). The GAM mean estimate is 145 
shown as a black line, with shaded grey areas showing ± 2 standard errors in the GAM estimate. Linear 146 
regression trends (red dashed lines) were calculated over the 2005–2020 period from the regional 147 
nonlinear GAM curve. 148 
 149 
Section S3.4 Restricting the analysis to site data between 2005 and 2020 150 
In the main manuscript (Fig. 2), we use the full set of available data between 1992 and 2022 to calculate 151 
linear mixed effects model trends for each region, which are then area-weighted to calculate an average 152 
2005–2020 trend for the Northern Hemisphere (NH). We use the full extent of data to maximize the 153 
available information in the calculation of long-term Hg0 trends. Here, we repeat the analysis but only use 154 
data between 2005 and 2020 to calculate the trend, removing all earlier and later data from the analysis. 155 
The results are summarized in Fig. S5 and Table S3, which can be compared to Fig. 2 and Table S2. 156 
Overall, the regional trends calculated with both datasets are overlapping in their error ranges, with the 157 
exception of the Arctic Ocean region (2005–2020: -0.014 ± 0.004 ng m-3 yr-1; 1996–2022: -0.007 ± 0.002 158 
ng m-3 yr-1). The area-weighted NH average trend in the 2005–2020 calculation is -0.015 ± 0.006 ng m-3 159 
yr-1, slightly more negative but overlapping with the trend calculated in the main paper (-0.011 ± 0.006 ng 160 
m-3 yr-1). Overall, our conclusions remain the same that the NH Hg0 concentrations are declining between 161 
2005 and 2020 and would be difficult to reconcile with increasing NH anthropogenic emissions. 162 
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 163 
Figure S5. Similar to Fig. 2 but only for the period of 2005–2020, trends in observed gaseous elemental 164 
mercury (Hg0) aggregated by the regions (A–K) in Fig. 1 (labelled by region number). Trends are 165 
calculated with linear mixed effects modeling, with overall regional trends shown in black and shading 166 
shows the 5th to 95th percentile range. Individual site deseasonalized monthly means are shown as 167 
colored points and individual regressions as colored lines. The overall Northern Hemisphere (NH) trend 168 
(L) is calculated by taking the area-weighted average of regional trends, with the shading showing the 2σ 169 
averaging error. The red dashed curve in L is the linear regression trend for 2005–2020, with trend error 170 
representing 2σ error from resampling regional trends within their error bounds.  171 
 172 
  173 
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Table S3. Tabulated overall regional trends (± 2σ) calculated through linear mixed effects modelling after 174 
restricting site data to 2005–2020 period only. See Table S2 for trends calculated using all data. 175 

Region name (number) 
Number 
of sites 

Area  
(106 km2) 

