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ABSTRACT

We study the problem of robust community recovery: e�ciently

recovering communities in sparse stochastic block models in the

presence of adversarial corruptions. In the absence of adversarial

corruptions, there are e�cient algorithms when the signal-to-noise

ratio exceeds the Kesten–Stigum (KS) threshold, widely believed

to be the computational threshold for this problem. The question

we study is: does the computational threshold for robust commu-

nity recovery also lie at the KS threshold? We answer this question

a�rmatively, providing an algorithm for robust community recov-

ery for arbitrary stochastic block models on any constant number

of communities, generalizing the work of Ding, d’Orsi, Nasser &

Steurer on an e�cient algorithm above the KS threshold in the case

of 2-community block models.

There are three main ingredients to our work:

(1) The Bethe Hessian of the graph is de�ned as �� (C) ~ (�� 2
� )C2 2�� C + � where �� is the diagonal matrix of degrees and ��
is the adjacency matrix. Empirical work suggested that the Bethe

Hessian for the stochastic block model has outlier eigenvectors

corresponding to the communities right above the Kesten-Stigum

threshold. We formally con�rm the existence of outlier eigenvalues

for the Bethe Hessian, by explicitly constructing outlier eigenvec-

tors from the community vectors.

(2) We develop an algorithm for a variant of robust PCA on

sparse matrices. Speci�cally, an algorithm to partially recover top

eigenspaces from adversarially corrupted sparse matrices under

mild delocalization constraints.

(3) A rounding algorithm to turn vector assignments of vertices

into a community assignment, inspired by the algorithm of Charikar

& Wirth for 2XOR.
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1 INTRODUCTION

The stochastic block model (SBM) has provided an enlightening

lens into understanding a wide range of computational phenom-

ena in Bayesian inference problems, such as computational phase

transitions & information-computation gaps [11, 20, 26, 31], spec-

tral methods for sparse matrices [6, 24, 32], local message-passing

algorithms [17, 30, 34], and robustness [3, 13, 25, 28].

The SBM is a model of random graphs where the vertices are

partitioned into communities, denoted by x , and the probability of

an edge existing is contingent on the communities that the two

endpoints are part of. The algorithmic task is the community recov-

ery problem: given an input graph M , estimate the posterior x |M
with an e�cient algorithm.

De�nition 1.1 (Informal). In the stochastic block model, we are

given a : × : matrix M, a distribution c over [:], and 3 > 0, and

SBM= (M, c, 3) denotes the distribution where an =-vertex graph M

is sampled by:

(1) drawing a color x (D) > c for every D * [=],
(2) for each pair of vertices D, E , the edge {D, E} is chosen with

probabilityMx (D ),x (E) · 3= .

In the community recovery problem, the goal is to give an e�cient al-

gorithm that takes M as input and outputs a community assignment

Ĝ approximating x |M (see De�nition 4.4 for a formal de�nition).

Computational Thresholds. For a givenM and c , increasing 3

can only possibly make the problem easier. The main question is to

understand the computational threshold for community recovery

— i.e. the minimum value of 3 where the problem goes from being

intractable to admitting e�cient algorithms.

The �rst predictions for this computational threshold came from

the cavity method in statistical physics in the work of Decelle,

Krzakala, Moore & Zdeborova [11]. They posited that the location

of this transition is at the Kesten–Stigum threshold (henceforth KS

threshold), a threshold for broadcast processes on trees studied in

the works of Kesten & Stigum [22, 23]. The algorithmic side of these

predictions was con�rmed in the case of the 2-community block

model in the works of Mossel, Neeman & Sly [31] and Massoulié

[26], and then for block models in increasing levels of generality

by Bordenave, Lelarge & Massoulié [6], Abbe & Sandon [2], and

Hopkins & Steurer [20].

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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Robust Algorithms. All of these algorithms utilize the knowledge

of the distribution the input is sampled from quite strongly — they

are based on «(log=)-length walk statistics in the stochastic block

model. However, the full generative process in inference is not

always known precisely. Thus, we would like algorithms that utilize

but do not over�t to the distributional assumptions.

Demanding that our algorithm be robust, i.e. resilient to adver-

sarial corruptions to the input, is often a useful way to design al-

gorithms that are less sensitive to distributional assumptions. This

leads one to wonder: can algorithms that don’t strongly exploit the

prior distribution approach the KS threshold?

Optimization vs. Inference. Earlier approaches to robust recovery

in 2-community block models were based on optimization: semidef-

inite programming relaxations of the minimum bisection problem,

as in the work of Guedon & Vershynin [18]. These approaches have

the advantage of being naturally robust, since the algorithms are

approximately Lipschitz around random inputs, but the minimum

bisection relaxation is not known to achieve statistical optimality

and only succeeds well above the KS threshold.

