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We study the problem of robust community recovery: efficiently
recovering communities in sparse stochastic block models in the
presence of adversarial corruptions. In the absence of adversarial
corruptions, there are efficient algorithms when the signal-to-noise
ratio exceeds the Kesten—Stigum (KS) threshold, widely believed
to be the computational threshold for this problem. The question
we study is: does the computational threshold for robust commu-
nity recovery also lie at the KS threshold? We answer this question
affirmatively, providing an algorithm for robust community recov-
ery for arbitrary stochastic block models on any constant number
of communities, generalizing the work of Ding, d’Orsi, Nasser &
Steurer on an efficient algorithm above the KS threshold in the case
of 2-community block models.

There are three main ingredients to our work:

(1) The Bethe Hessian of the graph is defined as Hg(¢) = (Dg —
Dt? — Agt + I where Dg is the diagonal matrix of degrees and Ag
is the adjacency matrix. Empirical work suggested that the Bethe
Hessian for the stochastic block model has outlier eigenvectors
corresponding to the communities right above the Kesten-Stigum
threshold. We formally confirm the existence of outlier eigenvalues
for the Bethe Hessian, by explicitly constructing outlier eigenvec-
tors from the community vectors.

(2) We develop an algorithm for a variant of robust PCA on
sparse matrices. Specifically, an algorithm to partially recover top
eigenspaces from adversarially corrupted sparse matrices under
mild delocalization constraints.

(3) A rounding algorithm to turn vector assignments of vertices
into a community assignment, inspired by the algorithm of Charikar
& Wirth for 2XOR.
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1 INTRODUCTION

The stochastic block model (SBM) has provided an enlightening
lens into understanding a wide range of computational phenom-
ena in Bayesian inference problems, such as computational phase
transitions & information-computation gaps [11, 20, 26, 31], spec-
tral methods for sparse matrices [6, 24, 32], local message-passing
algorithms [17, 30, 34], and robustness [3, 13, 25, 28].

The SBM is a model of random graphs where the vertices are
partitioned into communities, denoted by x, and the probability of
an edge existing is contingent on the communities that the two
endpoints are part of. The algorithmic task is the community recov-
ery problem: given an input graph G, estimate the posterior x|G
with an efficient algorithm.

Definition 1.1 (Informal). In the stochastic block model, we are
given a k X k matrix M, a distribution 7 over [k], and d > 0, and
SBM;, (M, 7, d) denotes the distribution where an n-vertex graph G
is sampled by:
(1) drawing a color x(u) ~ r for every u € [n],
(2) for each pair of vertices u, v, the edge {u,v} is chosen with
probability Mx(u),x(u) . % .

In the community recovery problem, the goal is to give an efficient al-
gorithm that takes G as input and outputs a community assignment
X approximating x|G (see Definition 4.4 for a formal definition).

Computational Thresholds. For a given M and r, increasing d
can only possibly make the problem easier. The main question is to
understand the computational threshold for community recovery
— i.e. the minimum value of d where the problem goes from being
intractable to admitting efficient algorithms.

The first predictions for this computational threshold came from
the cavity method in statistical physics in the work of Decelle,
Krzakala, Moore & Zdeborova [11]. They posited that the location
of this transition is at the Kesten—Stigum threshold (henceforth KS
threshold), a threshold for broadcast processes on trees studied in
the works of Kesten & Stigum [22, 23]. The algorithmic side of these
predictions was confirmed in the case of the 2-community block
model in the works of Mossel, Neeman & Sly [31] and Massoulié
[26], and then for block models in increasing levels of generality
by Bordenave, Lelarge & Massoulié [6], Abbe & Sandon [2], and
Hopkins & Steurer [20].
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Robust Algorithms. All of these algorithms utilize the knowledge
of the distribution the input is sampled from quite strongly — they
are based on Q(log n)-length walk statistics in the stochastic block
model. However, the full generative process in inference is not
always known precisely. Thus, we would like algorithms that utilize
but do not overfit to the distributional assumptions.

Demanding that our algorithm be robust, i.e. resilient to adver-
sarial corruptions to the input, is often a useful way to design al-
gorithms that are less sensitive to distributional assumptions. This
leads one to wonder: can algorithms that don’t strongly exploit the
prior distribution approach the KS threshold?

Optimization vs. Inference. Earlier approaches to robust recovery
in 2-community block models were based on optimization: semidef-
inite programming relaxations of the minimum bisection problem,
as in the work of Guedon & Vershynin [18]. These approaches have
the advantage of being naturally robust, since the algorithms are
approximately Lipschitz around random inputs, but the minimum
bisection relaxation is not known to achieve statistical optimality
and only succeeds well above the KS threshold.