Trend (ng m-3 yr-1) 
Time 

period 

Eastern North America (5) 15 5.69 -0.015 ± 0.015 2005–2020 

Northern Europe (16) 12 5.00 -0.019 ± 0.006 2005–2020 

West & Central Europe (17) 4 3.79 -0.027 ± 0.005 2005–2020 

Western North America (3) 3 3.14 -0.034 ± 0.025 2005–2018 

Central North America (4) 2 2.93 -0.035 ± 0.007 2005–2015 

Northeastern North America (2) 1 7.66 -0.031 ± 0.016 2005–2013 

Greenland/Iceland (0) 2 4.77 -0.025 ± 0.008 2005–2020 

East Asia (35) 3 9.46 -0.025 ± 0.006 2006–2020 

North Pacific Ocean (47) 1 51.61 -0.015 ± 0.011 2005–2020 

Northwestern North America (1) 1 7.51 0.009 ± 0.003 2007–2020 

Arctic Ocean (1) 1 6.35 -0.014 ± 0.004 2005–2020 

Northern Hemisphere (NH)  
area-weighted average 45  -0.015 ± 0.006 2005–2020 

 176 
Section S4. Differences between Hg0 and TGM measurements 177 
Atmospheric Hg is measured in three operationally-defined fractions: gaseous elemental mercury (GEM, 178 
Hg0), gaseous oxidized mercury (GOM, HgII), and particulate-bound mercury (PBM, HgP). Total gaseous 179 
mercury (TGM) refers to the sum of Hg0 and GOM. Past studies have identified several issues related to 180 
the collection of GOM in Tekran instruments, which leads to a low bias of these measurements that can 181 
vary over space and time (15–17). For this reason, we do not analyze GOM measurements and focus our 182 
analysis on Hg0 . Previous trend analyses have combined measurements of Hg0 and TGM, assuming that 183 
Hg0 is the dominant (>98%) fraction of TGM (10, 18, 19). This is supported by analytical studies showing 184 
that available TGM measurements from networks do not pick up all GOM, and thus represent a fraction 185 
between Hg0 and true TGM (20). Several measurement networks have also suggested that reported TGM 186 
measurements largely represent Hg0  concentrations (Environment and Climate Change Canada 187 
measurement description; GMOS: Sprovieri et al. (4)). Therefore, in the main manuscript, we assume that 188 
available TGM and Hg0 measurements are synonymous and use a combined dataset of these two 189 
quantities. 190 
 191 
To test this assumption, we conducted a sensitivity test analyzing trends from only sites where Hg0 data 192 
was reported from Tekran or Lumex instruments, removing all TGM data from the analysis. For sites 193 
where both Hg0 and TGM data are available (Table S1), we analyzed only the Hg0 data for this sensitivity 194 
test. The results of this sensitivity test analyzing only Hg0 are shown in Fig. S6, analogous to Fig. 2 in the 195 
main manuscript using the full TGM & Hg0 dataset. For all regions where TGM measurements were 196 
removed, the trend estimates resulting from using only Hg0 data overlap with our main manuscript 197 
analysis. No clear patterns are observed in the differences between the GEM-only and all data trends, 198 
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meaning that any differences are probably driven by differences in the data availability and studied time 199 
period. The trend estimates are:  200 
 201 
East North America (Fig. S6A) – GEM-only: -0.014 ± 0.016 ng m-3 yr-1, all data: -0.016 ± 0.011 ng m-3 yr-1 202 
Northern Europe (Fig. S6B) – GEM-only: -0.019 ± 0.007 ng m-3 yr-1, all data: -0.018 ± 0.004 ng m-3 yr-1 203 
West North America (Fig. S6C) – GEM-only: -0.048 ± 0.026 ng m-3 yr-1, all data: -0.035 ± 0.025 ng m-3 yr-1 204 
Greenland/Iceland (Fig. S6E) – GEM-only: -0.011 ± 0.004 ng m-3 yr-1, all data: -0.015 ± 0.003 ng m-3 yr-1 205 
Arctic Ocean (Fig. S6H) – GEM-only: -0.007 ± 0.002 ng m-3 yr-1, all data: -0.007 ± 0.002 ng m-3 yr-1 206 
 207 
 208 

