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Abstract—Many natural Markov chains fail to mix to their
stationary distribution in polynomially many steps. Often, this
slow mixing is inevitable since it is computationally intractable
to sample from their stationary measure.

Nevertheless, Markov chains can be shown to always converge
quickly to measures that are locally stationary, i.e., measures
that don’t change over a small number of steps. These locally
stationary measures are analogous to local minima in continuous
optimization, while stationary measures correspond to global
minima.

While locally stationary measures can be statistically far from
stationary measures, do they enjoy provable theoretical guaran-
tees that have algorithmic implications? We study this question
in this work and demonstrate three algorithmic applications of
locally stationary measures:

1) We show that Glauber dynamics on the hardcore model
can be used to find large independent sets in triangle-free
graphs of bounded degree.

2) We prove that Glauber dynamics on the Ising model
defined by a spiked matrix model finds a vector with
constant correlation with the planted spike.

3) We show that for sufficiently large constant signal-to-noise
ratio, Glauber dynamics on the Ising model finds a vector
that has constant correlation with the hidden community
vector.

In other words, Glauber dynamics subsumes the spectral method
for spiked Wigner and community detection, by weakly recovering
the planted spike.

The full version of this paper can be found on arXiv (arXiv
ID: 2405.20849).

Index Terms—sampling, inference, spiked Wigner, stochastic
block model, Ising model, statistical physics

[. INTRODUCTION

Markov chains are a fundamental algorithmic primitive that
are widely applied towards sampling and counting tasks. There
is a rich body of literature devoted to understanding worst-
case mixing times of Markov chains, i.e., the number of
steps required for the distribution of the chain to approach
its stationary measure started from an arbitrary initialization.
For some highlights in this area, see, e.g., the contents and
references in [1]-[5].

AR. is grateful for the support of an Akamai Presidential Fellowship.
D.X.W. is grateful for the support of NSF Graduate Research Fellowship
DGE-146752.

Unfortunately, many natural Markov chains fail to mix
rapidly from worst-case initializations, in that it takes a super-
polynomial number of steps to reach stationarity. Structurally,
this is due to the presence of cuts in the state space with
very small conductance. Often, slow mixing is inevitable since
sampling from the stationary measure is known to be compu-
tationally hard (say NP-hard); see, e.g., [6]-[8]. Nevertheless,
it has been empirically observed that certain simple and local
Markov chains like Glauber dynamics succeed at optimization
and inference tasks even when they are not known to mix,
such as finding satisfying assignments to SAT formulas [9],
[10], and clustering stochastic block models [11], [12]. This
suggests that local Markov chains like Glauber dynamics can
have algorithmic applications, even if they fail to mix rapidly,
which raises our main line of inquiry.

Question I.1. What is the long-term behavior of Markov
chains that do not mix rapidly? How can slow-mixing Markov
chains be harnessed for optimization and inference?

To lay out the motivation, it is useful to draw an analogy
to continuous optimization. Gradient descent, the canonical
algorithm in optimization, converges efficiently to a global
minimum if the objective function and parameter space is
convex. However, non-convex objective functions and param-
eter spaces come up often both in theory and practice, and
finding global minima can even be provably intractable. On the
other hand, gradient descent can be shown to always converge
quickly to a local minimum, or more precisely, a first-order
stationary point. Moreover, these local minima are useful in
practice, and can admit non-trivial theoretical guarantees. See
[13] for a comprehensive coverage of analyzing gradient-
based optimization methods, and see, e.g., [14]-[17] and the
references therein for non-trivial theoretical guarantees on
local minima of gradient descent in the context of machine
learning.

Analogously, in the context of sampling, certain random
walks can be shown to mix rapidly to their stationary mea-
sures. However, other random walks can also be shown to
mix slowly from worst-case initializations; these are akin to
the “hard” nonconvex optimization problems. Despite this,
one can show that any Markov chain satisfying fairly generic
conditions converges to analogs of local minima that we term
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locally stationary distributions (see Definition 1.2). Intuitively,
a locally stationary distribution corresponds to the stationary
measure conditioned on a subset of states that are sparsely
connected to the rest of the state space under the Markov
chain.

This raises the question of whether these locally station-
ary measures obey theoretical guarantees that are useful for
solving problems in optimization or inference.

A. Locally stationary distributions

Let P be the transition matrix of a time-reversible Markov
chain on a state space ), where P[z,y] denotes the transition
probability from x to y. Let 7 be a stationary distribution w.r.t.
P.

Analogous to local minima in optimization, a locally sta-
tionary measure v is one started at which the Markov chain P
remains nearly stationary, i.e., makes little progress. We will
use the KL divergence to the stationary distribution, denoted
KL(v||7), as a measure of progress. This leads to the following
definition of an e-locally stationary measure.

Definition I.2. A probability measure v on 2 with density f
relative to 7 is said to be e-locally stationary with respect to
P if

E(flog f) = > Pla,yl- (f(x) = f(y)) - log

z,yeN

I _

fy) S°

The Dirichlet form E(f,log f) measures the rate at which
the Markov chain progresses towards the stationary distribu-
tion. In particular, for a continuous-time version of the Markov
chain P, if v; denotes the measure at time ¢, we have the
following well-known fact [18]:

d
EKL(Z&”TP) = —&(fi,log f1).
As an immediate consequence, we observe that the Markov

chain is typically on e-locally stationary measures over time.
Formally, we have the following claim.

Theorem 1.3. Fix a time-reversible Markov chain P with a
stationary measure T, ang starting distribution vy, and €,0 >

0. Let T = § -log ( L), Then, for a time t ~ [0, T)] chosen

Tmin
uniformly at random, the distribution vy at time t is e-locally

stationary with respect to P with probability at least 1 — 6.

The main conceptual contribution of our work is the
following meta-principle for showing that locally stationary
distributions solve optimization and inference problems.

Prove that sampling from the true stationary distri-
bution solves the optimization or inference problem
of interest, and additionally, does so for “local”
reasons.
This principle is best illustrated by discussing our algorithmic
applications of locally stationary distributions.

Independent sets in triangle-free graphs. It is easy to see
that any graph G on n vertices with degree bounded by d

has an independent set of size ;7, a bound which is tight
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for the union of (d + 1)-sized cliques. Ajtai, Komlds, and
Szemerédi [19] showed that when G is triangle-free, the size
of the maximum independent set guaranteed to exist increases
to Qn - loed

). Shearer [20] gave an alternate proof which
pins down the leading constant to 1 — 04(1) and relaxes the
assumption of bounded maximum degree to bounded average
degree.

It is also well-known that a uniformly random independent
set in a triangle-free graph of maximum degree d has expected
% ; see, e.g., [21, Proposition 1, Page
272]. Hence, it is natural to wonder whether Glauber dynamics
with respect to the uniform measure over independent sets
finds such a large independent set. From a given independent
set I C V, the transitions of Glauber dynamics can be
described as follows:

size at least Q(n

1) Sample a uniformly random vertex v € V.