The following two results point to the suboptimality of optimization-

based strategies. Moitra, Perry &Wein [28] considered themonotone

adversary in the 2-community setting, where the adversary is al-

lowed to make an unbounded number of edge insertions within

communities and edge deletions across communities. At an intu-

itive level, this is supposed to only make the problem easier and

indeed does so for the minimum bisection approach, but to the con-

trary [28] proves that the threshold for recovery increases. Dembo,

Montanari & Sen [12] exactly nailed the size of the minimum bi-

section in Erdős–Rényi graphs, which are complete noise and have

no signal in the form of a planted bisection — and strikingly, it is

actually smaller than the size of the planted bisection in the de-

tectable regime! Thus, it is conceivable that there are bisections

completely orthogonal to the planted bisection in a stochastic block

model graph that nevertheless have the same size.

The problem of recovering communities is more related to the

task of Bayesian inference, i.e., applying Bayes’ rule and approximat-

ing x |M . Optimizing for the minimum bisection is akin to comput-

ing the maximum likelihood estimate, which does not necessarily

produce samples representative of the posterior distribution of x |M .

SDPs for Inference. The work of Banks, Mohanty & Raghaven-

dra [3] proposed a semide�nite programming-based algorithm for

inference tasks that incorporates the prior distribution in the formu-

lation, and illustrated that this algorithm can distinguish between

M sampled from the stochastic block model from an Erdős–Rényi

graph of equal average degree anywhere above the KS threshold

while being resilient to «(=) arbitrary edge insertions and deletions.
A similar SDP formulation was later studied by Ding, d’Orsi,

Nasser & Steurer [13] in the 2-community setting, and was used

to give an algorithm to recover the communities with a constant

advantage over random guessing in the presence of «(=) edge
corruptions for all degrees above the KS threshold. They analyze

the spectra of matrices associatedwith random graphs after deleting

vertices with large neighborhoods, which introduces unfriendly

correlations, and causes their analysis to be highly technical.

The main contribution of our work is an algorithm for robust

recovery, which is amenable to a signi�cantly simpler analysis. Our

algorithm also succeeds at the recovery task for arbitrary block

models with a constant number of communities.

Theorem 1.2 (Informal statement of main theorem). Let

(M, c, 3) be SBM parameters such that 3 is above the KS threshold,

and let M, x > SBM= (M, c, 3). There exists X = X (M, c, 3) > 0

such that the following holds. There is a polynomial time algorithm

that takes as input any graph M̃ that can be obtained by performing

arbitrary X= edge insertions and deletions to M and outputs a coloring

x̂ that has “constant correlation” with x , with high probability over

the randomness of M and x .

Many of the ingredients in the above result are of independent

interest. First, we exhibit a symmetric matrix closely related to the

Bethe Hessian of the graph, such that its bottom eigenspace is corre-

lated with the communities. Next, we design an e�cient algorithm

to robustly recover the bottom-A eigenspace of a sparse matrix in

the presence of adversarial corruptions. Finally, we demonstrate a

general rounding scheme to obtain community assignments from

this eigenspace.

Remark 1.3 (Robustness against node corruptions). The node

corruption model, introduced by Liu & Moitra [25], is a harsher

generalization of the edge corruption model. In recent work, Ding,

d’Orsi, Hua & Steurer [14] proved that in the setting of sparse SBM,

any algorithm that is robust to edge corruptions can be turned into

one robust to node corruptions in a blackbox manner. Hence, our

results apply in this harsher setting too.

1.1 Related Work

We refer the reader to the survey of Abbe [1] for a detailed treatment

of the rich history and literature on community detection in block

models, its study in other disciplines, and the many information-

theoretic and computational results in various parameter regimes.

Introducing an adversary into the picture provides a beacon

towards algorithms that utilize but do not over�t to distributional

assumptions. Over the years, a variety of adversarial models have

been considered, some of which we survey below.

Corruption Models for Stochastic Block Model. Prior to the

works of [3, 13], Stefan & Massoulié [33] considered the robust

recovery problem, and gave a robust spectral algorithm to recover

communities under $ (=Y ) adversarial edge corruptions for some

small enough Y > 0.

Liu & Moitra [25] introduced the node corruption model where

an adversary gets to perform arbitrary edge corruptions incident to

a constant fraction of corrupted vertices, and gave algorithms that

achieved optimal accuracy in the presence of node corruptions and

the monotone adversary su�ciently above the KS threshold. Soon

after, Ding, d’Orsi, Hua& Steurer [14] gave algorithms achieving the

Kesten–Stigum threshold using algorithms for the edge corruption

model in the low-degree setting [13], and results on the optimization

SDP in the high-degree setting [29] in a blackbox manner.

Semirandom & Smoothed Models. Some works have consid-

ered algorithm design under harsher adversarial models, where an

adversarially chosen input undergoes some random perturbations.

Remarkably, at this point, the best algorithms for several graph

and hypergraph problems match the performance of our best algo-

rithms for their completely random counterparts. For example, at
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this point, the semirandom planted coloring and clique problems

were introduced by Blum & Spencer [5], and Feige & Kilian [16],

and a line of work [9, 27] culminating in the work of Buhai, Kothari

& Steurer [7] showed that the size of the planted clique/coloring

recoverable in the semirandom setting matches the famed
:
= in

the fully random setting.