The following two results point to the suboptimality of optimization-

based strategies. Moitra, Perry & Wein [28] considered the monotone
adversary in the 2-community setting, where the adversary is al-
lowed to make an unbounded number of edge insertions within
communities and edge deletions across communities. At an intu-
itive level, this is supposed to only make the problem easier and
indeed does so for the minimum bisection approach, but to the con-
trary [28] proves that the threshold for recovery increases. Dembo,
Montanari & Sen [12] exactly nailed the size of the minimum bi-
section in Erdés—Rényi graphs, which are complete noise and have
no signal in the form of a planted bisection — and strikingly, it is
actually smaller than the size of the planted bisection in the de-
tectable regime! Thus, it is conceivable that there are bisections
completely orthogonal to the planted bisection in a stochastic block
model graph that nevertheless have the same size.

The problem of recovering communities is more related to the
task of Bayesian inference, i.e., applying Bayes’ rule and approximat-
ing x|G. Optimizing for the minimum bisection is akin to comput-
ing the maximum likelihood estimate, which does not necessarily
produce samples representative of the posterior distribution of x|G.

SDPs for Inference. The work of Banks, Mohanty & Raghaven-
dra [3] proposed a semidefinite programming-based algorithm for
inference tasks that incorporates the prior distribution in the formu-
lation, and illustrated that this algorithm can distinguish between
G sampled from the stochastic block model from an Erdés-Rényi
graph of equal average degree anywhere above the KS threshold
while being resilient to Q(n) arbitrary edge insertions and deletions.

A similar SDP formulation was later studied by Ding, d’Orsi,
Nasser & Steurer [13] in the 2-community setting, and was used
to give an algorithm to recover the communities with a constant
advantage over random guessing in the presence of Q(n) edge
corruptions for all degrees above the KS threshold. They analyze
the spectra of matrices associated with random graphs after deleting
vertices with large neighborhoods, which introduces unfriendly
correlations, and causes their analysis to be highly technical.

The main contribution of our work is an algorithm for robust
recovery, which is amenable to a significantly simpler analysis. Our
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algorithm also succeeds at the recovery task for arbitrary block
models with a constant number of communities.

THEOREM 1.2 (INFORMAL STATEMENT OF MAIN THEOREM). Let
(M, 7, d) be SBM parameters such that d is above the KS threshold,
and let G,x ~ SBM,(M, r,d). There exists 6 = 6(M,m,d) > 0
such that the following holds. There is a polynomial time algorithm
that takes as input any graph G that can be obtained by performing
arbitrary én edge insertions and deletions to G and outputs a coloring
X that has “constant correlation” with x, with high probability over
the randomness of G and x.

Many of the ingredients in the above result are of independent
interest. First, we exhibit a symmetric matrix closely related to the
Bethe Hessian of the graph, such that its bottom eigenspace is corre-
lated with the communities. Next, we design an efficient algorithm
to robustly recover the bottom-r eigenspace of a sparse matrix in
the presence of adversarial corruptions. Finally, we demonstrate a
general rounding scheme to obtain community assignments from
this eigenspace.

Remark 1.3 (Robustness against node corruptions). The node
corruption model, introduced by Liu & Moitra [25], is a harsher
generalization of the edge corruption model. In recent work, Ding,
d’Orsi, Hua & Steurer [14] proved that in the setting of sparse SBM,
any algorithm that is robust to edge corruptions can be turned into
one robust to node corruptions in a blackbox manner. Hence, our
results apply in this harsher setting too.

1.1 Related Work

We refer the reader to the survey of Abbe [1] for a detailed treatment
of the rich history and literature on community detection in block
models, its study in other disciplines, and the many information-
theoretic and computational results in various parameter regimes.

Introducing an adversary into the picture provides a beacon
towards algorithms that utilize but do not overfit to distributional
assumptions. Over the years, a variety of adversarial models have
been considered, some of which we survey below.

Corruption Models for Stochastic Block Model. Prior to the
works of [3, 13], Stefan & Massoulié [33] considered the robust
recovery problem, and gave a robust spectral algorithm to recover
communities under O(n?) adversarial edge corruptions for some
small enough ¢ > 0.

Liu & Moitra [25] introduced the node corruption model where
an adversary gets to perform arbitrary edge corruptions incident to
a constant fraction of corrupted vertices, and gave algorithms that
achieved optimal accuracy in the presence of node corruptions and
the monotone adversary sufficiently above the KS threshold. Soon
after, Ding, d’Orsi, Hua & Steurer [14] gave algorithms achieving the
Kesten—-Stigum threshold using algorithms for the edge corruption
model in the low-degree setting [13], and results on the optimization
SDP in the high-degree setting [29] in a blackbox manner.

