
Certifying Euclidean Sections and Finding
Planted Sparse Vectors Beyond the

√
n

Dimension Threshold

Venkatesan Guruswami
Department of EECS

UC Berkeley

Berkeley, USA

venkatg@berkeley.edu

Jun-Ting Hsieh
Computer Science Department

Carnegie Mellon University

Pittsburgh, USA

juntingh@cs.cmu.edu

Prasad Raghavendra
Department of EECS

UC Berkeley

Berkeley, USA

raghavendra@berkeley.edu

Abstract—We consider the task of certifying that a random
d-dimensional subspace X in R

n is well-spread — every vec-
tor x ∈ X satisfies c

√
n‖x‖2 6 ‖x‖1 6

√
n‖x‖2. In a seminal

work, Barak et. al. [3] showed a polynomial-time certification
algorithm when d 6 O(

√
n). On the other hand, when

d � √
n, the certification task is information-theoretically

possible but there is evidence that it is computationally
hard [10], [39], a phenomenon known as the information-
computation gap.

In this paper, we give subexponential-time certification
algorithms in the d � √

n regime. Our algorithm runs in

time exp(Õ(nε)) when d 6 Õ(n
1+ε

2), establishing a smooth
trade-off between runtime and the dimension.

Our techniques naturally extend to the related planted
problem, where the task is to recover a sparse vector planted
in a random subspace. Our algorithm achieves the same
runtime and dimension trade-off for this task.

Index Terms—Euclidean Section, Subexponential-time Al-
gorithm

I. INTRODUCTION

For any vector x ∈ R
n, we know that ‖x‖2 6 ‖x‖1 6√

n‖x‖2. Intuitively, if the upper bound is approximately
tight, i.e., ‖x‖1 > c

√
n‖x‖2, then x is “dense” or “incom-

pressible”. We say that a subspace X ⊆ R
n is well-spread

if every x ∈ X is dense. More formally, we define the
distortion of X, denoted ∆(X), as follows,

∆(X) := sup
x∈X: x 6=0

√
n‖x‖2

‖x‖1
. (1)

The distortion always satisfies 1 6 ∆(X) 6
√

n. Sub-
spaces with large dimension d and small distortion are
called good Euclidean sections of `n

1 . In particular, they
provide embeddings of `d

2 into `n
1 with only a small

blow-up in the dimension, thus such subspaces have
many applications including error-correcting codes over
the reals [9], [23], compressed sensing [15], [34], high-
dimensional nearest-neighbor search [29], and oblivious
regression [17].

Therefore, there has been a long line of work on
constructing good Euclidean sections, including explicit

constructions [22], [29], [30] and constructions requiring
few random bits (a.k.a. partially derandomized construc-
tions) [23], [31], [38]. However, all such constructions
suffer in either the dimension or the distortion (see [31]
and references therein).

On the other hand, it is well known that a fully
random subspace of R

n of dimension d = Ω(n) (for
instance, the column space of an n × d matrix with i.i.d.
Gaussian or ±1 entries) has O(1) distortion with high
probability [18], [20], [35]. However, randomized con-
structions suffer from the drawback that the output is not
guaranteed to always satisfy the desired properties. Thus,
certifying randomized constructions is often considered
as a functional proxy when explicit constructions are
hard to come by, as is the case for Euclidean sections.

This motivates the algorithmic task of certifying that
a random subspace is well-spread. With exp(d) time,
this problem is trivial as we can brute-force search over
an ε-net in R

d. The best known non-trivial result is
by Barak et. al. [3], who showed that given a random
matrix A ∈ R

n×d with i.i.d. Gaussian entries and d .√
n, there is a polynomial-time algorithm certifying that

colspan(A) has O(1) distortion (with high probability
over A)1. However, no efficient certification algorithm is
known when d � √

n (note that the problem is harder
for larger d).

More recently, “evidence” of computational hardness
was established for the d � √

n regime in the form
of lower bounds against low-degree polynomials [10],
[39]. This suggests that there is an information-computation
gap for this problem with the computational threshold
at d ∼ √

n, i.e., any polynomial-time algorithm for
d � √

n would require significant breakthroughs (see
e.g. [24], [37] for expositions of the low-degree hardness
framework).

The lower bounds by [10], [39] leave open the possibil-

1 This was implicitly proved in [3] and the result holds generally for
matrices with sub-gaussian entries. An explicit proof was given in [10].

930

2024 IEEE 65th Annual Symposium on Foundations of Computer Science (FOCS)

2575-8454/24/$31.00 ©2024 IEEE
DOI 10.1109/FOCS61266.2024.00062

20
24

 IE
EE

 6
5t

h
An

nu
al

 S
ym

po
siu

m
 o

n
Fo

un
da

tio
ns

 o
f C

om
pu

te
r S

cie
nc

e
(F

OC
S)

 |
 9

79
-8

-3
31

5-
16

74
-1

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
 D

OI
: 1

0.
11

09
/F

OC
S6

12
66

.2
02

4.
00

06
2

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on April 29,2025 at 08:13:56 UTC from IEEE Xplore. Restrictions apply.

ity of subexponential-time certification algorithms when
d is between

√
n and n. This sets the stage for our first

result.

Theorem 1 (Informal Theorem III.3). Fix ε ∈ (0, 1),

and let d, n ∈ N such that d = O(n
1+ε

2 / log n). Let
A ∼ N (0, 1)n×d. Then, there is a certification algorithm

that runs in 2Õ(nε) time and, with probability 1 − o(1)
over A, certifies that colspan(A) has O(1) distortion.

Notice that Theorem 1 establishes a smooth trade-off
between the dimension d and the runtime. Specifically,
when ε = 0, we have d 6 Õ(

√
n) and the runtime is

polynomial, matching the best known algorithm by [3].
When ε increases to 1, the dimension d increases to n
while the runtime increases to exponential.

We note that the phenomenon of information-
computation gap is widespread across a variety of cer-
tification and inference problems. For these problems,
there is a parameter regime (often called the “hard”
regime) in which it is conjectured that no polynomial-
time algorithm exists. In many cases, smooth trade-offs
were established between runtime and the problem pa-
rameters, similar to that of Theorem 1. Examples of such
trade-offs include runtime vs. the number of constraints
in refuting random constraint satisfaction problems [21],
[26], [42], runtime vs. the approximation factor in poly-
nomial optimization or tensor PCA [7], [27], [46], runtime
vs. the sparsity parameter in certifying the restricted
isometry property (RIP) for random matrices [13], [36],
and runtime vs. the sparsity of the hidden vector in
sparse PCA [14], [16].

a) Finding planted sparse vector in a random subspace.:
For average-case optimization problems, techniques for
certification can often be adapted to solving the search
problem for the related planted model; this is called
the proofs-to-algorithms paradigm [19] in the literature.
For the problem of certifying distortion of a random
subspace (in which there is no sparse vector), the cor-
responding planted problem is to find a sparse vector
planted in a random subspace.

We first formally define the planted sparse vector
problem:

Model 1 (Planted sparse vector problem). Fix an un-
known unit vector v ∈ R

n, and let d 6 n ∈ N. Let Ã be
a random n × d matrix sampled as follows: (1) let A be
the random matrix such that the first column is v and
the other d − 1 columns are i.i.d. N (0, 1

n In) vectors; (2)

let R ∈ R
d×d be an arbitrary unknown rotation matrix;

(3) set Ã = AR.
The task is that given Ã, output a unit vector v̂ ∈ R

n

such that 〈v̂, v〉2 > 1 − o(1).

For concreteness and comparison to prior works,
we will focus on the special case where v has noisy
Bernoulli-Rademacher entries:

Definition I.1 (Noisy Bernoulli-Rademacher distribu-
tion [10]). Given parameter ρ ∈ (0, 1) and σ ∈
[0, 1/

√
1 − ρ), we define nBR(ρ, σ) to be the random

variable such that

x =





N (0, σ2/n) with probability 1 − ρ,

+ 1√
ρ′n

with probability ρ/2,

− 1√
ρ′n

with probability ρ/2,

where ρ′ := ρ

1−(1−ρ)σ2 .

The parameter ρ′ is set such that Ex∼nBR(ρ,σ)[x
2] =

1/n, so with high probability a vector v ∼ nBR(ρ, σ)n

will have ‖v‖2 ∈ (1 ± o(1)). For concreteness, one can
think of ρ, σ as 1

polylog(n)
. This distribution is used in

the hardness result of [10], and is the noisy version of
the “noiseless” Bernoulli-Rademacher distribution con-
sidered in [12], [39], [47]2 and used as the “spike” in
related sparse recovery problems like sparse PCA [2],
[14], [16], [32].

The problem of finding the planted sparse vector
was introduced by Spielman, Wang, and Wright [43]
in the context of dictionary learning. This problem has
since received a lot of attention due to various applica-
tions in learning theory and optimization (see e.g. [11]).
Barak et. al. [4] was the first example of the proofs-to-
algorithms paradigm for this problem. Specifically, their
algorithm uses the certification algorithm from [3] as a
main ingredient, and thus it works when d � √

n (same
as the polynomial-time regime for certification). Various
other algorithms have been proposed [11], [12], [39], [41],
[47], and the current best known algorithm is by Mao
and Wein [39] which succeeds when ρd � √

n (rather
than d � √

n required in [4], [25]).
On the other hand, for d � √

n (the hard regime
for certification), the lower bounds by [10], [39] men-
tioned earlier also apply to the planted problem, as their
hardness results are for the (easier) detection problem.
Specifically, Chen and d’Orsi [10] showed that when
ρd > Ω̃(

√
n), all polylog(n)-degree polynomials fail to

distinguish between A ∼ N (0, 1/n)n×d and Ã sampled
from Model 1 with planted vector v ∼ nBR(ρ, σ)n for
ρ � 1/n and σ 6 1/ polylog(n).

Thus, it is natural to consider adapting our techniques
for subexponential-time certification to the planted prob-
lem in the hard regime. This is our second result.

Theorem 2 (Informal Theorem IV.2). Let t 6 d 6 n ∈ N

and ρ 6 1
polylog(n)

such that t >
ρd2

n polylog(n). There

is a randomized algorithm with running time 2Õ(t) with
the following guarantee: Given Ã ∈ R

n×d drawn from

2 Surprisingly, [12], [47] showed that one can recover v even when
n = d + 1 if v is a noiseless Bernoulli-Rademacher vector, but their
algorithms break down if one adds an inverse-polynomial amount of
noise to v.

931

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on April 29,2025 at 08:13:56 UTC from IEEE Xplore. Restrictions apply.

Model 1 with planted vector v ∼ nBR(ρ, 1
polylog(n)

)n, with

high probability, the algorithm outputs a unit vector v̂ ∈
colspan(Ã) such that 〈v, v̂〉2 > 1 − o(1).

For intuition, consider parameters ρ = 1/polylog(n)

and d = Õ(n
1+ε

2) for ε ∈ (0, 1). Then, the algorithm

recovers v in 2Õ(nε) time, the same dimension vs. runtime
trade-off as established in Theorem 1. Our algorithm in
fact works for more general sparse vectors v; see Theo-
rem IV.2 and Remark IV.3 for details and discussions on
the assumptions of v that we require.

Remark I.2. One can consider the harder planted prob-
lem where you are given an arbitrary orthogonal basis of
the subspace instead of a “Gaussian basis” like Model 1.
In fact, both [25] and [39] started with Model 1, then with
some extra work, they showed that the algorithms are
robust to exchanging the Gaussian basis for an arbitrary
orthogonal basis. We leave this as a future work, though
we believe similar techniques (like matrix perturbation
analysis) used in [25], [39] may apply to our case as
well. On the other hand, all hardness results [10], [39]
are proved for Model 1.

II. TECHNICAL OVERVIEW

a) Notation.: For an integer N, we will use [N] to
denote the set {1, 2, . . . , N}. For a vector x ∈ R

n, we use
‖x‖p to denote its `p norm, and for any S ⊆ [n], we write

xS ∈ R
|S| to denote the vector restricted to coordinates

in S. For a matrix M ∈ R
n×d, we use ‖M‖2 to denote

its operator (spectral) norm: supx 6=0
‖Mx‖2

‖x‖2
. Moreover, for

any S ⊆ [n], we write MS ∈ R
|S|×d to denote the

submatrix of M obtained by selecting rows according
to S.

b) Organization.: Section II-A describes the certifi-
cation algorithm for d 6 O(

√
n) by [3] using the 2-

to-4 norm of A. Section II-B explains the barrier of
going beyond

√
n as well as our strategy to bypass

it by removing outlier entries of Ax. This motivates a
key ingredient in our analysis, which is the elementary
symmetric polynomial Pt(x) explained in Section II-C.
In Section II-D, we make a brief detour to explain the
trace moment method and the analysis of [44]. In Sec-
tion II-E, we upper bound Pt(x) by bounding the spectral
norm of a related random matrix (which we can certify)
using the trace method, and explain the crucial idea
that symmetrization lowers the spectral norm. Finally,
in Section II-F, we give an overview of how we adapt
our techniques to the planted problem.

A. 2-to-4 norm as a proxy for sparsity: certification algorithm
of [3]

Consider a matrix A ∈ R
n×d with i.i.d. N (0, 1) entries

(where d � n), and let a1, a2, . . . , an ∈ R
d be its rows. To

certify that colspan(A) has small distortion (as defined
in Eq. (1)), one needs to certify that Ax is “sparse” —

‖Ax‖2/‖Ax‖1 6 O(1/
√

n) — for all x ∈ R
d. It is well

known that A has singular values between
√

n(1± o(1))
with high probability (see Fact III.5), so ‖Ax‖2 ≈ √

n
for all unit vectors x. On the other hand, as intuition,
consider a random unit vector x. Each |〈ai, x〉| is roughly
Ω(1), hence ‖Ax‖1 = ∑

n
i=1 |〈ai, x〉| > Ω(n). So, for

a random x we have ‖Ax‖2/‖Ax‖1 6 O(1/
√

n), as
desired.

