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Abstract. Video Anomaly Detection (VAD) automates the identification of un-

usual events, such as security threats in surveillance videos. In real-world applica-

tions, VAD models must effectively operate in cross-domain settings, identifying

rare anomalies and scenarios not well-represented in the training data. However,

existing cross-domain VAD methods focus on unsupervised learning, resulting

in performance that falls short of real-world expectations. Since acquiring weak

supervision, i.e., video-level labels, for the source domain is cost-effective, we

conjecture that combining it with external unlabeled data has notable potential to

enhance cross-domain performance. To this end, we introduce a novel weakly-

supervised framework for Cross-Domain Learning (CDL) in VAD that incorpo-

rates external data during training by estimating its prediction bias and adaptively

minimizing that using the predicted uncertainty. We demonstrate the effectiveness

of the proposed CDL framework through comprehensive experiments conducted

in various configurations on two large-scale VAD datasets: UCF-Crime and XD-

Violence. Our method significantly surpasses the state-of-the-art works in cross-

domain evaluations, achieving an average absolute improvement of 19.6% on

UCF-Crime and 12.87% on XD-Violence.

1 Introduction

Video anomaly detection (VAD) aims to locate anomalous events in the videos [3, 10,

11, 14, 20, 24, 30, 31, 39, 44]. Unlike manual surveillance, which is costly and time-

consuming, video anomaly detection eliminates the need for extensive human effort,

saving resources and time. It holds significant potential for playing a vital role in video

surveillance by identifying unusual behaviors and activities such as accidents, burglar-

ies, explosions, and other events that signal security threats.

VAD has been extensively studied previously [11, 14, 20, 30, 31, 44]. Owing to the

high costs and time associated with obtaining frame-level labels, most approaches for-

mulate the problem as either an unsupervised [10, 14, 20] or weakly-supervised learn-

ing setup [11, 30, 31]. In the unsupervised or one-class classification-based) learning

setup, only normal videos are used to model the underlying distribution of normal spa-

tiotemporal patterns, and any deviations from the modeled distribution are regarded as

anomalies. Despite the convenience of the unsupervised setup, the lack of anomalous

⋆ Corresponding authors.
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Fig. 1: Anomaly score comparison on a

video of XD-Violence dataset, with and

without employing the proposed CDL

framework. The model trained without

CDL on UCF-Crime as the weakly labeled

set consistently yields high anomaly scores.

In contrast, the model trained with CDL, us-

ing UCF-Crime as the weakly labeled set

and HACS as the unlabeled set, is better

able to localize the anomalous frames.

Method(s) Sup. on D Target

Acsintoae et al. [1] unsup. D

rGAN [22], MPN [24] unsup. D′

zxVAD [3] unsup. D ∪D′

Ours weakly-sup. D ∪D′

Table 1: Brief overview of the taxonomy of

current works for VAD using a source domain

dataset (D) and a secondary domain dataset

(D′). All these methods do not utilize any labels

for training on (D′) and assume distinct distribu-

tions for D and D′.

videos during training limits the model’s ability to learn the specific characteristics of

anomalies. This results in limited performance which does not meet real-world expecta-

tions. To address this issue, weakly-supervised setup has attracted significant attention.

In this setup, merely video-level labels indicating the presence of anomalies within the

videos are incorporated as weak supervision to train models capable of making frame-

level predictions at inference. Multiple Instance Learning (MIL) [30] is a prominent

technique in this domain. By treating each video as a “bag” and each snippet as a “seg-

ment”, MIL-based algorithms operate under the premise of a worst-case scenario where

the segment with the highest predicted probability of being abnormal is considered as

the candidate to represent the whole video.

In real-world applications, it is inevitable to encounter environments and scenarios

not fully represented in the model’s training set. However, it is essential that the model

makes correct predictions in such novel situations. For instance, when the training data

lacks samples of rare events like “riots” or accidents in novel scenes, the model should

be able to characterize such occurrences as anomalous when they occur. Previous works

study these novel situations under the cross-domain problem definition [3, 13, 22].