2) If IU{v} is an independent set, then go to I’ = TU{v}
with probability 1/2 and I’ = I \ {v} with probability
1/2.

3) If TU {v} is not an independent set, go to I’ = I\ {v}
with probability 1.

Notably, this Markov chain requires exp(§2(n)) steps to mix
[22] as soon as d > 6. In fact, the problem of sampling a
uniformly random independent set on a graph of maximum
degree d becomes NP-hard [6], [7] in this regime, even if
triangle-freeness is assumed [23].

Despite these hardness results for the corresponding sam-
pling problems, we show that the above Markov chain can be
used to find independent sets of size Q(n . % in triangle-
free graphs of maximum degree bounded by d. Specifically,
we show the following result.

Theorem 1.4. Let G be a triangle-free graph on n vertices
with maximum degree bounded by d. Let I be an independent
set in G that arises from Glauber dynamics run for O(nd4)

time. Then the expected size of I is at least 1_%’1(1) - %.

Remark LS. In fact, one can prove that Glauber dynamics at

“fugacity” ;15 finds an independent set of size (1 — 04(1)) -
n- % by combining our proof method with that of [24].

As mentioned before, we know that the expected size
of a uniformly random independent set satisfies the above
lower bound. However, the Glauber dynamics chain does not
mix rapidly, and hence does not produce samples from the
truly uniform distribution. Instead, it samples from a locally
stationary distribution with respect to the Markov chain. Our
key insight is that the same proof also goes through for an
independent set sampled from a locally stationary distribution
with respect to Glauber dynamics.

To give a sense of how local stationarity is used, we briefly
discuss the proof. The proof from [21] that the expected size
of a uniformly random independent set Q(n 105(1 argues

that for any vertex v, and for any pinning z,un(y,) Of the
independent set outside v and its neighbors, either:
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o the uniform distribution conditioned on the pinning
chooses v with probability 2> %, or
« it chooses = log d neighbors of v in expectation.

Thus, each vertex can be charged 2 (%) vertices on average

in the independent set. Observe that the above sketch of the
argument goes through even if the distribution is not truly
uniform but merely has conditional marginals matching the
uniform distribution, which is a property we can show holds
for locally stationary distributions (Lemma IIL.5).

Using similar arguments, one can establish that given a
triangle-free graph with maximum degree d, Glauber dynamics
run for poly(n) many steps on the antiferromagnetic Ising
model on G with inverse temperature —= recovers a cut of

Vd
. . 1 1
relative size 5 + €2 (ﬁ)

Weak recovery in spiked models. Beyond independent
sets, we also study the performance of Glauber dynamics
for statistical inference tasks. Consider the central class of
Bayesian models for principal component analysis (PCA)
known as spiked random matrix models, which consist of a
matrix M € R™*" given by

M= X\ o'+ W.
T T

signal
strength

signal noise

The general algorithmic question is to approximately recover
the signal (a unit vector v) under appropriate assumptions
about the noise (W) and the signal strength (\). More pre-
cisely:

Problem 1.6 (Weak recovery in spiked matrix models). For a
unit norm signal vector v € R", signal strength A € R, and
noise matrix W € R™*™, given M = X - w! + W, give an
efficient algorithm to extract a unit norm estimate ¥ such that
(v,0) = Q(1).

In the situation where W is a Wigner matrix, this model,
known as the spiked Wigner model, has been a subject of
extensive study. The work of [25] determined that once A > 1,
a spectral algorithm based on computing the top eigenvector
succeeds at weak recovery. There is a fairly large body of work
on the spiked Wigner model, towards characterizing optimal
estimation error, efficient algorithms and its generalizations to
rank larger than one [26]-[33]. When the priorndistribution
over v is the uniform distribution over {:I:ﬁ} and S"1,
there are efficient algorithms that even achieve the maximum
information-theoretically achievable correlation |(v, v)|, based
on approximate message passing [34], [35], and algorithmic
stochastic localization [36].

In the case where the prior distribution is on the hypercube,
given the matrix M, this posterior is described by an Ising
model — a probability distribution pzas over {£1}" defined
by the following proportionality relation for a suitably chosen
g >1:

pan () o exp(3(z, BMz)) for all x € {£1}".
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Sampling from the above posterior distribution is desir-
able as it achieves the maximum information-theoretically
achievable correlation. The canonical algorithm for sampling
is to run the Glauber dynamics Markov chain, but unfortu-
nately, provable guarantees for Glauber dynamics are currently
lacking. Thus, a natural question en route is: does Glauber
dynamics for the Ising model 15y weakly recover the signal
in polynomial-time?

We make progress towards answering this question affir-
matively in this work by showing that Glauber dynamics at
a slightly higher temperature than the posterior distribution
succeeds for a broad family of settings.

Formally, we show the following result:

Theorem 1.7. Let W be a matrix with k < W <X 1—k, and v
a unit vector with ||v||cc < L/+/n for some positive constant
L. Let P denote the kernel of the Glauber dynamics chain
with stationary distribution [ty | x,,T, and xo an arbitrary
point on {+1}™. There exists a large enough constant A > 0
such that for T = O(n*), and for t ~ [0, T), with probability

1—o(1) we have:
(1 eon(-2)-e0) .

E K exp

A natural approach to recover the signal v from the matrix
M is the spectral method, which amounts to computing (even
approximately) the eigenvector corresponding to the largest
eigenvalue for the matrix M. At a high-level, the above
theorem demonstrates that Glauber dynamics can simulate the
spectral method in certain regimes. We further expect Glauber
to achieve weak recovery when run for 7 = n't°(1) steps,
but we leave this open as a direction for future improvement.

>

=

Eonpis,, (@, 0)]]

Remark I.8. The above model of choice captures several
commonly considered models of study in the algorithms and
complexity of statistical inference, such as the spiked Wigner
model [25], and random/planted 2XOR (see, e.g., [37] and the
references within).

Remark 1.9. In the Rademacher

7slpiked Wigner model, where
W ~ GOE(n) and v ~ {ﬁ:

} , the posterior has the form

1
n

o
Pr{v|M] o exp (—% | A — )\UUTH2F) o exp <)\?n . vT]Vh;) .

The above is an Ising model, and suggests Glauber dynamics
as a natural algorithm for weak recover. We note that the Ising
model we shall analyze will be a higher temperature version
of the above, that is, a distribution with density proportional to
exp (%Z M v) for some 5 < A (as opposed to the “cor-
rect” value A). Interestingly, such recovery guarantees were
not previously known, even if one information theoretically
samples from the higher temperature Ising model.