The difficult part is to certify a lower bound on ‖Ax‖1

for all unit vectors x. Thus, in many applications, it
is more tractable to consider an alternative proxy for
sparsity — the 2-to-4 norm. Intuitively, vectors with
small 4-norm compared to the 2-norm are considered
well-spread. The quantity maxx 6=0 ‖Ax‖4/‖x‖2, denoted
‖A‖2→4, is called the 2-to-4 norm of A, and upper bounds
on ‖A‖2→4 are called hypercontractivity inequalities.

Barak et. al. [3, Theorem 7.1] showed that with high
probability,

‖A‖4
2→4 6 n ·

(
3 + O(1) · max

(
d√
n

,
d2

n

))
.

Moreover, this can be efficiently certified via a natural
SDP relaxation for maximizing ‖Ax‖4

4 = ∑
n
i=1〈ai, x〉4, a

degree-4 polynomial. Therefore, when d 6 O(
√

n), we
have that ∑

n
i=1〈ai, x〉4 6 O(n) for all unit vectors x. Note

that this bound matches the case when most |〈ai, x〉|
are roughly Θ(1), which is the case for a random x.
Combined with standard tools (Lemma III.2 and [10,
Proposition 3.4]) and the fact that ‖Ax‖2 ≈ √

n, this
implies that colspan(A) has O(1) distortion.

We now give a brief overview of the proof by [3],
which is our starting point. The main idea is to write
‖Ax‖4

4 as follows,

‖Ax‖4
4 =

n

∑
i=1

〈ai, x〉4 = (x⊗2)>
(

n

∑
i=1

a⊗4
i

)
(x⊗2) ,

where we view x⊗2 as a d2-dimensional vector and

∑
n
i=1 a⊗4

i as a d2 × d2 random matrix. The main idea of [3]
is that by standard matrix concentration inequalities (like
the Hanson-Wright inequality [45] and results from [1]),

∑
n
i=1 a⊗4

i concentrates around its mean E ∑
n
i=1 a⊗4

i = nΣ

where Σ = E[a⊗4
i], again viewed as a d2 × d2 matrix.

The naive approach is to bound the operator norm
‖Σ‖2, then we have ‖Ax‖4

4 6 n · ‖Σ‖2. Unfortu-
nately, there is a rank-1 component ww> in Σ where
wij = δij, and ‖ww>‖2 = n. The crucial observa-
tion is to “shift” the entries of Σ using the symme-
try of x⊗2 to “break” the rank-1 component. Then,
the shifted matrix Shift(Σ) satisfies (x⊗2)>Σ(x⊗2) =
(x⊗2)>Shift(Σ)(x⊗2) 6 ‖Shift(Σ)‖2 6 O(1). This implies
that ‖Ax‖4

4 6 O(n), as desired. As we will explain later,
this symmetrization technique to decrease the matrix
norm is central to our analysis and is also the key idea
behind the results of [7], [8], [42].

932

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on April 29,2025 at 08:13:56 UTC from IEEE Xplore. Restrictions apply.

B. Going beyond
√

n

When d � √
n, we face the immediate problem that

‖A‖4
2→4 6 n is no longer true. One can easily see this

by considering x = a1/‖a1‖2. In this case, we have
〈a1, x〉 = ‖a1‖2 ≈

√
d since a1 is a d-dimensional

Gaussian vector, and |〈ai, x〉| ≈ Θ(1) for i 6= 1. Then,
‖Ax‖4

4 = ∑
n
i=1〈ai, x〉4 > Ω(d2 + n) = Ω(d2) � n.

More generally, for any S ⊆ [n] of size t � d, the
submatrix AS ∈ R

t×d has maximum singular value ≈√
d, i.e., there is an x such that ‖ASx‖2

2 ≈ d. Suppose the
vector ASx is roughly equally distributed, then we have

‖ASx‖4
4 > (d

t)
2t = d2

t , which means that ‖Ax‖4
4 > d2

t .

Removing the top entries of Ax. These counter-
examples give an important insight: ‖Ax‖4

4 seems to be
dominated by just a few very large entries in Ax. In

the setting of Theorem 1, we have d = n
1+ε

2 , and in the

example above, ‖Ax‖4
4 > d2

t � n when t � nε. One
might guess that after removing the top nε entries of
Ax, the resulting vector has small 4-norm.

We show that this is indeed the case:

Lemma II.1 (Informal Lemma III.4). For any unit vector
x ∈ R

d, let Tx ⊆ [n], |Tx| = n − nε be the set of indices
excluding the top nε entries of Ax. Then, ‖ATx x‖4

4 6 O(n)
with high probability over A. Moreover, there is an algorithm

that certifies this in 2Õ(nε) time.

Given Lemma II.1, Theorem 1 follows almost imme-
diately. The proof is given in Section III.

The first part that ‖ATx x‖4
4 6 O(n) can in fact be

proved via a probabilistic argument. The challenge is to
certify it. At a high-level, we need a “proxy” for ‖Ax‖4

4
that is robust to t := nε large entries of Ax (obviously
without knowing where the large entries are because Tx

depends on x). In light of this, we turn our attention to
the elementary symmetric polynomials.

C. Elementary symmetric polynomials

We define

Qt(z) := t! ∑
S⊆[n]:|S|=t

∏
i∈S

z4
i ,

and for A with rows a1, a2, . . . , an ∈ R
d,

Pt(x) := Qt(Ax) = t! ∑
S⊆[n]:|S|=t

∏
i∈S

〈ai, x〉4 ,

where we omit the dependence on a1, . . . , an for simplic-
ity.

The scaling t! here is because Qt(z) is exactly the “mul-
tilinear” terms when one expands out ‖z‖4t

4 = (∑n
i=1 z4

i)
t,

and thus our target upper bound is O(n)t. Moreover,
Pt(x) can be computed in nO(t) time.

The following is our key lemma.

Lemma II.2 (Informal Lemma III.6). With high probability
over A, there is an algorithm that runs in nO(t) time and
certifies that for all unit vectors x ∈ R

d,

Pt(x) 6 O

(
n +

d2

t
log2 n

)t

.

When d 6 Õ(n
1+ε

2) and t = nε, we get Pt(x) 6 O(n)t.
This is what we expect for a typical x, where most
|〈ai, x〉| are O(1) and Pt(x) ≈ nt · O(1)4t = O(n)t.

A careful reader may notice that an upper bound on
Qt(z) does not imply that the vector z is dense. For
example, Qt(z) = 0 whenever z has less than t nonzero
entries. Thus, Lemma II.2 does not immediately imply
that Ax is dense for all x. However, notice that we are
allowed nO(t) time, so we can exhaustively search over
all subsets S ⊆ [n] of size t and “check” that no Ax
is concentrated on t coordinates. This comes down to
computing the maximum singular value of AS for each
S.

The overall analysis (proof of Lemma II.1 from
Lemma II.2) is as follows. For any unit vector x ∈
R

d, since Tx is the set with the t largest 〈ai, x〉4, and
‖ATx

x‖2
2 6 σmax(ATx

)2 6 d(1+ o(1)) verified by exhaus-

tive search, it follows that 〈ai, x〉2 6 d
t (1 + o(1)) := τ for

all i ∈ Tx. Then, we consider ‖ATx x‖4t
4 = (∑i∈Tx

〈ai, x〉4)t.
For the multilinear term in the expansion of ‖ATx x‖4t

4 ,
we have

t! ∑
S⊆Tx :|S|=t

∏
i∈S

〈ai, x〉4 6 t! ∑
S⊆[n]:|S|=t

∏
i∈S

〈ai, x〉4 = Pt(x) 6 O(n)t .

Note that here we changed the summation of S ⊆ Tx to
S ⊆ [n] (since Tx ⊆ [n] and all terms are non-negative).
Crucially, we get an upper bound that does not depend
on Tx, thus allowing us to use Lemma II.2.

For the rest of the terms in (∑i∈Tx
〈ai, x〉4)t, we use

combinations of Lemma II.2 and 〈ai, x〉2 6 τ to bound,
which ultimately proves Lemma II.1.

D. Overview of the trace moment method

In this section, we make a detour and give an overview
of the trace moment method. Readers familiar with the
analysis of random matrix norm bounds by Tao [44] may
skip directly to Section II-E. The starting point of the
trace moment method is the inequality

1

N
· tr(M`) 6 ‖M‖`2 6 tr(M`) ,

which holds for any N × N symmetric matrix M and any
even integer `. Expanding tr(M`) and taking expectation
(when M is a random matrix), we get

E

[
‖M‖`2

]
6 E

[
tr(M`)

]
= E ∑

i1,i2,...,i`∈[N]

Mi1,i2 Mi2,i3 · · · Mi` ,i1 .

Notice that the summation is over closed walks on [N]:
i1 → i2 → · · · → i` → i1. We can view these as closed
walks on the complete graph with N vertices.

933

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on April 29,2025 at 08:13:56 UTC from IEEE Xplore. Restrictions apply.

We now briefly explain Tao’s analysis [44] on bound-
ing E[tr(M`)] for the (symmetric) random sign matrix,
where each entry is uniformly random ±1. The most
important observation is that if a closed walk uses any
edge (in the N-vertex complete graph) an odd number
of times, then the expectation is zero. Thus, we only
need to consider closed walks that use each edge an
even number of times, each of which contributes 1 in
the trace.

Encoding closed walks. The main idea is to combinatori-
ally count all such “even” closed walks by providing an
encoding. Following the terminology of [44], we refer to
a step ik → ik+1 in the walk as a leg. We call a leg “fresh”
if it traverses an edge that we haven’t seen before, and
“return” if it traverses a previously used edge. Since each
edge must be traversed at least twice, we can have at
most `/2 fresh legs. We will view a fresh leg as creating
an “active” edge, while a return leg closes an active edge;
all edges must be closed in the end. Now, we can encode
a closed walk as follows: (1) pick a starting vertex in [N],
(2) label each leg as “fresh” or “return” such that there
are at most `/2 fresh legs, (3) for a fresh leg we have N
choices to choose the destination, and for now, assume
that each return leg has a unique choice so that we don’t
need to specify a destination. Then, we upper bound
E[tr(M`)] by upper bounding the number of encodings:

E

[
tr(M`)

]
6 N · 2` · N`/2 = N · (2

√
N)` .

Then, setting ` � log N, by Markov’s inequality, with
probability 1 − 1

poly(N)
we have

‖M‖2 6 tr(M`)1/` 6 NO(1/`) · 2
√

N 6 (2 + o(1))
√

N .

This is the desired upper bound with the correct constant
factor 2.

Unforced return legs. There is an important assumption
that we made in the above analysis: each return leg has
a unique choice. This is obviously not true for all walks,
but we will prove that this is true for most walks. In [44],
a return leg with one unique choice is called forced, and
ones with multiple choices are called unforced. We need
to prove that the closed walks with any unforced return
legs are negligible. The key observation is that if a return
leg is unforced at vertex v, i.e., there are multiple active
edges incident to v, it must be the case that there were
previous fresh legs that went back to v. Such legs are
called non-innovative, as they create new active edges but
not new vertices, and as a result, each non-innovative leg
requires only a factor ` — the length of the walk — to
specify its destination (as opposed to N for fresh legs).

The main idea is to charge the extra information re-
quired for unforced return legs to the non-innovative
legs. We need to prove (1) an upper bound on the
unforced return legs in terms of the number of non-
innovative legs, and (2) the cost of a non-innovative

leg (with extra information) is still � N, negligible
compared to a fresh leg. This is a key technical challenge
in most prior works on (sharp) norm bounds for more
complicated random matrices [28], [33], [44].

E. Upper bound on Pt(x)

We now give an overview of the proof of Lemma II.2,
which is the most technical part.

We start by writing 〈ai, x〉4 = 〈a⊗4
i , x⊗4〉 =

〈Shift(a⊗4
i), x⊗4〉, where Shift is formally defined in Def-

inition III.7 and is also done in [3] to remove the large
rank-1 component in the matrix (see Remark III.13 for a
lower bound without this). Then,

Pt(x) =

〈
t! ∑

S⊆[n]:|S|=t

⊗

i∈S

Shift(a⊗4
i), x⊗4t

〉

= (x⊗2t)>M(x⊗2t) ,

where we view x⊗2t as a vector of dimension d2t, and

M := t! ∑
S⊆[n]:|S|=t

⊗

i∈S

Shift(a⊗4
i) ∈ R

d2t×d2t
.

Here, we view a⊗4
i as a d2 × d2 matrix.

The natural approach to bound Pt(x) is to bound the
spectral norm of M, since Pt(x) 6 ‖M‖2 · ‖x⊗2t‖2

2 =
‖M‖2 for any unit vector x. Unfortunately, it can be
shown that ‖M‖2 > Ω(d)2t � nt (see Remark III.12).
In fact, using ‖M‖2 to bound Pt(x) does not improve on
[3] at all.