Existing cross-domain VAD methods [3,13,22,24] rely on unsupervised techniques

and consequently exhibit limited performance, as demonstrated later in our empirical

evaluations in Tables 2 and 3. A solution to this could be the adoption of weakly-

supervised techniques for cross-domain VAD. While weakly-supervised approaches

have proven promising in single-domain scenarios [11, 30, 31], their effectiveness in

cross-domain scenarios has not been extensively explored. Our evaluations in Tables 2

and 3 suggest that directly employing existing weakly-supervised methods to address

the cross-domain challenges results in a significant performance drop when tested in

scenarios of even similar nature, such as surveillance videos. We argue that this per-

formance gap is due to the following reasons. First, anomalous events, by their very

nature, lack a specific pattern or predefined structure. Hence, the definition of anomaly

is context-dependent and a naive adaptation of the previous method cannot capture the

context-dependencies in multiple domains. Second, anomalous events are relatively in-
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frequent, making VAD a class imbalance problem. This issue becomes more severe

when dealing with multiple domains. Third, because of the limited amount of weakly

labeled training data, the model’s learning capacity to detect novel (open-set) anoma-

lies is also constrained. Due to these challenges, weakly-supervised methods cannot be

readily applied to cross-domain or cross-dataset scenarios.

To overcome these challenges and develop a generalized VAD model, substantial

amounts of weakly-labeled data are required. However, acquiring even video-level la-

bels for a large number of videos is inefficient and labor-intensive. On the other hand,

vast streams of unlabeled videos are generally available. Utilizing the limited weakly-

labeled data alongside this abundant unlabeled data provides a notable opportunity to

address the aforementioned challenges in cross-domain VAD. Prudent utilization of the

unlabeled data can provide valuable insights into the underlying data distribution, lead-

ing to improved decision-making and identification of anomalous events.

To this end, we propose a weakly-supervised Cross-Domain Learning (CDL) frame-

work for VAD that integrates external, unlabeled data, from the wild with limited weakly-

labeled data to provide competitive generalization across the domains. This is achieved

by adaptively minimizing the prediction bias over the external data using the estimated

prediction variance, which serves as an uncertainty regularization score. In the proposed

framework, we first train fine-grained pseudo-label generation models on the weakly-

labeled data to obtain sets of segment-level predictions for the external dataset. Second,

we compute the variance of the predictions across multiple predictors as a proxy to

represent uncertainty associated with the segments in the external data. Third, during

the optimization process, involving training on both labeled and external data, we adap-

tively reweigh the bias on each external data using the uncertainty regularization scores.

This dynamic reweighing ensures that segments from the external dataset closer to the

source dataset are emphasized during the training, while those with higher uncertainty

are down-weighted. Finally, we iteratively regenerate pseudo-labels using the models

trained on labeled and pseudo-labeled data, re-estimate the uncertainties, and re-train

the model on the union of labeled and external datasets. This iterative process helps re-

fine the pseudo-labels as the training progresses. With this training process, the model

learns to generalize to both source and external data, given only supervision on the

source data. Figure 1 illustrates the effectiveness of the CDL framework.

To summarize, we make the following contributions:

– We present a practical CDL framework for weakly-supervised VAD, in which un-

labeled external videos are employed to enhance the cross-domain generalization

of the model.

– We design a novel uncertainty quantification method that enables the adaptive

uncertainty-driven integration of external videos into the training set.

– Through extensive experiments and ablation studies on benchmark datasets, we val-

idate the proposed approach, demonstrating state-of-the-art performance in cross-

domain settings while retaining a competitive performance on the in-domain data.
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2 Related Works

Video Anomaly Detection (VAD). VAD is a well-established problem, with most works

formulating it either as unsupervised learning [14, 20, 21, 38, 41] or weakly-supervised

learning [28, 30, 31, 40, 45] problem. In unsupervised setups, the training data consists

solely of normal videos, with the majority of works encoding normal patterns through

techniques like frame reconstruction [14, 36], future frame prediction [20], dictionary

learning [21, 41], and one-class classification [16, 23]. Any deviation from the encoded

patterns is considered anomalous. Since the model categorizes anything beyond its

learned representations as anomalous, it can label novel video actions and scenarios en-

countered during training but in altered environments as anomalous. Weakly-supervised

VAD methods help mitigate these issues by incorporating video-level labels as weak

supervision for the model, with the majority of methods utilizing the Multiple Instance

Ranking Loss [11, 30, 33, 44].