 209 
Figure S6. Similar to Fig. 2 but showing only data from Hg0 measurements (removing all TGM 210 
measurements from the dataset). Trends in observed gaseous elemental mercury (GEM: Hg0) are 211 
aggregated by the regions (A–H) in Fig. 1 (labelled by region number). Trends are calculated with linear 212 
mixed effects modeling, with overall regional trends shown in black and shading shows the 5th to 95th 213 
percentile range. Listed in black are determined regional trend values from the GEM-only analysis with 2σ 214 
errors, while in blue are the trends from the full analysis, including TGM measurements. Three regions 215 
only have GEM data and are thus identical to Fig. 2: Central North America, East Asia, and North Pacific 216 
Ocean. Due to removal of TGM stations, no data is available from the regions: West & Central Europe, 217 
Northeastern North America, and Northwestern North America. 218 
 219 
All other regions either do not have any sites with Hg0 measurements (and thus cannot be evaluated), or 220 
have no sites with TGM measurements (and thus are unchanged from the main manuscript analysis). 221 
Given the overlapping trend estimates between these two analyses, we conclude that the use of both 222 
TGM and Hg0 data does not impact the estimates of the overall regional trends. As well, all trend 223 
estimates using only Hg0 data also show negative trends and thus support the conclusions in the main 224 
manuscript.  225 
 226 
Our assumption (applied by previous Hg trend studies as well) that TGM and Hg0 measurements can be 227 
combined is supported by this sensitivity test where TGM is fully removed from the trend analysis. We 228 
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therefore chose to keep the analysis using both TGM and Hg0 data in the main manuscript as more 229 
locations and time periods are covered. 230 
 231 
Section S5. Calculating EAME equations from the GBC box model and perturbation analysis 232 
We followed the approach of Selin (21) to calculate parameters from the EAME equation (Eq. 2) using 233 
pulse simulations in the Hg Global Biogeochemical Box model (GBC) (22, 23). We introduced an 234 
atmospheric Hg pulse of 100 Mg in the year 2010 and monitored the evolution of legacy re-emissions for 235 
100 years, until 2110 (Fig. S7). The two-term exponential model fits the behaviour of the box model very 236 
well (R2~0.99) on the 100-year time period of the simulation. This fitting reduces the ~40 parameters of 237 
the GBC model to 4 understandable parameters, as well as reducing the computation time for legacy re-238 
emissions. We performed a similar experiment by modeling the release of a riverine pulse, and evaluated 239 
changes to legacy re-emissions. This equation will differ from the atmospheric pulse, as different 240 
timescales are involved (river transport versus deposition to oceans) and only a fraction of the riverine 241 
pulse will reach the open ocean and not be buried on the coastal shelf.  242 
 243 
To estimate a reasonable range in the legacy re-emission pulse parameters (Eq. 2), we performed 1000 244 
parameter perturbation simulations in the GBC model. The 40 relevant parameters that we varied are 35 245 
rate coefficients, 3 parameters for the designation of deposition into soil pools, 1 parameter for geogenic 246 
emissions, and 1 parameter for the fraction of riverine particulate Hg reaching the open ocean. These 247 
parameters were perturbed simultaneously by factors varying between 0.5 and 2, with Latin Hypercube 248 
sampling (24) used to ensure that the parameter space is better explored. For each of the 1000 249 
experiments, we calculated the legacy re-emission pulse parameters (Eq. 2) and selected the 5th–95th 250 
percentile of each parameter as the range for simulations in the 3-box atmospheric model (Table S4). The 251 
1000 experiments were conducted twice, once for atmospheric pulses and once for riverine pulses. The 252 
code for conducting sensitivity experiments in the GBC model is available here: 253 
https://github.com/arifein/gbc-boxmodel-sensitivity.  254 

 255 
Figure S7. Example of fitting the GBC model pulse experiment to Eq. 2. The contribution of ocean and 256 
terrestrial legacy re-emissions to the total are shown as blue and green lines. 257 
 258 
 259 
Section S6. 3-box atmospheric model parameter variations 260 
The bounds for the 19 parameters that were varied in the 2 × 105 simulations, along with their 261 
justifications, are listed in Table S4. We sampled the fraction of Hg emitted in the short timescale (𝑓short) 262 
and the total re-emissions (𝐸total) instead of directly sampling coefficients a1 and a2 in Eq. 2. This is less 263 
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likely to lead to unrealistic combinations of the a coefficients and the b lifetimes. Integrating Eq. 2 264 
between time 0 and infinity yields an equation for 𝐸total: 265 
 266 

𝐸total = 𝑎1𝑏1 + 𝑎2𝑏2   (Eq. S2) 267 
 268 

The fraction of Hg emitted in the short timescale is equal to: 269 
 270 

𝑓short =
𝑎1𝑏1

𝑎1𝑏1+𝑎2𝑏2
=

𝑎1𝑏1

𝐸total
   (Eq. S3) 271 

 272 
We calculated the a coefficients from the sampled variables (b1, b2,  𝑓short, 𝐸total) using Eq. S4 and Eq. S5: 273 
 274 

𝑎1 =
𝐸total  𝑓short

𝑏1
    (Eq. S4) 275 

𝑎2 =
𝐸total  (1−𝑓short)

𝑏2
   (Eq. S5) 276 

 277 
  278 
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Table S4. Bounds of parameters varied for the 2005–2020 simulations in the 3-box atmospheric model. 279 

Parameter  Min Max Units Comment/References 

Atmospheric Hg lifetime 3 8 months Horowitz et al. (25); Parrella et al. (26); 
Zhang et al. (27)  

Error in 1970 emissions and 
releases -20 +40 % Error range suggested for 2000, 2010, 

2015 emissions in Streets et al. (28) 
Error in 1980 emissions and 
releases -20 +40 % Error range suggested for 2000, 2010, 