Semirandom & Smoothed Models. Some works have consid-
ered algorithm design under harsher adversarial models, where an
adversarially chosen input undergoes some random perturbations.

Remarkably, at this point, the best algorithms for several graph
and hypergraph problems match the performance of our best algo-
rithms for their completely random counterparts. For example, at
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this point, the semirandom planted coloring and clique problems
were introduced by Blum & Spencer [5], and Feige & Kilian [16],
and a line of work [9, 27] culminating in the work of Buhai, Kothari
& Steurer [7] showed that the size of the planted clique/coloring
recoverable in the semirandom setting matches the famed +/n in
the fully random setting.

Another example where algorithms for a semirandom version of
a block model-like problem have been considered is semirandom
CSPs with planted solutions, where the work of Guruswami, Hsieh,
Kothari & Manohar [19] gives algorithms matching the guarantees
of solving fully random planted CSPs.

1.2 Organization

In Section 2, we give an overview of our algorithm and proof. In
Section 3, we give some technical preliminaries. In Section 4, we
describe our algorithm and show how to analyze it.

2 TECHNICAL OVERVIEW

An n-vertex graph G is drawn from a stochastic block model and
undergoes dn adversarial edge corruptions, and then the corrupted
graph G is given to us as input. For simplicity of discussion, we
restrict our attention to assortative symmetric k-community block
models above the KS threshold, i.e. the connection probability be-
tween two vertices i and j only depends on whether they belong
to the same community or different communities, and the intra-
community probability is higher. Nevertheless, our approach gener-
alizes to any arbitrarily specified k-community block model above
the KS threshold.

Let us first informally outline the algorithm; see Section 4 for
formal details.

(1) First, we preprocess the corrupted graph G by truncating
high degree vertices, which removes corruptions localized
on small sets of vertices in the graph.

(2) We then construct an appropriately defined graph-aware
symmetric matrix Mg € R"™" whose negative eigenvalues
contains information about the true communities for the
uncorrupted graph. We motivate this construction in Sec-
tion 2.1.

(3) We recursively trim the rows and columns of Mg to remove
small negative eigenvalues in its spectrum. Then we use a
spectral algorithm to robustly recover a subspace U which
contains information about the communities. Both points
are described in Section 2.2.

(4) Finally, we round the subspace U into a community assign-
ment, using a vertex embedding provided by U. This is de-
tailed in Section 2.3.

2.1 Outlier Eigenvectors for the Bethe Hessian

Bordenave, Lelarge & Massoulié [6] analyzed the spectrum of the
nonbacktracking matrix and rigorously established its connection
to community detection. The asymmetric nonbacktracking matrix
Bg € {0, 1}2E@)2IE(G)] is indexed by directed edges, with

(BG)(u1—>ul),(uz—>z)2) = 1[01 = uZ]l[UZ # u1]~

[6] showed that above the KS threshold, the k outlier eigenvalues
for Bg correspond to the kK community vectors. More precisely, in
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the case of symmetric k-community stochastic block models above
the KS threshold, [6] proved that for the randomly drawn graph G,
there is a small ¢ > 0 for which its nonbacktracking matrix Bg has
exactly k eigenvalues larger than (1 + £)Vd in magnitude.

The Bethe Hessian matrix is a symmetric matrix associated with a
graph, whose early appearances can be traced to the works of Thara
[21] and Bass [4]. The Bethe Hessian of a graph with parameter
t € Ris defined as

Hg(t) £ (Dg — Dt? — Agt +1,

where Dg and Ag are the diagonal degree matrix and adjacency
matrix of G, respectively. For ¢ in the interval [0, 1], it can be in-
terpreted as a regularized version of the standard graph Laplacian.
The Bethe Hessian for the stochastic block model was considered
in the empirical works [24, 32], where they observed that for some
choice of ¢, the Bethe Hessian and the nonbacktracking matrix has
outlier eigenvectors which can be used for finding communities in
block models. Concretely, in [32] they observed that for G drawn
from stochastic block models above the KS threshold, there is a
choice of t such that Hg(t) only has a small number of negative
eigenvectors, all of which correlate with the hidden community
assignment.

We confirm this empirical observation in the following proposi-
tion.

Proposition 2.1 (Bethe Hessian spectrum). Let (M, x,d) be k-
community SBM parameters such that d is above the KS threshold,
and let G,x ~ SBMy, (M, r,d). Then there exists ¢ > 0 such that

fort* = (1+1)\/3’ the Bethe Hessian Hg (t*) has at most k negative
£

eigenvalues and at least k — 1 negative eigenvalues.

