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Abstract—Many natural Markov chains fail to mix to their
stationary distribution in polynomially many steps. Often, this
slow mixing is inevitable since it is computationally intractable
to sample from their stationary measure.

Nevertheless, Markov chains can be shown to always converge
quickly to measures that are locally stationary, i.e., measures
that don’t change over a small number of steps. These locally
stationary measures are analogous to local minima in continuous
optimization, while stationary measures correspond to global
minima.

While locally stationary measures can be statistically far from
stationary measures, do they enjoy provable theoretical guaran-
tees that have algorithmic implications? We study this question
in this work and demonstrate three algorithmic applications of
locally stationary measures:

1) We show that Glauber dynamics on the hardcore model
can be used to find large independent sets in triangle-free
graphs of bounded degree.

2) We prove that Glauber dynamics on the Ising model
defined by a spiked matrix model finds a vector with
constant correlation with the planted spike.

3) We show that for sufficiently large constant signal-to-noise
ratio, Glauber dynamics on the Ising model finds a vector
that has constant correlation with the hidden community
vector.

In other words, Glauber dynamics subsumes the spectral method
for spiked Wigner and community detection, by weakly recovering
the planted spike.

The full version of this paper can be found on arXiv (arXiv
ID: 2405.20849).

Index Terms—sampling, inference, spiked Wigner, stochastic
block model, Ising model, statistical physics

I. INTRODUCTION

Markov chains are a fundamental algorithmic primitive that

are widely applied towards sampling and counting tasks. There

is a rich body of literature devoted to understanding worst-

case mixing times of Markov chains, i.e., the number of

steps required for the distribution of the chain to approach

its stationary measure started from an arbitrary initialization.

For some highlights in this area, see, e.g., the contents and

references in [1]–[5].

A.R. is grateful for the support of an Akamai Presidential Fellowship.
D.X.W. is grateful for the support of NSF Graduate Research Fellowship
DGE-146752.

Unfortunately, many natural Markov chains fail to mix

rapidly from worst-case initializations, in that it takes a super-

polynomial number of steps to reach stationarity. Structurally,

this is due to the presence of cuts in the state space with

very small conductance. Often, slow mixing is inevitable since

sampling from the stationary measure is known to be compu-

tationally hard (say NP-hard); see, e.g., [6]–[8]. Nevertheless,

it has been empirically observed that certain simple and local

Markov chains like Glauber dynamics succeed at optimization

and inference tasks even when they are not known to mix,

such as finding satisfying assignments to SAT formulas [9],

[10], and clustering stochastic block models [11], [12]. This

suggests that local Markov chains like Glauber dynamics can

have algorithmic applications, even if they fail to mix rapidly,

which raises our main line of inquiry.

Question I.1. What is the long-term behavior of Markov

chains that do not mix rapidly? How can slow-mixing Markov

chains be harnessed for optimization and inference?

To lay out the motivation, it is useful to draw an analogy

to continuous optimization. Gradient descent, the canonical

algorithm in optimization, converges efficiently to a global

minimum if the objective function and parameter space is

convex. However, non-convex objective functions and param-

eter spaces come up often both in theory and practice, and

finding global minima can even be provably intractable. On the

other hand, gradient descent can be shown to always converge

quickly to a local minimum, or more precisely, a first-order

stationary point. Moreover, these local minima are useful in

practice, and can admit non-trivial theoretical guarantees. See

[13] for a comprehensive coverage of analyzing gradient-

based optimization methods, and see, e.g., [14]–[17] and the

references therein for non-trivial theoretical guarantees on

local minima of gradient descent in the context of machine

learning.

Analogously, in the context of sampling, certain random

walks can be shown to mix rapidly to their stationary mea-

sures. However, other random walks can also be shown to

mix slowly from worst-case initializations; these are akin to

the “hard” nonconvex optimization problems. Despite this,

one can show that any Markov chain satisfying fairly generic

conditions converges to analogs of local minima that we term
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locally stationary distributions (see Definition I.2). Intuitively,

a locally stationary distribution corresponds to the stationary

measure conditioned on a subset of states that are sparsely

connected to the rest of the state space under the Markov

chain.

This raises the question of whether these locally station-

ary measures obey theoretical guarantees that are useful for

solving problems in optimization or inference.

A. Locally stationary distributions

Let P be the transition matrix of a time-reversible Markov

chain on a state space Ω, where P [x, y] denotes the transition

probability from x to y. Let π be a stationary distribution w.r.t.

P .

Analogous to local minima in optimization, a locally sta-

tionary measure ν is one started at which the Markov chain P
remains nearly stationary, i.e., makes little progress. We will

use the KL divergence to the stationary distribution, denoted

KL(ν∥π), as a measure of progress. This leads to the following

definition of an ε-locally stationary measure.

Definition I.2. A probability measure ν on Ω with density f
relative to π is said to be ε-locally stationary with respect to

P if

E(f, log f) :=
∑

x,y∈Ω

P [x, y] · (f(x)− f(y)) · log f(x)

f(y)
⩽ ε

The Dirichlet form E(f, log f) measures the rate at which

the Markov chain progresses towards the stationary distribu-

tion. In particular, for a continuous-time version of the Markov

chain P , if νt denotes the measure at time t, we have the

following well-known fact [18]:

d

dt
KL(νt∥π) = −E(ft, log ft).

As an immediate consequence, we observe that the Markov

chain is typically on ε-locally stationary measures over time.

Formally, we have the following claim.

Theorem I.3. Fix a time-reversible Markov chain P with a

stationary measure π, any starting distribution ν0, and ε, δ >

0. Let T = 1
δε · log

(
1

πmin

)
. Then, for a time t ∼ [0, T ] chosen

uniformly at random, the distribution νt at time t is ε-locally

stationary with respect to P with probability at least 1− δ.

The main conceptual contribution of our work is the

following meta-principle for showing that locally stationary

distributions solve optimization and inference problems.

Prove that sampling from the true stationary distri-

bution solves the optimization or inference problem

of interest, and additionally, does so for “local”

reasons.

This principle is best illustrated by discussing our algorithmic

applications of locally stationary distributions.

Independent sets in triangle-free graphs. It is easy to see

that any graph G on n vertices with degree bounded by d
has an independent set of size n

d+1 , a bound which is tight

for the union of (d + 1)-sized cliques. Ajtai, Komlós, and

Szemerédi [19] showed that when G is triangle-free, the size

of the maximum independent set guaranteed to exist increases

to Ω
(
n · log d

d

)
. Shearer [20] gave an alternate proof which

pins down the leading constant to 1 − od(1) and relaxes the

assumption of bounded maximum degree to bounded average

degree.

It is also well-known that a uniformly random independent

set in a triangle-free graph of maximum degree d has expected

size at least Ω
(
n · log d

d

)
; see, e.g., [21, Proposition 1, Page

272]. Hence, it is natural to wonder whether Glauber dynamics

with respect to the uniform measure over independent sets

finds such a large independent set. From a given independent

set I ¦ V , the transitions of Glauber dynamics can be

described as follows:

1) Sample a uniformly random vertex v ∈ V .

2) If I ∪{v} is an independent set, then go to I ′ = I ∪{v}
with probability 1/2 and I ′ = I \ {v} with probability

1/2.