Symmetrization lowers spectral norm. To remedy this,
observe that the flattened vector x⊗2t in the quadratic

form is highly symmetric. Specifically, let Π ∈ R
d2t×d2t

be any permutation matrix that maps an index J =
(j1, j2, . . . , j2t) ∈ [d]2t to (jπ(1), jπ(2), . . . , jπ(2t)) for some
permutation π over 2t elements. Then, we have that

Πx⊗2t = x⊗2t .

We will use Ŝ2t to denote the collection of all such
matrices Π. It follows that for any Π, Π′ ∈ Ŝ2t,

(x⊗2t)>M(x⊗2t) = (x⊗2t)>(ΠMΠ′)(x⊗2t) .

In particular,

(x⊗2t)>M(x⊗2t) = (x⊗2t)>E
Π,Π′∼Ŝ2t

[ΠMΠ′](x⊗2t) 6 ‖M̃‖2 ,

where M̃ = E
Π,Π′∼Ŝ2t

[ΠMΠ′].
As M̃ is the symmetrized version of M, one may

expect that the spectral norm decreases. Indeed, this is
also the main idea behind the results of [7], [8], [42]. Our
key technical result is that the symmetrization lowers the
spectral norm by a factor of roughly tt, and we prove it
using the trace moment method.

Lemma II.3 (Informal Lemma III.9). Let ` = log n. Then,

E tr(M̃`) 6 d2t · O

(
n +

d2

t
log2 n

)t`

.

934

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on April 29,2025 at 08:13:56 UTC from IEEE Xplore. Restrictions apply.

Here, we need ` = log n (as opposed to
log(dim(M̃)) = 2t log d) since we only need d2t/` 6
O(1)t, and saving this t factor turns out to be important
in our analysis. From the discussion above, Lemma II.2
follows immediately since Pt(x) = (x⊗2t)>M̃(x⊗2t) 6
‖M̃‖2 6 tr(M̃`)1/`. We also remark that Lemma II.3 is
tight; see Remark III.12.

Trace method for M̃. First, note that E tr(M̃`) =
E tr EΠ1,Π′

1,...,Π` ,Π′
`
[Π1MΠ′

1 · · ·Π`MΠ′
`
]. The trace is the

sum of length-` closed walks I1 → I2 → · · · →
I` → I1 on the indices (in [d]2t). For each sequence
π = (Π1, Π′

1, . . . , Π`, Π′
`
), this corresponds to a label-

ing of a specific structure defined by π, viewed as a
graph containing circle and square vertices (see Def-
initions III.10 and III.11, and Figure 1 for examples).
The circle and square vertices receive labels in [d] and
[n] respectively. We require that each labeled edge (an
element in [n]× [d]) appears an even number of times,
otherwise the expectation is zero.

We next define an encoding of the labeling such that
(1) every valid labeling for a given structure can be
encoded, and (2) a labeling is uniquely determined given
an encoding and a structure (if decoding succeeds).
Similar to the analysis in Section II-D, we mark each
leg as “Fresh”, “Return”, “Non-innovative” or “High-
multiplicity”. We also introduce an extra “Paired” type
since in our case a pair of two circle vertices lead to
the same square vertex. In addition, we need to handle
potential unforced return legs by charging extra infor-
mation to the non-innovative and high-multiplicity legs.
These are all carefully done in Section III-C.

Decoding success probability. We now formalize the
idea that symmetrization reduces the spectral norm as
follows,

E tr(M̃`) 6 Eπ ∑
σ: labelings

1(σ valid for π)

6 ∑
ξ: encoding

Pr
π

[Decode(ξ,π) succeeds] .

We upper bound the probability of the decoder succeed-
ing (for any encoding ξ) in Lemma III.20. At a high level,
for any structure (Figure 1), the circle vertices are paired
and connected to a square vertex. During decoding,
each square vertex receives two labels from the two
legs (coming from previous circles), and the decoding
fails if there is a conflict. Now, when we randomize the
structure π, which we can view as rewiring the edges in
the structure and pairing up circle vertices within each
block, the decoding succeeds only if all circle vertices are
paired up in the correct way. For each block, there are 2t
circle vertices, and there are (2t − 1)!! > Ω(t)t number
of ways to group them into pairs. Thus, for all ` blocks,
we get a factor tt` improvement. We defer the details to
Section III-D, and the proof of Lemma II.3 is completed
in Section III-E.

F. Finding planted sparse vector

It turns out that our upper bound on Pt(x) can be used
for the related planted problem. More specifically, the
proof of Lemma II.2 shows a stronger statement: the up-
per bound on Pt(x) exhibits a degree-4t Sum-of-Squares
(SoS) proof, meaning that any pseudo-distribution µ
satisfies that Ẽµ[Pt(x)] is small (see Section IV-B for
background on SoS proofs and pseudo-distributions).

On the other hand, suppose Ã = AR is drawn from
Model 1 with a planted sparse vector v such that Qt(v)
is large, and let P̃t(x) := Qt(Ãx). Then, we must have
maxµ Ẽµ[P̃t(x)] > Qt(v), where the maximum is over
all pseudo-distributions satisfying the unit sphere con-
straint. This is because taking x = r1 := R>e1 (the first
row of R) gives P̃t(r1) = Qt(v). Moreover, the pseudo-
distribution that maximizes P̃t(x) can be computed in
nO(t) time using the SoS algorithm.

Thus, the main intuition is that this pseudo-
distribution µ must have significant support on vectors
close to r1, otherwise Ẽµ[P̃(x)] cannot be large. We for-

malize this in Lemma IV.12 and prove that Ẽµ[〈r1, x〉2t] >

e−o(t) = (1 − o(1))t.
Now, we use a rounding algorithm of [5]

(Lemma IV.10) to obtain a list of 2Õ(t) unit vectors
with the guarantee that one of them, say x̂, is close to
r1, which means that v̂ = Ãx̂ is close to v. The next
challenge is to identify a “good” x̂ among this list. The
natural idea is to take the vector which is the “most
compressed”, i.e., the one whose top ρn entries have
the largest norm. Lemma IV.6 proves that this indeed
works, which completes the proof.

III. CERTIFYING SPREAD OF A RANDOM SUBSPACE

Recall from Eq. (1) that the distortion of a subspace X

is defined as ∆(X) = supx∈X:x 6=0

√
n‖x‖2

‖x‖1
. In the follow-

ing, we state an equivalent notion of spreadness.

Definition III.1 (Spreadness property of a subspace). A
subspace X ⊆ R

n is (t, ε)-spread if for every x ∈ X and
every S ⊆ [n] with |S| 6 t, we have

∥∥xS

∥∥
2
> ε · ‖x‖2 .

In other words, X is (t, ε)-spread if any vector x ∈ X
still has large (> ε fraction) norm after removing any t
coordinates. The relationship between the distortion and
spread of a subspace was proved in [22]:

Lemma III.2 (Lemma 2.11 of [22]). Let X ⊆ R
n be a

subspace.

(1) If X is (t, ε)-spread, then ∆(X) 6
√

n
t · ε−2.

(2) Conversely, X is
(

n
2∆(X)2 , 1

4∆(X)

)
-spread.

In light of Lemma III.2, to prove that ∆(X) 6 O(1), it
suffices to prove that X is (Ω(n), Ω(1))-spread.

We now state our main result for certification.

935

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on April 29,2025 at 08:13:56 UTC from IEEE Xplore. Restrictions apply.

Theorem III.3 (Formal version of Theorem 1). Let d, n ∈
N and ε ∈ (0, 1) such that d = n

1+ε
2 / log n and nε log6 n 6

n. Let A ∼ N (0, 1)n×d. Then, there is a certification
algorithm that runs in nO(nε) time and, with probability
1 − 1

poly(n)
over A, certifies that colspan(A) is (αn, 1/2)-

spread, where α is a universal constant.

We remark that our algorithm works not just for
Gaussian matrices but also matrices with more general
random variables; see Lemma III.9 for the requirements.

A. Removing the top entries of Ax

As discussed in Section II-B, the barrier of the certifi-
cation algorithm of [3] at d � √

n is that if x is highly
correlated with some row ai in A (i.e., |〈ai, x〉| is large),
then ‖Ax‖4

4 can be much larger than n. Our intuition is
that the number of such large entries in Ax must be very
small. Thus, if we remove the top few entries of Ax, then
the 4-norm is at most O(n), the desired bound.

The next lemma states that this is indeed the case and
that we can certify this.

Lemma III.4. Let d, n ∈ N and ε ∈ (0, 1) such that

d = n
1+ε

2 / log n and nε log6 n 6 n. Let a1, . . . , an ∈ R
d

be random vectors with i.i.d. N (0, 1) entries. Then, there is
a certification algorithm that runs in nO(nε) time and, with
probability 1 − 1

poly(n)
over a1, . . . , an, certifies the following:

(1) For any S ⊆ [n] of size |S| = nε, ∑i∈S〈ai, x〉2 6 (1 +
on(1)) · d for all unit vectors x ∈ R

d.
(2) For any unit vector x ∈ R

d,

∑
i∈Tx

〈ai, x〉4 6 O(n) .

where Tx ⊆ [n], |Tx| = n − nε is the set of indices
excluding the top nε with the largest 〈ai, x〉2.

Proving (1) is straightforward by applying the follow-
ing standard matrix concentration result and a union
bound.

Fact III.5 (See e.g. [45]). Let m 6 n, and let A ∈ R
n×m be a

matrix with i.i.d. N (0, 1) entries. Then, for every t > 0, with

probability at least 1 − 2e−t2/2, we have
√

n − √
m − t 6

σmin(A) 6 σmax(A) 6
√

n +
√

m + t.

For (2), first note that (1) implies that 〈ai, x〉2 6
d
nε (1 + on(1)) for all i ∈ Tx. Then, we consider(
∑i∈Tx

〈ai, x〉4
)t

. For starters, let’s focus on the term
t! ∑S⊆Tx :|S|=t ∏i∈S〈ai, x〉4, i.e., the terms where the in-
dices are distinct. The main observation is that we can
upper bound this by Pt(x) := t! ∑S⊆[n]:|S|=t ∏i∈S〈ai, x〉4,
where we replace Tx with [n]. Note that this quantity
crucially does not depend on Tx.

The bulk of our proof is then to prove the following
lemma:

Lemma III.6. Let t 6 d 6 n be integers such that t log6 n 6

n + d2

t log2 n. Let a1, . . . , an ∈ R
d be random vectors with

i.i.d. N (0, 1) entries. Then, there is a certification algorithm
that runs in nO(t) time and, with probability 1− 1

poly(n)
over

a1, . . . , an, certifies that for all unit vectors x ∈ R
d,

Pt(x) := t! ∑
S⊆[n]:|S|=t

∏
i∈S

〈ai, x〉4 6 O

(
n +

d2

t
log2 n

)t

.

We will prove Lemma III.6 at the end of Section III-B.
We first use Lemma III.6 to prove Lemma III.4.

Proof of Lemma III.4 from Lemma III.6. Let t := nε, and let
A be the n × d matrix with a1, a2, . . . , an as columns. The
certification algorithm is as follows,

(i) For each S ⊆ [n] with |S| = t, verify that σmax(AS) 6
(1+ on(1))

√
d, where AS ∈ R

t×d is the submatrix of
A obtained by choosing rows according to S.

(ii) For s = 1, 2, . . . , t, use the algorithm in Lemma III.6
to certify that

Ps(x) := s! ∑
S⊆[n]:|S|=s

∏
i∈S

〈ai, x〉4 6 O

(
d2

s
log2 n

)s

for all unit vectors x ∈ R
d . (2)

First, since t 6 d/ log2 n, by Fact III.5, with probability
1 − 2−2t log n we have σmax(AS) 6

√
d + O(

√
t log n) 6

(1+ on(1))
√

d. Then, a union bound over all (n
t) 6 2t log n

choices of S shows that this holds for all S. This certifies
(1) of Lemma III.4.

To certify (2), first note that Tx = [n] \ Tx is the set
of indices with the top t largest values of 〈ai, x〉2, and
by (1) we have ∑i∈Tx

〈ai, x〉2 = ‖ATx
x‖2

2 6 d(1 + on(1)).
Thus, it follows that

〈ai, x〉2 6 τ :=
d

t
(1 + on(1)) for all i ∈ Tx . (3)

The parameters of d, n and t satisfy n = d2

t log2 n and

t log6 n 6 n+ d2

t log2 n, the requirements for Lemma III.6.

Thus, we can certify Eq. (2) in nO(t) time for all s 6 t.
We now proceed to bound ∑i∈Tx

〈ai, x〉4. We will use
Eq. (2) and (3) to bound the t-th power:

(

∑
i∈Tx

〈ai, x〉4

)t

= ∑
i1,...,it∈Tx

∏
k∈[t]

〈aik , x〉4

= ∑
S⊆Tx

∑
i1,...,it∈S:

supp(i1,...,it)=S

∏
k∈[t]

〈aik , x〉4 ,

where we group the terms according to the support of
the indices. For any i1, . . . , it ∈ Tx with supp(i1, . . . , it) =
S, since 〈ai, x〉4 6 τ2 for i ∈ Tx (Eq. (3)), we have

∏
k∈[t]

〈aik , x〉4 6 τ2(t−|S|) ∏
j∈S

〈aj, x〉4 .

Moreover, for any S ⊆ Tx of size s 6 t, we claim that the
number of ordered indices (i1, . . . , it) with support S is at
most t! · (t−1

t−s). To see this, we can construct (i1, . . . , it) by

936

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on April 29,2025 at 08:13:56 UTC from IEEE Xplore. Restrictions apply.

first choosing t− s elements from S with replacement, for

which there are (s+(t−s)−1
t−s) = (t−1

t−s) choices (alternatively,
this is the number of ways of throwing t balls into s bins
so that no bin is non-empty), and then there are t! ways
to permute the indices. Thus,

(

∑
i∈Tx

〈ai, x〉4

)t

6
t

∑
s=1

∑
S⊆Tx :|S|=s

t!