Given that a VAD model is expected to encounter previously unseen scenarios dur-

ing deployment, it is of paramount importance for the model to have a high general-

ization across domains. Previous works refer this as cross-domain [3] or cross-dataset

generalization [9]. We provide an overview of the existing works employing external

data in VAD in Table 1. Previous works on cross-domain generalization focus on un-

supervised methods based on few-shot target-domain scene adaptation. [22,24] employ

data from the target domain via meta-learning to adapt to that specific domain. Aich et

al. [3] proposed a zero-shot target domain adaptation method that incorporates external

data to generate pseudo-abnormal frames. Despite the intriguing setup, these unsuper-

vised cross-domain generalization methods lack explicit knowledge about what consti-

tutes an anomaly, hindering the model’s ability to learn the specific characteristics of

anomalies. To this end, we propose the use of weakly-supervised learning for cross-

domain generalization. We integrate external datasets from diverse domains to enable

the cross-domain generalization of a model trained in a weakly-supervised fashion.

Pseudo-Labeling and Self-training. Pseudo-labeling [4, 27] is a common technique

where the model trained on labeled data assigns labels to unlabeled data. Subsequently,

the model is trained on both the initially labeled data and the pseudo-labeled data. This

self-training strategy [25, 37] operates iteratively, allowing the model to progressively

enhance its generalization. In VAD, several works leverage pseudo-labeling and self-

training for generating fine-grained pseudo-labels [11, 19, 39]. However, in contrast to

the previous methods, instead of generating pseudo-labels for the weakly labeled data,

we leverage pseudo-labels for incorporating the external data.

Uncertainty Estimation. To address pseudo-label noise, prior research in different con-

texts has explored uncertainty estimation using various approaches, such as data aug-

mentation [5, 29], inference augmentation [12], and model augmentation [43]. While

data augmentation is effective for images, it can disrupt temporal relationships in video

frames and is not efficient for training on high-cardinality data like videos. On the other

hand, inference augmentation methods, such as MC Dropout [12, 39], introduce per-

turbations during model inference to obtain slightly different predictions, but that is

inefficient for training with fixed backbones. In contrast, model augmentation uses dif-

ferent models. Since different models may have varying biases and receptive fields,

this would result in diverse predictions. This prediction discrepancy can help quantify
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Fig. 2: Overview of the proposed CDL Framework. CDL Step 0: The Ranking Loss, Lrank (Supp

Mat. §6), is employed to train two pseudo-label generation models, Pm and Pa, §3.2, on weakly-

labeled data, Dl. CDL Step k, k > 0: Pm and Pa are trained iteratively on Dl ∪ Du, incorpo-

rating pseudo-labels for Du generated at the end of the previous CDL step. To deal with noise in

pseudo-labels, uncertainty regularization scores are estimated using the divergence between the

predictions of the two models, §3.4. When optimizing on Du, the prediction bias, Lbce (§3.3), for

external data is reweighed using the computed uncertainty regularization scores, §3.5.

uncertainty, making model augmentation well-aligned with our problem. To avoid any

manual thresholding for learning from pseudo-labels during training, following [15,43]

we use adaptive reweighing of loss with uncertainty values. In [43], Zheng et al. quan-

tify uncertainty by estimating discrepancies between predictions made by two classi-

fiers using Kullback–Leibler (KL) divergence. However, given that VAD is a binary

classification task, the divergence based on only two outcomes for the posterior proba-

bility is not optimally informative. Hence, we propose a method to quantify uncertainty

in the high-dimensional feature space instead of the probability space.