3) If I ∪ {v} is not an independent set, go to I ′ = I \ {v}
with probability 1.

Notably, this Markov chain requires exp(Ω(n)) steps to mix

[22] as soon as d ⩾ 6. In fact, the problem of sampling a

uniformly random independent set on a graph of maximum

degree d becomes NP-hard [6], [7] in this regime, even if

triangle-freeness is assumed [23].

Despite these hardness results for the corresponding sam-

pling problems, we show that the above Markov chain can be

used to find independent sets of size Ω
(
n · log d

d

)
in triangle-

free graphs of maximum degree bounded by d. Specifically,

we show the following result.

Theorem I.4. Let G be a triangle-free graph on n vertices

with maximum degree bounded by d. Let I be an independent

set in G that arises from Glauber dynamics run for O
(
nd4
)

time. Then the expected size of I is at least
1−od(1)

4 · n · log d
d .

Remark I.5. In fact, one can prove that Glauber dynamics at

“fugacity” 1
log d finds an independent set of size (1− od(1)) ·

n · log d
d by combining our proof method with that of [24].

As mentioned before, we know that the expected size

of a uniformly random independent set satisfies the above

lower bound. However, the Glauber dynamics chain does not

mix rapidly, and hence does not produce samples from the

truly uniform distribution. Instead, it samples from a locally

stationary distribution with respect to the Markov chain. Our

key insight is that the same proof also goes through for an

independent set sampled from a locally stationary distribution

with respect to Glauber dynamics.

To give a sense of how local stationarity is used, we briefly

discuss the proof. The proof from [21] that the expected size

of a uniformly random independent set Ω
(
n · log d

d

)
argues

that for any vertex v, and for any pinning xv∪N(v) of the

independent set outside v and its neighbors, either:
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• the uniform distribution conditioned on the pinning

chooses v with probability ≳ log d
d , or

• it chooses ≳ log d neighbors of v in expectation.

Thus, each vertex can be charged Ω
(

log d
d

)
vertices on average

in the independent set. Observe that the above sketch of the

argument goes through even if the distribution is not truly

uniform but merely has conditional marginals matching the

uniform distribution, which is a property we can show holds

for locally stationary distributions (Lemma III.5).

Using similar arguments, one can establish that given a

triangle-free graph with maximum degree d, Glauber dynamics

run for poly(n) many steps on the antiferromagnetic Ising

model on G with inverse temperature 1√
d

recovers a cut of

relative size 1
2 +Ω

(
1√
d

)
.

Weak recovery in spiked models. Beyond independent

sets, we also study the performance of Glauber dynamics

for statistical inference tasks. Consider the central class of

Bayesian models for principal component analysis (PCA)

known as spiked random matrix models, which consist of a

matrix M ∈ R
n×n given by

M = λ
↑

signal
strength

· vv¦
↑

signal

+ W
↑

noise

.

The general algorithmic question is to approximately recover

the signal (a unit vector v) under appropriate assumptions

about the noise (W ) and the signal strength (λ). More pre-

cisely:

Problem I.6 (Weak recovery in spiked matrix models). For a

unit norm signal vector v ∈ R
n, signal strength λ ∈ R, and

noise matrix W ∈ R
n×n, given M = λ · vv¦ + W , give an

efficient algorithm to extract a unit norm estimate v̂ such that

ïv, v̂ð ⩾ Ω(1).

In the situation where W is a Wigner matrix, this model,

known as the spiked Wigner model, has been a subject of

extensive study. The work of [25] determined that once λ > 1,

a spectral algorithm based on computing the top eigenvector

succeeds at weak recovery. There is a fairly large body of work

on the spiked Wigner model, towards characterizing optimal

estimation error, efficient algorithms and its generalizations to

rank larger than one [26]–[33]. When the prior distribution

over v is the uniform distribution over
{
± 1√

n

}n

and S
n−1,

there are efficient algorithms that even achieve the maximum

information-theoretically achievable correlation |ïv, v̂ð|, based

on approximate message passing [34], [35], and algorithmic

stochastic localization [36].

In the case where the prior distribution is on the hypercube,

given the matrix M , this posterior is described by an Ising

model — a probability distribution µβM over {±1}n defined

by the following proportionality relation for a suitably chosen

β > 1:

µβM (x) ∝ exp( 12 ïx, βMxð) for all x ∈ {±1}n.

Sampling from the above posterior distribution is desir-

able as it achieves the maximum information-theoretically

achievable correlation. The canonical algorithm for sampling

is to run the Glauber dynamics Markov chain, but unfortu-

nately, provable guarantees for Glauber dynamics are currently

lacking. Thus, a natural question en route is: does Glauber

dynamics for the Ising model µβM weakly recover the signal

in polynomial-time?

We make progress towards answering this question affir-

matively in this work by showing that Glauber dynamics at

a slightly higher temperature than the posterior distribution

succeeds for a broad family of settings.

Formally, we show the following result:

Theorem I.7. Let W be a matrix with κ ¯ W ¯ 1−κ, and v
a unit vector with ∥v∥∞ ⩽ L/

√
n for some positive constant

L. Let P denote the kernel of the Glauber dynamics chain

with stationary distribution µW+λvv¦ , and x0 an arbitrary

point on {±1}n. There exists a large enough constant λ > 0
such that for T = Θ̃(n4), and for t ∼ [0, T ], with probability

1− o(1) we have:

Ex∼P tδx0
[|ïx, vð|] ⩾

(
1

L
· κ exp

(
− 1

κ

)
− o(1)

)
· √n .

A natural approach to recover the signal v from the matrix

M is the spectral method, which amounts to computing (even

approximately) the eigenvector corresponding to the largest

eigenvalue for the matrix M . At a high-level, the above

theorem demonstrates that Glauber dynamics can simulate the

spectral method in certain regimes. We further expect Glauber

to achieve weak recovery when run for T = n1+o(1) steps,

but we leave this open as a direction for future improvement.

Remark I.8. The above model of choice captures several

commonly considered models of study in the algorithms and

complexity of statistical inference, such as the spiked Wigner

model [25], and random/planted 2XOR (see, e.g., [37] and the

references within).

Remark I.9. In the Rademacher spiked Wigner model, where

W ∼ GOE(n) and v ∼
{
± 1√

n

}n

, the posterior has the form

Pr[v|M ] ∝ exp
(
−n

2

∥∥M − λvv¦
∥∥2
F

)
∝ exp

(
λn

2
· v¦Mv

)
.

The above is an Ising model, and suggests Glauber dynamics

as a natural algorithm for weak recover. We note that the Ising

model we shall analyze will be a higher temperature version

of the above, that is, a distribution with density proportional to

exp
(

βn
2 · v¦Mv

)
for some β < λ (as opposed to the “cor-

rect” value λ). Interestingly, such recovery guarantees were

not previously known, even if one information theoretically

samples from the higher temperature Ising model.

Stochastic block model. Another case of interest is one

where the Ising model M arises from a stochastic block model.

To describe this result, we first begin by defining the two-

community stochastic block model.
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Definition I.10 (2-community stochastic block model). Let

d, λ ∈ R be fixed parameters such that λ2 ⩽ d. The

distribution SBM(n, d, λ) is defined over pairs (σ,G) ∈
{±1}n × {0, 1}n×n generated as follows.