Another example where algorithms for a semirandom version of

a block model-like problem have been considered is semirandom

CSPs with planted solutions, where the work of Guruswami, Hsieh,

Kothari & Manohar [19] gives algorithms matching the guarantees

of solving fully random planted CSPs.

1.2 Organization

In Section 2, we give an overview of our algorithm and proof. In

Section 3, we give some technical preliminaries. In Section 4, we

describe our algorithm and show how to analyze it.

2 TECHNICAL OVERVIEW

An =-vertex graph M is drawn from a stochastic block model and

undergoes X= adversarial edge corruptions, and then the corrupted

graph M̃ is given to us as input. For simplicity of discussion, we

restrict our attention to assortative symmetric :-community block

models above the KS threshold, i.e. the connection probability be-

tween two vertices 8 and 9 only depends on whether they belong

to the same community or di�erent communities, and the intra-

community probability is higher. Nevertheless, our approach gener-

alizes to any arbitrarily speci�ed :-community block model above

the KS threshold.

Let us �rst informally outline the algorithm; see Section 4 for

formal details.

(1) First, we preprocess the corrupted graph M̃ by truncating

high degree vertices, which removes corruptions localized

on small sets of vertices in the graph.

(2) We then construct an appropriately de�ned graph-aware

symmetric matrix"M * R=×= whose negative eigenvalues

contains information about the true communities for the

uncorrupted graph. We motivate this construction in Sec-

tion 2.1.

(3) We recursively trim the rows and columns of"
M̃
to remove

small negative eigenvalues in its spectrum. Then we use a

spectral algorithm to robustly recover a subspace * which

contains information about the communities. Both points

are described in Section 2.2.

(4) Finally, we round the subspace* into a community assign-

ment, using a vertex embedding provided by * . This is de-

tailed in Section 2.3.

2.1 Outlier Eigenvectors for the Bethe Hessian

Bordenave, Lelarge & Massoulié [6] analyzed the spectrum of the

nonbacktracking matrix and rigorously established its connection

to community detection. The asymmetric nonbacktracking matrix

�� * {0, 1}2 |� (� ) |×2 |� (� ) | is indexed by directed edges, with

(�� ) (D1³E1 ),(D2³E2 ) ~ 1[E1 = D2]1[E2 b D1] .

[6] showed that above the KS threshold, the : outlier eigenvalues

for �M correspond to the : community vectors. More precisely, in

the case of symmetric :-community stochastic block models above

the KS threshold, [6] proved that for the randomly drawn graph M ,

there is a small Y > 0 for which its nonbacktracking matrix �M has

exactly : eigenvalues larger than (1 + Y)
:
3 in magnitude.

The Bethe Hessianmatrix is a symmetric matrix associated with a

graph, whose early appearances can be traced to the works of Ihara

[21] and Bass [4]. The Bethe Hessian of a graph with parameter

C * R is de�ned as

�� (C) ~ (�� 2 � )C2 2�� C + � ,

where �� and �� are the diagonal degree matrix and adjacency

matrix of � , respectively. For C in the interval [0, 1], it can be in-

terpreted as a regularized version of the standard graph Laplacian.

The Bethe Hessian for the stochastic block model was considered

in the empirical works [24, 32], where they observed that for some

choice of C , the Bethe Hessian and the nonbacktracking matrix has

outlier eigenvectors which can be used for �nding communities in

block models. Concretely, in [32] they observed that for M drawn

from stochastic block models above the KS threshold, there is a

choice of C such that �M (C) only has a small number of negative

eigenvectors, all of which correlate with the hidden community

assignment.

We con�rm this empirical observation in the following proposi-

tion.

Proposition 2.1 (Bethe Hessian spectrum). Let (M, c, 3) be :-
community SBM parameters such that 3 is above the KS threshold,

and let M, x > SBM= (M, c, 3). Then there exists Y > 0 such that

for C7 = 1

(1+Y )
:
3
, the Bethe Hessian �M (C7) has at most : negative

eigenvalues and at least : 2 1 negative eigenvalues.

Constructing the outlier eigenspace. There are two assertions in

Proposition 2.1. To show that �M (C7) has at most : negative eigen-

values, one can relate these negative eigenvalues to the : outlier

eigenvalues of �M using an Ihara–Bass argument and use a con-

tinuity argument as outlined in Fan and Montanari [15, Theorem

5.1].

The more interesting direction is to exhibit at least : 21 negative

eigenvalues; we will explicitly construct a : 2 1 dimensional sub-

space starting with the community vectors to witness the negative

eigenvalues for �� (C7).
Let 12 denote the indicator vector for the vertices belonging to

community 2 and 1 the all-ones vector. We show that every vector

in the span of {�(ℓ ) (12 2 1
:
1)}2*[: ] achieves a negative quadratic

form against �M (C7), where �(ℓ ) is the = × = matrix where the

(8, 9)-th entry encodes the number of length-ℓ nonbacktracking

walks between 8 and 9 . This demonstrates a (: 2 1)-dimensional

subspace on which the quadratic form is negative. Formally, we

show the following:.