(
t − 1

t − s

)
τ2(t−s) ∏

i∈S

〈ai, x〉4

6
t

∑
s=1

t!

s!

(
t − 1

t − s

)
τ2(t−s)

· s! ∑
S⊆[n]:|S|=s

∏
i∈S

〈ai, x〉4 .

Note that we changed the summation of S ⊆ Tx to
S ⊆ [n] (since Tx ⊆ [n] and all terms are non-negative).
Crucially, we get an upper bound that does not depend

on Tx, thus allowing us to use Eq. (2). Since d2

s log2 n >
d2

t log2 n = n and τ = O(d
t), the above is bounded by

t

∑
s=1

t!

s!

(
t − 1

t − s

)
· O

(
d

t

)2(t−s)

O

(
d2

s
log2 n

)s

6 O

(
d2

t
log2 n

)t t

∑
s=1

(
t − 1

t − s

)(
t

s

)s

6 O(n)t
t

∑
s=1

(
t − 1

t − s

)(
t

s

)

6 O(n)t · 22t .

Thus, we have certified that
(
∑i∈Tx

〈ai, x〉4
)t

6 O(n)t,
completing the proof.

With Lemma III.4, the proof of Theorem III.3 is
straightforward.

Proof of Theorem III.3 from Lemma III.4. Let x ∈ R
d be

any unit vector, let y = Ax, and let S ⊆ [n] be
any subset of size 6 αn. We would like to certify
that ‖yS‖2 > 1

2‖y‖2. Let Tx ⊆ [n] be as defined in
Lemma III.4, i.e., the set of indices excluding the top
nε largest 〈ai, x〉2. By (1) of Lemma III.4, we can certify
that ‖yTx

‖2
2 = ‖ATx

x‖2
2 6 d(1 + on(1)) since

∣∣Tx

∣∣ = nε

by definition. Moreover, by Fact III.5 we know that
σmin(A) >

√
n −

√
d − on(1) with high probability, and

since d = o(n), we have ‖y‖2
2 > n(1− on(1)). This means

that ‖yTx
‖2

2 6 on(1)‖y‖2
2.

Let S′ := S ∩ Tx = S \ Tx. Then, we have

‖yS′‖2
2 > ‖y‖2

2 −
∥∥yS

∥∥2
2
−‖yTx

‖2
2 > (1− on(1))‖y‖2

2 −‖yS‖2
2 .

Next, by (2) of Lemma III.4, ∑i∈S′ y4
i 6 ∑i∈Tx

y4
i 6 Bn for

some constant B. Thus, by Cauchy-Schwarz,

‖yS′‖2
2 = ∑

i∈S′
y2

i 6
√
|S′| ∑

i∈S′
y4

i 6
√

αn ·
√

Bn

6
√

αB · ‖y‖2
2 · (1 + on(1)) .

Thus, we can set the constant α such that
∥∥yS

∥∥2
2
> (1 −√

αB − on(1))‖y‖2
2 > 1

4‖y‖2
2.

B. Symmetrization lowers spectral norm

Note that 〈ai, x〉4 = 〈a⊗4
i , x⊗4〉, where we may view

a⊗4
i as a 4-th order tensor or a d2 × d2 matrix. We start

by redistributing the entries of a⊗4
i .

Definition III.7. Given a d2 × d2 matrix A indexed by
tuples (j1, j2), (j3, j4) ∈ [d], we define Shift(A) to be the
d2 × d2 matrix such that Shift(A)(j1,j2),(j3,j4)

equals





0 if j1 = j2 /∈ {j3, j4} or j3 = j4 /∈ {j1, j2}
3
2 A(j1,j2),(j3,j4)

if j1 6= j2, j3 6= j4, and |{j1, j2, j3, j4}| 6 3

Aj1,j2,j3,j4 otherwise .

For example Shift(A)(1,1),(2,2) = 0 and

Shift(A)(1,2),(1,2) = 3
2 A(1,2),(1,2). This is also done in

[3] to remove a large rank-1 component in Σ = E[a⊗4
i]

(recall Section II-A) so that Shift(Σ) has norm O(1) even
though ‖Σ‖2 > n. In Remark III.13, we will see that
without this, the spectral norm bound is false.

Proposition III.8. For any a, x ∈ R
d, 〈a, x〉4 =〈

Shift(a⊗4), x⊗4
〉
.

Proof. Expanding 〈a, x〉4: ∑j1,j2,j3,j4
aj1 aj2 aj3 aj4 xj1 xj2 xj3 xj4 ,

where we can group the terms according to the multiset
{j1, j2, j3, j4}. The only entries that differ between a⊗4 and
Shift(a⊗4) are the ones where the multiset {j1, j2, j3, j4}
is of the following form:

• j1 = j2 6= j3 = j4: there are 6 such terms in a⊗4, and
there are 4 in Shift(a⊗4), each scaled by 3

2 .
• j1 = j2 6= j3 6= j4: there are 12 such terms in a⊗4,

and there are 8 in Shift(a⊗4), each scaled by 3
2 .

This shows that 〈a, x〉4 =
〈
Shift(a⊗4), x⊗4

〉
.

To prove Lemma III.6, we start by writing

t! ∑|S|=t ∏i∈S〈ai, x〉4 = t! ∑|S|=t ∏i∈S

〈
Shift(a⊗4

i), x⊗4
〉

as

a quadratic form:

t! ∑
S⊆[n]:|S|=t

∏
i∈S

〈
Shift(a⊗4

i), x⊗4
〉

=

〈
t! ∑

S⊆[n]:|S|=t

⊗

i∈S

Shift(a⊗4
i), x⊗4t

〉
= (x⊗2t)>M(x⊗2t) ,

(4)

where we view x⊗2t as a vector of dimension d2t, and

M := t! ∑
S⊆[n]:|S|=t

⊗

i∈S

Shift(a⊗4
i) ∈ R

d2t×d2t
. (5)

Here, we view Shift(a⊗4
i) as a d2 × d2 matrix.

The natural approach to bound Eq. (4) is to bound
the spectral norm of M. Unfortunately, it can be shown
that ‖M‖2 > Ω(d)2t. As explained in Section II-E, we
resolve this by exploiting the symmetry of x⊗2t. Let Π ∈

937

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on April 29,2025 at 08:13:56 UTC from IEEE Xplore. Restrictions apply.

R
d2t×d2t

be any permutation matrix that maps an index
J = (j1, j2, . . . , j2t) ∈ [d]2t to (jπ(1), jπ(2), . . . , jπ(2t)) for
some permutation π over 2t elements. Then, we have
that Πx⊗2t = x⊗2t.

We will use Ŝ2t to denote the collection of all such
matrices Π. It follows that

(x⊗2t)>M(x⊗2t) = (x⊗2t)>M̃(x⊗2t) 6 ‖M̃‖2 , (6)

where M̃ = E
Π,Π′∼Ŝ2t

[ΠMΠ′].
Our key technical result is that the symmetrization

lowers the spectral norm by a factor of roughly tt, and
we prove it using the trace moment method, a standard
technique for upper bounding spectral norm of matrices.

Lemma III.9. Let a1, . . . , an ∈ R
d be random vectors with

independent entries such that E[ak
ij] = 0 for all odd k,

E[a2
ij] 6 1, E[a4

ij] 6 µ4, and |aij| 6
√

C log n almost surely

for µ4 > 1 and constant C > 0. Let t 6 d 6 n be integers

such that t log6 n 6 µ4n + d2

t log2 n. Let M̃ be the d2t × d2t

matrix defined in Eq. (6). Let ` 6 log n. Then,

EA

[
tr(M̃`)

]
6 d2t · O

(
µ4n +

d2

t
log2 n

)t`

.

In Remark III.12, we will show that the upper bound
in Lemma III.9 is tight up to log factors.

We can immediately complete the proof of Lemma III.6
using Lemma III.9.

Proof of Lemma III.6 from Lemma III.9. Since a1, . . . , an ∈
R

d are vectors with N (0, 1) entries, we have that E[a4
ij] =

3, and moreover, with probability 1 − 1
poly(n)

we have

that |aij| 6
√

C log n for some constant C > 0 for all
i ∈ [n], j ∈ [d]. Thus, we can now condition on this
event; the conditioned variables still satisfy E[ak

ij] = 0

for odd k, E[a2
ij] 6 1 and E[a4

ij] 6 3, i.e., the conditions
in Lemma III.9.

Set ` = log n. By Lemma III.9 and Markov’s inequal-
ity, with probability 1 − exp(−t`) > 1 − n−t, we have

that tr(M̃`) 6 d2t · O(n + d2

t log2 n)t`. Then, ‖M̃‖2 6

tr(M̃`)1/` 6 O(n + d2

t log2 n)t, using the fact that d2t/` 6
22t.

We can construct the matrix M̃ ∈ R
d2t×d2t

and calculate
its spectral norm in nO(t) time. Since (x⊗2t)>M̃(x⊗2t) 6
‖M̃‖2 · ‖x⊗2t‖2

2 and ‖x⊗2t‖2 = 1 for all unit vectors x,
this completes the proof.

C. Encoding of walks in the trace

In this section, we prove Lemma III.9. Expanding
EA tr(M̃`) gives

EA tr EΠ1,Π′
1,Π2,Π′

2,...,Π′
`

[
Π1MΠ′

1Π2MΠ′
2 · · ·Π`MΠ′

`

]
.

We will use π to denote the sequence of permutation
matrices (Π1, Π′

1, Π2, Π′
2, . . . , Π′

`
) ∈ (Ŝ2t)

2`.
The trace power of a matrix is often viewed

as a sum of closed walks. Indeed, tr(M`) =

∑I1,I2,...,I`∈[d]2t MI1,I2
MI2,I3

· · · MI` ,I1
, which is a weighted

sum of length-` closed walks I1 → I2 → · · · → I` → I1

on the indices. With a specific permutation π, it is then
a sum of closed walks where the indices are permuted
accordingly at each step. See Figure 1 for an example.

Definition III.10 (Structure). We will use a graph with
two types of vertices (circle and square) to represent
a walk of length ` in the trace. The graph is divided
into ` blocks, each with t square vertices in the middle
and 4t edges between square and circle vertices. We
use π = (Π1, Π′

1, . . . , Π`, Π′
`
) ∈ (Ŝ2t)

2` to denote the
structure of the graph, where the edges in block k are
connected according to Πk, Π′

k.
For example, Figure 1 shows two structures with t = 3.

In Figure 1a, all permutations are identity. In Figure 1b,
we have permutations π1, π′

1, . . . , π`, π′
`
; for example,

on the left side of the first block, π1(1) = 3, π1(2) =
2, π1(3) = 5 and so on, i.e., circle i is connected to square
dπ1(i)/2e.

(a) Identity permutations.

(b) Different permutations.

Fig. 1: Examples of different structures of walks in the
trace.

Definition III.11 (Valid labeling of a structure). A label-
ing σ is a map that maps circle vertices to [d] and square
vertices to [n]. We say that a labeling σ is valid for a
structure π if

(1) All labeled edges (i.e., elements in [n]× [d]) appear
even number of times.

(2) The t square vertices in each block receive distinct
labels.

(3) For each square vertex, if the 2 incident circle ver-
tices on the left (resp. right) have the same labels

938

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on April 29,2025 at 08:13:56 UTC from IEEE Xplore. Restrictions apply.

j ∈ [d], then there must be at least one circle vertex
on the right (resp. left) that is labeled j.

Moreover, we define edge-factor(σ,π) to be the product
of factors from the labeled edges, where a labeled edge
appearing k times gets a factor of E[ak].

Requirement (1) is because E[ak
ij] = 0 for all odd k, and

because of this, labelings that violate requirement (1) au-
tomatically have edge-factor(σ,π) = 0. Requirement (2)
is by definition of the M matrix (Eq. (5)), which is a sum
over S ⊆ [n]. Finally, we can impose requirement (3)
on the labelings because Shift(a⊗4

i)(j1,j1),(j2,j3)
= 0 for

j1 /∈ {j2, j3}. Indeed, recall from Definition III.7 that
Shift(a⊗4

i)(j1,j1),(j2,j3)
is nonzero only if one or both of j2, j3

equal j1.

Remark III.12 (Lower bound on E tr(M̃`)). We claim

that E tr(M̃`) > Ω(µ4n + d2

t)
t`, thus the upper bound in

Lemma III.9 is tight up to log factors.

Fix a subset S ⊆ [n] and consider the labelings where
the circle vertices are all distinct (i.e., I1, I2, . . . , I` ∈ [d]2t

collectively have distinct indices) while the square ver-
tices in each block is S (up to ordering). There are

(d
2t`)(2t`)! ≈ d2t` choices for the circle vertices (as d �

2t`). Since each circle vertex is distinct, the two adjacent
square vertices (in neighboring blocks) must be the same
so that each edge appears twice. Note that the square
vertices in each block can be reordered. Thus, for the
circle-to-square structure in each block, viewing it as a
matching between 2t circle vertices, there is exactly one
matching that results in an even labeling. The probability
is 1

(2t−1)!!
> t−t. Thus, these labelings contribute a lower

bound of d2t` · t−t` = (d2

t)
t`.