2015 emissions in Streets et al. (28) 
Error in 1990 emissions and 
releases -20 +40 % Error range suggested for 2000, 2010, 

2015 emissions in Streets et al. (28) 
Error in 2000 emissions and 
releases -20 +40 % Error range suggested for 2000, 2010, 

2015 emissions in Streets et al. (28) 
Error in 2010 emissions and 
releases -20 +40 % Error range suggested for 2000, 2010, 

2015 emissions in Streets et al. (28) 
Legacy short lifetime (b1) 
(atmospheric pulse) 5.7 14.6 months Based on perturbation analysis of Amos 

et al. (22, 23) GBC model (Section S5) 
Legacy long lifetime (b2) 
(atmospheric pulse) 28.6 96.9 years Based on perturbation analysis of Amos 

et al. (22, 23) GBC model (Section S5) 
Legacy fraction emitted in short 
timescale (atmospheric pulse) 7 31 % Based on perturbation analysis of Amos 

et al. (22, 23) GBC model (Section S5) 
Total re-emissions from initial pulse 
(atmospheric pulse) 79 379 % Based on perturbation analysis of Amos 

et al. (22, 23) GBC model (Section S5) 
Legacy short lifetime (b1) (riverine 
pulse) 1.6 9.5 months Based on perturbation analysis of Amos 

et al. (22, 23) GBC model (Section S5) 
Legacy long lifetime (b2) (riverine 
pulse) 1 116.9 years Based on perturbation analysis of Amos 

et al. (22, 23) GBC model (Section S5) 
Legacy fraction emitted in short 
timescale (riverine pulse) 5 55 % Based on perturbation analysis of Amos 

et al. (22, 23) GBC model (Section S5) 
Total re-emissions from initial pulse 
(riverine pulse) 2 160 % Based on perturbation analysis of Amos 

et al. (22, 23) GBC model (Section S5) 

Difference in percent Hg0 emitted 
from anthropogenic sources 
between 2020 and 2005 

-20 20 % 

The speciation of emissions in longest 
available inventory (29) varied by 15% 
(from 60% Hg0 in 1970 to 75% Hg0 in 
2010) 

Anthropogenic emissions trend in 
Northern Hemisphere (NH) -70 70 Mg yr-2 Covers wide range without 2020 

emissions becoming negative 
Anthropogenic emissions trend in 
Southern Hemisphere (SH) -10 10 Mg yr-2 Covers wide range without 2020 

emissions becoming negative 

Deviation of releases trend from 
emissions trend in NH -80 80 Mg yr-2 

For example, if NH emissions trend is 30 
Mg yr-2, the NH releases trend ranges 
between -21 and 139 Mg yr-2 * 

Deviation of releases trend from 
emissions trend in NH -35 35 Mg yr-2 

For example, if SH emissions trend is 
‑10 Mg yr-2, the SH releases trend 
ranges between -45 and 25 Mg yr-2 † 

* In the NH, decadal release trends in Streets et al. (30) are 1.97 × emissions trends ± 80  280 
† In the SH, decadal release trends in Streets et al. (30) are 1.03 × emissions trends ± 35 281 
  282 
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Fig. S8 visualizes the results of the box model simulations by comparing inputted trends in NH emissions 283 
with simulated trends in NH Hg0 over 2005–2020. Fig. S8A displays the relationship between total NH 284 
emissions trends (anthropogenic + legacy) and the Hg0 trend. The NH total emissions trends that would 285 
be compatible with the observed Hg0 trends (grey range in Fig. S8A) ranges from -15 Mg yr-2 to more than 286 
-80 Mg yr-2. The relationship between the total emissions trends and the Hg0 trend crosses close to the 287 
origin, meaning that with a zero total emissions trend the simulated median Hg0 trend is negligible. 288 
However, in the case of the anthropogenic emissions trend plot (Fig. S8B), a zero trend in NH 289 
anthropogenic emissions will still lead to a positive Hg0 trend due to increasing legacy emissions (31). 290 
The NH anthropogenic emissions trend must be below -8 Mg yr-2 in order for the NH Hg0 trend to be 291 
negative. Another aspect of Fig. S8 is that relationship between NH Hg0 trends and anthropogenic 292 
emissions trends is associated with larger uncertainties (Fig. S8B) than that of total emissions (Fig. S8A), 293 
as evidenced by the larger red error bars in Fig. S8B. The relationship between total NH emissions trends 294 
and the NH Hg0 concentration trend (Fig. S8A) is mainly affected by uncertainties in the atmospheric Hg 295 
lifetime, SH emissions, and speciation trends. However, the relationship of anthropogenic NH emissions 296 
with Hg0 concentrations is affected by the uncertain response of legacy emissions to anthropogenic inputs 297 
and the trends in releases to water and land that would accompany anthropogenic emissions trends for 298 
2005–2020, leading to larger error bars.  299 
 300 