Stochastic block model. Another case of interest is one
where the Ising model M arises from a stochastic block model.
To describe this result, we first begin by defining the two-
community stochastic block model.
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Definition I.10 (2-community stochastic block model). Let
d,A € R be fixed parameters such that \> < d. The
distribution SBM(n,d, \) is defined over pairs (o,G) €
{£1}" x {0,1}"*" generated as follows.

Let o0 € {£1}" be a signal vector drawn uniformly at
random (i.e. the prior is uniform). Given o, we draw a
random graph G by including an edge between u,v € [n]
independently with probability dEAVd o(u) = o(v), and

n
d—\d

with probability “=2*¢ otherwise.

In a general stochastic block model, the signal vector o
can be over a larger finite alphabet [g], and the probability of
including an edge between u,v € [n] is an arbitrary function
of o(u),o(v). In this work, we will use the term stochastic
block model (SBM) to refer exclusively to the special case of
two communities as defined above.

Remark I.11. The 2-community stochastic block model can
be viewed as a special case of a spiked matrix model where
M 1is a highly sparse matrix. Due to the sparsity of M, this
spiked matrix model falls outside the scope of Theorem 1.7,
as the “noise” part fails to satisfy the spectral bound.

The weak recovery problem for stochastic block model is
that of recovering a labelling & given the graph G such that
o has non-trivial correlation with the true signal o. More
precisely, an algorithm for weak recovery is required to find
a ¢ such that 1[(7,0)| > Q(1).

Starting with the work of Decelle, Krzakala, Moore, &
Zdeborova [38] that posited broad conjectures about these
models, an extensive body of work has emerged over the past
decade. For the case of 2 communities, [38] posited that weak-
recovery is possible if and only if the signal strength A > 1.
This coincides with the Kesten—Stigum threshold, a threshold
for broadcast processes on trees studied in the works of Kesten
and Stigum [39], [40]. The works of Mossel, Neeman, &
Sly [41] and Massoulié [42] confirmed the algorithmic side,
namely that weak recovery can be solved efficiently above the
KS threshold with a spectral algorithm, while [43] showed
impossibility below the threshold. We refer the reader to the
survey of Abbe [44] for a detailed treatment of the literature
on community detection.

We show that Glauber dynamics succeeds at weak recovery
when the signal strength is a constant factor above the Kesten—
Stigum threshold.

Theorem 1.12. There exist constants Ao, 3,c¢ > 0 such that
Sfor all X\ satisfying |\| = Ao, for (0,G) ~ SBM(n,d,\),
with probability 1 — o(1) over the randomness of (o, G), the
following holds.

Let P denote the kernel of Glauber dynamics with stationary

distribution p s (Ag—2117) and xy an arbitrary point on
Vd _n
{£1}" For T = O©(n**°¢W), and for t ~ [0,T], with

probability 1 — o(1), we have:

Egzpts,, [[(x, 0)|] > cn.
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Remark 1.13. Similar to Remark 1.9, the posterior distribution
o|G to solve the recovery problem in the stochastic block
model is an Ising model (see, e.g., [45, Eq. (7)]):

Pr[o|G] x H

1+oi0;)/2
(d + A\/a)( /
iEE(G)

d—\d
><1+mj>/2

iJ’éEE(G)<

For large d, the Ising model that we analyze is approximately
equal to a higher temperature version of the above true
posterior.

1-—

1_ d—\d

d+2V/d
n

Although spectral algorithms for weak recovery were al-
ready known in all the cases listed above, understanding the
power of Glauber dynamics is interesting in its own right. It
is arguably a more natural algorithm than spectral methods in
the context of a Bayesian estimation problem like stochastic
block models. In particular, Glauber dynamics remains locally
consistent with the underlying probabilistic model at every ver-
tex. On the other hand, a spectral algorithm that computes the
top eigenvector maximizes a global objective, while crudely
approximating the local features of the probabilistic model.

Finally, our analysis for spiked models establishes a di-
rect correspondence between locally stationary measures for
Glauber dynamics and fixed points of a Markov chain over
the one-dimensional real line R (related to the restricted
Gaussian dynamics Markov chain). This correspondence may
pave the way for a much tighter analysis to establish that
Glauber dynamics achieves information theoretically optimal
recovery in some of these models. To elucidate further on this
correspondence, we will give a brief technical overview here.

B. Technical overview

In Section III, we derive a few basic properties of locally-
stationary measures. This is followed by the result on inde-
pendent sets presented in Section IV as a warmup. We omit
the proofs of Theorems 1.7 and 1.12, and refer the reader to
the full version of the paper for details.

In this technical overview, we will focus on the inference
problem in spiked matrix models. For a matrix M € R™*™ and
a vector h € R”, we will use (57, to denote the distribution
over {£1}" defined as

parn(z) o exp(%(gm]%x) + (h,x)),

and pps to denote the distribution gz .

Consider the stationary measure pps for a spiked matrix
M = Mvw" + W. We outline the proofs of Theorems 1.7
and 1.12 here, which consist of two parts.

o First, we show that locally stationary distributions with
respect to Glauber dynamics over {£1}" are also locally
stationary with respect to the restricted Gaussian dynam-
ics Markov chain.

o Next, we show that samples from locally stationary
distributions for RGD achieve weak recovery.

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on April 29,2025 at 08:16:58 UTC from IEEE Xplore. Restrictions apply.



Let us first recall the definitions of Glauber dynamics and
Restricted Gaussian dynamics for Ising models.

Definition 1.14 (Glauber dynamics). Glauber dynamics with
respect to a distribution 7 over {£1}" is a Markov chain on
{£1}"™, where a transition from z is given by the following:

« Sample index ¢ uniformly from [n].

o Transition to £’ with probability #:12@1), and stay
at x otherwise. Here, £®* denotes x with the ith bit
flipped.

Definition 1.15 (Restricted Gaussian dynamics; cf. [46]-[48]).
Consider the joint random variable (x,z) where x ~ pupy,
and z|x = (A\(v,z) +V\g) - v for g ~ N(0,1). Restricted
Gaussian dynamics (RGD) is a Markov chain on {£1}"™ where
for any z, the transition to @’ is sampled as follows:

o Sample z|z.

o Sample z'|z.

Remark 1.16. By definition, the above Markov chains are
ergodic and reversible with respect to m and jps respectively,
and so asymptotically converge to them as their stationary
distributions.

Remark L.17. We should think of z|x as being a noisy
surrogate for how well o correlates with the hidden direction
.

Informally, we prove the following correspondence be-
tween locally stationary distributions for Glauber dynamics
and locally stationary distributions for RGD. In fact, this
correspondence is a consequence of a more generic statement;
refer to Lemma II1.8 for details.