3 Method

3.1 Problem Definition

In this work, we address a real-world VAD problem, where a weakly-labeled dataset

Dl = {(Xi
l , Y

i
l )}

nl

i=1 and an external unlabeled dataset Du = {Xi
u}

nu

i=1 are available

for training. Here, nl and nu indicate the number of videos in the two datasets, respec-

tively, with nu k nl due to the convenience of gathering unlabeled video data. The

video-level labels of Xl are denoted by Yl ∈ {0, 1}. We do not make any assumption

about distributions of Dl and Du, and therefore, they can be drawn from different dis-

tributions. We aim to find the model F (·|θ), parameterized by θ, that provides accurate

predictions on weakly-labeled data while adaptively minimizing the prediction bias on

the external data using the uncertainty regularization scores. We illustrate the proposed

framework in Figure 2.

3.2 Feature Extraction and Temporal Processing

The proposed uncertainty quantification method (Section 3.4) compares two diverse

representations of each sample to estimate the uncertainty associated with the segment-
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level predictions on external data. To this aim, we employ two different backbones for

feature extraction from videos, which are widely used for anomaly detection tasks. The

first one is the conventional I3D backbone [6], which extracts segment-level features

using 3D convolution, and the other is the CLIP backbone [26], which extracts frame-

level features using the frozen CLIP Model’s ViT encoder. The contrasting inductive

biases of the 3D convolution-based I3D and the transformer-based CLIP help to effec-

tively capture the prediction variance. It is to be noted that only the CLIP backbone is

used during inference. We develop two prediction heads, namely the main model, Pm,

built on top of the CLIP backbone, and the auxiliary model, Pa, built on top of the I3D

backbone.

Video frames are highly correlated in the temporal dimension. To reduce the re-

dundancy in frame-level features extracted by the CLIP backbone, we pool the repre-

sentations by bilinearly interpolating them to a fixed, empirically determined length,

ns. Each of the ns interpolated features represents one segment. To ensure consistency,

we also fix the length of representations extracted by the I3D backbone. Evaluation in

Section 4.6 analyzes the role of ns on the model’s performance. To capture long-range

temporal information over the sequence, we employ a lightweight temporal network,

i.e., transformer encoder, to implement Pm and Pa.

3.3 Bias Estimation for External Data

Similar to [43], we formulate the prediction bias on external data as:

Bias(Du) = EXu
[F (Xu|θ)− Yu], (1)

where F (Xu|θ) represents a set of predicted probability distributions, each one corre-

sponding to a distinct segment of Xu, and Yu denotes the set of unknown segment-level

labels of Xu. Bias(Du) can be re-written as:

Bias(Du) = EXu
[F (Xu|θ)− Ŷu] + EXu

[Ŷu − Yu], (2)

where Ŷu denotes the set of segment-level pseudo-labels for Xu. Ŷu can be generated

by performing inference on the model trained on Dl. The first term in Equation 2 de-

notes the difference between the predicted posterior probability and the pseudo-labels,

while the second term denotes the error between the pseudo-labels and the ground-truth

labels. While minimizing the prediction bias, due to the lack of ground truth supervi-

sion, we employ a self-training mechanism, considering Ŷu as the soft labels, thereby

treating the second term as a constant and minimizing the first term. Specifically, we

use the binary cross-entropy (BCE) loss, Lbce, given by:

Lbce = −Ŷu log(F (Xu|θ)) − (1− Ŷu) log(1− F (Xu|θ)), (3)

to estimate the prediction bias associated with each video segment, for both Pm and Pa.