 301 
Figure S8. (A) Relationship between NH Hg0 trends and the trends in total NH emissions. The 105 box 302 
model simulations are summarized in the red points (median) and error bars (5th to 95th percentile). 303 
Observed NH TGM trends are shown in the horizontal black line, with the associated error shaded. The 304 
overlap between grey shading and red error bars represents the parameter space where the model is 305 
compatible with observed trends.  (B) Relationship between NH Hg0 trends and trends in anthropogenic 306 
NH emissions. Fig. 3A in the main manuscript represents a 1-D representation of these curves for 307 
selected values of the anthropogenic NH emissions trend.  308 
  309 
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The relationships between NH Hg re-emissions trends (2005–2020) and anthropogenic emissions and 310 
releases parameters in the 3-box model results are plotted in Fig. S9. We have used Fig. S9F in the main 311 
paper to relate the trend in NH anthropogenic emissions from the GEOS-Chem scenarios with the 312 
expected NH trend in legacy re-emissions. This relationship was used to identify potential trends in legacy 313 
emissions resulting from anthropogenic emissions trends, which can then be incorporated in the GEOS-314 
Chem simulations by scaling ocean Hg0 concentrations.   315 
 316 

 317 
Figure S9. The relationships between Northern Hemisphere (NH) Hg re-emissions trends (2005–2020) 318 
and anthropogenic emissions and releases parameters. Plots show the relationship for (A) the error in 319 
emissions and releases for 1970 in the Streets et al. (30) inventory; (B) the error in emissions and 320 
releases for 1980; (C) the error in emissions and releases for 1990; (D) the error in emissions and 321 
releases for 2000; (E) the error in emissions and releases for 2010; (F) the trend in anthropogenic NH 322 
emissions for 2005–2020; (G) the trend in anthropogenic NH releases for 2005–2020. Black lines show 323 
median responses and the shaded area shows the 90% confidence interval (5th to 95th percentile). The 324 
slope (normalized to the range of the x-axis parameter) is listed on the plot to illustrate the relative 325 
importance of a parameter. 326 
 327 
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Section S7. Description of GEOS-Chem simulations 329 
 330 

 331 
Figure S10. The emission timeseries in GEOS-Chem simulations for 2005–2020: total emissions in the 332 
Northern Hemisphere (A), anthropogenic emissions in the Northern Hemisphere (B), total emissions in 333 
the Southern Hemisphere (C), and anthropogenic emissions in the Southern Hemisphere (D). 334 
 335 
  336 
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Section S8. Dry deposition trend in GEOS-Chem simulations 337 
The Leaf Area Index (LAI) data used in GEOS-Chem comes from a reprocessed version of the Moderate 338 
Resolution Imaging Spectroradiometer (MODIS) satellite product (32), and includes the observed 339 
interannual variations in vegetation. Our GEOS-Chem simulations thus include the impact of (LAI) 340 
variations during 2005–2020 on the dry deposition of Hg0. The dry deposition scheme of GEOS-Chem 341 
and its response to changes in LAI have been thoroughly evaluated against observations by previous 342 
studies (33, 34). Here we evaluate the trends in the NH dry deposition of Hg0 to investigate whether it is a 343 
major driver of the Hg0 trends between 2005–2020. 344 
 345 
Figure S11A shows the GEOS-Chem simulated fluxes of dry deposition over the BASE+LEG simulation. 346 
The dry deposition flux in the NH increases by 17 Mg yr-2 over the simulation, yet this is mainly due to the 347 
increasing emissions in the BASE+LEG scenario (+31 Mg yr-2 trend over simulation) increasing the 348 
amount of Hg0 in the atmosphere. By dividing the NH Hg0 burden by the dry deposition flux, we can 349 
calculate the dry deposition lifetime in the NH over the simulation (Fig. S11B). One observes a slight 350 
decline in the lifetime of Hg0 dry deposition in the GEOS-Chem simulations over this time period, with a 351 
total decline in the lifetime of 3% between 2005 and 2020. Thus GEOS-Chem shows that the NH dry 352 
deposition of Hg0 is indeed becoming faster over this time period, but not to the extent that it would 353 
reverse the emission driven changes in Hg0 (Fig. 3C). Therefore, although it is important to further 354 
evaluate the impacts of changing vegetation on Hg cycling and its evolution in the future, during the 355 
2005–2020 time period the dry deposition lifetime trends have a small impact compared to the estimated 356 
changes in anthropogenic Hg emissions. 357 
 358 