Constructing the outlier eigenspace. There are two assertions in
Proposition 2.1. To show that Hg (¢*) has at most k negative eigen-
values, one can relate these negative eigenvalues to the k outlier
eigenvalues of Bg using an Thara-Bass argument and use a con-
tinuity argument as outlined in Fan and Montanari [15, Theorem
5.1].

The more interesting direction is to exhibit at least k — 1 negative
eigenvalues; we will explicitly construct a k — 1 dimensional sub-
space starting with the community vectors to witness the negative
eigenvalues for Hg (t*).

Let 1. denote the indicator vector for the vertices belonging to
community ¢ and 1 the all-ones vector. We show that every vector
in the span of {AD 1, - %1)}06[;(] achieves a negative quadratic
form against Hg (t*), where AW is the n X n matrix where the
(i, j)-th entry encodes the number of length-# nonbacktracking
walks between i and j. This demonstrates a (k — 1)-dimensional
subspace on which the quadratic form is negative. Formally, we
show the following:.

Proposition 2.2. Under the same setting and notations as Proposi-
tion 2.1, for £ > 0 define

Mg, £ ADHg(19)AW.
Fort =0 (%) and every c € [k], we have

(1c = 1, Mg (1. — £1)) < —-Q(n).
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Hence, Mg ¢ has at most k negative eigenvalues and at least k — 1
negative eigenvalues.

Nonbacktracking powers and related constructions were previ-
ously studied in [26, 31], but there they take £ = ©(log n), whereas
we only consider constant ¢. Besides simplifying the analysis of the
quadratic form, using constant £ is also critical for tolerating up to
Q(n) corruptions.

As a consequence of Proposition 2.2, the negative eigenvectors
of Mgy are correlated with the centered community indicators
{1, - %1}06[1(], while the negative eigenvectors of Hg(t*) are

correlated with {A() (1, - %1)}c€[k]- The upshot is that we can
directly use the negative eigenvectors of Mg , to recover the true
communities in the absence of corruptions.

Remark 2.3. Based on the empirical observations in [24, 32], a nat-
ural hope is to directly use the Bethe Hessian for recovery. However,
it turns out that the quadratic form of the centered true community
indicators < (1. - % 1),Hg(t*)(1; — % 1)) are actually positive close
to the KS threshold, so the same approach does not establish that the
negative eigenvectors of Hg(t*) correlate with the communities.

We will now discuss how to recover the outlier eigenspace in
the presence of adversarial corruptions.

2.2 Robust PCA for Sparse Matrices

The discussion above naturally leads to the following algorith-
mic problem of robust recovery: Given as input a corrupted ver-
sion M of a symmetric matrix M, can we recover the bottom/top
r-dimensional eigenspace of M? Since the true communities are
constantly correlated with the outlier eigenspace of M = Mg,
recovering the outlier eigenspace of M from its corrupted version
M= ]\7IG![ is a major step towards robustly recovering communities.

The problem of robustly recovering the top eigenspace, a.k.a.
robust PCA has been extensively studied, and algorithms with
provable guarantees have been designed (see [8]). However, the
robust PCA problem in our work is distinct from those considered
in the literature in a couple of ways. For us, the uncorrupted matrix
M is sparse and both the magnitude and location of the noisy entries
are adversarial. Furthermore, for our purposes, we need not recover
the actual outlier eigenspace of M. Indeed, as we discuss below, it
suffices to robustly recover a constant dimensional subspace which
is constantly correlated with the true communities.

We design an efficient algorithm to robustly recover such a sub-
space under a natural set of sufficient conditions on M. Before we
describe these conditions, let us fix some notation. We will call a
vector x € R" to be C-delocalized if no coordinate is large relative
to others, ie., |x;|® < %||x||2 for all i € [n]. Delocalization has
previously been used in the robust PCA literature under the name
“incoherence” [8].

Let M be a n X n matrix with at most r negative eigenvalues. In
particular, the r-dimensional negative eigenspace Vjs of M is the
object of interest. Let M be a corrupted version of M, differing from
M in én coordinates.

Given the corrupted version M ,anatural goal would be to recover
the r-dimensional negative eigenspace V). It is easy to see that it
could be impossible to recover the space Vj;. Instead, we will settle
for a relaxed goal, namely, recover a slightly larger dimensional
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subspace U that non-trivially correlates with delocalized vectors in
the true eigenspace V. More formally, we will solve the following
problem.

Problem 2.4. Given the corrupted matrix M as input, give an
efficient algorithm to output a subspace U with the following prop-
erties:

(1) Low dimensional. The dimension of U is O(r).

(2) Delocalized. The diagonal entries of its projection matrix
Iy are bounded by O(£).