Lemma I.18 (Informal version of Lemma II1.8). Let v be
a distribution over {£1}" that is e-locally stationary under
Glauber dynamics for jpr. Suppose for every z € R, Glauber
dynamics for the distribution of x|z is “well-expanding”, and
log —L—~ < poly(n) for all x € {1}, then v is €-poly(n)-

was (@)
locally stationary under restricted Gaussian dynamics.

To conclude that v is locally stationary under restricted
Gaussian dynamics, it suffices to verify the structural prop-
erties of pps. The lower bound on the minimum probability
follows from upper and lower bounds on the values that the
Hamiltonian can achieve. To show that Glauber dynamics for
x|z is well-expanding, we must investigate the structure of
this distribution further. A simple calculation reveals that the
distribution of x|z is, in fact, the Ising model py, .. In the
setting of Theorem 1.7, where the spectral diameter of W is
bounded by 1, prior works [48]-[51] prove that uy, . always
satisfies a “modified log-Sobolev inequality” (our relevant
notion of “well-expanding”). In the setting of Theorem 1.12,
where W is a centered stochastic block model, a similar result
is proved in a companion paper [52].

Remark 1.19. This decomposition of s into a mixture of
other Ising models is well-known in the literature by the name
Hubbard-Stratonovich transformation [53]; see also [54].
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In summary, we showed if v is locally stationary with
respect to Glauber dynamics, then it is also locally stationary
for the RGD chain

T — z|lx — 2|2

Thus, it suffices to prove that E., |(x, v)| is bounded away
from 0 for any distribution v that is locally stationary for RGD.
The two ingredients that go into proving this are:

o A generic principle that says: if v is locally stationary
for a Markov chain P, then for any bounded function f,
|Ezmw f(x) — Egpy f(2)] is small (Corollary II1.3).

o If the correlation of a distribution v is too close to 0,
then a single step of RGD causes a significant boost in
correlation, which means v cannot be locally stationary.
In particular, for f(z) = |(z,v)], if Eg~,f(x) is too
close to 0, then Exp, f(x) — Ez~, f(x) is nontrivially
large, which means any locally stationary distribution v
must achieve large correlation.

See Section 5.2 of the full version of the paper for the details
of this argument.

C. Related work

Motivated by statistical physics, the phenomenon of
metastability of random walks has been extensively studied.
We refer the reader to the monograph by Bovier & Hollander
[55] for related literature. The notion of metastability in [55]
appears to be a slightly stricter notion than local stability, and
thus does not generically hold for all reversible Markov chains.

In the context of sampling distributions over a continuous
domain, Balasubramanian, Chewi, Erdogdu, Salim & Zhang
[56] showed that the Langevin Monte Carlo algorithm always
outputs a sample from a distribution whose relative Fisher
information is small. This is the continuous sampling analog
of convergence of gradient descent to approximate first-order
stationary points. Building on these ideas, Cheng, Wang,
Zhang & Zhu [57] study the notion of conditional mixing for
Langevin and Glauber dynamics and apply it to efficiently
sample from Gaussian mixtures.

Our analysis of Glauber dynamics borrows ideas from a
recent line of works on sampling from Ising models. Glauber
dynamics for an Ising model defined by a matrix M was
shown to mix quickly if eigenvalues of M lie within an
interval of length 1 [50], [51]. This is sharp, as evidenced
by the Curie—Weiss model M = gllT. Stronger evidence
for hardness of sampling beyond this spectral criterion was
recently provided by Kunisky [58], based on a reduction to a
certain statistical hypothesis testing problem. Koehler, Lee &
Risteski [54] devised more sophisticated algorithms based on
simulated tempering and variational inference to sample from
Ising models when they have constantly many eigenvalues
outside an interval of length 1.

Besides the question of fast mixing and metastability, the
problem of how well MCMC-based algorithms perform for op-
timization and inference tasks was recently studied in several
works. Chen, Mossel & Zadik [59] proved that when initialized
at the empty set, natural Metropolis chains on cliques fail
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to find cliques of sublinear size in polynomial time, even
if such a clique is planted inside the Erd6s—Rényi random
graph G(n,1/2). This is despite there being an abundance
of algorithms which can recover a planted clique of size
down to O(/n). Nevertheless, MCMC-based algorithms were
redeemed in a more recent work of Gheissari, Jagannath & Xu
[60] using a more carefully designed chain and initialization.
In a recent work, Sellke [61] proved that low-temperature
Langevin dynamics achieves the conjectured computational
threshold for optimizing pure spherical spin glass models.

D. Open problems

We conclude with several open directions, which we believe
may be amenable to the framework of locally stationary
distributions.

Bayesian inference via MCMC. First, there is the direction
of pushing our results further in the setting of SBM. To set the
scene, let w(x) o< exp(H (z)) be the true posterior for SBM,
where H(x) is the SBM Hamiltonian (see Remark 1.13 for
an explicit formula). It is well known that optimal recovery is
achieved information theoretically by sampling from 7 (see,
e.g., [45, Section 4]). However, it takes exponential time to
mix to 7w from a worst-case initialization. On the other hand, in
Theorem 1.12, we achieve weak recovery by running Glauber
dynamics on the density mg(z) o exp(SH(z)) for some
(constant) S strictly smaller than 1. It is natural to investigate
whether a sampling algorithm based on simulated annealing,
i.e. running Glauber dynamics by varying the temperature over
time, can succeed at sampling from 7. Our main result can
be viewed as a modest step in this direction, as we show
that running the chain for poly(n) steps at a mismatched
temperature already gives a warm start for correlation.

Problem I.20 (Optimal recovery for stochastic block model).
Can an instance of simulated annealing sample from 7?

Computationally optimal inference. The k£-community
stochastic block model is known to undergo an information-
computation gap when k > 5 (see, e.g., [21]). Specifically,
for every k > b5, there exists a choice of degree d and
signal-to-noise ratio A for which weak recovery is information-
theoretically possible, but likely impossible for efficient al-
gorithms [62]. This gap admits the construction of SBM
instances where weak recovery is tractable, but information-
theoretically optimal recovery is intractable to efficient algo-
rithms.

Example 1.21. Consider a 10-community block model ob-
tained by taking two disjoint 5-community block model
graphs, and planting a sparse bisection between them. The
planted bisection should be sparse enough so it is clearly
detectable to efficient algorithms. However, the parameters
d and X\ for the 5-community models are chosen to be in
the intractable regime. An information-theoretically optimal
algorithm achieves weak recovery within each 5-community
model. At the same time, algorithms for the 2-community
block model achieve weak recovery in the 10-community
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model, since they can find the planted bisection, and cor-
rectly classify vertices as belonging to either {1,2,3,4,5} or
{6,7,8,9,10}.

In settings such as the above, information-theoretically
optimal inference is hard, but weak recovery is still tractable.
This motivates the study of computationally optimal inference
algorithms — algorithms that achieve the best guarantees
possible in polynomial time. For such problems, the Glauber
dynamics chain must necessarily fail to mix rapidly to the
posterior distribution, but perhaps the locally stationary dis-
tribution it samples from can achieve the computationally
optimal recovery guarantees?