 359 
Figure S11. Impacts of changing vegetation on the dry deposition of Hg0 in the NH. (A) Trends in the NH 360 
fluxes of dry deposition and total emissions in the BASE+LEG simulation (left y axis), along with changes 361 
in the NH Hg0 burden (right y axis). Linear trend values are listed on the plot. (B) Trend in the Hg0 NH dry 362 
deposition lifetime over the simulation, with the relative change between 2005 and 2020 listed on the plot. 363 
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Section S9. Additional quantile regression plots 365 
 366 

 367 
Figure S12. (A) Map of the linear trend of Hg emissions in the BASE+LEG simulation between 2005 and 368 
2020. (B) Comparing the relationship between the BASE+LEG simulated nearby emission trend and the 369 
difference between the 95th percentile (P95) and median (P50) quantile regression Hg0 trends at grid 370 
boxes corresponding to site locations (see Fig. 4C for the full P95 – P50 trends map). The nearby 371 
emission trend is calculated by summing emissions trends within two grid boxes (~500 km) of the site 372 
location grid box. 373 
 374 
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 375 
Figure S13. Trend in median (P50) daily deseasonalized simulated values in BASE (A) and ZHANG23 376 
(C) for each model grid cell. Observed results are plotted in filled circles for 9 stations with more than 13 377 
years of high frequency data. Differences between 95th percentile (P95) trend and median (P50) trend 378 
shown for BASE (B) and ZHANG23 (D) simulations and observations. The other simulations 379 
(BASE+LEG, DEC_ANT_NH, and DEC_LEG_ONLY) are shown in Fig. 4.  380 
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Section S10. Additional comparisons between observations and model simulations 381 
 382 

 383 
Figure S14. Timeseries plots comparing model simulations (colors) and observations (black) at stations 384 
with more than 12 years of data during 2005–2020. Markers show deseasonalized monthly means and 385 
lines show the smoothed tendency of the time series calculated using LOWESS (locally weighted 386 
scatterplot smoothing) regression.  387 
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Section S11. EDGAR v8.1_toxHg emissions inventory 389 
A new anthropogenic emissions inventory has recently been released for 1970–2022, the EDGAR 390 
v8.1_toxHg inventory (35). Compared to the previous iteration of this inventory (EDGAR v4.tox2) (29),  391 
the v8.1 inventory includes updated spatial proxies and emissions factors and is extended to 2020. The 392 
released speciation maps (Hg0, Hg2+, HgP) from the inventory were still in draft form at the time of this 393 
manuscript, so we did not run GEOS-Chem simulations with v8.1_toxHg, though this will be upcoming in 394 
the MCHgMAP project (36). The total Hg emissions maps have been released in definitive form at this 395 
time, so we have analyzed the trends in the total emissions (Fig. S15). The NH trend between 2005 and 396 
2020 is 35 Mg yr-2, very similar to the Streets et al. (28) 2005–2015 trend (34 Mg yr-2). Therefore, our 397 
modelling results using the Streets et al. (28) emissions trends are likely applicable to the new EDGAR 398 
v8.1_toxHg inventory as well. Increasing global and NH emissions are a common feature in both Streets 399 
et al. (28) and EDGAR v8.1_toxHg inventories, in contrast to the observed decline in Hg0 concentrations.  400 
 401 

 402 
Figure S15. Anthropogenic emissions trend from the EDGARv8.1_tox anthropogenic inventory, with 403 
linear trends calculated and plotted for the 2005–2020 period.   404 
 405 
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