(3) Preserves delocalized part of negative eigenspace. For
any C-delocalized unit vector y such that (y, My) < —Q(1),
we have (y, IIyy) > Q(1).

In fact, our algorithm will recover a principal submatrix of M
whose eigenspace V for eigenvalues less than —7 is O(r)-dimensional.
Moreover, the eigenspace V can be processed to another delocalized,
O(r)-dimensional subspace U that satisfies the conditions outlined
above.

Although the matrix M has a constant number of negative eigen-
values, its corruption M can have up to Q(n) many. At first glance,
it may be unclear how a constant dimensional subspace U can be
extracted from M. The crucial observation is that the large nega-
tive eigenvalues introduced by the corruptions are highly localized.
Thus, we will design an iterative trimming algorithm that aims to
delete rows and columns to clean up these localized corruptions.
When the algorithm terminates, it yields the O(r)-dimensional
subspace V.

Recovering a Principal Submatrix. We now describe the trim-
ming algorithm informally and refer the reader to the full version
of the paper for the formal details.
We first fix some small parameter n > 0 and execute the follow-
ing procedure, which produces a series of principal submatrices
M) for t > 0, starting with M(®) £ M.
(1) At step t, if the eigenspace V of eigenvalues of M(*) less
than —7 is O(r)-dimensional, we terminate the algorithm
and output V.

(2) Otherwise, compute the projection ) corresponding to
the < —n eigenspace of M(1).

(3) Sample an index i € [n] of M) with probability propor-

tional to Hg?.

(4) Zero out row and column i, and set this new principal sub-

matrix as M(#+1).

We now discuss the intuition behind the procedure and formally
prove its correctness in the full version. The main idea of step 3
is that one should prefer to delete highly localized eigenvectors
which have relatively large negative eigenvalues. This is reasonable
because the size of the diagonal entries of M) serve as a rough
proxy for the level of delocalization.

As a concrete illustration of this intuition, suppose that M =
I® = —yuT - oo, where u, v are orthogonal unit vectors. More-
over, suppose u is C-delocalized whereas v = e;. Then Hi’ol) =1

whereas |H§?)| < C?/nfori > 1. Hence, deleting the first row and

column of M also deletes the localized eigenvector v. In general,
whenever one of the eigenvectors of M(?) is heavily localized on a
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subset of coordinates S, the diagonal entries in Hét; are dispropor-
tionately large. This leads to a win-win scenario: either we reach the
termination condition, or we are likely to mitigate the troublesome
large localized eigenvectors.

We now discuss how we achieve the second and third guarantees
in Problem 2.4.

Trimming the Subspace. The final postprocessing step is simple.
Let V denote the eigenspace with eigenvalues less than —7 for the
matrix M(T) obtained at end of iterative procedure.

To ensure delocalization (condition 2 in Problem 2.4), the idea is
to take its projector Iy and trim away the rows and columns with
diagonal entry exceeding 5 for some large parameter 7 > 0. The
desired delocalized subspace U is obtained by taking the eigenspace
of the trimmed Iy corresponding to the eigenvalues exceeding a
threshold that is O(). Since V is O(r)-dimensional, so too is U.

The more delicate part is condition 3 in Problem 2.4. Namely,
we must show that despite corruptions and the repeated trimming
steps, x remains a delocalized witness vector for ITj;, and thus has
constant correlation with the subspace U. The key intuition for
this is that delocalized witnesses are naturally robust to adversarial
corruptions, so long as the adversarial corruptions have bounded
row-wise #; norm. In particular, since delocalization is an £ con-
straint, Holder’s inequality bounds the difference in value of the
quadratic form using M and M. In the full version of the paper, we
prove that for sufficiently small constant levels of corruption, x is
also a delocalized witness for M and Iy.

Finally, we discuss how to round the recovered subspace U into
a community assignment.

2.3 Rounding to Communities

At this stage, we are presented with a constant-dimensional sub-
space U with the key feature that it is correlated with the com-
munity assignment vectors {1¢}ce[k]. Our goal is to round U to a
community assignment that is “well-correlated” with the ground
truth. In order to discuss how we achieve this goal, we must make
precise what it means to be “well-correlated” with the ground truth.
Notice that a community assignment is just as plausible as the
same assignment with the names of communities permuted, and
thus counting the number of correctly labeled vertices is not a
meaningful metric.