3.4 Uncertainty Estimation

Since Du and Dl do not necessarily share the same distribution, the generated pseudo-

labels are noisy. This noise can adversely affect the subsequent training process as it
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causes bias to further magnify and propagate within the model. This issue, known as

Confirmation Bias [4], is often mitigated by quantifying the uncertainty associated with

pseudo-labels and then incorporating this uncertainty into the training process to com-

pensate for the noise. As discussed in Section 2, we opt to address the confirmation bias

by computing uncertainty using model augmentation. To quantify uncertainty through

model augmentation, following [43], we estimate prediction variance, which is formu-

lated as:

V ar(Du) = EXu
[(F (Xu|θ)− Yu)

2]. (4)

Due to the lack of ground-truth labels, Equation 4 can be approximated as:

V ar(Du) ≈ EXu
[(F (Xu|θ)− Ŷu)

2]. (5)

When optimizing the prediction bias in Equation 2, the variance in Equation 5 will also

be minimized, potentially resulting in inaccurate quantification of the true prediction

variance. To address this, we adopt an alternative approximation, expressed as:

V ar(Du) ≈ EXu
[
(

Pm(Xu|θPm
)− Pa(Xu|θPa

)
)2
]. (6)

Since VAD is a binary classification task, the probability distributions corresponding

to each segment have limited support. Consequently, estimating prediction variance

using only the predicted anomaly scores, as in Equation 6, may not be robust. Hence,

instead of measuring the divergence between the predicted posterior probabilities for the

two classes, we propose quantifying pseudo-label uncertainty in the high-dimensional

space. To this end, we compute the cosine similarity between the segments in each set

of the representations, Zm and Za, obtained from the penultimate layer of Pm and Pa,

respectively. Here, Zm = {z1m, z
2
m, . . . , z

ns
m } and Za = {z1a, z

2
a, . . . , z

ns
a }.

To obtain a set of stabilized, segment-level uncertainty regularization scores within

a bounded range from the computed cosine similarity, we introduce the following func-

tion. Let S = {s1, s2, . . . , sns} be the set of surrogate variances that we use as proxies

for the uncertainty of segments. The surrogate variance is computed as:

s
j = eÄ(ïz

j
m,z

j
að−1), (7)

where s
j indicates the uncertainty regularization score for the jth segment, ïzjm, zjað

indicates the cosine similarity, and τ denotes the temperature parameter.

Higher uncertainty regularization scores indicate the similar encoding of data be-

tween the models, implying less uncertainty in the predicted labels, while, lower scores

imply high uncertainty in the predicted labels. Empirical evidence in Section 4.4 demon-

strates a significant negative correlation between uncertainty regularization scores and

Binary Cross-Entropy (BCE) loss between the predicted labels and ground truths. This

affirms that the proposed uncertainty regularization score effectively serves as a proxy

for the quality of pseudo-labels.

3.5 Training Process

CDL Step 0. We initially train Pm and Pa separately on the labeled set, optimizing both

of them using the Ranking Loss, Lrank, discussed in Supp. Mat. Sec. 6. We then perform
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inference on the trained models to generate the sets of soft segment-level pseudo-labels

for training on Du.

CDL Step > 0. Following the generation of the sets of pseudo-labels for Du, we en-

ter an iterative pseudo-label refinement phase, where we train Pm and Pa on Dl ∪ Du

for multiple CDL steps. Each CDL step comprises a fixed number of epochs. In each

epoch, we regenerate the sets of segment-level uncertainty regularization scores. To

enable the uncertainty-driven learning from external data, similar to [43], we use the

estimated uncertainty regularization scores, S, as automatic thresholds as this dynam-

ically adjusts learning from noisy labels by scaling the prediction bias associated with

external data based on S. This helps filter out unreliable predictions while prioritizing

highly confident predictions. To encourage lower prediction variance, which would in

turn lead to increased pseudo-label quality, we explicitly add the prediction variance to

the optimization objective corresponding to the external data, Lext, as:

Lext = EXu
[

1

V ar(Du)
·Bias(Du) + V ar(Du)]. (8)

Equation 8 is rewritten with the approximated terms as:

Lext = EXu
[S · Lbce − λ3 · ïZm, Zað]. (9)

Alternatively, Equation 9 can be rewritten as:

Lext =
1

ns · nu

nu
∑

i=1

ns
∑

j=1

(

Si,j · Li,j
bce − λ3 · ïZ

i,j
m ,Zi,j

a ð
)