Let σ ∈ {±1}n be a signal vector drawn uniformly at

random (i.e. the prior is uniform). Given σ, we draw a

random graph G by including an edge between u, v ∈ [n]

independently with probability d+λ
√
d

n if σ(u) = σ(v), and

with probability d−λ
√
d

n otherwise.

In a general stochastic block model, the signal vector σ

can be over a larger finite alphabet [q], and the probability of

including an edge between u, v ∈ [n] is an arbitrary function

of σ(u), σ(v). In this work, we will use the term stochastic

block model (SBM) to refer exclusively to the special case of

two communities as defined above.

Remark I.11. The 2-community stochastic block model can

be viewed as a special case of a spiked matrix model where

M is a highly sparse matrix. Due to the sparsity of M , this

spiked matrix model falls outside the scope of Theorem I.7,

as the “noise” part fails to satisfy the spectral bound.

The weak recovery problem for stochastic block model is

that of recovering a labelling σ̂ given the graph G such that

σ̂ has non-trivial correlation with the true signal σ. More

precisely, an algorithm for weak recovery is required to find

a σ̂ such that 1
n |ïσ̂,σð| ⩾ Ω(1).

Starting with the work of Decelle, Krzakala, Moore, &

Zdeborova [38] that posited broad conjectures about these

models, an extensive body of work has emerged over the past

decade. For the case of 2 communities, [38] posited that weak-

recovery is possible if and only if the signal strength λ2 > 1.

This coincides with the Kesten–Stigum threshold, a threshold

for broadcast processes on trees studied in the works of Kesten

and Stigum [39], [40]. The works of Mossel, Neeman, &

Sly [41] and Massoulié [42] confirmed the algorithmic side,

namely that weak recovery can be solved efficiently above the

KS threshold with a spectral algorithm, while [43] showed

impossibility below the threshold. We refer the reader to the

survey of Abbe [44] for a detailed treatment of the literature

on community detection.

We show that Glauber dynamics succeeds at weak recovery

when the signal strength is a constant factor above the Kesten–

Stigum threshold.

Theorem I.12. There exist constants λ0, β, c > 0 such that

for all λ satisfying |λ| ⩾ λ0, for (σ,G) ∼ SBM(n, d, λ),
with probability 1− o(1) over the randomness of (σ,G), the

following holds.

Let P denote the kernel of Glauber dynamics with stationary

distribution µ β√
d
(AG− d

n
11¦) and x0 an arbitrary point on

{±1}n. For T = Θ̃
(
n4+od(1)

)
, and for t ∼ [0, T ], with

probability 1− o(1), we have:

Ex∼P tδx0
[|ïx,σð|] > cn.

Remark I.13. Similar to Remark I.9, the posterior distribution

σ|G to solve the recovery problem in the stochastic block

model is an Ising model (see, e.g., [45, Eq. (7)]):

Pr[σ|G] ∝
∏

ij∈E(G)

(
d+ λ

√
d

d− λ
√
d

)(1+σiσj)/2

·
∏

ij /∈E(G)

(
1− d+λ

√
d

n

1− d−λ
√
d

n

)(1+σiσj)/2

For large d, the Ising model that we analyze is approximately

equal to a higher temperature version of the above true

posterior.

Although spectral algorithms for weak recovery were al-

ready known in all the cases listed above, understanding the

power of Glauber dynamics is interesting in its own right. It

is arguably a more natural algorithm than spectral methods in

the context of a Bayesian estimation problem like stochastic

block models. In particular, Glauber dynamics remains locally

consistent with the underlying probabilistic model at every ver-

tex. On the other hand, a spectral algorithm that computes the

top eigenvector maximizes a global objective, while crudely

approximating the local features of the probabilistic model.

Finally, our analysis for spiked models establishes a di-

rect correspondence between locally stationary measures for

Glauber dynamics and fixed points of a Markov chain over

the one-dimensional real line R (related to the restricted

Gaussian dynamics Markov chain). This correspondence may

pave the way for a much tighter analysis to establish that

Glauber dynamics achieves information theoretically optimal

recovery in some of these models. To elucidate further on this

correspondence, we will give a brief technical overview here.

B. Technical overview

In Section III, we derive a few basic properties of locally-

stationary measures. This is followed by the result on inde-

pendent sets presented in Section IV as a warmup. We omit

the proofs of Theorems I.7 and I.12, and refer the reader to

the full version of the paper for details.

In this technical overview, we will focus on the inference

problem in spiked matrix models. For a matrix M ∈ R
n×n and

a vector h ∈ R
n, we will use µM,h to denote the distribution

over {±1}n defined as

µM,h(x) ∝ exp( 12 ïx,Mxð+ ïh, xð),
and µM to denote the distribution µM,0.

Consider the stationary measure µM for a spiked matrix

M = λvv¦ + W . We outline the proofs of Theorems I.7

and I.12 here, which consist of two parts.

• First, we show that locally stationary distributions with

respect to Glauber dynamics over {±1}n are also locally

stationary with respect to the restricted Gaussian dynam-

ics Markov chain.

• Next, we show that samples from locally stationary

distributions for RGD achieve weak recovery.
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Let us first recall the definitions of Glauber dynamics and

Restricted Gaussian dynamics for Ising models.

Definition I.14 (Glauber dynamics). Glauber dynamics with

respect to a distribution π over {±1}n is a Markov chain on

{±1}n, where a transition from x is given by the following:

• Sample index i uniformly from [n].

• Transition to x·i with probability
π(x·i)

π(x)+π(x·i) , and stay

at x otherwise. Here, x·i denotes x with the ith bit

flipped.

Definition I.15 (Restricted Gaussian dynamics; cf. [46]–[48]).

Consider the joint random variable (x, z) where x ∼ µM ,

and z|x := (λïv,xð +
√
λg) · v for g ∼ N (0, 1). Restricted

Gaussian dynamics (RGD) is a Markov chain on {±1}n where

for any x, the transition to x′ is sampled as follows:

• Sample z|x.

• Sample x′|z.

Remark I.16. By definition, the above Markov chains are

ergodic and reversible with respect to π and µM respectively,

and so asymptotically converge to them as their stationary

distributions.

Remark I.17. We should think of z|x as being a noisy

surrogate for how well x correlates with the hidden direction

v.

Informally, we prove the following correspondence be-

tween locally stationary distributions for Glauber dynamics

and locally stationary distributions for RGD. In fact, this

correspondence is a consequence of a more generic statement;

refer to Lemma III.8 for details.

Lemma I.18 (Informal version of Lemma III.8). Let ν be

a distribution over {±1}n that is ε-locally stationary under

Glauber dynamics for µM . Suppose for every z ∈ R, Glauber

dynamics for the distribution of x|z is “well-expanding”, and

log 1
µM (x) ⩽ poly(n) for all x ∈ {±1}n, then ν is ε ·poly(n)-

locally stationary under restricted Gaussian dynamics.