Proposition 2.2. Under the same setting and notations as Proposi-

tion 2.1, for ℓ ~ 0 de�ne

"M,ℓ ~ �
(ℓ )�M (C7)�(ℓ ) .

For ℓ = �

(
log(1/Y )

Y

)
and every 2 * [:], we have

〈
12 2 1

:
1, "M,ℓ (12 2 1

:
1)
〉
� 2«(=) .
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Hence, "M,ℓ has at most : negative eigenvalues and at least : 2 1

negative eigenvalues.

Nonbacktracking powers and related constructions were previ-

ously studied in [26, 31], but there they take ℓ = �(log=), whereas
we only consider constant ℓ . Besides simplifying the analysis of the

quadratic form, using constant ℓ is also critical for tolerating up to

«(=) corruptions.
As a consequence of Proposition 2.2, the negative eigenvectors

of "M,ℓ are correlated with the centered community indicators

{12 2 1
:
1}2*[: ] , while the negative eigenvectors of �M (C7) are

correlated with {�(ℓ ) (12 2 1
:
1)}2*[: ] . The upshot is that we can

directly use the negative eigenvectors of"M,ℓ to recover the true

communities in the absence of corruptions.

Remark 2.3. Based on the empirical observations in [24, 32], a nat-

ural hope is to directly use the Bethe Hessian for recovery. However,

it turns out that the quadratic form of the centered true community

indicators
〈
(12 2 1

:
1), �M (C7) (12 2 1

:
1)
〉
are actually positive close

to the KS threshold, so the same approach does not establish that the

negative eigenvectors of �M (C7) correlate with the communities.

We will now discuss how to recover the outlier eigenspace in

the presence of adversarial corruptions.

2.2 Robust PCA for Sparse Matrices

The discussion above naturally leads to the following algorith-

mic problem of robust recovery: Given as input a corrupted ver-

sion "̃ of a symmetric matrix " , can we recover the bottom/top

A -dimensional eigenspace of "? Since the true communities are

constantly correlated with the outlier eigenspace of " = "M,ℓ ,

recovering the outlier eigenspace of" from its corrupted version

"̃ = "̃M,ℓ is a major step towards robustly recovering communities.

The problem of robustly recovering the top eigenspace, a.k.a.

robust PCA has been extensively studied, and algorithms with

provable guarantees have been designed (see [8]). However, the

robust PCA problem in our work is distinct from those considered

in the literature in a couple of ways. For us, the uncorrupted matrix

" is sparse and both the magnitude and location of the noisy entries

are adversarial. Furthermore, for our purposes, we need not recover

the actual outlier eigenspace of" . Indeed, as we discuss below, it

su�ces to robustly recover a constant dimensional subspace which

is constantly correlated with the true communities.

We design an e�cient algorithm to robustly recover such a sub-

space under a natural set of su�cient conditions on" . Before we

describe these conditions, let us �x some notation. We will call a

vector G * R= to be �-delocalized if no coordinate is large relative

to others, i.e., |G8 |2 � �
= 'G '2 for all 8 * [=]. Delocalization has

previously been used in the robust PCA literature under the name

“incoherence” [8].

Let" be a = × = matrix with at most A negative eigenvalues. In

particular, the A -dimensional negative eigenspace +" of " is the

object of interest. Let "̃ be a corrupted version of" , di�ering from

" in X= coordinates.

Given the corrupted version "̃ , a natural goal would be to recover

the A -dimensional negative eigenspace +" . It is easy to see that it

could be impossible to recover the space +" . Instead, we will settle

for a relaxed goal, namely, recover a slightly larger dimensional

subspace* that non-trivially correlates with delocalized vectors in

the true eigenspace +" . More formally, we will solve the following

problem.

Problem 2.4. Given the corrupted matrix "̃ as input, give an

e�cient algorithm to output a subspace* with the following prop-

erties:

(1) Low dimensional. The dimension of* is $ (A ).
(2) Delocalized. The diagonal entries of its projection matrix

£* are bounded by $
( A
=

)
.

(3) Preserves delocalized part of negative eigenspace. For

any �-delocalized unit vector ~ such that ï~,"~ï < 2«(1),
we have ï~,£*~ï ~ «(1).

In fact, our algorithm will recover a principal submatrix of "̃

whose eigenspace+ for eigenvalues less than2[ is$ (A )-dimensional.

Moreover, the eigenspace+ can be processed to another delocalized,

$ (A )-dimensional subspace* that satis�es the conditions outlined

above.

Although the matrix" has a constant number of negative eigen-

values, its corruption "̃ can have up to «(=) many. At �rst glance,

it may be unclear how a constant dimensional subspace* can be

extracted from "̃ . The crucial observation is that the large nega-

tive eigenvalues introduced by the corruptions are highly localized.