, (10)

where λ3 is a hyper-parameter to balance the losses. Similar to CDL step 0, to optimize

the training on Dl, we use Lrank. The total optimization objective for training on Dl∪Du

can be expressed as:

LTotal = Lrank + λ4 · Lext, (11)

where λ4 is a trade-off parameter for Lext. We employ the optimization objective defined

in Equation 11 during training on Dl∪Du for each epoch within every CDL step. After

each CDL step is completed, we re-generate the set of soft segment-level pseudo-labels

using the models trained on Dl ∪Du. This iterative refinement process repeats k times,

where k is a hyper-parameter determining the number of CDL steps. With each CDL

step, the models’ performance gets further refined as the pseudo-labels get iteratively

improved.

3.6 Inference - Extending Segment-level Scores to Frame-level Scores

During inference, we compute segment-level anomaly scores for the videos using Pm.

Since we encounter long-untrimmed videos with varying numbers of frames, for ex-

tending the segment-level anomaly score to the frame level, for each video, we divide

the total number of frames nf by the number of segments ns to obtain the number of

frames per segment, nfs. We assign the anomaly score of each segment to its consecu-

tive frames. The first segment corresponds to the first nfs frames, and so forth until the

(ns − 1)
th

segment. For the last segment, its anomaly score is assigned to any remain-

ing frames, potentially exceeding nfs, if there is a remainder.
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4 Experiments

We evaluate the proposed method on the major video anomaly datasets, UCF-Crime

(UCF) [30] and XD-Violence (XDV) [35]. Additionally, we use 11,000 videos from the

HACS [42] dataset as a source of external data. We provide detailed information about

the datasets in Supp. Mat. §7. In §4.1, we discuss the implementation details. In §4.2,

we discuss the inherent noise in the test annotations of benchmark datasets. We pro-

ceed to compare the proposed framework with prior works in cross-domain scenarios

(§4.3.1) and open-set scenarios (§4.3.2). Subsequently, in §4.4, we demonstrate a strong

correlation between the quality of pseudo labels and the computed uncertainty scores.

We then explore the evolution of these uncertainty scores through the training process

in §4.5. Finally, in §4.6, we conduct ablation studies and hyper-parameter analysis to

analyze the impact of individual components of the proposed framework.

4.1 Implementation Details

We implement the proposed method using PyTorch. We extract CLIP and I3D features

at a fixed frame rate of 30 FPS. CLIP features are extracted from the frozen CLIP

model’s image encoder (ViT-B/32). For the hyper-parameters, in the open-set scenar-

ios, we empirically set the value of ns to 64, τ to 1.25, λ1 and λ2 to 5e−4, λ3 to 1e−3,

and λ4 to 700. Ablation studies for selecting ns and λ3 are included in Section 4.6. We

use the Adam optimizer with a weight decay of 1e − 3, and we set a learning rate of

3e− 5 for the transformer encoder and 5e− 4 for the fully connected layers. We use a

batch size of 64. In both Pm and Pa, we explicitly encode positional information in the

segments using sinusoidal positional encodings [32]. We train on the weakly-labeled

source dataset for 200 epochs, followed by training on the union of weakly-labeled and

external datasets for 40 CDL steps, each CDL step comprising 4 epochs. Additional

information regarding hyper-parameters is provided in Supp. Material Section 8.

Model Architecture. Both Pm and Pa consist of a transformer encoder layer with four

heads, followed by four fully connected layers, each consisting of 4096, 512, 32, and

1 neurons, respectively. In both the models, for all the layers except the last, we use

ReLU [2] activation while for the last layer, we use Sigmoid activation.

Evaluation Setup. To reduce bias, we perform each experiment three times with differ-

ent seeds and average the results. In open-set experiments, we repeat each experiment

three times, using different sets of anomaly classes each time.

Evaluation Metric. Following previous works on UCF-Crime [30], we adopt the frame-

level area under the ROC curve (AUC) to evaluate on UCF-Crime. In line with previous

works on XD-Violence [35], we use the frame-level area under the Precision-Recall

curve (PRAUC), also known as Average Precision (AP), to evaluate on XDV.