A more meaningful metric is the number of pairwise mistakes,
i.e. the number of pairs of vertices in the same community assigned
to different communities or in different communities assigned to
the same community. A convenient way to express this metric is
via the inner product of positive semidefinite matrices encoding
whether pairs of vertices belong to the same community or not.
Given a community assignment x, we assign it the matrix X, defined
as

X[i,j] = 1 if x(i) = x(j)
BT S iex() £ x()).

k-1
For the ground truth assignment x and the output of our algorithm
X, we measure the correlation with (X, X ). Observe that for any
guess X that is oblivious to the input (for example, classifying all
vertices to the same community, or blindly guessing), the value of
(X, X ) is concentrated below é(n3/ 2). On the other hand, if X=X,
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then this correlation is Q(n?). See Definition 4.4 for how this notion
generalizes to arbitrary block models, and subsumes other notions
of weak-recovery defined in literature.

The projection matrix Iy satisfies

My, X) > Q(ITy |l F - 1X][ p) = Q(n).

We give a randomized rounding strategy according to which EX >
¢ - n - [y for some constant ¢ > 0. Consequently, E(X, )?) =cn-
(y, X) > Q(n?).

Observe that for any community assignment x, its matrix repre-
sentation X is rank-(k — 1), which lets us write it as VVT for some
n X (k — 1) matrix V. Here, the i-th row of V' is some vector v, ;)
that only depends only on the community x(i) where vertex i is
assigned.

Our rounding scheme uses IIy; to produce an embedding of
the n vertices as rows of a n X (k — 1) matrix W whose rows are
in {vy,...,0x}. In the community assignment X outputted by the
algorithm, the i-th vertex is assigned to community j if the i-th row
of W is equal to vj. We then show that EWW T > ¢ - n - . Since
X =EWWT, we can conclude E(X, X) > Q(n?).

Rounding Scheme. Our first step is to obtain an embedding of the
n vertices into Rk ~1 by choosing a (k — 1)-dimensional random sub-
space U’ of U, then writing its projector as M’ M’T, and choosing
the embedding as the rows of M’: u;, ..., u},. Suppose this embed-
ding has the property that for some ¢’ > 0, the rows of Ve’nU” lie
inside the convex hull of 1, ..., v, then we can express each ul’
(1)

as a convex combination Zi?:l pj v and then independently sam-

ple w; from {vy,..., v} according to the probability distribution
(p](.l) )je(k]- The resulting embedding W would satisfy the property
that EWWT > ¢’ - #7(1[]) - n - Iy, where this inequality holds
since the off-diagonal entries are equal, and the diagonal of WW T
is larger.

The reason an appropriate scaling ¢’ exists follows from the facts
that the convex hull of vy, . . ., v is full-dimensional and contains
the origin, which we prove in the full version of the paper.

3 PRELIMINARIES

Stochastic Block Model Notation. We write 1 to denote the all-
ones vector and e; to denote the ith standard basis vector, with the
dimensions implicit. For a k-community block model, let = € R¥
denote the prior community probabilities, and IT = diag (), so that
7 = I11. The edge probabilities are parameterized by a symmetric
matrix M € RF¥K | the block probability matrix. A true community
assignment x : [n] — [k] is sampled i.i.d. from 7. Conditioned on
x, an edge between i and j is sampled with probability w
To ensure that the average degree is d, we stipulate that Mz = 1.
We will also use X € R™¥ to denote the one-hot encoding of
x, ie., the matrix where the -th row is equal to ey(;). We will
sometimes find it convenient to access the columns of X, which are
the indicator vectors for the k different communities; we denote
these by 1. for any community ¢ € [k]. For any f : [k] — R,
define the lift of f with respect to the true community assignment

by £ 2 ¥ ociry £(0) - 1e
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Another natural matrix that appears throughout the analysis is
the Markov transition matrix T = MII, which by detailed balance
evidently has stationary distribution 7. This is an asymmetric ma-
trix, but since T defines a time-reversible Markov chain with respect
to 7, T is self-adjoint with respect to the inner product (-, -); in Rk
induced by 7. Hence T is diagonalizable with real eigenvalues and
its eigenvalues are 1 = A1 > |A2] > - - - > |A|, with ties broken by
placing positive eigenvalues before the negative ones. Note that
the normalization condition Mz = 1 translates into 71 = 1.

Matrix Notation. We use < and > to denote inequalities on matri-
ces in the Loewner order. For any nxn matrix X, we use I1¢,(X) and
IT>4(X) to denote the projectors onto the spaces spanned by eigen-
vectors of X with eigenvalue at most and at least a respectively. We
also define X< = M<q(X)XT<q(X) and X4 = I54(X)XII54(X),
the corresponding truncations of the eigendecomposition of X.

For S C [n], we use Xg s to denote the matrix obtained by taking
X and zeroing out all rows and columns with indices outside S.