Next, consider the labelings where all circle vertices
are the same while the square vertices are distinct. There
are ≈ nt` choices for the square vertices. Moreover,
there are t` distinct edges, each appearing 4 times, hence
giving a factor of µt`

4 . Thus, these contribute a lower
bound of (µ4n)t`.

Remark III.13 (A higher lower bound on E tr(M̃`)
without requirement (3)). Fix the identity permutation
structure (Figure 1a). Consider the labeling such that
for each square vertex, the two circle vertices on each
side get the same labels (thus violating requirement (3)).
Then, we assign distinct labels to all square vertices and
all pairs of circle vertices, for which there are ≈ dt`nt`

choices. After permutation, i.e., randomizing the struc-
ture, with probability (1

(2t−1)!!
)2` > t−2t` each pair of

circle vertices are still paired, in which case all edges
appear twice, satisfying requirement (1). Thus, this gives
a lower bound of Ω(dn

t2)
t`, which is much larger than the

target bound O(n + d2

t)
t` in Lemma III.9.

Now, we can bound E tr(M̃`) as follows,

EA tr
(

M̃`
)

6 2O(t`) · Eπ ∑
σ: labeling

1(σ valid for π) · edge-factor(σ,π) .

Here, the 2O(t`) factor takes care of the fact that Shift(a⊗4)
has some entries scaled by 3/2.

The crucial step in bounding the above is defining an
encoding of the labelings. Following the terminology of
[44], we will refer to a circle-to-square or square-to-circle
step in the walk (structure) as a leg, and we will refer
to an element in [n]× [d] as an edge. In other words, a
labeling of a leg in the structure specifies an edge. An
example is shown in Figure 2.

Remark III.14 (Encoding requirement). We would like
an encoding scheme that uses as few bits as possible such
that (1) every valid labeling for a given structure can be
encoded, and (2) a labeling is uniquely determined given
an encoding and a structure (if decoding succeeds). In
particular, the encoding itself does not need to identify
the structure; instead, the decoding algorithm will take
both the encoding and the structure to decode. Thus,
when provided with the same encoding and two distinct
structures, the decoding algorithm can successfully out-
put two different labelings, each valid for its respective
structure.

Definition III.15 (Encoding of a labeling). We define
our encoding of a valid labeling for a structure π as
follows. First, specify a starting index J ∈ [d]2t. Then,
for each of the 4t` legs (2t circle to square and 2t square
to circle in each block), specify a type in {F,P,R,N,H}
along with additional information for decoding (namely,
destination and return labels depending on the type):

• F (Fresh) leg: the destination is a new vertex (not
seen before), thus creating a new edge, marked as
active. An F leg from circle to square must be paired
with a P leg as described next. The new vertex is
specified as follows:

– Circle to square: an element in [n].
– Square to circle: an element in [d] and a bucket

index b ∈ [log n] for the circle vertex. The bucket
index indicates that the vertex will have degree
between 2b and 2b+1 in total.

• P (Paired) leg: it must be from a circle to a new
square vertex and must be paired with an F leg.
There is no need to specify a vertex label because
the vertex is determined by the paired F leg. The P

legs are further split into two types:

– P1: the paired F and P legs come from different
circle vertices. It marks the edge as active.

– P2: the paired F and P legs come from the same cir-
cle vertex. By requirement (3) of Definition III.11,
one or two of the next legs leaving the square

939

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on April 29,2025 at 08:13:56 UTC from IEEE Xplore. Restrictions apply.

vertex must be an R going back to the circle
vertex.

In addition, specify a return label in {1, 2}.
• R (Return) leg: it traverses an incident active edge

and marks it as closed. The incident edge will be
chosen (during decoding) using return labels from
previous legs.

• N (Non-innovative) leg: the destination is an old
vertex (seen before), but the edge is new and is
marked as active.

– Circle to square: specify a previous square vertex
(a label in [t`]), and then specify a return label in
[4`] (because square labels in a layer are distinct).

– Square to circle: pick a bucket index b ∈ [log n]
and choose a vertex from the bucket by specifying
an element in [4t`

2b]. Then, specify a return label in

[2b+1].

• H (High-multiplicity): it traverses an incident closed
edge and marks it as active, indicating that the edge
is traversed an odd number of times.

– Circle to square: specify an incident edge (a label
in [4t`]), and then specify a return label in [`].

– Square to circle: same as N.

Finally, let ξ be an encoding with h number of H legs and
p2 number of P2 legs. With a slight abuse of notation, we
define edge-factor(ξ) as µ

p2
4 (C log n)h, where µ4 and C

are the constants such that our random variables satisfy
E[a4

ij] 6 µ4 and |aij| 6
√

C log n almost surely.

See Figure 2 for examples of an encoding. We note that
the terms “fresh”, “return”, “non-innovative” and “high-
multiplicity” in Definition III.15 are adopted from [44]3

(see Section II-D). The P (Paired) type is introduced to
handle the specific structure of our matrix, namely that
there are two legs leading to a square.

Remark III.16 (P1 and P2 legs). As each P1 leg creates
a new edge, it should be viewed as an F leg except that
it does not need to specify the destination.

On the other hand, a P2 leg should be viewed as
an H leg which is closed immediately when departing
from the square. When two circle vertices with the same
label j ∈ [d] go to a square i ∈ [n] via an F and P2

leg, the edge (i , j) is traversed twice. However, by
requirement (3), one or two of the next legs leaving the
square vertex must be R legs going back to j, so after this
the edge is traversed either 3 or 4 times. Thus, the P2 leg
is effectively an H leg that traverses the edge the third
time, which introduces an edge factor of E[a4

ij] 6 µ4. See

Remark III.13 for a lower bound without requirement (3).

It is helpful for readers to keep in mind that eventually
the dominating terms in the trace calculation will be
encodings with mostly F (or {F,P} if leading to a square)

3 In [28], a non-innovative leg is called a “surprise”.

and R legs. In this case, most R legs are “forced”, i.e.,
there is only one edge to choose. In fact, the only times an
R leg is “unforced” at a vertex v (i.e., it needs to choose
between multiple incident edges) are when there were
previous N or H legs going back to v. When this happens,
the destination of the R leg is determined by one return
label among those placed by previous N and H legs. We
now need to show that the return labels in our encoding
are sufficient to guide the “unforced” return legs.

a) Unforced return legs.: Again following the ter-
minology in [44], we say that an R (return) leg from
a vertex v is forced if it marks the final visit to v in
the walk. Consequently, following this leg, all edges
incident to v are closed for the remainder of the walk.
Every circle vertex has exactly 1 forced return, and every
square vertex has 2 (the two legs leaving v in its final
appearance). All other return legs are unforced.

In Definition III.15, each N and H leg arriving at v
provides 1 return label for v. The next lemma shows
that this is sufficient for all unforced returns departing
from v.

Lemma III.17 (Bounding unforced returns). For each
vertex v, the number of unforced return legs departing from
v is at most the number of N and H legs arriving at
v. Consequently, the return labels in Definition III.15 are
sufficient for all unforced returns.

Proof. Let fin, nin, hin, rin be the number of F,N,H,R steps
arriving at v, and fout, nout, hout, rout be the number of
F,N,H,R steps departing from v. For circle vertices, there
may be pout out-going P legs. We know that (1) the
number of in-going and out-going edges are the same:
fin + nin + hin + rin = fout + pout + nout + hout + rout,
and (2) all active edges need to be closed: rin + rout =
fin + fout + pout + nin + nout + hin + hout. Combining the
two, we get

rin + rout = 2(fin + nin + hin) + rin − rout

=⇒ rout = fin + nin + hin .

For circle vertices, fin = 1 (the first arrival at v), while
there is 1 forced return from v. So, there are nin + hout

number of unforced returns from v.

Now, if v is a square vertex, there is exactly 1 incoming
F and 1 P leg (the first arrival at v; all subsequent arrivals
are N, H or R by definition), meaning fin + pin = 2. The
same calculation shows that rout = fin + pin + nin + hin.
There are 2 forced returns from v, so again there are
nin + hout number of unforced returns from v.

We remark that this generalized definition of
forced/unforced returns was used in [28] as well
to bound walks that have complicated structures. In
fact, Lemma III.17 is essentially the Potential-Unforced-
Return (PUR) factor as defined in [28].

940

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on April 29,2025 at 08:13:56 UTC from IEEE Xplore. Restrictions apply.

D. Decoding

Given an encoding and a structure, we will decode the
labeling step by step from left to right. Each edge is ei-
ther active or closed during the decoding process, and all
edges must be closed in the end (so that requirement (1)
of Definition III.11 is satisfied).

Algorithm 1 (Decoding algorithm Decode).

Input: A structure π ∈ (Ŝ2t)
2`, an encoding ξ.

Output: A labeling of the structure, or FAIL.
Operation: We will label the walk (the graph de-

termined by π) one vertex at a time. It is con-
venient to view the algorithm as dynamically
maintaining a separate bipartite graph between
labeled square and circle vertices (elements in
[n] and [d] respectively), where a leg in the
walk may create a new vertex and/or edge,
and each edge has either “active” or “closed”
status. Each vertex stores a list of return la-
bels. Moreover, each circle vertex is assigned
a bucket index b.

• – {F,P} legs from circle to square: label the
square vertex with the specified label, and
mark the edges as active. Place down the
return label from the P leg.

– F leg from square to circle: label the circle
vertex with the specified label, and mark
the edge as active. Then, label the circle
vertex with the specified bucket index.

– N or H leg: label the vertex by the spec-
ified previous vertex, and mark the edge
as active. Then, place down the return
label.

– R leg: use a return label to choose an
active edge incident to the current vertex
to close. In the special case that it is a
square to circle leg and the previous visit
to the square is via {F,P2} from two circle
vertices both labeled j, then simply set j as
the destination. If there is no return label,
there must be only one choice (otherwise
output FAIL).

• For every square vertex, unless it is reached
via {F,P} legs, it gets two labels from the
two legs. Output FAIL if the two labels differ.
Also output FAIL if the labels assigned to the
t square vertices in the same block are not
distinct.

Figure 2 shows an example where we decode the
same encoding with different structures. The first one
(Figure 2a) succeeds; in fact, for the part shown in
Figure 2a, the resulting labeling satisfies all requirements
of a valid labeling (Definition III.11). The second one fails
because for the square vertex (marked with an “x”), the

1

2

3

4

5

6

2

3

1
F

P

F

P

F

P

F

F

F

F

F

F

7

8

9

10

11

12

R

R

R

R

R

R

2

3

1
R

R

R

R

R

R

1

2

3

4

5

6

F

P

F

P

F

P

R

R

R

R

R

R

5

6

4
1

2

3

4

5

6

(a) Decoding succeeds.

F
P
F

P

F

P

F
F

F
F

F

F

R
R
R

R

R
R

R

R

R

R

R

R

1

2

3

4

5

6

1

2

3
7

11

9

10

8

12

F
P

F

P
F

P

R

R
R

R
R

R

(b) Decoding fails.

Fig. 2: An example where we decode the same encoding
with different structures.

two legs give conflicting labels: the first one labels it 3
to close the edge (3 , 7) while the second one labels it
1 to close the edge (1 , 9).

It is crucial that any valid labeling is captured by some
encoding, so that we can bound the sum of labelings by
the sum of encodings.

Lemma III.18. For any labeling σ which is valid for
some structure π ∈ (Ŝ2t)

2`, there is an encoding ξ
such that Decode(ξ,π) successfully outputs σ. Moreover,
edge-factor(ξ) > edge-factor(σ,π).

Proof. Given a valid labeling for a structure, the 4t` leg
types and the specification of vertices (a new vertex for
F, a previous location for N, and an incident edge for H)
are straightforward to determine. For circle vertices, the
bucket index b ∈ [log n] is specified such that the total
number of edges incident to the vertex is between 2b and
2b+1. Here b 6 log n since 4t` � 2log n = n. In particular,
the number of circle vertices in bucket b is at most 4t`

2b .
The return labels are also straightforward. As shown

in Lemma III.17, one return label for each N or H is
enough to guide all unforced returns. Thus, we can
specify the return labels arriving at a vertex v according
to the ordering in which active edges incident to v
are closed. A circle vertex with bucket index b has at
most 2b+1 incident edges, whereas a square vertex has
at most 4` incident edges (due to requirement (2) of
Definition III.11 that the square vertices in each block
are distinct). For a square vertex v, two departing R legs
are taken to close the final two active edges during the
last visit to v. The return label for the P leg (an element in

941

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on April 29,2025 at 08:13:56 UTC from IEEE Xplore. Restrictions apply.

{1, 2}) that initially creates v is decided by the ordering
of these final two R legs. Therefore, the ranges of return
labels as defined in the encoding are sufficient.

For the edge factors, consider an edge traversed 2k > 2
times in the walk. If the edge is created by an {F,P2}
pair, then as discussed in Remark III.16, we may view
the P2 leg as the third time the edge is traversed. In this
case, the edge will be traversed by 1 F, 1 P2, (k − 2) H

and k R legs. Then, the edge factor of ξ from this edge
will be µ4 · (C log n)k−2. This is a valid upper bound as
E[a2k] 6 E[a4] · (

√
C log n)2k−4 6 µ4 · (C log n)k−2.

On the other hand, in other cases the edge will be
traversed by 1 F, (k − 1) H and k R legs, giving an
edge factor of (C log n)k−1. This is also a valid upper
bound as E[a2k] 6 E[a2] · (

√
C log n)2k−2 6 (C log n)k−1.

Therefore, edge-factor(ξ) as defined in Definition III.15
is a valid upper bound on edge-factor(σ,π).