Problem L.22 (Computationally optimal inference). Is (an-
nealed) Glauber dynamics a computationally optimal algo-
rithm for the k-community SBM and, more generally, for
random CSPs with planted solutions?

Metastable states. Local stationarity is a generic property
of any time-reversible Markov chain, so a priori there is no
reason to expect that a locally stationary distribution » has
any nice properties. For example, if we run the Markov chain
for T' steps, Theorem 1.3 guarantees an e-locally stationary
distribution v where ¢ = O(1/T), and the simple random
walk on the n-vertex cycle graph demonstrates that this is tight
if T = o(n?). This suggests the following natural questions.
Suppose the stationary distribution 7 is a a Gibbs distribution
on {£1}". Under what additional structural assumptions on
7w can we both obtain e o(1/T) for sufficiently large
T = poly(n) and endow v with a physical or geometric
interpretation?

The notion of metastable states for Gibbs distributions in
statistical physics [55] suggests a conceptual path forward
towards this goal. In particular, one might hope to show that
a locally stationary distribution is close to a metastable state,
i.e. a conditional Gibbs distribution restricted to a metastable
set of configurations.

Problem I.23 (Metastability). Suppose 7 is a Gibbs distribu-
tion which has a metastable subset S with exponentially small
conductance. Let v be the locally-stationary distribution after
running Glauber (or Langevin) dynamics for poly(n) steps
with uniform initialization in S. Is v close to the conditional
Gibbs distribution g, e.g., KL(v|7g) = o(1)?

For a concrete setting, suppose 7 is a spherical spin glass
in the shattering regime [63]. Can one show that in poly(n)
time, Langevin dynamics with uniform initialization remains
stuck in the clusters identified there?

Cavity method. The cavity method, and the related replica
method, originated in physics to predict the properties of
various Gibbs distributions. Some striking achievements of
this heuristic in producing accurate predictions are the Parisi
formula [64], [65], and the k-SAT satisfiability threshold [66]—
[68]. It was also employed in the work of Decelle, Krazakala,
Moore, & Zdeborova [38] to conjecture the Kesten—Stigum
threshold as the computational threshold for SBM.
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Of particular interest to us are the works of Coja-Oghlan,
Krzakala, Perkins & Zdeborova [69]-[71], that characterize the
recovery rate that the optimal estimator, namely sampling from
the Gibbs distribution, achieves for various planted constraint
satisfaction problems. Their proofs use fairly minimal proper-
ties of the Gibbs distribution. More concretely, for a graph G
and an assignment z, let H(z) be a Hamiltonian, and let 7¢
be the corresponding Gibbs distribution. Their proofs rely on
the following properties satisfied by Gibbs distributions.

« (Gibbs ratios) For any graph G and any vertex v:
7 ()

TG\v (-’75)

o (Approximate independence) For random G and v, the

marginals of the neighbors of v are approximately inde-
pendent in TG -

o exp(Hg(z) — Havo(2)),

If one can show that a family of locally stationary distribu-
tions also satisfy the Gibbs ratios up to a multiplicative error
and approximate independence on a random graph G, then
one could hope to port over the cavity method predictions and
their rigorous proofs in a black-box fashion.

Problem 1.24 (Cavity method). Let {vG }Gegraphs be a family
of locally stationary distributions where v arises from run-
ning the Glauber dynamics for 7w for time-7" initialized at
the uniform distribution. For a random graph G and random
vertex v, do vg and v\, satisfy, up to small error, the Gibbs
ratios and approximate independence properties?

Beyond average-case models. Our work proves that Glauber
dynamics recovers planted spikes when the input matrix has
a clean “signal + noise” structure. Recently, there has been
a flurry of work on inference in semirandom models; see,
e.g., [72], [73] and the references within, where it is possible
to extract the hidden signal using semidefinite programming-
based algorithms. A natural direction is to investigate whether
Glauber dynamics solves semirandom inference problems.

Problem 1.25 (Semirandom models). Does Glauber dynamics
succeed at finding solutions to semirandom planted CSPs, or
large cliques in semirandom graphs with planted cliques as is
done in the works of [73] and [72] respectively?

In a similar vein, semidefinite programming has been phe-
nomenally successful at solving dense CSPs, and more gener-
ally CSPs on graphs with low threshold-rank [74]. A reason
to believe that local algorithms perform well is Theorem 1.7,
where we show that Glauber dynamics can recover rank-1
spikes in threshold-rank-1 matrices.

Problem I1.26 (CSPs on low threshold-rank graphs). Does
running Glauber dynamics give a PTAS for Max Cut on a
dense graph?

II. PRELIMINARIES

We begin by setting up some notation.
o Let P be the transition matrix of a time-reversible Markov
chain on state space {2 with stationary distribution 7,

209

where P[i, j] denotes the transition probability from 4 to
Jj. Let P, = exp(—t(I — P)) denote the time-¢ transition
kernel.

For a distribution v absolutely continuous with respect to
S—Z(x) to refer to its relative density

m, we use f(x):
to 7.

We use 1, to denote P;v, and we assume that 1; is
absolutely continuous with respect to 7 throughout. In
particular, we write f;(z) == %(1‘) to denote its relative
density to ;

We use m(v) := E,.,@ to denote the mean of v.

We use y ~p = when y is chosen as a random neighbor
of x according to transition probabilities given by P. We
drop the subscript P from the ~ when the Markov chain
is clear from context.

Remark II.1. The way to think of the time-¢ transition kernel
P, for a Markov chain with kernel P on a discrete space is
via the process: sample ¢ ~ Poi(¢) and take ¢ steps using P.

We will require the following simple consequence of the
definition of total variation distance.

Fact IL2. For any pair of distributions v and w on 2, and
any function f : Q) — R, we have

‘Euf - E7rf| < (fmax - fmin) . dTV(V7 77)'

Definition I1.3 (Dirichlet form). For functions f,g: Q2 — R,
and z,y € €, the Dirichlet form of f and g with respect to P
is:

Ep(f,9) = BannBy~pa(f(x) — f(¥)) - (9(2) — 9(y)) -
We drop the P in the subscript when it is clear from context.

Remark II.4. When we use the Glauber dynamics chain for
a distribution 7™ on a hypercube, we use £, to denote the
corresponding Dirichlet form.

The Dirichlet form measures the rate at which a Markov
chain makes progress towards the stationary distribution. The
following is one way of articulating this notion; see, e.g., [18].

Fact IL5. SKL(vr) —&(fi,log f1)

~EorrByno(fi(@) = fi(y)) - log 1.