Nonbacktracking Matrix and Bethe Hessian. For a graph G, let
Bg be its nonbacktracking matrix, Ag be its adjacency matrix, Dg

be its diagonal matrix of degrees, Ag) be its £-th nonbacktracking
power of Ag, and Hg(t) 2 (Dg — I)t> — Agt + I be its Bethe
Hessian matrix. The matrix we use for our algorithm is Mg ¢(t) =

Ag)HG(t)A(G[). We will drop the G from the subscript when the
graph G is clear from context.

Determinants. Below, we collect some standard linear algebraic
facts that will prove useful.

Fact 3.1. Suppose a matrix X has a kernel of dimension k, then every
(n—j) x (n—j) submatrix of X for j < k is singular.

Fact 3.2 (Jacobi’s formula). For any differentiable functionX : R —
Rnxn’

d
o det(X(u))

= D7) det (X W i) - D (K@)

i=1 j=1

Lemma 3.3. Let X : R —» R™" and f : R — R be any pair of
smooth functions. For any j > 0, there exist functions (qs7 : R —
R)s,rc(n), |S|=|T|2n—j Such that:

d\/
(a) [det(X@) - fw)] = >

S,TC[n]
ISI=IT|>n-j

det(X (w)s,T)gs,T ().

Proor. We prove this by induction. This is clearly true when j =
0, and the induction step is a consequence of Jacobi’s formula. O

Kesten-Stigum Threshold. We say that a stochastic block model
is above the Kesten-Stigum (KS) threshold if A2(T)%d > 1, where
recall that A3 is the second largest eigenvalue in absolute value. We
use r to denote the number of eigenvalues of T equal to A5(T).

372

Sidhanth Mohanty, Prasad Raghavendra, and David X. Wu

4 RECOVERY ALGORITHM

Let G be the graph drawn from SBM, (M, r, d), and let G denote
the input graph which is G along with an arbitrary dn adversarial
edge corruptions. Our algorithm for clustering the vertices into
communities proceeds in multiple phases, described formally below.

The first phase preprocesses the graph by making it bounded
degree and constructs an appropriate matrix M associated to the
graph. The second phase cleans up M and uses a spectral algorithm
to robustly recover a subspace containing nontrivial information
about the true communities. Finally, the third phase rounds the
subspace to an actual community assignment.

Algorithm 4.1. Gis given as input, and a community assignment
to the vertices is produced as output.
Phase 1: Deletion of High-degree Vertices. For some large con-
stant B > 0 to be specified later, we perform the following trunca-
tion step: delete all edges incident on vertices with degree larger
than B in G. This forms a graph Gg, with corresponding adjacency
matrix A~ e RIV(GIXIV(G)I To avoid confusion, we preserve
the Vertex set V(G), but it should be understood that the truncated
vertices do not contribute to the graph.

For technical considerations, we also define a (nonstandard)
truncated diagonal matrix

2 diag (deg(v)1[deg(v) < B (1)

With this, we can then define the truncated Bethe Hessian matrix

BE;B Doev(a)

Fag 4 — 2D~
HaB(t) —I—tAGB+t (DGB—I). (2)
Finally, the input matrix to the next phase is
Vo~ 2 A0 _ ()
MGB’[(t) = AéBHGB (t)AéB, (3)

where we also choose the value of t later.

Remark 4.2. To reduce any chance of confusion with the notation,
we reiterate our conventions for distinguishing between different
versions of various matrices. If a graph is truncated at level B, then
we add a subscript B. We use tilde to denote that we are working
with a corrupted graph. Finally, we use overline to denote that we
are working with the nonstandard version of the Bethe Hessian
after truncation.

For example, the matrix BGB no longer corresponds to the degree
matrix of Gp, since as stated it still counts edges from truncated
vertices. This is done to simplify the analysis of the spectrum of
MGB,[(t) but we do not believe it to be essential.

Phase 2: Recovering a Subspace with Planted Signal. Define
M £ Mg,
deleting a few rows and columns. We then run a spectral algorithm
on the cleaned up version of M.

Let n > 0 be a small constant we choose later, and let K =

- We give an iterative procedure to “clean up” M by

BQ[+3

(1) Define M(?) as M. Let t be a counter initialized at 0, and
®(X) as the number of eigenvalues of X smaller than —7.
(2) While®d(M®)) > %r: compute the projection matrix I1(*) £

Hg_,](M(t)), choose a random i € [n] with probability
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()
T(m®)°
roing out the i-th row and column of M (*)_ Then increment
t.

and define M(**1) as the matrix obtained by ze-

Let T be the time of termination and 7 > 0 be a large enough
constant we choose later. We compute H(T), and then compute as

the set S of all indices i where Hg) < % Define II as (HgTS)) ,
’ = /zn/K

and compute its span U, where we recall that (X), denotes the
truncation of the eigendecomposition of X for eigenvalues at least
a. This subspace U is passed to the next phase.