Thus, we will design an iterative trimming algorithm that aims to

delete rows and columns to clean up these localized corruptions.

When the algorithm terminates, it yields the $ (A )-dimensional

subspace + .

Recovering a Principal Submatrix.We now describe the trim-

ming algorithm informally and refer the reader to the full version

of the paper for the formal details.

We �rst �x some small parameter [ > 0 and execute the follow-

ing procedure, which produces a series of principal submatrices

"̃ (C ) for C ~ 0, starting with "̃ (0) ~ "̃ .

(1) At step C , if the eigenspace + of eigenvalues of "̃ (C ) less
than 2[ is $ (A )-dimensional, we terminate the algorithm

and output + .

(2) Otherwise, compute the projection £
(C ) corresponding to

the � 2[ eigenspace of "̃ (C ) .
(3) Sample an index 8 * [=] of "̃ (C ) with probability propor-

tional to £
(C )
8,8 .

(4) Zero out row and column 8 , and set this new principal sub-

matrix as "̃ (C+1) .

We now discuss the intuition behind the procedure and formally

prove its correctness in the full version. The main idea of step 3

is that one should prefer to delete highly localized eigenvectors

which have relatively large negative eigenvalues. This is reasonable

because the size of the diagonal entries of "̃ (C ) serve as a rough
proxy for the level of delocalization.

As a concrete illustration of this intuition, suppose that "̃ =

£
(0)

= 2DD¦ 2 EE¦, where D, E are orthogonal unit vectors. More-

over, suppose D is �-delocalized whereas E = 41. Then £
(0)
1,1 = 1

whereas |£ (0)
8,8 | � �2/= for 8 > 1. Hence, deleting the �rst row and

column of "̃ also deletes the localized eigenvector E . In general,

whenever one of the eigenvectors of "̃ (C ) is heavily localized on a
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subset of coordinates ( , the diagonal entries in £
(C )
(,(

are dispropor-

tionately large. This leads to a win-win scenario: either we reach the

termination condition, or we are likely to mitigate the troublesome

large localized eigenvectors.

We now discuss how we achieve the second and third guarantees

in Problem 2.4.

Trimming the Subspace. The �nal postprocessing step is simple.

Let + denote the eigenspace with eigenvalues less than 2[ for the

matrix "̃ () ) obtained at end of iterative procedure.

To ensure delocalization (condition 2 in Problem 2.4), the idea is

to take its projector £+ and trim away the rows and columns with

diagonal entry exceeding g
= for some large parameter g > 0. The

desired delocalized subspace* is obtained by taking the eigenspace

of the trimmed £+ corresponding to the eigenvalues exceeding a

threshold that is $ ([). Since + is $ (A )-dimensional, so too is* .

The more delicate part is condition 3 in Problem 2.4. Namely,

we must show that despite corruptions and the repeated trimming

steps, G remains a delocalized witness vector for £* , and thus has

constant correlation with the subspace * . The key intuition for

this is that delocalized witnesses are naturally robust to adversarial

corruptions, so long as the adversarial corruptions have bounded

row-wise ℓ1 norm. In particular, since delocalization is an ℓ> con-

straint, Hölder’s inequality bounds the di�erence in value of the

quadratic form using" and "̃ . In the full version of the paper, we

prove that for su�ciently small constant levels of corruption, G is

also a delocalized witness for "̃ and £* .

Finally, we discuss how to round the recovered subspace * into

a community assignment.

2.3 Rounding to Communities

At this stage, we are presented with a constant-dimensional sub-

space * with the key feature that it is correlated with the com-

munity assignment vectors {12 }2*[: ] . Our goal is to round * to a

community assignment that is “well-correlated” with the ground

truth. In order to discuss how we achieve this goal, we must make

precise what it means to be “well-correlated” with the ground truth.

Notice that a community assignment is just as plausible as the

same assignment with the names of communities permuted, and

thus counting the number of correctly labeled vertices is not a

meaningful metric.

A more meaningful metric is the number of pairwise mistakes,

i.e. the number of pairs of vertices in the same community assigned

to di�erent communities or in di�erent communities assigned to

the same community. A convenient way to express this metric is

via the inner product of positive semide�nite matrices encoding

whether pairs of vertices belong to the same community or not.

Given a community assignment G , we assign it the matrix- , de�ned

as

- [8, 9] =
{
1 if G (8) = G ( 9)
2 1
:21 if G (8) b G ( 9) .

For the ground truth assignment x and the output of our algorithm

Ĝ , we measure the correlation with ï^ , -̂ ï. Observe that for any
guess -̂ that is oblivious to the input (for example, classifying all

vertices to the same community, or blindly guessing), the value of

ï^ , -̂ ï is concentrated below $̃ (=3/2). On the other hand, if -̂ = ^ ,

then this correlation is «(=2). See De�nition 4.4 for how this notion

generalizes to arbitrary block models, and subsumes other notions

of weak-recovery de�ned in literature.