Definition II.6 (Modified log-Sobolev inequality). We say
P satisfies a modified log-Sobolev inequality (MLSI) with
constant C' if for any function f: Q — Ry,

Ep(f,log f) > C - Entl[f].

Here, Ent[f] = E;[flog f] — ExflogE,f is the entropy
functional. In particular, Cys1 is the best (largest) such
constant C.

We will need the following fact concerning the MLSI for
product measures.

Fact IL1.7 (see e.g. [75, Lemma 2.5]). Let 7 be a distribution
over {£1}" with independent coordinates. Then Cyipgi(m) =
1/n.
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Remark IL.8. It is well known that the KL divergence to the
stationary distribution decays exponentially at a rate dictated
by Cympst (see [18, Theorem 2.4] for more details):

KL(Vt”ﬂ') g KL(V()Hﬂ') - exp (_CMLSIt) .

Measure decompositions. Some of the key properties of
locally stationary distributions rely on the notion of a measure
decomposition. These can be defined in great generality, but
we will restrict our attention to distributions on subsets of R™
for concreteness.

Definition I1.9 (Measure decomposition). Let 7 be a distribu-
tion on R™. Let p be a mixture distribution, also on R", which
indexes into a family of mixture components {7,}.cgn. We
say that (p,7,) is a measure decomposition for 7 if

T=E, ,m,.

One should think of the mixture components 7, as being
“simpler” distributions than the original measure 7. Not all
measure decompositions are useful; there is always a trivial
measure decomposition where the mixture p is exactly 7 and
the simpler distributions 7, are just Dirac masses at z.

Associated to each measure decomposition is a natural
Markov chain; see, e.g., [48, Definition 6].

Definition I1.10 (Markov chain associated to a measure de-

composition). Given a measure decomposition 7 = E, ., 7,
its associated Markov chain is defined by

z — z|lx = 2|2

Notably, Glauber dynamics and restricted Gaussian dynam-
ics can both be viewed as the associated Markov chain to
certain measure decompositions. The relevant decomposition
for Glauber dynamics represents 7 as the mixture of its
conditional marginals.

Remark II.11. Measure decompositions constructed using
stochastic localization have recently been used to prove func-
tional inequalities for a wide class of Ising models [48], [50],
[52].

Symmetric KL divergence. A useful potential function for
us is the symmetric KL divergence.

Definition I1.12. For a pair of distributions 7 and v on {2, we
define their symmetric KL divergence as:

SKL(7,v) = KL(v||w) + KL(x||v).

Observation II.13. For any 7 and v, setting f to be the
density of v with respect to 7, we have

f(z)

f(y)

Observe that the above quantity is the Dirichlet form for the
trivial “one-step” Markov chain with transition matrix 17"
with stationary distribution 7, which we shall denote K (7).

SKL(r, ) = & - Bayer | (/(2) — f(3)) - log

We will also require the following inequality between the
KL divergence and symmetric KL divergence, which we prove
in the full version of the paper.

Lemma IL.14. Let v be an arbitrary distribution with density
f with respect to wr, and T such that T > maxgeq log f(x)
or T > maxgeq log % Then, the symmetric KL divergence
can be bounded in terms of the KL divergence as follows.

SKL(m,v) < (6 4+ 127) - KL(v||7) .

III. PROPERTIES OF LOCALLY STATIONARY
DISTRIBUTIONS

We record some useful properties of locally stationary
distributions below.

Random walks yield locally-stationary measures at a
typical time. The following is a generic statement about any
time-reversible Markov chain achieving a locally stationary
distribution.

Lemma IIL.1. For any distribution v, any Markov chain
transition kernel P with stationary distribution © and any
T > 0, for t chosen uniformly at random in [0, T):

KL(v||m log
Eij0,1Ep(fe,log ft) < (i) <

Proof. By Fact 115,
0 < KL(vr||m)
T
—KLr) ~ [ &(fulos fi de
0
=KL(v||7) - T EtN[O‘T]g(fta log f¢)
— =T Etuo.1€(ft,1og ft)-

Rearranging the above gives us the desired statement. O

1

—
< —Tmn (]
T T (D

< log

A simple consequence of Lemma IIl.1 and Markov’s in-
equality is that for most times in [0,7], v; is indeed locally
stationary.

Theorem 1.3. Fix a time-reversible Markov chain P with a
stationary measure T, any starting distribution vy, and €, >
0. Let T = 4 -log (ﬂnl]m i Then, for a time t ~ [0,T] chosen
uniformly at random, the distribution vy at time t is -locally
stationary with respect to P with probability at least 1 — 6.

a) Stationarity over small time-scales.: We will also re-
quire the observation that if the Dirichlet form at a distribution
is small, so too is the total variation distance between it and
the distribution obtained after one step of the Markov chain.

Lemma IIL.2. Let P be a reversible Markov chain with
stationary distribution w, v an arbitrary distribution, and f
its density relative to w. Then,

Ep(filog f) = 2-KL(Pv|v) > 4 - dry(v, Pv)?.

Proof. We recall the definition of the Dirichlet form,
x
Er(f,10g f) = Bz (f(z) — (1)) log L)

Yy~px

f(y)
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— 2B flo)log (1)

y~px

f
=2-E o~y log <§E’”)>
) —

=9. (Eww log f(x) — Eyp,log f(y)),

where the second line used the reversibility of P. Adding and
subtracting a term, we may neatly express the above in terms
of KL divergences as

gP(fvlogf):Q dr

<Em~y log f(x) — Ey~py, log — Py (y))

dPv
+ (EyN pvlog ——(y) — Ey~pylog f (y)) }

=2 [(KL(v|[w) = KL(Pv||T)) + KL(Pv|[v)]
> 2. KL(Pv||v) > 4 - dry(Pr,v)?

as desired, where the second-to-last inequality follows from
the fact that the KL divergence to the stationary distribution is
non-increasing with time, and the last inequality is Pinsker’s.

O

Consequently, averages of bounded functions do not change
much after one step of the Markov chain

Corollary IIL3. Let ¢ : Q — R be a bounded function on
the state space of a Markov chain P, and v be an e-locally
stationary measure. Then,

[Benw[d(2)] — Eonru[8(2)]] < [|]loo - Ve.

Locally stationary measures are close to stationary mea-
sures on small neighborhoods. As their name suggests,
locally stationary distributions locally resemble the true sta-
tionary distribution. For example, typical samples from the
locally stationary distribution approximately satisfies the de-
tailed balance condition. Even though we do not explicitly
employ this in any applications, we include it here as it gives
the impression of a fundamental structural property of locally
stationary distributions.

Lemma II1.4. For an e-locally stationary distribution v with
relative density f, and for x ~ v and y ~ x, with probability

at least 1 — 6, wehave%—liO(\/») where § > 2e¢.