To conclude that ν is locally stationary under restricted

Gaussian dynamics, it suffices to verify the structural prop-

erties of µM . The lower bound on the minimum probability

follows from upper and lower bounds on the values that the

Hamiltonian can achieve. To show that Glauber dynamics for

x|z is well-expanding, we must investigate the structure of

this distribution further. A simple calculation reveals that the

distribution of x|z is, in fact, the Ising model µW,z . In the

setting of Theorem I.7, where the spectral diameter of W is

bounded by 1, prior works [48]–[51] prove that µW,z always

satisfies a “modified log-Sobolev inequality” (our relevant

notion of “well-expanding”). In the setting of Theorem I.12,

where W is a centered stochastic block model, a similar result

is proved in a companion paper [52].

Remark I.19. This decomposition of µM into a mixture of

other Ising models is well-known in the literature by the name

Hubbard–Stratonovich transformation [53]; see also [54].

In summary, we showed if ν is locally stationary with

respect to Glauber dynamics, then it is also locally stationary

for the RGD chain

x → z|x → x′|z.
Thus, it suffices to prove that Ex∼ν |ïx, vð| is bounded away

from 0 for any distribution ν that is locally stationary for RGD.

The two ingredients that go into proving this are:

• A generic principle that says: if ν is locally stationary

for a Markov chain P , then for any bounded function f ,

|Ex∼νf(x)−Ex∼Pνf(x)| is small (Corollary III.3).

• If the correlation of a distribution ν is too close to 0,

then a single step of RGD causes a significant boost in

correlation, which means ν cannot be locally stationary.

In particular, for f(x) = |ïx, vð|, if Ex∼νf(x) is too

close to 0, then Ex∼Pνf(x)−Ex∼νf(x) is nontrivially

large, which means any locally stationary distribution ν
must achieve large correlation.

See Section 5.2 of the full version of the paper for the details

of this argument.

C. Related work

Motivated by statistical physics, the phenomenon of

metastability of random walks has been extensively studied.

We refer the reader to the monograph by Bovier & Hollander

[55] for related literature. The notion of metastability in [55]

appears to be a slightly stricter notion than local stability, and

thus does not generically hold for all reversible Markov chains.

In the context of sampling distributions over a continuous

domain, Balasubramanian, Chewi, Erdogdu, Salim & Zhang

[56] showed that the Langevin Monte Carlo algorithm always

outputs a sample from a distribution whose relative Fisher

information is small. This is the continuous sampling analog

of convergence of gradient descent to approximate first-order

stationary points. Building on these ideas, Cheng, Wang,

Zhang & Zhu [57] study the notion of conditional mixing for

Langevin and Glauber dynamics and apply it to efficiently

sample from Gaussian mixtures.

Our analysis of Glauber dynamics borrows ideas from a

recent line of works on sampling from Ising models. Glauber

dynamics for an Ising model defined by a matrix M was

shown to mix quickly if eigenvalues of M lie within an

interval of length 1 [50], [51]. This is sharp, as evidenced

by the Curie–Weiss model M = β
n11

¦. Stronger evidence

for hardness of sampling beyond this spectral criterion was

recently provided by Kunisky [58], based on a reduction to a

certain statistical hypothesis testing problem. Koehler, Lee &

Risteski [54] devised more sophisticated algorithms based on

simulated tempering and variational inference to sample from

Ising models when they have constantly many eigenvalues

outside an interval of length 1.

Besides the question of fast mixing and metastability, the

problem of how well MCMC-based algorithms perform for op-

timization and inference tasks was recently studied in several

works. Chen, Mossel & Zadik [59] proved that when initialized

at the empty set, natural Metropolis chains on cliques fail
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to find cliques of sublinear size in polynomial time, even

if such a clique is planted inside the Erdős–Rényi random

graph G(n, 1/2). This is despite there being an abundance

of algorithms which can recover a planted clique of size

down to O(
√
n). Nevertheless, MCMC-based algorithms were

redeemed in a more recent work of Gheissari, Jagannath & Xu

[60] using a more carefully designed chain and initialization.

In a recent work, Sellke [61] proved that low-temperature

Langevin dynamics achieves the conjectured computational

threshold for optimizing pure spherical spin glass models.

D. Open problems

We conclude with several open directions, which we believe

may be amenable to the framework of locally stationary

distributions.

Bayesian inference via MCMC. First, there is the direction

of pushing our results further in the setting of SBM. To set the

scene, let π(x) ∝ exp(H(x)) be the true posterior for SBM,

where H(x) is the SBM Hamiltonian (see Remark I.13 for

an explicit formula). It is well known that optimal recovery is

achieved information theoretically by sampling from π (see,

e.g., [45, Section 4]). However, it takes exponential time to

mix to π from a worst-case initialization. On the other hand, in

Theorem I.12, we achieve weak recovery by running Glauber

dynamics on the density πβ(x) ∝ exp(βH(x)) for some

(constant) β strictly smaller than 1. It is natural to investigate

whether a sampling algorithm based on simulated annealing,

i.e. running Glauber dynamics by varying the temperature over

time, can succeed at sampling from π. Our main result can

be viewed as a modest step in this direction, as we show

that running the chain for poly(n) steps at a mismatched

temperature already gives a warm start for correlation.

Problem I.20 (Optimal recovery for stochastic block model).

Can an instance of simulated annealing sample from π?

Computationally optimal inference. The k-community

stochastic block model is known to undergo an information-

computation gap when k ⩾ 5 (see, e.g., [21]). Specifically,

for every k ⩾ 5, there exists a choice of degree d and

signal-to-noise ratio λ for which weak recovery is information-

theoretically possible, but likely impossible for efficient al-

gorithms [62]. This gap admits the construction of SBM

instances where weak recovery is tractable, but information-

theoretically optimal recovery is intractable to efficient algo-

rithms.

Example I.21. Consider a 10-community block model ob-

tained by taking two disjoint 5-community block model

graphs, and planting a sparse bisection between them. The

planted bisection should be sparse enough so it is clearly

detectable to efficient algorithms. However, the parameters

d and λ for the 5-community models are chosen to be in

the intractable regime. An information-theoretically optimal

algorithm achieves weak recovery within each 5-community

model. At the same time, algorithms for the 2-community

block model achieve weak recovery in the 10-community

model, since they can find the planted bisection, and cor-

rectly classify vertices as belonging to either {1, 2, 3, 4, 5} or

{6, 7, 8, 9, 10}.

In settings such as the above, information-theoretically

optimal inference is hard, but weak recovery is still tractable.

This motivates the study of computationally optimal inference

algorithms — algorithms that achieve the best guarantees

possible in polynomial time. For such problems, the Glauber

dynamics chain must necessarily fail to mix rapidly to the

posterior distribution, but perhaps the locally stationary dis-

tribution it samples from can achieve the computationally

optimal recovery guarantees?

Problem I.22 (Computationally optimal inference). Is (an-

nealed) Glauber dynamics a computationally optimal algo-

rithm for the k-community SBM and, more generally, for

random CSPs with planted solutions?

Metastable states. Local stationarity is a generic property

of any time-reversible Markov chain, so a priori there is no

reason to expect that a locally stationary distribution ν has

any nice properties. For example, if we run the Markov chain

for T steps, Theorem I.3 guarantees an ε-locally stationary

distribution ν where ε = O(1/T ), and the simple random

walk on the n-vertex cycle graph demonstrates that this is tight

if T = o(n2). This suggests the following natural questions.