4.2 Noise in the Test Annotations of Benchmark Datasets

Our manual inspection reveals that the frame-level testing annotations of the UCF-

Crime (UCF) [30] and XD-Violence (XDV) [35] datasets, which are commonly used

for benchmarking VAD models, exhibit significant noise. This noise largely stems from

the fact that the original annotations do not consistently label the frames leading up to
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Table 2: Comparison with prior works on XDV, considering UCF-Crime as the source data.

Asterisk (∗) indicates that evaluations were conducted by us using the official code. Dagger (†)

indicates that evaluations were conducted by our implementation due to the lack of an official

implementation.

Methods Features
UCF

AUC(%)
UCF-R

AUC(%)
XDV

AP(%)

Cross-Domain
(Unsupervised)

rGAN [22] - 64.35
∗

65.19
∗

37.74
∗

MPN [24] - 65.67
∗

67.98
∗

38.89
∗

zxVAD [3] - 68.74
†

69.39
†

40.68
†

Non Cross-Domain

Sultani et al. [30] I3D 80.70 84.63
∗

53.88
∗

MIST [11] I3D 82.30 86.17
∗

50.33
∗

RTFM [] I3D 84.03 86.47
∗

37.30
∗

S3R [34] I3D 85.99 87.11
∗

49.84
∗

CU-Net [39] I3D 86.22 88.15
∗

37.98
∗

MGFN [8] I3D 86.98 87.33
∗

32.16
∗

SSRL [18] I3D 87.43 87.02
∗

51.60
∗

CLIP-TSA [17] CLIP 87.58 73.20
∗

44.33
∗

Ours (No ext. data) CLIP 84.49 89.96 58.13

Cross-Domain
(Weakly-Supervised)

Ours (UCF + HACS) CLIP 84.63 90.53 65.14

Ours (UCF + XDV) CLIP 84.73 90.26 68.37

the primary anomalous events and their subsequent consequences as anomalous. For

instance, in a video assigned a label like “shooting”, we assert that frames showing the

person holding the gun and frames illustrating the injured victim should also be marked

as anomalous. This perspective aligns with the fundamental goal of VAD, which is to

identify all anomalous frames within a video, irrespective of the video’s primary label.

However, it should also be noted that in the original annotations, for some videos, cer-

tain frames related to the video’s primary anomaly label are also not marked anomalous.

To address this, we re-annotate the test set of UCF-Crime by assigning each video

to three independent annotators. We then combine their annotations to generate more

accurate frame-level labels. Compared to the original annotations where 7.58% of the

total frames are labeled as anomalous, the proposed annotations label 16.55% of the

total frames as anomalous. The proposed annotations are available here3. We provide

a comparison of the proposed and original annotations here4. For the remainder of this

paper, we refer the re-annotated test set of the UCF-Crime dataset as UCF-R.

4.3 Comparison with Prior Works

4.3.1 Cross-Domain Scenarios

While the UCF-Crime [30] and XD-Violence [35] datasets share similar definitions of

what constitutes anomalies, that definition differs from those of smaller datasets like

3 https : / / drive . google . com / drive / folders /

1IVjQQFHXVcsaT63HUjpfk8C5KH6HsQ7t?usp=drive_link
4 https://rb.gy/4vkr1r
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Table 3: Comparison with prior works on UCF-Crime, considering XDV as the source data.

Asterisk (∗) indicates that evaluations were conducted by us using the official code. Dagger (†)

indicates that evaluations were conducted by our implementation due to the lack of an official

implementation.