The next lemma states two simple but important rela-
tionships between the number of legs of each type in a
valid encoding.

Lemma III.19. Let ξ be an encoding such that Decode(ξ,π)
succeeds for some π. Let fs, ps, ns, hs, rs be the number of
F,P,N,H,R legs from circle to square, let fc, nc, hc, rc be
the number of F,N,H,R legs from square to circle, and let
n = ns + nc, h = hs + hc and r = rs + rc. Then, we must
have

(1) r = 2fs + fc + n+ h = 2t`.
(2) ns + hs + rs = fc + n+ h.

Proof. First, recall from the encoding (Definition III.15)
that each P must be paired with an F from circle to
square, so ps = fs. Next, each F, P, N and H leg creates
an active edge that needs to be closed by an R leg, thus

r = f+ ps + n+ h = 2fs + fc + n+ h . (7)

Next, the total number of edges is 4t`, so 2fs + fc + n+
h+ r = 4t`, which means that r = 2fs + fc + n+ h = 2t`.

Moreover, as the number of edges from circle to square
is the same as that from square to circle, we have

2fs + ns + hs + rs = fc + nc + hc + rc .

Combined with Eq. (7), we get rs + rc = 2(fc + nc + hc) +
(rc − rs), which means rs = fc + nc + hc. Thus, ns + hs +
rs = fc + n+ h.

We next prove the crucial lemma upper bounding the
success probability of decoding over random permuta-
tions of the structure.

Lemma III.20 (Decoding success probability). Let ξ be an
encoding, let fc be the number of F legs from square to circle,
and let n, h be the number of N,H legs. Then,

Pr
π∼(Ŝ2t)2`

[Decode(ξ,π) succeeds] 6

(
t

e

)− 1
2 (fc+n+h)

.

Proof. Let fs, ps, ns, hs, rs be the number of F,P,N,H,R legs
from circle to square, and let fc, nc, hc, rc be the number of
F,N,H,R legs from square to circle. Consider the circle-
to-square part of each block, and view the structure as
a perfect matching between 2t circle vertices. The F and
P legs must be paired and the t square vertices must
receive distinct labels. Moreover, all N,H,R legs from cir-
cle to square provide labels, and recall that Algorithm 1
fails if any square vertex receives two different labels.
Therefore, there is exactly one way to pair up all the
N,H,R legs.

Suppose there are i 6 t number of F, i number of P

(because F and P must be paired), and 2t− 2i other legs.
There are (2t − 1)!! > (2t

e)
t number of ways to group

them into pairs. However, there are i! ways to pair the F

and P legs, and there is a unique way to pair the other
legs. Thus, via Stirling’s approximation, the probability
that a grouping is valid is

i!

(2t − 1)!!
6 i!

(
2t

e

)−t

6

(
t

e

)−(t−i)

.

Note that t − i is 1/2 of the number of N,H and R legs
from circle to square in the block. Thus, overall, the prob-

ability of success is upper bounded by (t/e)−
1
2 (ns+hs+rs).

By Lemma III.19, we have ns + hs + rs = fc + n+ h, thus
completing the proof.

E. Proof of Lemma III.9

We can finally finish the proof of Lemma III.9.

Proof of Lemma III.9. We start with writing the trace as a
sum of encodings:

EA tr
(

M̃`
)

6 E
π∼(Ŝ2t)2` ∑

σ: labeling

1(σ valid for π) · edge-factor(σ,π)

6 E
π∼(Ŝ2t)2` ∑

σ: labeling
∑

ξ: encoding

1(Decode(ξ,π) = σ & valid for π)

· edge-factor(ξ)

6 ∑
ξ : encoding

Pr
π∼(Ŝ2t)2`

[Decode(ξ,π) succeeds] · edge-factor(ξ) .

Here, the second inequality follows from Lemma III.18
that every labeling σ has an encoding ξ such
that Decode(ξ,π) successfully outputs σ, and that
edge-factor(σ,π) 6 edge-factor(ξ).

We bound the number of encodings as follows:

• For each {F,P} leading to a square, there are n
choices for the new vertex, and 2 choices for the
return label of P. In total, 2n choices.

• For each F from square to circle, there are d choices
for the new vertex and log n choices for the bucket
index. In total, d log n choices.

• For each N from circle to square, there are t` choices
for a previous square vertex, and 4` choices for the
return label. In total, 4t`2 choices.

942

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on April 29,2025 at 08:13:56 UTC from IEEE Xplore. Restrictions apply.

• For each N or H from square to circle, there are log n
choices to choose a bucket index b, and 4t`

2b choices

for a vertex in bucket b. Then, there are 2b+1 choices
for a return label. In total, log n · 4t`

2b · 2b+1 = 8t` log n
choices.

• For each H from circle to square, there are 4t` choices
to choose an incident edge, and 4` choices for a
return label. In total, 16t`2 choices.

• Edge factor: Each H gets a C log n factor, and each
P2 gets a µ4 factor. Recall that µ4 and C are the
constants such that E[a4

ij] 6 µ4 and |aij| 6
√

C log n

almost surely.

Fix a leg type pattern and starting index in [d]2t

(labels for the first 2t circle vertices in the structure),
and let fs, ps, ns, hs, rs be the number of F,P,N,H,R legs
from circle to square, and let fc, nc, hc, rc be the number
of F,N,H,R legs from square to circle. Moreover, let
n = ns + nc and h = hs + hc. Then, the total encodings,
weighted by edge-factor, is bounded by

nfs(2µ4)
ps(d log n)fc(4t`2)ns(8t` log n)nc

·(16Ct`2 log n)hs(8Ct` log2 n)hc

6 (2µ4n)fs(d log n)fc(8t log2 n)n(16Ct log3 n)h ,

where we use the fact that ps = fs, µ4 > 1 and ` 6 log n.
Next, by Lemma III.20, Prπ [Decode(ξ,π) succeeds] 6

(t/e)−
1
2 (fc+n+h). Thus, we get

(2µ4n)fs

(√
e

t
d log n

)fc

O
(√

t log3 n
)n+h

6 O

(
µ4n +

d2

t
log2 n

)fs+
1
2 fc

O
(√

t log3 n
)n+h

By Lemma III.19, 2fs + fc = 2t` − n− h. Thus, as long

as t log6 n 6 µ4n + d2

t log2 n, the above is bounded by

O(µ4n + d2

t log2 n)t`.

Finally, there are at most 2O(t`) leg type patterns,
and d2t choices for the starting index J ∈ [d]2t in the
encoding. This gives the final bound of d2t · O(µ4n +
d2

t log2 n)t`.

IV. PLANTED SPARSE VECTOR

We first restate the planted sparse vector model.

Model (Restatement of Model 1). Fix an unknown unit
vector v ∈ R

n, and let d 6 n ∈ N. Let Ã be a random
n× d matrix sampled as follows: (1) let A be the random
matrix such that the first column is v and the other d− 1
columns are i.i.d. N (0, 1

n In) vectors; (2) let R ∈ R
d×d be

an arbitrary unknown rotation matrix; (3) set Ã = AR.
The task is that given Ã, output a unit vector v̂ ∈ R

n

such that 〈v̂, v〉2 > 1 − o(1).

We first characterize the sparse vectors that we will
plant in Model 1. Motivated by the definition of well-
spread subspaces (Definition III.1), we define the notion
of compressible vectors as follows,

Definition IV.1 (Compressible vector). Let ρ, γ ∈ (0, 1).
We say that a vector v ∈ R

n is (ρ, γ)-compressible if

max
S⊆[n]:|S|6ρn

‖vS‖2 = (1 − γ)‖v‖2 .

In other words, v is compressible if the top ρn coordi-
nates of v contains 1 − γ fraction of its `2-mass.

Next, recall our notation for the elementary symmetric
polynomial (of the 4th powers):

Qt(z) := t! ∑
S⊆[n]:|S|=t

∏
i∈S

z4
i .

We now state our main result.

Theorem IV.2 (Formal version of Theorem 2). There is an
absolute positive constant C such that for every t 6 d 6 n ∈
N such that

ρd2

n logC n 6 t 6 d
logC n

and ρ ∈ (0, 1
logC n

), there

is a randomized algorithm with running time 2Õ(t) with the
following guarantee: Given Ã ∈ R

n×d drawn from Model 1
with a hidden unit vector v ∈ R

n such that v is (ρ, 1/2)-
compressible and Qt(v)1/t > (1− 1

logC n
)‖v‖4

4, the algorithm

outputs a unit vector v̂ ∈ colspan(Ã) such that 〈v̂, v〉2 >
1− o(1) with probability 1− o(1) over the randomness of the
algorithm and the input.

To interpret the parameters in Theorem IV.2, consider

d = O(n
1+ε

2) and t = Õ(nε) (same as in Theorem III.3),
and the sparsity of v is ρ = 1/ polylog(n). Then, we can

approximately recover v in 2Õ(nε) time. This establishes
the same trade-off between the dimension and runtime
as our certification algorithm (Theorem 1).

Our algorithm is described in Algorithm 2, and the
proof of Theorem IV.2 is completed at the end of Sec-
tion IV-C.

Remark IV.3 (Assumptions on v). The assumption that
Qt(v)1/t > (1 − o(1))‖v‖4

4 is not standard. In particular,
this does not hold for any vector v whose mass con-
centrates on < t coordinates. However, for such vectors,
one can simply brute-force search over all support of size

6 Õ(t), which takes 2Õ(t) time.
On the other hand, most distributions of sparse vectors

used in previous works satisfy that Qt(v)1/t > (1 −
o(1))‖v‖4

4 (when the sparsity is not small enough to
brute-force search over the support). These include the
noiseless and noisy Rademacher-Bernoulli distribution
(Definition I.1) considered in [10], [12], [39], [47] and the
Rademacher-Gaussian distribution considered in [39].

We note that the algorithms of [25], [39] require very
minimal assumptions on v. In particular, the algorithm
of [39] succeeds as long as

∣∣‖v‖4
4 − 3

n

∣∣ > Ω(1
n) and

1
‖v‖4

4

d
n3/2 � 1,4 so when ‖v‖4

4 ≈ 1
ρn , this is equivalent

4 Here 3
n is exactly E[‖g‖4

4] for a Gaussian vector g ∼ N (0, 1
n In).

There is also a requirement on ‖v‖∞/‖v‖2
4 which we omit, as it is

satisfied in most cases. See [39] for the full statement.

943

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on April 29,2025 at 08:13:56 UTC from IEEE Xplore. Restrictions apply.

to ρd � √
n. We leave as future work the identification

of a minimal analytic assumption on v that ensures
successful recovery in the subexponential-time regime.

A. Preliminaries for the planted sparse vector model

It is easy to see that a compressible vector v has large
4-norm:

Lemma IV.4. A (ρ, γ)-compressible vector v ∈ R
n satisfies

‖v‖4
4 >

(1−γ)4

ρn ‖v‖2
2.

Proof. Let S∗ ⊆ [n] be such that |S∗| 6 ρn and ‖vS∗‖2 >
(1 − γ)‖v‖2. Then, by Cauchy-Schwarz, (1 − γ)4‖v‖4

2 6
‖vS∗‖4

2 6 |S| · ‖vS‖4
4 6 ρn · ‖v‖4

4.

The following lemma is also straightforward given
the standard singular value concentration bounds on
Gaussian matrices (Fact III.5).

Lemma IV.5. Let d 6 n/ polylog(n). Let A ∈ R
n×d be

drawn from Model 1 with an arbitrary unit vector v. Then,
with probability 1 − o(1), we have 1 − o(1) 6 σmin(A) 6
σmax(A) 6 1 + o(1).

Proof. Recall that the first column of A is v, and let A ∈
R

n×(d−1) be the rest of the matrix with i.i.d. N (0, 1/n)
entries. By Fact III.5, we know that σmax(A) 6 1 + o(1)
with high probability. Moreover, since v is a unit vector,

A
>

v is distributed as a (d − 1)-dimensional vector with
N (0, 1/n) entries, thus with high probability we have

‖A
>

v‖2
2 6 O(d/n) 6 o(1).

For any unit vector x = (x1, x), we have Ax = x1v +
Ax, thus

‖Ax‖2
2 = x2

1‖v‖2
2 +

∥∥Ax
∥∥2

2
+ 2x1v>Ax

6 x2
1‖v‖2

2 +
∥∥Ax

∥∥2

2
+ 2|x1|‖x‖2

∥∥∥A
>

v
∥∥∥

2

6 (1 + o(1))
(

x2
1 + ‖x‖2

2

)
= (1 + o(1))‖x‖2

2 .

Similarly, the minimum singular value lower bound
follows from the fact that σmin(A) > 1 − o(1) and

‖Ax‖2
2 > x2

1‖v‖2
2 + ‖Ax‖2

2 − 2|x1|‖x‖2‖A
>

v‖2.

The following lemma is important in our algorithm to
identify a “good” vector to output.

Lemma IV.6. Let n, d ∈ N such that d 6 n/ polylog(n),
let ρ 6 1/ polylog(n), and let γ, δ ∈ (0, 1). Let v ∈ R

n be a
(ρ, γ)-compressible unit vector, and let A ∈ R

n×d be drawn
from Model 1 with planted vector v. Then, with probability
1 − o(1) over A, the following holds: let y ∈ R

d be any unit
vector and let v̂ = Ay,

(1) If ‖y − e1‖2 6 δ or ‖y + e1‖2 6 δ, then
maxS:|S|6ρn ‖v̂S‖2 > 1 − γ − (1 + o(1))δ.