Suppose the stationary distribution π is a a Gibbs distribution

on {±1}n. Under what additional structural assumptions on

π can we both obtain ε = o(1/T ) for sufficiently large

T = poly(n) and endow ν with a physical or geometric

interpretation?

The notion of metastable states for Gibbs distributions in

statistical physics [55] suggests a conceptual path forward

towards this goal. In particular, one might hope to show that

a locally stationary distribution is close to a metastable state,

i.e. a conditional Gibbs distribution restricted to a metastable

set of configurations.

Problem I.23 (Metastability). Suppose π is a Gibbs distribu-

tion which has a metastable subset S with exponentially small

conductance. Let ν be the locally-stationary distribution after

running Glauber (or Langevin) dynamics for poly(n) steps

with uniform initialization in S. Is ν close to the conditional

Gibbs distribution πS , e.g., KL(ν∥πS) = o(1)?

For a concrete setting, suppose π is a spherical spin glass

in the shattering regime [63]. Can one show that in poly(n)
time, Langevin dynamics with uniform initialization remains

stuck in the clusters identified there?

Cavity method. The cavity method, and the related replica

method, originated in physics to predict the properties of

various Gibbs distributions. Some striking achievements of

this heuristic in producing accurate predictions are the Parisi

formula [64], [65], and the k-SAT satisfiability threshold [66]–

[68]. It was also employed in the work of Decelle, Krazakala,

Moore, & Zdeborová [38] to conjecture the Kesten–Stigum

threshold as the computational threshold for SBM.
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Of particular interest to us are the works of Coja-Oghlan,

Krzakala, Perkins & Zdeborová [69]–[71], that characterize the

recovery rate that the optimal estimator, namely sampling from

the Gibbs distribution, achieves for various planted constraint

satisfaction problems. Their proofs use fairly minimal proper-

ties of the Gibbs distribution. More concretely, for a graph G
and an assignment x, let HG(x) be a Hamiltonian, and let πG

be the corresponding Gibbs distribution. Their proofs rely on

the following properties satisfied by Gibbs distributions.

• (Gibbs ratios) For any graph G and any vertex v:

πG(x)

πG\v(x)
∝ exp(HG(x)−HG\v(x)),

• (Approximate independence) For random G and v, the

marginals of the neighbors of v are approximately inde-

pendent in πG\v .

If one can show that a family of locally stationary distribu-

tions also satisfy the Gibbs ratios up to a multiplicative error

and approximate independence on a random graph G, then

one could hope to port over the cavity method predictions and

their rigorous proofs in a black-box fashion.

Problem I.24 (Cavity method). Let {νG}G∈graphs be a family

of locally stationary distributions where νG arises from run-

ning the Glauber dynamics for πG for time-T initialized at

the uniform distribution. For a random graph G and random

vertex v, do νG and νG\v satisfy, up to small error, the Gibbs

ratios and approximate independence properties?

Beyond average-case models. Our work proves that Glauber

dynamics recovers planted spikes when the input matrix has

a clean “signal + noise” structure. Recently, there has been

a flurry of work on inference in semirandom models; see,

e.g., [72], [73] and the references within, where it is possible

to extract the hidden signal using semidefinite programming-

based algorithms. A natural direction is to investigate whether

Glauber dynamics solves semirandom inference problems.

Problem I.25 (Semirandom models). Does Glauber dynamics

succeed at finding solutions to semirandom planted CSPs, or

large cliques in semirandom graphs with planted cliques as is

done in the works of [73] and [72] respectively?

In a similar vein, semidefinite programming has been phe-

nomenally successful at solving dense CSPs, and more gener-

ally CSPs on graphs with low threshold-rank [74]. A reason

to believe that local algorithms perform well is Theorem I.7,

where we show that Glauber dynamics can recover rank-1

spikes in threshold-rank-1 matrices.

Problem I.26 (CSPs on low threshold-rank graphs). Does

running Glauber dynamics give a PTAS for Max Cut on a

dense graph?

II. PRELIMINARIES

We begin by setting up some notation.

• Let P be the transition matrix of a time-reversible Markov

chain on state space Ω with stationary distribution π,

where P [i, j] denotes the transition probability from i to

j. Let Pt = exp(−t(I −P )) denote the time-t transition

kernel.

• For a distribution ν absolutely continuous with respect to

π, we use f(x) := dν
dπ (x) to refer to its relative density

to π.

• We use νt to denote Ptν, and we assume that νt is

absolutely continuous with respect to π throughout. In

particular, we write ft(x) :=
dνt

dπ (x) to denote its relative

density to π;

• We use m(ν) := Ex∼νx to denote the mean of ν.

• We use y ∼P x when y is chosen as a random neighbor

of x according to transition probabilities given by P . We

drop the subscript P from the ∼ when the Markov chain

is clear from context.

Remark II.1. The way to think of the time-t transition kernel

Pt for a Markov chain with kernel P on a discrete space is

via the process: sample t ∼ Poi(t) and take t steps using P .

We will require the following simple consequence of the

definition of total variation distance.

Fact II.2. For any pair of distributions ν and π on Ω, and

any function f : Ω → R, we have

|Eνf −Eπf | ⩽ (fmax − fmin) · dTV(ν, π).

Definition II.3 (Dirichlet form). For functions f, g : Ω → R,

and x, y ∈ Ω, the Dirichlet form of f and g with respect to P
is:

EP (f, g) := Ex∼πEy∼Px(f(x)− f(y)) · (g(x)− g(y)) .

We drop the P in the subscript when it is clear from context.

Remark II.4. When we use the Glauber dynamics chain for

a distribution π on a hypercube, we use Eπ to denote the

corresponding Dirichlet form.

The Dirichlet form measures the rate at which a Markov

chain makes progress towards the stationary distribution. The

following is one way of articulating this notion; see, e.g., [18].

Fact II.5. d
dtKL(νt∥π) = −E(ft, log ft) =

−Ex∼πEy∼x(ft(x)− ft(y)) · log ft(x)
ft(y)

.

Definition II.6 (Modified log-Sobolev inequality). We say

P satisfies a modified log-Sobolev inequality (MLSI) with

constant C if for any function f : Ω → R>0,

EP (f, log f) ⩾ C · Ent[f ].
Here, Ent[f ] := Eπ[f log f ] − Eπf logEπf is the entropy

functional. In particular, CMLSI is the best (largest) such

constant C.

We will need the following fact concerning the MLSI for

product measures.

Fact II.7 (see e.g. [75, Lemma 2.5]). Let π be a distribution

over {±1}n with independent coordinates. Then CMLSI(π) ⩾
1/n.
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Remark II.8. It is well known that the KL divergence to the

stationary distribution decays exponentially at a rate dictated

by CMLSI (see [18, Theorem 2.4] for more details):

KL(νt∥π) ⩽ KL(ν0∥π) · exp (−CMLSIt) .

Measure decompositions. Some of the key properties of

locally stationary distributions rely on the notion of a measure

decomposition. These can be defined in great generality, but

we will restrict our attention to distributions on subsets of Rn

for concreteness.