The projection matrix £* satis�es

ï£* ,^ï ~ «('£* ' � · '^ ' � ) = «(=) .

We give a randomized rounding strategy according to which E -̂ º
2 · = · £* for some constant 2 > 0. Consequently, Eï^ , -̂ ï = 2= ·
ï£* ,^ï ~ «(=2).

Observe that for any community assignment G , its matrix repre-

sentation - is rank-(: 2 1), which lets us write it as ++¦ for some

= × (: 2 1) matrix + . Here, the 8-th row of + is some vector EG (8 )
that only depends only on the community G (8) where vertex 8 is
assigned.

Our rounding scheme uses £* to produce an embedding of

the = vertices as rows of a = × (: 2 1) matrix, whose rows are

in {E1, . . . , E: }. In the community assignment Ĝ outputted by the

algorithm, the 8-th vertex is assigned to community 9 if the 8-th row

of, is equal to E 9 . We then show that E,, ¦ º 2 · = · £* . Since
-̂ = E,, ¦, we can conclude Eï^ , -̂ ï ~ «(=2).

Rounding Scheme. Our �rst step is to obtain an embedding of the

= vertices into R:21 by choosing a (:21)-dimensional random sub-

space* 2 of* , then writing its projector as"2"2¦, and choosing

the embedding as the rows of"2: D21, . . . , D
2
= . Suppose this embed-

ding has the property that for some 22 > 0, the rows of
:
22=* 2 lie

inside the convex hull of E1, . . . , E: , then we can express each D28
as a convex combination

∑:
9=1 ?

(8 )
9 E 9 and then independently sam-

ple F8 from {E1, . . . , E: } according to the probability distribution

(? (8 )9 ) 9*[: ] . The resulting embedding, would satisfy the property

that E,, ¦ º 22 · :21
dim(* ) · = · £* , where this inequality holds

since the o�-diagonal entries are equal, and the diagonal of,, ¦

is larger.

The reason an appropriate scaling 22 exists follows from the facts

that the convex hull of E1, . . . , E: is full-dimensional and contains

the origin, which we prove in the full version of the paper.

3 PRELIMINARIES

Stochastic Block Model Notation.We write 1 to denote the all-

ones vector and 48 to denote the 8th standard basis vector, with the

dimensions implicit. For a :-community block model, let c * R:
denote the prior community probabilities, and £ = diag(c), so that
c = £1. The edge probabilities are parameterized by a symmetric

matrix M * R:×: , the block probability matrix. A true community

assignment x : [=] ³ [:] is sampled i.i.d. from c . Conditioned on

x , an edge between 8 and 9 is sampled with probability
M

x (8 ),x ( 9 )3
= .

To ensure that the average degree is 3 , we stipulate that Mc = 1.

We will also use ^ * R=×: to denote the one-hot encoding of

x , i.e., the matrix where the C-th row is equal to 4x (C ) . We will

sometimes �nd it convenient to access the columns of ^ , which are

the indicator vectors for the : di�erent communities; we denote

these by 12 for any community 2 * [:]. For any 5 : [:] ³ R,

de�ne the lift of 5 with respect to the true community assignment

by f (=) ~
∑
2*[: ] 5 (2) · 12 .
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Another natural matrix that appears throughout the analysis is

the Markov transition matrix ) ~ "£, which by detailed balance

evidently has stationary distribution c . This is an asymmetric ma-

trix, but since) de�nes a time-reversible Markov chain with respect

to c ,) is self-adjoint with respect to the inner product ï·, ·ïc in R:

induced by c . Hence ) is diagonalizable with real eigenvalues and

its eigenvalues are 1 = _1 > |_2 | ~ · · · ~ |_: |, with ties broken by

placing positive eigenvalues before the negative ones. Note that

the normalization conditionMc = 1 translates into )1 = 1.

Matrix Notation.We use ¯ and º to denote inequalities on matri-

ces in the Loewner order. For any=×=matrix- , we use£�0 (- ) and
£~0 (- ) to denote the projectors onto the spaces spanned by eigen-

vectors of - with eigenvalue at most and at least 0 respectively. We

also de�ne-�0 ~ £�0 (- )-£�0 (- ) and-~0 ~ £~0 (- )-£~0 (- ),
the corresponding truncations of the eigendecomposition of - .

For ( ¦ [=], we use-(,( to denote the matrix obtained by taking

- and zeroing out all rows and columns with indices outside ( .

Nonbacktracking Matrix and Bethe Hessian. For a graph� , let

�� be its nonbacktracking matrix, �� be its adjacency matrix, ��

be its diagonal matrix of degrees, �
(ℓ )
�

be its ℓ-th nonbacktracking

power of �� , and �� (C) ~ (�� 2 � )C2 2 �� C + � be its Bethe

Hessian matrix. The matrix we use for our algorithm is"�,ℓ (C) ~
�
(ℓ )
�
�� (C)�(ℓ )

�
. We will drop the � from the subscript when the

graph � is clear from context.