Proof. Since E(f,log f) < ¢,

EorByea(f(2) - f(y)) - log jig;

E“’””EW( f(w)> o8 ) < ©

Since the random variable at hand is always nonnegative,
we can apply Markov’s inequality, which tells us that with
probability at least 1 — ¢:

<e

By S5

The claim then follows since the above inequality is violated

if % deviates from 1 by more than a constant multiple of

N 0
Formally, the following can be abstracted out of the proof
of Theorem 1.4:

Lemma IILS. Let P be a Glauber dynamics chain for a
distribution p on {£1}", and let v be an e-locally stationary
measure with respect to P for some € > 0. For a subset of
coordinates W C [n], and an assignment xy; of coordinates
outside W, let PW@W denote the Glauber dynamics chain
of p|xy. Suppose for every choice of W and xv;, we have
CMLSI(PW,mW) > C, then:

1
EIWNU [dTV (V\mwvﬂ-\zw)] < 6 . \/‘g

Corollary II1.6. In the setting of Lemma IIL5, suppose ¢ :
{0, 13" — R is a bounded function of xv then,

1
Eons [0(2w)] 2 BogBay . [0lew)] = & Ve 9l
Local stationarity is preserved over short time-scales of the
random walk. The following lemma essentially says that if

a distribution v is locally stationary, then so is PTv for any
small 7.

Lemma IIL7. Let P be a Markov chain with stationary
distribution m, and v an arbitrary distribution with relative
density f. Then,

ng(f,Ing) < @ (Tg) 5P(f710gf)

Proof. Suppose we pick * ~ 7, y; ~p x, then ys ~p ;.
Then, because 7 is stationary with respect to P,

Er(f,log f) =B | (f(z) - f(mn)) log f(ﬁ))}
— B |(fy) — () log ’;gﬂ
Therefore,
. I N f(@)
2-Ep(f,log f) =E|(f(z) — f(y1))log )
+ (f(y1) — f(y2)) log ﬁg]

> i B|(f(@) ~ 7(y2) log
1

p2(f,1og f).

Here, the inequality follows from the observation that defining

d(p,q) = (p — @) log(p/q), d(p,q) + d(g,r) > - d(p,7).
Indeed, if ¢ & (p,r), this is trivial, so assuming without loss
of generality that r > q > p;" > p, we get that

p+r p+r
> (250 _p )1
d(p,q) ( 5 p) 0g< % >
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el (7))

1
2
1
21-(r—p)log (g)

Applying this logT" times, it follows that
Epr(f,log f) <O (T?) - Ep(f,1og f). 0

Local stationarity can be transferred under component
MLSL. Let 7 = E..,m, be a measure decomposition.
In this section we prove that if Glauber dynamics is locally
stationary, so too is the Markov chain associated with the
measure decomposition, provided that the mixture components
m, all have a good MLSI constant.

Lemma II1.8. Let P be the Markov chain associated to a mea-
sure decomposition m = B, ,m,. Let [ : {£1}" — Ry be
any function and set T such that ming e (41y» f(x) > exp(—71)
or max,eq+1)n f(x) < exp(r). For § = inf, Cyrsi(72), we

have -
Ep(f,log f) < 0(5) ~Ex(filog f).

Proof. We use C,, to denote the hypercube graph on vertex
set {£1}"™ with edge set having pairs of vertices that differ
in a single coordinate. For any nonnegative function f and
distribution 7 with E;f = 1, we use f - 7 to denote the
distribution v with 9% (z) = f(x).

For any function f satisfying the assumption of the state-

ment, let £,y (f,log f) = (F(z) — (y))log 22, Then we
have
Ex(f,1og f)
1 71'(33) 7T(y)
= LN NI gz ’1
{x,%écn n m(z)+m(y) y(f.log f)
= Z % . szﬂ'z (-T) . z~p7Tz (y) ~K€acy (f, 10g f)
{z,y}eCn

E.pmz(7) + Eznpmz(y)
(2)

1 (@) 7=y | 0
> 3 B [RR G| et

{z,y}eln
=E.w [5Trz (flog f)].

Above, the inequality follows from the concavity of the
function (a,b) — a“—fb in the non-negative quadrant, and all
the Dirichlet forms are with respect to the Glauber dynamics
chain.

Continuing the above calculation,

E.plr. (f,log [)]
>2E.., |:OMLSI(7TZ) “Er, [f]- KL(Ef 7 '7Tz||77z>}

oo s1( L )

Q(é)EN [Em,wz(f(m) ~ f(y))log M}

fw)
o2 )en(rlon ). y

—_

WV

where the second inequality follows by Lemma II.14 and
MLSI, and the third line follows from Observation II.13. The
claim follows. O

The upshot is that we have complete freedom to select the
measure decomposition, provided we can establish an MLSI
for the components. This can be useful when it is easier to
directly analyze the consequences of local stationarity for the
associated Markov chain instead of Glauber dynamics.

IV. WARMUP: LARGE INDEPENDENT SETS IN
TRIANGLE-FREE GRAPHS

Observe that any graph G on n vertices with maximum
degree d has an independent set of size 774, a bound which
is tight for the disjoint union of (d + 1)-sized cliques. Ajtai,
Komlés, and Szemerédi [19] showed that when G is triangle-
free, the size of the maximum independent set increases to
Q(n- %). Shearer [20] gave an alternate proof that shows
such an independent set exists with a leading constant of 1,
even if G merely has average-degree bounded by d. As a
warmup, we prove that Glauber dynamics succeeds at finding

a large independent set in O(nd*) steps.

Theorem 1.4. Let G be a triangle-free graph on n vertices
with maximum degree bounded by d. Let I be an independent
set in G that arises from Glauber dynamics run for O(nd4)
time. Then the expected size of I is at least 1_%‘1(1) -n- %.

To prove Theorem 1.4, we will need the following crude
bound on the modified log-Sobolev constant for the uniform
distribution over independent sets of a star. A short proof is
provided at the end of this section.

Lemma IV.1. Let 7 denote the uniform distribution over inde-

pendent sets of a star with A many leaves. Then Cypsi(7) >
exp(—0(A)).

Remark IV.2. The bound can easily be made
will not need this here.

poly(A) , but we

We also leverage the following simple and well-known
lemma on the local behavior of a uniformly random inde-
pendent set. For completeness, we include a short proof of
it at the end of this section, following the one provided in
Alon & Spencer [21, Proposition 1, Page 272]. Throughout
this section, we write N(v) = {u € V : u ~ v} for the open
neighborhood of v € V, and N[v] = N(v)U{v} for the closed
neighborhood.