Definition II.9 (Measure decomposition). Let π be a distribu-

tion on R
n. Let ρ be a mixture distribution, also on R

n, which

indexes into a family of mixture components {πz}z∈Rn . We

say that (ρ, πz) is a measure decomposition for π if

π = Ez∼ρπz .

One should think of the mixture components πz as being

“simpler” distributions than the original measure π. Not all

measure decompositions are useful; there is always a trivial

measure decomposition where the mixture ρ is exactly π and

the simpler distributions πz are just Dirac masses at z.

Associated to each measure decomposition is a natural

Markov chain; see, e.g., [48, Definition 6].

Definition II.10 (Markov chain associated to a measure de-

composition). Given a measure decomposition π = Ez∼ρπz ,

its associated Markov chain is defined by

x → z|x → x′|z.

Notably, Glauber dynamics and restricted Gaussian dynam-

ics can both be viewed as the associated Markov chain to

certain measure decompositions. The relevant decomposition

for Glauber dynamics represents π as the mixture of its

conditional marginals.

Remark II.11. Measure decompositions constructed using

stochastic localization have recently been used to prove func-

tional inequalities for a wide class of Ising models [48], [50],

[52].

Symmetric KL divergence. A useful potential function for

us is the symmetric KL divergence.

Definition II.12. For a pair of distributions π and ν on Ω, we

define their symmetric KL divergence as:

SKL(π, ν) := KL(ν∥π) + KL(π∥ν).

Observation II.13. For any π and ν, setting f to be the

density of ν with respect to π, we have

SKL(π, ν) =
1

2
·Ex,y∼π

[
(f(x)− f(y)) · log f(x)

f(y)

]
.

Observe that the above quantity is the Dirichlet form for the

trivial “one-step” Markov chain with transition matrix 1π¦

with stationary distribution π, which we shall denote K(π).

We will also require the following inequality between the

KL divergence and symmetric KL divergence, which we prove

in the full version of the paper.

Lemma II.14. Let ν be an arbitrary distribution with density

f with respect to π, and τ such that τ > maxx∈Ω log f(x)
or τ > maxx∈Ω log 1

f(x) . Then, the symmetric KL divergence

can be bounded in terms of the KL divergence as follows.

SKL(π, ν) ⩽ (6 + 12τ) ·KL(ν∥π) .
III. PROPERTIES OF LOCALLY STATIONARY

DISTRIBUTIONS

We record some useful properties of locally stationary

distributions below.

Random walks yield locally-stationary measures at a

typical time. The following is a generic statement about any

time-reversible Markov chain achieving a locally stationary

distribution.

Lemma III.1. For any distribution ν, any Markov chain

transition kernel P with stationary distribution π and any

T > 0, for t chosen uniformly at random in [0, T ]:

Et∼[0,T ]EP (ft, log ft) ⩽
KL(ν∥π)

T
⩽

log 1
πmin

T
. (1)

Proof. By Fact II.5,

0 ⩽ KL(νT ∥π)

= KL(ν∥π)−
∫ T

0

E(ft, log ft) dt

= KL(ν∥π)− T ·Et∼[0,T ]E(ft, log ft)

⩽ log
1

πmin
− T ·Et∼[0,T ]E(ft, log ft).

Rearranging the above gives us the desired statement.

A simple consequence of Lemma III.1 and Markov’s in-

equality is that for most times in [0, T ], νt is indeed locally

stationary.

Theorem I.3. Fix a time-reversible Markov chain P with a

stationary measure π, any starting distribution ν0, and ε, δ >

0. Let T = 1
δε · log

(
1

πmin

)
. Then, for a time t ∼ [0, T ] chosen

uniformly at random, the distribution νt at time t is ε-locally

stationary with respect to P with probability at least 1− δ.

a) Stationarity over small time-scales.: We will also re-

quire the observation that if the Dirichlet form at a distribution

is small, so too is the total variation distance between it and

the distribution obtained after one step of the Markov chain.

Lemma III.2. Let P be a reversible Markov chain with

stationary distribution π, ν an arbitrary distribution, and f
its density relative to π. Then,

EP (f, log f) ⩾ 2 ·KL(Pν∥ν) ⩾ 4 · dTV(ν, Pν)
2
.

Proof. We recall the definition of the Dirichlet form,

EP (f, log f) = E x∼π
y∼Px

(f(x)− f(y)) log
f(x)

f(y)
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= 2 ·E x∼π
y∼Px

f(x) log

(
f(x)

f(y)

)

= 2 ·E x∼ν
y∼Px

log

(
f(x)

f(y)

)

= 2 · (Ex∼ν log f(x)−Ey∼Pν log f(y)) ,

where the second line used the reversibility of P . Adding and

subtracting a term, we may neatly express the above in terms

of KL divergences as

EP (f, log f) = 2 ·
[(

Ex∼ν log f(x)−Ey∼Pν log
dPν

dπ
(y)

)

+

(
Ey∼Pν log

dPν

dπ
(y)−Ey∼Pν log f(y)

)]

= 2 · [(KL(ν∥π)−KL(Pν∥π)) + KL(Pν∥ν)]
⩾ 2 ·KL(Pν∥ν) ⩾ 4 · dTV(Pν, ν)

2

as desired, where the second-to-last inequality follows from

the fact that the KL divergence to the stationary distribution is

non-increasing with time, and the last inequality is Pinsker’s.

Consequently, averages of bounded functions do not change

much after one step of the Markov chain

Corollary III.3. Let φ : Ω → R be a bounded function on

the state space of a Markov chain P , and ν be an ε-locally

stationary measure. Then,

|Ex∼ν [φ(x)]−Ex∼Pν [φ(x)]| ⩽ ∥φ∥∞ · √ε.

Locally stationary measures are close to stationary mea-

sures on small neighborhoods. As their name suggests,

locally stationary distributions locally resemble the true sta-

tionary distribution. For example, typical samples from the

locally stationary distribution approximately satisfies the de-

tailed balance condition. Even though we do not explicitly

employ this in any applications, we include it here as it gives

the impression of a fundamental structural property of locally

stationary distributions.

Lemma III.4. For an ε-locally stationary distribution ν with

relative density f , and for x ∼ ν and y ∼ x, with probability

at least 1− δ, we have
f(x)
f(y) = 1±O

(√
ε
δ

)
, where δ > 2ε.

Proof. Since E(f, log f) < ε,

Ex∼πEy∼x(f(x)− f(y)) · log f(x)

f(y)
< ε

Ex∼νEy∼x

(
1− f(y)

f(x)

)
· log f(x)

f(y)
< ε

Since the random variable at hand is always nonnegative,

we can apply Markov’s inequality, which tells us that with

probability at least 1− δ:
(
1− f(y)

f(x)

)
· log f(x)

f(y)
<

ε

δ
.

The claim then follows since the above inequality is violated

if
f(x)
f(y) deviates from 1 by more than a constant multiple of√
ε
δ .

Formally, the following can be abstracted out of the proof

of Theorem I.4:

Lemma III.5. Let P be a Glauber dynamics chain for a

distribution µ on {±1}n, and let ν be an ε-locally stationary

measure with respect to P for some ε > 0. For a subset of

coordinates W ¢ [n], and an assignment xW of coordinates

outside W , let PW,xW
denote the Glauber dynamics chain

of µ|xW . Suppose for every choice of W and xW , we have

CMLSI

(
PW,xW

)
⩾ C, then:

ExW∼ν

[
dTV

(
ν|xW

, π|xW

)]
⩽

1

C
· √ε .