Determinants. Below, we collect some standard linear algebraic

facts that will prove useful.

Fact 3.1. Suppose a matrix- has a kernel of dimension : , then every

(= 2 9) × (= 2 9) submatrix of - for 9 < : is singular.

Fact 3.2 (Jacobi’s formula). For any di�erentiable function - : R³
R
=×= ,

3

3D
det(- (D))

=

=∑

8=1

=∑

9=1

det
(
- (D)[=]\{8 },[=]\{ 9 }

)
· (21)8+9 · 3

3D
(- (D))8, 9 .

Lemma 3.3. Let - : R ³ R
=×= and 5 : R ³ R be any pair of

smooth functions. For any 9 ~ 0, there exist functions (@(,) : R ³
R)(,) ¦[=], |( |= |) |~=2 9 such that:

(
3

3D

) 9
[det(- (D)) · 5 (D)] =

∑

(,) ¦[=]
|( |= |) |~=2 9

det
(
- (D)(,)

)
@(,) (D).

Proof. We prove this by induction. This is clearly true when 9 =

0, and the induction step is a consequence of Jacobi’s formula. ¥

Kesten-Stigum Threshold. We say that a stochastic block model

is above the Kesten–Stigum (KS) threshold if _2 () )23 > 1, where

recall that _2 is the second largest eigenvalue in absolute value. We

use A to denote the number of eigenvalues of ) equal to _2 () ).

4 RECOVERY ALGORITHM

Let M be the graph drawn from SBM= (M, c, 3), and let M̃ denote

the input graph which is M along with an arbitrary X= adversarial

edge corruptions. Our algorithm for clustering the vertices into

communities proceeds in multiple phases, described formally below.

The �rst phase preprocesses the graph by making it bounded

degree and constructs an appropriate matrix " associated to the

graph. The second phase cleans up" and uses a spectral algorithm

to robustly recover a subspace containing nontrivial information

about the true communities. Finally, the third phase rounds the

subspace to an actual community assignment.

Algorithm 4.1. M̃ is given as input, and a community assignment

to the vertices is produced as output.

Phase 1: Deletion of High-degree Vertices. For some large con-

stant � > 0 to be speci�ed later, we perform the following trunca-

tion step: delete all edges incident on vertices with degree larger

than � in M̃ . This forms a graph M̃� , with corresponding adjacency

matrix �
M̃�

* R |+ (M ) |× |+ (M ) | . To avoid confusion, we preserve

the vertex set + (M), but it should be understood that the truncated

vertices do not contribute to the graph.

For technical considerations, we also de�ne a (nonstandard)

truncated diagonal matrix

�
M̃�
~ diag (deg(E)1[deg(E) � �])E*+ (M ) (1)

With this, we can then de�ne the truncated Bethe Hessian matrix

�
M̃�

(C) ~ � 2 C�
M̃�

+ C2 (�
M̃�

2 � ). (2)

Finally, the input matrix to the next phase is

"
M̃� ,ℓ

(C) ~ �(ℓ )
M̃�

�
M̃�

(C)�(ℓ )
M̃�

, (3)

where we also choose the value of C later.

Remark 4.2. To reduce any chance of confusion with the notation,

we reiterate our conventions for distinguishing between di�erent

versions of various matrices. If a graph is truncated at level �, then

we add a subscript �. We use tilde to denote that we are working

with a corrupted graph. Finally, we use overline to denote that we

are working with the nonstandard version of the Bethe Hessian

after truncation.

For example, thematrix�M�
no longer corresponds to the degree

matrix of M� , since as stated it still counts edges from truncated

vertices. This is done to simplify the analysis of the spectrum of

"M� ,ℓ (C) but we do not believe it to be essential.

Phase 2: Recovering a Subspace with Planted Signal. De�ne

" ~ "
M̃� ,ℓ

. We give an iterative procedure to “clean up” " by

deleting a few rows and columns. We then run a spectral algorithm

on the cleaned up version of" .

Let [ > 0 be a small constant we choose later, and let  ~ �2ℓ+3.

(1) De�ne " (0) as " . Let C be a counter initialized at 0, and

§(- ) as the number of eigenvalues of - smaller than 2[.
(2) While§(" (C ) ) > 2 

[ A : compute the projectionmatrix£ (C ) ~

£�2[ (" (C ) ), choose a random 8 * [=] with probability
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£
(C )
8,8

Tr(£ (C ) ) , and de�ne " (C+1) as the matrix obtained by ze-

roing out the 8-th row and column of" (C ) . Then increment

C .

Let ) be the time of termination and g > 0 be a large enough

constant we choose later. We compute £ () ) , and then compute as

the set ( of all indices 8 where £
() )
8,8 �

g
= . De�ne £̃ as

(
£
() )
(,(

)
~[/ 

,

and compute its span * , where we recall that (- )~0 denotes the

truncation of the eigendecomposition of - for eigenvalues at least

0. This subspace* is passed to the next phase.

Phase 3: Rounding to a Community Assignment. De�ne A 2 as
A 2 1 when _2 () ) > 0 and as A when _2 () ) < 0. We �rst obtain

an A 2-dimensional embedding of the vertices into RA
2
. Compute a

random A 2-dimensional subspace* 2 of* , and take an orthogonal

basis D21, . . . , D
2
A 2 . Place these vectors as a column of a matrix"2 in

R
=×A 2 . The rows of"2 gives us the desired embedding.