(2) If ‖y − e1‖2 > δ and ‖y + e1‖2 > δ, then
maxS:|S|6ρn ‖v̂S‖2 6 (1 − 1

2 δ2)(1 − γ) + 1
polylog(n)

.

Proof. Let S∗ = arg maxS:|S|6ρn ‖vS‖2, and recall that
Ae1 = v.

Suppose ‖y − e1‖2 6 δ. Then, ‖v̂ − v‖2 = ‖A(y −
e1)‖2 6 σmax(A)δ 6 (1 + o(1))δ with high probability
by Lemma IV.5. By the triangle inequality, ‖v̂S∗‖2 >
‖vS∗‖2 − ‖vS∗ − v̂S∗‖2 > 1 − γ − (1 + o(1))δ since ‖vS∗ −
v̂S∗‖2 6 ‖v − v̂‖2 6 (1 + o(1))δ. The same is true if we
flip the sign of y so that v̂ is close to −v. This proves the
first statement.

Suppose ‖y − e1‖2 > δ and ‖y + e1‖2 > δ. Denote
y = (y1, y), where y ∈ R

d−1 and ‖y‖2
2 = 1 − y2

1.
Then, we have δ2 6 (1 − y1)

2 + ‖y‖2
2 = 2 − 2y1 and

δ2 6 (1 + y1)
2 + ‖y‖2

2 = 2 + 2y1, which means that
|y1| 6 1 − δ2/2. For any S ⊆ [n] with |S| 6 ρn, we
have σmax(AS) 6 Õ(

√
d/n +

√
ρ) 6 1/ polylog(n) by

Fact III.5 and a union bound over all S (here we need
ρ, d/n 6 1

polylog(n)
). Then, since v̂S = y1vS + ASy, by

the triangle inequality, ‖v̂S‖2 6 |y1|‖vS‖2 +
∥∥ASy

∥∥
2
6

(1 − 1
2 δ2)‖vS∗‖2 + 1

polylog(n)
, which proves the second

statement.

B. Background on Sum-of-Squares

In this section, we give an overview of the Sum-of-
Squares (SoS) framework. We refer the reader to the
monograph [19] and the lecture notes [6] for a detailed
exposition of the SoS method and its usage in algorithm
design.

a) Pseudo-distributions.: Pseudo-distributions are
generalizations of probability distributions and are
represented by their pseudo-expectation operators.
Formally, a degree-t pseudo-distribution µ over
variables x1, , . . . , xn corresponds to a linear operator Ẽµ

that maps polynomials of degree 6 t to real numbers
and satisfies Ẽµ[1] = 1 and Ẽµ[p2] > 0 for every
polynomial p(x1, . . . , xn) of degree 6 t/2.

Let A = { f1 > 0, f2 > 0, . . . , fm > 0} be a system
of m polynomial inequality constraints. We say that µ
satisfies the system of constraints A at degree t if for every
sum-of-squares polynomial h and any T ⊆ [m] such
that deg(h) + ∑i∈T deg(fi) 6 t, Ẽµ[h · ∏i∈T fi] > 0. In
particular, if A contains an equality constraint f = 0,
then Ẽµ[f · p] = 0 for any polynomial p with deg(f) +
deg(p) 6 t. Specific to our application, we say that a
pseudo-distribution µ satisfies the unit sphere constraints
if Ẽµ[‖x‖2

2 · p(x)] = Ẽµ[p(x)] for every p of degree
6 t − 2.

Unlike true distributions, there is a nO(t)-time weak
separation oracle for degree-t pseudo-distributions,
which allows us to efficiently optimize over pseudo-
distributions that satisfy a given set of polynomial con-
straints (approximately) via the ellipsoid method — this
is called the Sum-of-Squares algorithm. Therefore, given
a polynomial p (with the `1-norm of the coefficients be-
ing ‖p‖1) over x1, . . . , xn, a degree-t pseudo-distribution
satisfying the unit sphere constraint that maximizes p
within an additive ε‖p‖1 error can be found in time
nO(t) polylog(n/ε).

944

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on April 29,2025 at 08:13:56 UTC from IEEE Xplore. Restrictions apply.

b) Sum-of-Squares proofs.: Let f1, f2, . . . , fm and g be
multivariate polynomials in x. A sum-of-squares proof
that the constraints A = { f1 > 0, . . . , fm > 0} imply
g > 0 consists of sum-of-squares polynomials (pS)S⊆[m]
such that g(x) = ∑S⊆[m] pS(x)∏i∈S fi(x). The degree of
such an SoS proof equals the maximum of the degree
of pS ∏i∈S fi over all S appearing in the sum above. We
write

A t
x {g(x) > 0}

where t is the degree of the SoS proof.
The following fact is the crucial connection between

SoS proofs and pseudo-distributions.

Fact IV.7. Suppose A t
x {g(x) > 0} for some polynomial

constraints A and a polynomial g. Let µ be any pseudo-
distribution of degree > t satisfying A. Then, Ẽµ[g] > 0.

In other words, for polynomials f , g, in order to prove
that Ẽµ[f] 6 Ẽµ[g] for any degree-t pseudo-distribution

µ satisfying A, it suffices to show an SoS proof that A t
x

{ f (x) 6 g(x)}.
We will need the following SoS versions of Cauchy-

Schwarz and Hölder’s inequalities.

Fact IV.8 (Fact 3.9 and 3.11 in [40]). For any δ > 0,

• 2

x,y {
xy 6 δ

2 x2 + 1
2δ y2

}
.

• 4

x,y {
x3y 6 3δ

4 x4 + 1
4δ3 y4

}
.

Using Fact IV.8, we can prove the following lemma,
which is basically the SoS version of Jensen’s inequality
applied to the x4 function.

Lemma IV.9. For any δ > 0,

4

x,y
{
(x + y)4 6 (1 + δ)3

(
x4 +

y4

δ3

)}
.

Proof. We expand (x + y)4 = x4 + 4x3y + 6x2y2 + 4xy3 +
y4 and apply Fact IV.8 to the middle 3 terms: (x + y)4 6
x4 +(3δx4 + 1

δ3 y4)+ (3δ2x4 + 3
δ2 y4)+ (δ3x4 + 3

δ y4)+ y4 =

(1 + δ)3x4 + (1 + 1
δ)

3y4.

c) Rounding.: In the following, we state an impor-
tant technique for rounding pseudo-distributions from
[5].

Lemma IV.10 (Theorem 5.1 of [5]). For every even t ∈
N and ε ∈ (0, 1), there exists a randomized algorithm with
running time nO(t) and success probability 2−t/ poly(ε) for
the following problem: Fix an unknown unit vector q ∈ R

n.
Given a degree-t pseudo-distribution µ over x ∈ R

n satisfying
the constraint ‖x‖2

2 = 1 such that Ẽµ[〈q, x〉t] > e−εt, output
a unit vector x̂ ∈ R

n with 〈q, x̂〉 > 1 − O(ε).

C. Algorithm for planted sparse vector

Algorithm 2 (Recover hidden sparse vector).

Input: A matrix Ã ∈ R
n×d drawn from Model 1,

parameters t ∈ N and ρ ∈ (0, 1).
Output: A unit vector v̂ ∈ colspan(Ã).
Operation:

1) Solve the degree-4t SoS relaxation of the fol-
lowing program over x ∈ R

d;

max P̃t(x) := t! ∑
S⊆[n]:|S|=t

∏
i∈S

〈ãi, x〉4

s.t. ‖x‖2
2 = 1

where ã1, . . . , ãn are the rows in Ã.
2) Repeat the algorithm of Lemma IV.10

N = 2Õ(t) times and obtain unit vectors
x̂(1), x̂(2), . . . , x̂(N).

3) Let v̂(i) = Ãx̂(i), and let j =

arg maxi∈[N] maxS⊆[n]:|S|6ρn‖v̂
(i)
S ‖2, i.e.,

the vector whose top ρn entries have the
largest norm. Output v̂(j)/‖v̂(j)‖2.

The main ingredient in the analysis is Lemma III.6.
Below, we state it as a degree-4t SoS proof.

Lemma IV.11 (SoS version of Lemma III.6). Let t 6

d 6 n be integers such that t log6 n 6 n + d2

t log2 n. Let

A ∼ N (0, 1
n)

n×d with rows a1, . . . , an ∈ R
d. Then, with

probability 1 − 1
poly(n)

over a1, . . . , an,

4t

y



Pt(y) := t! ∑

S⊆[n]:|S|=t
∏
i∈S

〈ai, y〉4 6 O

(
1

n
+

d2

n2t
log2 n

)t

‖y‖4t
2



 .

Note the scaling of 1/n here because we assume
the entries to be N (0, 1/n) as opposed to N (0, 1) in
Lemma III.6.

Using Lemma IV.11, we prove our main lemma.

Lemma IV.12. Assume the same setting as Theorem IV.2.
Let r1 ∈ R

d be the first row of the unknown rotation matrix
R. Further, let µ be the degree-4t pseudo-distribution over
x ∈ R

n with the unit sphere constraint that maximizes P̃t(x).
Then, Ẽµ[〈r1, x〉2t] > e−O(t/ log n).

Proof. Recall from Model 1 that Ã = AR and v is the
first column of A. Denote y = Rx such that 〈ãi, x〉 =
〈ai, Rx〉 = 〈ai, y〉 and P̃t(x) = Pt(y). Note also that y1 =
〈r1, x〉. Our goal is to prove that Ẽµ[y2t

1] is large.

For each row ai in A, we write ai = (vi, ai), and for
simplicity denote wi := 〈ai, y〉 such that 〈ai, y〉 = y1vi +
wi. We first apply Lemma IV.9 with δ := 1

log3 n
to each

(y1vi + wi)
4:

4t

y



Pt(y) 6 t!(1 + δ)3t ∑

S⊆[n]:|S|=t
∏
i∈S

(
y4

1v4
i +

w4
i

δ3

)
 .

Next, we expand the above by splitting S into disjoint

945

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on April 29,2025 at 08:13:56 UTC from IEEE Xplore. Restrictions apply.

S′ and S′′:

t!(1 + δ)3t
t

∑
s=0

y
4(t−s)
1

δ3s ∑
S′⊆[n]:
|S′ |=t−s

∏
i∈S′

v4
i ∑

S′′⊆[n]\S′ :
|S′′ |=s

∏
j∈S′′

w4
j . (8)

Recall that Qs(z) := s! ∑S⊆[n]:|S|=s ∏i∈S z4
i . For any s >

0 and S′ ⊆ [n] with |S′| = t − s, by Lemma IV.11, with
high probability we have

y
4s

{
s! ∑

S′′⊆[n]\S′ :
|S′′ |=s

∏
j∈S′′

w4
j 6 Qs(w)

6 O

(
1

n
+

d2

n2s
log2 n

)s

· ‖y‖4s
2

}
.

Note that in the first inequality, we upper bound the
summation over S′′ ⊆ [n] \ S′ by the summation over
S ⊆ [n], resulting in Qs(w).

Next, (t − s)! ∑|S′ |=t−s ∏i∈S′ v4
i = Qt−s(v) 6 ‖v‖4(t−s)

4 .

Moreover, by Lemma IV.4, we have ‖v‖4
4 > Ω(1

ρn) since v

is a (ρ, 1/2)-compressible unit vector. Then, from Eq. (8)
we have

4t

y
{

Pt(y) 6 (1 + δ)3t
t

∑
s=0

(
t

s

)
y

4(t−s)
1

δ3s
· Qt−s(v)Qs(w)

6 (1 + δ)3t
t

∑
s=0

(
t

s

)
y

4(t−s)
1 ‖v‖4(t−s)

4

· O

(
1

δ3n
+

d2 log2 n

δ3n2s

)s

‖y‖4s
2

6 (1 + δ)3t‖v‖4t
4

t

∑
s=0

(
t

s

)
y

4(t−s)
1

· O

(
ρ

δ3
+

ρd2 log2 n

δ3ns

)s

‖y‖4s
2

}
. (9)

We now take the pseudo-expectation Ẽµ of both sides

above. For simplicity, we denote α :=
ρd2 log2 n

δ3nt
6

1
logC n

for some large enough constant C (since t >

ρd2

n polylog(n)). Moreover, µ is the pseudo-distribution

that maximizes Ẽµ[P̃t(x)], and in particular the distri-

bution supported on x = r1 is feasible, so Ẽµ[P̃t(x)] >

P̃t(r1) = Pt(e1) = Qt(v). Moreover, by assumption we
have Qt(v)1/t > (1 − η)‖v‖4

4 with η = 1
logC(n)

6 δ. Thus,

since ‖y‖2
2 = 1 − y2

1 and η 6 δ 6 o(1), from Eq. (9) it
follows that

e−O(δ)t 6
(1 − η)t

(1 + δ)3t

6
t

∑
s=0

(
t

s

)
O

(
ρ

δ3
+

αt

s

)s

Ẽµ

[
y

4(t−s)
1 (1 − y2

1)
2s
]

.

Thus, there must be an s∗ ∈ {0, 1, . . . , t} such that

(
t

s∗

)
O

(
ρ

δ3
+

αt

s∗

)s∗

Ẽµ

[
y

4(t−s∗)
1 (1 − y2

1)
2s∗
]
>

1

t
e−O(δ)t

> e−O(δ)t .
(10)

Here we use the fact that δt � log t.