Corollary III.6. In the setting of Lemma III.5, suppose φ :
{0, 1}W → R is a bounded function of xW then,

Ex∼ν [φ(xW )] ⩾ ExW
ExW∼π|x

W

[φ(xW )]− 1

C
· √ε · ∥φ∥∞ .

Local stationarity is preserved over short time-scales of the

random walk. The following lemma essentially says that if

a distribution ν is locally stationary, then so is PT ν for any

small T .

Lemma III.7. Let P be a Markov chain with stationary

distribution π, and ν an arbitrary distribution with relative

density f . Then,

EPT (f, log f) ⩽ O
(
T 3
)
· EP (f, log f).

Proof. Suppose we pick x ∼ π, y1 ∼P x, then y2 ∼P y1.

Then, because π is stationary with respect to P ,

EP (f, log f) = E

[
(f(x)− f(y1)) log

f(x)

f(y1)

]

= E

[
(f(y1)− f(y2)) log

f(y1)

f(y2)

]
.

Therefore,

2 · EP (f, log f) = E

[
(f(x)− f(y1)) log

f(x)

f(y1)

+ (f(y1)− f(y2)) log
f(y1)

f(y2)

]

⩾
1

4
·E
[
(f(x)− f(y2)) log

f(x)

f(y2)

]

=
1

4
· EP 2(f, log f).

Here, the inequality follows from the observation that defining

d(p, q) = (p − q) log(p/q), d(p, q) + d(q, r) ⩾ 1
4 · d(p, r).

Indeed, if q ̸∈ (p, r), this is trivial, so assuming without loss

of generality that r ⩾ q ⩾ p+r
2 ⩾ p, we get that

d(p, q) ⩾

(
p+ r

2
− p

)
log

(
p+ r

2p

)
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=
1

2
· (r − p) · log

(
1

2
·
(
1 +

r

p

))

⩾
1

4
· (r − p) log

(
r

p

)
.

Applying this log T times, it follows that

EPT (f, log f) ⩽ O
(
T 3
)
· EP (f, log f).

Local stationarity can be transferred under component

MLSI. Let π = Ez∼ρπz be a measure decomposition.

In this section we prove that if Glauber dynamics is locally

stationary, so too is the Markov chain associated with the

measure decomposition, provided that the mixture components

πz all have a good MLSI constant.

Lemma III.8. Let P be the Markov chain associated to a mea-

sure decomposition π = Ez∼ρπz . Let f : {±1}n → R>0 be

any function and set τ such that minx∈{±1}n f(x) > exp(−τ)
or maxx∈{±1}n f(x) < exp(τ). For δ := infz CMLSI(πz), we

have

EP (f, log f) ⩽ O
(τ
δ

)
· Eπ(f, log f) .

Proof. We use Cn to denote the hypercube graph on vertex

set {±1}n with edge set having pairs of vertices that differ

in a single coordinate. For any nonnegative function f and

distribution π with Eπf = 1, we use f · π to denote the

distribution ν with dν
dπ (x) = f(x).

For any function f satisfying the assumption of the state-

ment, let Exy(f, log f) := (f(x) − f(y)) log f(x)
f(y) . Then we

have

Eπ(f, log f)

=
∑

{x,y}∈Cn

1

n
· π(x) · π(y)
π(x) + π(y)

· Exy(f, log f)

=
∑

{x,y}∈Cn

1

n
· Ez∼ρπz(x) ·Ez∼ρπz(y)

Ez∼ρπz(x) +Ez∼ρπz(y)
· Exy(f, log f)

⩾
∑

{x,y}∈Cn

1

n
·Ez∼ρ

[
πz(x) · πz(y)

πz(x) + πz(y)

]
· Exy(f, log f)

= Ez∼ρ [Eπz
(f, log f)] .

Above, the inequality follows from the concavity of the

function (a, b) 7→ ab
a+b in the non-negative quadrant, and all

the Dirichlet forms are with respect to the Glauber dynamics

chain.

Continuing the above calculation,

Ez∼ρ[Eπz
(f, log f)]

⩾ Ez∼ρ

[
CMLSI(πz) ·Eπz

[f ] ·KL

(
f

Eπz
f
· πz∥πz

)]

⩾ Ω

(
δ

τ

)
Ez∼ρ

[
Eπz

[f ] · SKL

(
f

Eπz
f
· πz, πz

)]

= Ω

(
δ

τ

)
Ez∼ρ

[
Ex,y∼πz

(f(x)− f(y)) log
f(x)

f(y)

]

= Ω

(
δ

τ

)
EP (f, log f) ,

where the second inequality follows by Lemma II.14 and

MLSI, and the third line follows from Observation II.13. The

claim follows.

The upshot is that we have complete freedom to select the

measure decomposition, provided we can establish an MLSI

for the components. This can be useful when it is easier to

directly analyze the consequences of local stationarity for the

associated Markov chain instead of Glauber dynamics.

IV. WARMUP: LARGE INDEPENDENT SETS IN

TRIANGLE-FREE GRAPHS

Observe that any graph G on n vertices with maximum

degree d has an independent set of size n
d+1 , a bound which

is tight for the disjoint union of (d + 1)-sized cliques. Ajtai,

Komlós, and Szemerédi [19] showed that when G is triangle-

free, the size of the maximum independent set increases to

Ω
(
n · log d

d

)
. Shearer [20] gave an alternate proof that shows

such an independent set exists with a leading constant of 1,

even if G merely has average-degree bounded by d. As a

warmup, we prove that Glauber dynamics succeeds at finding

a large independent set in O(nd4) steps.

Theorem I.4. Let G be a triangle-free graph on n vertices

with maximum degree bounded by d. Let I be an independent

set in G that arises from Glauber dynamics run for O
(
nd4
)

time. Then the expected size of I is at least
1−od(1)

4 · n · log d
d .

To prove Theorem I.4, we will need the following crude

bound on the modified log-Sobolev constant for the uniform

distribution over independent sets of a star. A short proof is

provided at the end of this section.

Lemma IV.1. Let π denote the uniform distribution over inde-

pendent sets of a star with ∆ many leaves. Then CMLSI(π) ⩾
exp(−O(∆)).

Remark IV.2. The bound can easily be made 1
poly(∆) , but we

will not need this here.

We also leverage the following simple and well-known

lemma on the local behavior of a uniformly random inde-

pendent set. For completeness, we include a short proof of

it at the end of this section, following the one provided in

Alon & Spencer [21, Proposition 1, Page 272]. Throughout

this section, we write N(v) = {u ∈ V : u ∼ v} for the open

neighborhood of v ∈ V , and N [v] = N(v)∪{v} for the closed

neighborhood.