On the other hand, we use the natural embedding of the : com-

munities into RA
2
induced by the A 2 nontrivial right eigenvectors

corresponding to the eigenvalue _2 () ): (k8 )1�8�A 2 of ) . In partic-

ular, let «A 2 ~
[
k1 · · · kA 2

]
* R:×A 2 be the matrix of these A 2

nontrivial eigenvectors of) . Then the row vectors q1, . . . , q: * RA 2

form the desired embedding of communities.

In the rounding algorithm, we �rst �nd the largest 2 such that

all the rows of 2 · "2 lie in the convex hull of q1, . . . , q: . We can

�nd such a value of 2 if it exists by solving a linear program, and

we prove that this 2 > 0 is guaranteed to exist in the full version

of this paper. Then, for each 8 * [=] we express each row of 2 ·"2

as a convex combination
∑:
9=1F

( 9 )
8 q 9 for nonnegativeF

( 9 )
8 such

that
∑:
9=1F

( 9 )
8 = 1. Finally, we assign vertex 8 to community 9 with

probabilityF
( 9 )
8 , and output the resulting community assignment

x̂ .

Remark 4.3. Scaling the rows of"2 so as to lie in the convex hull

of {q 9 } 9*[: ] , is reminiscent of the rounding algorithm of Charikar

& Wirth [10] to �nd a cut of size 1
2 + «( Y

log(1/Y ) ) in a graph with

maximum cut of size 1
2 + Y: in their algorithm, they scale = scalars

to lie in the interval [21, 1].

Analysis of Algorithm. Our goal is to prove that the output

x̂ of our algorithm is well-correlated with the true community

assignment x . We begin by de�ning a notion of weak recovery for

:-community stochastic block models.

De�nition 4.4 (Weak recovery). Let « ~
[
k2 · · · k:

]
*

R
:×(:21) be the matrix of the top-(: 2 1) nontrivial eigenvectors

of the transition matrix ) of a stochastic block model.

For d > 0, we say that a (randomized) algorithm for producing

community assignments ̂̂ * R=×: achieves d-weak recovery if
〈
E ̂̂

«,^«

〉
~ d 'E ̂̂

«' � '^«' � ,

where �« ~ (�«) (�«)¦ for a matrix � * R=×: .

Remark 4.5. Intuitively, this notion is capturing the “advantage” of

the algorithm over random guessing, or simply outputting the most

likely community. See the full version for a more detailed discussion

of this notion, how it recovers other previously consideredmeasures

of correlation in the case of the symmetric block model, and why it

is meaningful. In particular, it implies the notion of weak recovery

used in [13].

Our main guarantee is stated below.

Theorem 4.6. For any SBM parameters (M, c, 3) above the KS
threshold, there is a constant d (M, c, 3) > 0 such that the above

algorithm takes in the corrupted graph M̃ as input and outputs x̂

achieving d (M, c, 3)-weak recovery with probability 1 2 >= (1) over
the randomness of M > SBM= (M, c, 3).

To prove the above theorem it su�ces to analyze
〈
(E ̂̂)«,^«

〉
.

To see why, let us �rst set up some notation. For each vertex 8 , we

obtain a simplex vectorF8 * R: , which we can stack as rows into

a weight matrix, * R=×: . We then independently round each

vertex so that E ̂̂ =, .

To analyze our rounding scheme, �rst note that E[ ̂̂«] is equal
to ,« o� of the diagonal and is larger than ,« on the diag-

onal, and thus E[ ̂̂«] º ,« . Since ^« is positive semide�-

nite,
〈
E[ ̂̂«],^«

〉
~ ï,«,^«ï. Thus, it su�ces to lower bound

ï,«,^«ï. By construction,,« is equal to 22 · £* 2 , where recall

that * 2 was a random A 2-dimensional subspace of * , the output of

Phase 2 of the algorithm. Thus,

E
* 2
,« = 22 · E

* 2
£* 2 = 22 · A 2

dim(* )£* .

In the full version of this manuscript, we prove that when

(M, c, 3) are above the KS threshold, ï£* ,^«ï ~ «(1) · '£* ' � ·
'^«' � and dim(* ) = $ (1). Furthermore, we show that when

diag(£* ) = $ (1/=), we can take 2 = «(
:
=); this delocalization

condition is guaranteed by phase 2 of the algorithm. Combined

with the fact that ' ̂̂«' � = $ (=), it follows that
〈
E ̂̂

«,^«

〉
~

«(1) · ' ̂̂«' � · '^«' � , which establishes Theorem 4.6.
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