Let β := 1
log2 n

� 1/2. If s∗ 6 βt, then (t
s∗)O(ρ

δ3 +

αt
s∗)

s∗ 6 tO(s∗) 6 eO(βt log n) since t 6 n. Then, as 4(t −
s∗) > 2t, we have

Ẽµ[y
2t
1] > Ẽµ

[
y

4(t−s∗)
1 (1 − y2

1)
2s∗
]

> e−O(δ+β log n)t > e−O(t/ log n) .

On the other hand, we claim that s∗ cannot be larger
than βt. If s∗ > βt, then

(
t

s∗

)
O

(
ρ

δ3
+

αt

s∗

)s∗

6 O

(
1

β

(
ρ

δ3
+

α

β

))s∗

6 e−βt
< e−O(δ)t ,

since our parameters satisfy ρ, α 6 1
logC n

for some large

enough constant C so that 1
β (

ρ

δ3 + α
β) � 1, and the last

inequality follows from δ = 1
log3 n

� β. This contradicts

Eq. (10). Thus, it must be that s∗ 6 βt, and we have
Ẽµ[y2t

1] > e−O(t/ log n), completing the proof.

With Lemmas IV.6 and IV.12 and Lemma IV.10 (the
rounding algorithm of [5]) in hand, we can now prove
that Algorithm 2 succeeds in recovering v, completing
the proof of Theorem IV.2.

Proof of Theorem IV.2. Let r1 ∈ R
d be the first row of

the unknown rotation matrix R from Model 1, and note
that r1 is a unit vector. By Lemma IV.12, the pseudo-
distribution µ obtained from step (1) of Algorithm 2
satisfies that Ẽµ[〈r1, x〉2t] > e−O(t/ log n).

By repeating the algorithm in Lemma IV.10 2Õ(t) times,
with high probability at least one of the unit vectors
x̂ satisfies 〈x̂, r1〉 > 1 − O(δ) where δ := 1

log n , which

means that ‖R(x̂ − r1)‖2 = ‖Rx̂ − e1‖2 6 O(δ). Since v is
a (ρ, γ)-compressible unit vector (for γ bounded away
from 1), by (1) of Lemma IV.6, it follows that v̂ = Ãx̂
satisfies maxS:|S|6ρn ‖v̂S‖2 > 1 − γ − O(δ).

Thus, in step (3) of Algorithm 2, we will choose
an x̂∗ from the list such that v̂∗ = Ãx̂∗ satisfies
maxS:|S|6ρn ‖v̂S‖2 > 1 − γ −O(δ). By (2) of Lemma IV.6,
we have that either ‖x̂∗− r1‖2 or ‖x̂∗+ r1‖2 6 o(1). Since
the singular values of Ã are all 1± o(1) by Lemma IV.5, it
follows that v̂∗ is o(1)-close to ±v and ‖v̂∗‖2 = 1± o(1).
This completes the proof.

946

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on April 29,2025 at 08:13:56 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] Radosław Adamczak, Alexander E Litvak, Alain Pajor, and Nicole
Tomczak-Jaegermann. Sharp bounds on the rate of convergence
of the empirical covariance matrix. Comptes Rendus. Mathématique,
349(3-4):195–200, 2011.

[2] Arash A Amini and Martin J Wainwright. High-dimensional anal-
ysis of semidefinite relaxations for sparse principal components.
In 2008 IEEE international symposium on information theory, pages
2454–2458. IEEE, 2008.

[3] Boaz Barak, Fernando GSL Brandao, Aram W Harrow, Jonathan
Kelner, David Steurer, and Yuan Zhou. Hypercontractivity, Sum-
of-Squares Proofs, and their Applications. In Proceedings of the
forty-fourth annual ACM symposium on Theory of computing, pages
307–326, 2012.

[4] Boaz Barak, Jonathan A Kelner, and David Steurer. Rounding
Sum-of-Squares Relaxations. In Proceedings of the forty-sixth annual
ACM symposium on Theory of computing, pages 31–40, 2014.

[5] Boaz Barak, Jonathan A Kelner, and David Steurer. Dictio-
nary Learning and Tensor Decomposition via the Sum-of-Squares
Method. In Proceedings of the forty-seventh annual ACM symposium
on Theory of computing, pages 143–151, 2015.

[6] Boaz Barak and David Steurer. Proofs, beliefs, and algorithms
through the lens of sum-of-squares. Course notes: http://www.
sumofsquares.org/public/ index.html, 2016.

[7] Vijay Bhattiprolu, Mrinalkanti Ghosh, Venkatesan Guruswami,
Euiwoong Lee, and Madhur Tulsiani. Weak Decoupling, Poly-
nomial Folds, and Approximate Optimization over the Sphere.
In 2017 IEEE 58th Annual Symposium on Foundations of Computer
Science (FOCS), pages 1008–1019. IEEE, 2017.

[8] Vijay Bhattiprolu, Venkatesan Guruswami, and Euiwoong Lee.
Sum-of-squares certificates for maxima of random tensors on
the sphere. In Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, APPROX/RANDOM, vol-
ume 81 of LIPIcs, pages 31:1–31:20. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2017.

[9] Emmanuel J Candes and Terence Tao. Decoding by linear pro-
gramming. IEEE transactions on information theory, 51(12):4203–
4215, 2005.

[10] Hongjie Chen and Tommaso d’Orsi. On the well-spread property
and its relation to linear regression. In Conference on Learning
Theory, pages 3905–3935. PMLR, 2022.

[11] Laurent Demanet and Paul Hand. Recovering the Sparsest
Element in a Subspace. arXiv preprint arXiv:1310.1654, 2013.

[12] Ilias Diakonikolas and Daniel Kane. Non-Gaussian Component
Analysis via Lattice Basis Reduction. In Conference on Learning
Theory, pages 4535–4547. PMLR, 2022.

[13] Yunzi Ding, Dmitriy Kunisky, Alexander S Wein, and Afonso S
Bandeira. The Average-Case Time Complexity of Certifying the
Restricted Isometry Property. IEEE Transactions on Information
Theory, 67(11):7355–7361, 2021.

[14] Yunzi Ding, Dmitriy Kunisky, Alexander S Wein, and Afonso S
Bandeira. Subexponential-time algorithms for sparse PCA. Foun-
dations of Computational Mathematics, pages 1–50, 2023.

[15] David L Donoho. Compressed Sensing. IEEE Transactions on
information theory, 52(4):1289–1306, 2006.

[16] Tommaso d’Orsi, Pravesh K Kothari, Gleb Novikov, and David
Steurer. Sparse PCA: Algorithms, Adversarial Perturbations and
Certificates. In 2020 IEEE 61st Annual Symposium on Foundations
of Computer Science (FOCS), pages 553–564. IEEE, 2020.

[17] Tommaso d’Orsi, Chih-Hung Liu, Rajai Nasser, Gleb Novikov,
David Steurer, and Stefan Tiegel. Consistent Estimation for PCA
and Sparse Regression with Oblivious Outliers. Advances in Neural
Information Processing Systems, 34:25427–25438, 2021.

[18] T Figiel, J Lindenstrauss, and VD Milman. The dimension of
almost spherical sections of convex bodies. Acta Mathematica,
139:53–94, 1977.

[19] Noah Fleming, Pravesh Kothari, and Toniann Pitassi. Semial-
gebraic Proofs and Efficient Algorithm Design. Foundations and
Trends® in Theoretical Computer Science, 14(1-2):1–221, 2019.

[20] Andrei Yurevich Garnaev and Efim Davydovich Gluskin. The
widths of a Euclidean ball. In Doklady Akademii Nauk, volume
277, pages 1048–1052. Russian Academy of Sciences, 1984.

[21] Venkatesan Guruswami, Pravesh K Kothari, and Peter Manohar.
Algorithms and certificates for Boolean CSP refutation: smoothed
is no harder than random. In Proceedings of the 54th Annual ACM
SIGACT Symposium on Theory of Computing, pages 678–689, 2022.

[22] Venkatesan Guruswami, James R Lee, and Alexander Razborov.
Almost Euclidean subspaces of `N

1 via expander codes. Combina-
torica, 30(1):47–68, 2010.

[23] Venkatesan Guruswami, James R Lee, and Avi Wigderson. Eu-
clidean sections of `N

1 with sublinear randomness and error-
correction over the reals. In International Workshop on Approxi-
mation Algorithms for Combinatorial Optimization, pages 444–454.
Springer, 2008.

[24] Samuel Hopkins. Statistical inference and the sum of squares
method. PhD thesis, Cornell University, 2018.

[25] Samuel B Hopkins, Tselil Schramm, Jonathan Shi, and David
Steurer. Fast spectral algorithms from sum-of-squares proofs:
tensor decomposition and planted sparse vectors. In Proceedings
of the forty-eighth annual ACM symposium on Theory of Computing,
pages 178–191, 2016.

[26] Jun-Ting Hsieh, Pravesh K Kothari, and Sidhanth Mohanty. A
simple and sharper proof of the hypergraph Moore bound. In
Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 2324–2344. SIAM, 2023.

[27] Jun-Ting Hsieh, Pravesh K Kothari, Lucas Pesenti, and Luca
Trevisan. New SDP Roundings and Certifiable Approximation
for Cubic Optimization. In Proceedings of the 2024 Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 2337–2362.
SIAM, 2024.

[28] Jun-Ting Hsieh, Pravesh K Kothari, Aaron Potechin, and Jeff Xu.
Ellipsoid Fitting up to a Constant. In 50th International Colloquium
on Automata, Languages, and Programming (ICALP 2023). Schloss-
Dagstuhl-Leibniz Zentrum für Informatik, 2023.

[29] Piotr Indyk. Stable Distributions, Pseudorandom Generators,
Embeddings, and Data Stream Computation. Journal of the ACM
(JACM), 53(3):307–323, 2006.

[30] Piotr Indyk. Uncertainty principles, extractors, and explicit em-
beddings of `2 into `1. In Proceedings of the thirty-ninth annual
ACM symposium on Theory of computing, pages 615–620, 2007.

[31] Piotr Indyk and Stanislaw Szarek. Almost-Euclidean Subspaces of
via Tensor Products: A Simple Approach to Randomness Reduc-
tion. In International Workshop on Randomization and Approximation
Techniques in Computer Science, pages 632–641. Springer, 2010.

[32] Iain M Johnstone and Arthur Yu Lu. On consistency and sparsity
for principal components analysis in high dimensions. Journal of
the American Statistical Association, 104(486):682–693, 2009.

[33] Chris Jones, Aaron Potechin, Goutham Rajendran, Madhur Tul-
siani, and Jeff Xu. Sum-Of-Squares Lower Bounds for Sparse Inde-
pendent Set. In 2021 IEEE 62nd Annual Symposium on Foundations
of Computer Science (FOCS), pages 406–416. IEEE, 2022.

[34] Boris S Kashin and Vladimir N Temlyakov. A Remark on
Compressed Sensing. Mathematical notes, 82:748–755, 2007.

[35] Boris Sergeevich Kashin. Diameters of some finite-dimensional
sets and classes of smooth functions. Izvestiya Rossiiskoi Akademii
Nauk. Seriya Matematicheskaya, 41(2):334–351, 1977.

[36] Pascal Koiran and Anastasios Zouzias. Hidden Cliques and the
Certification of the Restricted Isometry Property. IEEE transactions
on information theory, 60(8):4999–5006, 2014.

[37] Dmitriy Kunisky, Alexander S Wein, and Afonso S Bandeira.
Notes on computational hardness of hypothesis testing: Pre-
dictions using the low-degree likelihood ratio. arXiv preprint
arXiv:1907.11636, 2019.

[38] Shachar Lovett and Sasha Sodin. Almost Euclidean sections
of the N-dimensional cross-polytope using O(N) random bits.
Communications in Contemporary Mathematics, 10(04):477–489, 2008.

[39] Cheng Mao and Alexander S Wein. Optimal Spectral Recovery of
a Planted Vector in a Subspace. arXiv preprint arXiv:2105.15081,
2021.

[40] Ryan O’Donnell and Yuan Zhou. Approximability and proof
complexity. In Proceedings of the twenty-fourth annual ACM-SIAM
symposium on Discrete algorithms, pages 1537–1556. SIAM, 2013.

[41] Qing Qu, Ju Sun, and John Wright. Finding a sparse vector in a
subspace: Linear sparsity using alternating directions. Advances
in Neural Information Processing Systems, 27, 2014.

947

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on April 29,2025 at 08:13:56 UTC from IEEE Xplore. Restrictions apply.

[42] Prasad Raghavendra, Satish Rao, and Tselil Schramm. Strongly re-
futing random CSPs below the spectral threshold. In Proceedings of
the 49th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 121–131.
ACM, 2017.

[43] Daniel A Spielman, Huan Wang, and John Wright. Exact recovery
of sparsely-used dictionaries. In Conference on Learning Theory,
pages 37–1. JMLR Workshop and Conference Proceedings, 2012.

[44] Terence Tao. Topics in random matrix theory. Graduate Studies in
Mathematics, 2012.

[45] Roman Vershynin. High-Dimensional Probability. University of
California, Irvine, 2020.

[46] Alexander S Wein, Ahmed El Alaoui, and Cristopher Moore. The
Kikuchi hierarchy and tensor PCA. In 2019 IEEE 60th Annual
Symposium on Foundations of Computer Science (FOCS), pages 1446–
1468. IEEE, 2019.

[47] Ilias Zadik, Min Jae Song, Alexander S Wein, and Joan Bruna.
Lattice-Based Methods Surpass Sum-of-Squares in Clustering. In
Conference on Learning Theory, pages 1247–1248. PMLR, 2022.

948

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on April 29,2025 at 08:13:56 UTC from IEEE Xplore. Restrictions apply.