Lemma IV.3. Let G be a triangle-free graph of maximum
degree d, and let w denote the uniform measure over indepen-
dent sets of G. For every vertex v € V, define the following
real-valued score function over {0,1}V:

oo(x) == dx, + Z T, 2)
u€N (v)
Then for every pinning T € {0, I}W, we have
logd
5

Egrr[du(z) | TN — 7] >
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The key property of this score function is that it readily
yields a lower bound on the size of an independent set z €
{0,1}V. This follows from the observation that

n- Ev~V¢v 2d Zwv

veV

3

Note that by averaging over 7 € {0,1}"["l drawn from the
marginal distribution of 7 induced on N|[v], the conclusion of
Lemma IV.3 combined with Eq. (3) implies that a uniformly
random independent set drawn from 7 has expected size at
least 1 - n - 105 4 We observe that the same claim holds
even if the distribution over independent sets is merely locally
stationary with respect to Glauber dynamics, rather than being

truly uniform.

Proof of Theorem 1.4. As discussed above, a direct applica-
tion of the law of total expectation combined with Lemma IV.3
yields the first claim concerning the expected size of a uni-
formly random independent set. We now turn to the second
claim. Let 7" > 0 be a parameter to be determined later, and
for every 0 < t < T, let 1, denote the distribution over
independent sets after running Glauber dynamics for time-¢
from an arbitrary initialization. Our goal is to establish the
lower bound
log d

EtN[O,T]EVt EU~V¢U(m) > 9 (4)

for 0 < & < o04(1), which when combined with Eq. (3)

immediately implies that the expected size of the independent
1—0a(1)
1

set discovered by Glauber dynamics is . %.

For the purpose of analysis, if v is any distribution over
independent sets, we shall think of & ~ v as being sampled
in the following alternate way.

1) For a fixed vertex v, sample x5 TN] from the marginal

v]
distribution induced by v on Nv]. For each w € N(v)
that has a neighbor in the independent set 77, pin
x,, to 0, since it is deterministically equal to 0 in the
conditional measure v/|Ty7r

If the number of unpinned vertices at this stage is strictly
larger than logd, sample x, from its corresponding
conditional marginal distribution.

Let U be the set of remaining unpinned vertices. Sample
xy ~ vl|Eg.

2)

3)

For any vertex v € V, we have

Ezwu¢v( ) EU zg|v u\wu(bv( )
=z EU,mﬁv[ ﬂ‘ﬂ?ﬁqs’l)( x)—2d- dTV(V|wﬁ’ ﬂ—‘wﬁﬂ
logd
> 2% 24 By pdiv (g wleg), )

2
Note that the random subset of vertices U, as well as the
boundary condition xz7, are all drawn from the above process
with respect to v, not 7. The first inequality follows by apply-
ing Fact I1.2 along with 2d-boundedness and nonnegativity of
the score function ¢,. For the second inequality, note that if
v € U, then we may invoke Lemma IV.3. Now suppose v ¢ U.
If v is pinned 1, then ¢,(x) = d. If v is pinned 0, then by
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triangle-freeness, x,, = 1 with probability 1/2 independently
for all w € U. Since |U| > logd, the lower bound follows.

In the rest of this argument, we will show that when ¢t ~
[0,T7], v is equal to v¢ and v is chosen uniformly at random,
we can achieve a strong upper bound on

EtE EU :z:7|udTV(Vt|an F‘J:U)

For the rest of this proof, we shall abbreviate z/t|acﬁ and
mlzg as vy and 7', respectively. Furthermore, let f; denote
the relative density of v with respect to 7’. By Pinsker’s
inequality, we can bound the above by:

EtEUEUwfh; KL Vt||7T \/EtE ]'EUacU\vI<L(VtHTr )

We focus our attention on showing an upper bound on the
term in the square-root.

EtEvNVEU mf|vKL(Vt Hﬂ— )

1
< EtEvEU,wﬁ\U mgﬂ" (ft/a IOg ft/)

(d) : EI‘EUEU :zzf Ug ’(f£7 10g fi,{)
(d®) - Ey&x(fi,log fr)
(d?) -

NN N

O
O
O .
T

In the above, the first inequality uses the definition of
Cwmpsi(7'). For the second inequality, note that almost surely,
either G[U] is a star centered at v with at most logd many
leaves, or G[U] consists entirely of isolated vertices due to
pinning v. In either case, we have Cyrsi(7’) > Q(%) by
appropriately applying Fact II.7 or Lemma IV.1. The third
inequality is based on comparing Dirichlet forms. The final
inequality is a direct application of Lemma III.1. Plugging in
the above into Eq. (5) and setting 7 = O(nd*/e?), we get
Eq. (4) as desired. O

Remark IV4. Using a similar argument, one can establish
a similar result for Max-Cut on triangle-free graphs with
maximum degree d. In particular, Glauber dynamics run for
poly(n) many steps on the antiferromagnetic Ising model on

5 finds a cut of size %Jrﬂ(ﬁ)
Remark IV.5. Similar to the proof of weak recovery, a proof
of the above can also be recast from the perspective of
transferring local stationarity from Glauber dynamics to a new
Markov chain that is more amenable to analysis (Lemma III.8).
A single step of this new Markov chain picks a random vertex
v, pins all spins except the ones on v and its neighbors, and
then rerandomizes the spins on v and its neighbors according
to the conditional distribution. The associated measure decom-
position is that which picks a random vertex and conditions on
everything except the vertex and its neighbors — as desired,
the component measures indeed satisfy polynomial MLSIs.
The “local proof™ that the stationary distribution attains large
objective value then immediately implies that one step of this
Markov chain significantly increases the expected size of an
independent set, if the expected size was much smaller than

G with inverse temperature
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Q % n) Corollary III.3 implies that this is not possible

for a locally stationary distribution, a contradiction.

However, we do not present the proof in this form because
as stated, it would lose an additional factor of n in the running
time of the algorithm.'

Proof of Lemma IV.3. Let S C N(v) denote the subset of
neighbors of v which are not adjacent to any vertex of the
independent set @y = 7, and write k = |S|. Observe that
the distribution of @y, conditioned on TN = T is given
by choosing the singleton {v} with probability ﬁ, or a
uniformly random subset of S’ with the remaining probability.

Hence,

d ko 2k
Eorldo(@) | o5 = 1] = 2k +1 Ty ok +1°
logd

The above expression is always at least
of nonnegative integer k.

for any choice
O

2

Proof of Lemma 1IV.1. By [76, Corollary A.4] and [18, Propo-
sition 3.6], we have that Cyps1() > ﬁ -A(r), where
A(m) denotes the spectral gap of Glauber ynamics for ,

and T, = Milg.r(z)>0 m(x) = Q%H Hence, it suffices to

establish that A(7) > exp(—O(A)). For this, we appeal to the
simple fact that random walk on a connected graph with n
vertices has spectral gap at least 1/poly(n). A comparison of
Dirichlet forms between Glauber dynamics and simple random
walk on the n = 22 + 1 many independent sets of G yields
the desired lower bound. O
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