Phase 3: Rounding to a Community Assignment. Define r’ as
r — 1 when A2(T) > 0 and as r when A3(T) < 0. We first obtain
an r’-dimensional embedding of the vertices into R" . Compute a
random r’-dimensional subspace U’ of U, and take an orthogonal
basis u], ..., u],. Place these vectors as a column of a matrix M” in
R™<"_The rows of M’ gives us the desired embedding.

On the other hand, we use the natural embedding of the k com-
munities into R” induced by the r’ nontrivial right eigenvectors
corresponding to the eigenvalue A2(T): (¥i)1<i< of T. In partic-
ular, let ¥» = [(#1 lﬁr/] € RF*" be the matrix of these r’

nontrivial eigenvectors of T. Then the row vectors ¢4, ..., ¢y € R”
form the desired embedding of communities.

In the rounding algorithm, we first find the largest ¢ such that
all the rows of ¢ - M’ lie in the convex hull of ¢, ..., #;. We can
find such a value of ¢ if it exists by solving a linear program, and
we prove that this ¢ > 0 is guaranteed to exist in the full version
of this paper. Then, for each i € [n] we express each row of ¢ - M’
@)

as a convex combination 25:1 wl.(J ) ¢; for nonnegative w;”’ such

that Z§=1 wi(j ) =1, Finally, we assign vertex i to community j with
()

Erobability w;””, and output the resulting community assignment

X.

Remark 4.3. Scaling the rows of M’ so as to lie in the convex hull
of {¢;} je[k]- is reminiscent of the rounding algorithm of Charikar
& Wirth [10] to find a cut of size % + Q(m) in a graph with
maximum cut of size % + ¢: in their algorithm, they scale n scalars
to lie in the interval [-1, 1].

Analysis of Algorithm. Our goal is to prove that the output
X of our algorithm is well-correlated with the true community
assignment x. We begin by defining a notion of weak recovery for
k-community stochastic block models.

Definition 4.4 (Weak recovery). Let ¥ = [1//2 1//k] €
Rk*(k=1) pe the matrix of the top-(k — 1) nontrivial eigenvectors
of the transition matrix T of a stochastic block model.

For p > 0, we say that a (randomized) algorithm for producing
community assignments X € Rk achieves p-weak recovery if

(EXw Xo) > plIE Sl plI Xl .

where By £ (B¥)(BY)7 for a matrix B € Rk,

Remark 4.5. Intuitively, this notion is capturing the “advantage” of
the algorithm over random guessing, or simply outputting the most
likely community. See the full version for a more detailed discussion
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of this notion, how it recovers other previously considered measures
of correlation in the case of the symmetric block model, and why it
is meaningful. In particular, it implies the notion of weak recovery
used in [13].

Our main guarantee is stated below.

THEOREM 4.6. For any SBM parameters (M, 7, d) above the KS
threshold, there is a constant p(M, m,d) > 0 such that the above
algorithm takes in the corrupted graph G as input and outputs x
achieving p(M, r, d)-weak recovery with probability 1 — 0,(1) over
the randomness of G ~ SBM,,(M, 7, d).

To prove the above theorem it suffices to analyze <(E X)v, X\p>.

To see why, let us first set up some notation. For each vertex i, we
obtain a simplex vector w; € R¥, which we can stack as rows into
a weight matrix W € R"™K_We then independently round each
vertex so that EX = W.

To analyze our rounding scheme, first note that E[Xy] is equal
to Wy off of the diagonal and is larger than Wy on the diag-
onal, and thus E[)?\p] > Wy. Since Xy is positive semidefi-

nite, <E[52\y],Xq/> > (Wy, Xy). Thus, it suffices to lower bound

(Wi, Xg). By construction, Wy is equal to ¢ - IIyy», where recall
that U’ was a random r’-dimensional subspace of U, the output of
Phase 2 of the algorithm. Thus,

rl

" dim(0) Y

In the full version of this manuscript, we prove that when
(M, , d) are above the KS threshold, (I, Xy) > Q(1) - Iyl f -
[|X¥|| r and dim(U) = O(1). Furthermore, we show that when
diag(IIy) = O(1/n), we can take ¢ = Q(+/n); this delocalization
condition is guaranteed by phase 2 of the algorithm. Combined

with the fact that | Xy|l p = O(n), it follows that <E)?\u X\y> >
Q(1) - ||X\y|| F - I Xw|| g, which establishes Theorem 4.6.

EWg=c? EIly =c?
U’ ¥ U’ v
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