Lemma IV.3. Let G be a triangle-free graph of maximum

degree d, and let π denote the uniform measure over indepen-

dent sets of G. For every vertex v ∈ V , define the following

real-valued score function over {0, 1}V :

φv(x) := dxv +
∑

u∈N(v)

xu. (2)

Then for every pinning τ ∈ {0, 1}N [v], we have

Ex∼π[φv(x) | xN [v]
= τ ] ⩾

log d

2
.
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The key property of this score function is that it readily

yields a lower bound on the size of an independent set x ∈
{0, 1}V . This follows from the observation that

n ·Ev∼V φv(x) ⩽ 2d ·
∑

v∈V

xv. (3)

Note that by averaging over τ ∈ {0, 1}N [v] drawn from the

marginal distribution of π induced on N [v], the conclusion of

Lemma IV.3 combined with Eq. (3) implies that a uniformly

random independent set drawn from π has expected size at

least 1
4 · n · log d

d . We observe that the same claim holds

even if the distribution over independent sets is merely locally

stationary with respect to Glauber dynamics, rather than being

truly uniform.

Proof of Theorem I.4. As discussed above, a direct applica-

tion of the law of total expectation combined with Lemma IV.3

yields the first claim concerning the expected size of a uni-

formly random independent set. We now turn to the second

claim. Let T ⩾ 0 be a parameter to be determined later, and

for every 0 ⩽ t ⩽ T , let νt denote the distribution over

independent sets after running Glauber dynamics for time-t
from an arbitrary initialization. Our goal is to establish the

lower bound

Et∼[0,T ]Eνt
Ev∼V φv(x) ⩾

log d

2
− ε (4)

for 0 < ε < od(1), which when combined with Eq. (3)

immediately implies that the expected size of the independent

set discovered by Glauber dynamics is
(

1−od(1)
4

)
· n · log d

d .

For the purpose of analysis, if ν is any distribution over

independent sets, we shall think of x ∼ ν as being sampled

in the following alternate way.

1) For a fixed vertex v, sample x
N [v]

from the marginal

distribution induced by ν on N [v]. For each w ∈ N(v)
that has a neighbor in the independent set x

N [v]
, pin

xw to 0, since it is deterministically equal to 0 in the

conditional measure ν|x
N [v]

.

2) If the number of unpinned vertices at this stage is strictly

larger than log d, sample xv from its corresponding

conditional marginal distribution.

3) Let U be the set of remaining unpinned vertices. Sample

xU ∼ ν|xU .

For any vertex v ∈ V , we have

Ex∼νφv(x) = EU,xU |vEν|xU
φv(x)

⩾ EU,xU |v
[
Eπ|xU

φv(x)− 2d · dTV(ν|xU , π|xU )
]

⩾
log d

2
− 2d ·EU,xU |vdTV(ν|xU , π|xU ), (5)

Note that the random subset of vertices U , as well as the

boundary condition xU , are all drawn from the above process

with respect to ν, not π. The first inequality follows by apply-

ing Fact II.2 along with 2d-boundedness and nonnegativity of

the score function φv . For the second inequality, note that if

v ∈ U , then we may invoke Lemma IV.3. Now suppose v /∈ U .

If v is pinned 1, then φv(x) = d. If v is pinned 0, then by

triangle-freeness, xu = 1 with probability 1/2 independently

for all u ∈ U . Since |U | ⩾ log d, the lower bound follows.

In the rest of this argument, we will show that when t ∼
[0, T ], ν is equal to νt and v is chosen uniformly at random,

we can achieve a strong upper bound on

EtEvEU,xU |vdTV(νt|xU , π|xU ) .

For the rest of this proof, we shall abbreviate νt|xU and

π|xU as ν′t and π′, respectively. Furthermore, let f ′
t denote

the relative density of ν′t with respect to π′. By Pinsker’s

inequality, we can bound the above by:

EtEvEU,xU |v
√
KL(ν′t∥π′) ⩽

√
EtEvEU,xU |vKL(ν′t∥π′) .

We focus our attention on showing an upper bound on the

term in the square-root.

EtEv∼V EU,xU |vKL(ν′t∥π′)

⩽ EtEvEU,xU |v
1

CMLSI(π′)
Eπ′(f ′

t , log f
′
t)

⩽ O(d) ·EtEvEU,xU |vEπ′(f ′
t , log f

′
t)

⩽ O(d2) ·EtEπ(ft, log ft)
⩽ O(d2) · n

T
.

In the above, the first inequality uses the definition of

CMLSI(π
′). For the second inequality, note that almost surely,

either G[U ] is a star centered at v with at most log d many

leaves, or G[U ] consists entirely of isolated vertices due to

pinning v. In either case, we have CMLSI(π
′) ⩾ Ω

(
1
d

)
by

appropriately applying Fact II.7 or Lemma IV.1. The third

inequality is based on comparing Dirichlet forms. The final

inequality is a direct application of Lemma III.1. Plugging in

the above into Eq. (5) and setting T = O(nd4/ε2), we get

Eq. (4) as desired.

Remark IV.4. Using a similar argument, one can establish

a similar result for Max-Cut on triangle-free graphs with

maximum degree d. In particular, Glauber dynamics run for

poly(n) many steps on the antiferromagnetic Ising model on

G with inverse temperature 1√
d

finds a cut of size 1
2+Ω

(
1√
d

)
.

Remark IV.5. Similar to the proof of weak recovery, a proof

of the above can also be recast from the perspective of

transferring local stationarity from Glauber dynamics to a new

Markov chain that is more amenable to analysis (Lemma III.8).

A single step of this new Markov chain picks a random vertex

v, pins all spins except the ones on v and its neighbors, and

then rerandomizes the spins on v and its neighbors according

to the conditional distribution. The associated measure decom-

position is that which picks a random vertex and conditions on

everything except the vertex and its neighbors — as desired,

the component measures indeed satisfy polynomial MLSIs.

The “local proof” that the stationary distribution attains large

objective value then immediately implies that one step of this

Markov chain significantly increases the expected size of an

independent set, if the expected size was much smaller than
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Ω
(

log d
d · n

)
. Corollary III.3 implies that this is not possible

for a locally stationary distribution, a contradiction.

However, we do not present the proof in this form because

as stated, it would lose an additional factor of n in the running

time of the algorithm.1

Proof of Lemma IV.3. Let S ¦ N(v) denote the subset of

neighbors of v which are not adjacent to any vertex of the

independent set x
N [v]

= τ , and write k = |S|. Observe that

the distribution of xN [v] conditioned on x
N [v]

= τ is given

by choosing the singleton {v} with probability 1
2k+1

, or a

uniformly random subset of S with the remaining probability.

Hence,

Ex∼π[φv(x) | xN [v]
= τ ] =

d

2k + 1
+

k

2
· 2k

2k + 1
.

The above expression is always at least log d
2 for any choice

of nonnegative integer k.

Proof of Lemma IV.1. By [76, Corollary A.4] and [18, Propo-

sition 3.6], we have that CMLSI(π) ⩾
1−2π∗

log( 1

π∗ −1)
·λ(π), where

λ(π) denotes the spectral gap of Glauber dynamics for π,

and π∗ = minx:π(x)>0 π(x) = 1
2∆+1 . Hence, it suffices to

establish that λ(π) ⩾ exp(−O(∆)). For this, we appeal to the

simple fact that random walk on a connected graph with n
vertices has spectral gap at least 1/poly(n). A comparison of

Dirichlet forms between Glauber dynamics and simple random

walk on the n = 2∆ + 1 many independent sets of G yields

the desired lower bound.
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