Methods Features XDV AP(%) UCF-R AUC(%)

Cross-Domain (Unsup.)

rGAN [22] - 40.10∗ 59.82∗

MPN [24] - 44.79∗ 60.35∗

zxVAD [3] - 47.53† 63.61†

Non Cross-Domain

Sultani et al. [30] I3D 73.20 71.23∗

RTFM [31] I3D 77.81 70.46∗

MGFN [8] I3D 80.11 69.12∗

S3R [34] I3D 80.26 69.04∗

CLIP-TSA [17] CLIP 80.67 67.58∗

Ours (No ext. data) CLIP 75.13 76.39

Cross-Domain (Weakly-Sup.)
Ours (XDV + UCF) CLIP 77.04 88.06

Ours (XDV + HACS) CLIP 78.61 88.50

ShanghaiTech [20], CUHK-Avenue [21], UCSD Pedestrian [7], UBnormal [1], where

anomalies are more subtle. For instance, running is considered anomalous in UBnormal

but not in XD-Violence. Due to these divergent notions of anomalies across datasets,

we conduct cross-domain experiments by simultaneously evaluating on the UCF-Crime

and XD-Violence datasets, given their more aligned anomaly definitions.

UCF-Crime as the Weakly-Labeled Source Set, XDV as the Cross-Domain Set.

Table 2 summarizes the results for this scenario. First, we observe that the proposed

method achieves state-of-the-art results on XDV and UCF-R even without utilizing

any external data (without CDL). We believe this is due to the inductive bias of pre-

vious methods towards the noisy annotations of UCF-Crime. Next, we observe that the

addition of external data, HACS and XDV, leads to a significant enhancement in the

performance of the cross-domain dataset, XDV, by 11.26% and 14.49%, respectively,

compared to the previous state-of-the-art baseline. Additionally, there is also a marginal

improvement in the performance of the source set upon integration of external datasets.

XDV as the Weakly-Labeled Source Set, UCF-Crime as the Cross-Domain Set.

Table 3 summarizes the results for this scenario. Notably, the proposed method achieves

state-of-the-art performance on the cross-domain dataset, UCF-R, even without the uti-

lization of any external data during training. This is attributed to the simplicity of the

proposed architecture compared to other baselines. The proposed architecture prevents

overfitting to the source dataset, thereby increasing its generalizability to the cross-

domain dataset. Additionally, integrating external data further enhances performance

on both the cross-domain and source sets. Specifically, leveraging the CDL framework

with UCF-Crime and HACS as external datasets boosts UCF-R’s AUC by 18.94% and

19.39% respectively, compared to previous state-of-the-art baselines. We also observe

that the proposed method’s performance is inferior on XDV. We attribute this to the

noise in the annotations of XDV’s test set.
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Table 4: Comparison with prior works in open-set setting on UCF-Crime dataset; c denotes the

no. of anomalous classes included for weakly-supervised training.

UCF (AUC%) UCF-R (AUC%)

c Wu et al. [35] RTFM [31] Zhu et al. [46] Ours (w/o CDL) Ours (CDL) Ours (w/o CDL) Ours (CDL)

1 73.22 75.91 76.73 75.17 77.45 84.32 85.39

3 75.15 76.98 77.78 81.51 82.57 86.84 87.69

6 78.46 77.68 78.82 82.97 83.44 87.85 88.21

9 79.96 79.55 80.14 83.02 83.37 89.22 89.82

These results highlight that the proposed CDL framework is capable of effectively

exploiting external data with vast domain gaps to achieve a significant cross-domain

generalization. It’s noteworthy that the performance gain observed with the proposed

CDL framework remains consistent across all tested datasets, suggesting that the per-

formance improvement is not dependent on any specific source or external dataset.

4.3.2 Open-Set Scenarios

In Table 4, we evaluate the proposed framework’s performance on the UCF-Crime

dataset in a realistic open-set scenario, where the model is evaluated on both, previ-

ously seen and unseen anomaly classes. To simulate this scenario, we randomly include

c anomalous classes in the weakly-labeled set, while the remaining anomalous classes

are placed in the unlabeled set. In both the weakly-supervised source set and the un-

labeled set, the number of normal videos equals the number of anomalous videos. We

evaluate two model configurations; one trained solely on the weakly-labeled set (with-

out CDL) and the other on the union of weakly-labeled and unlabeled sets using the

CDL Framework.

On UCF-Crime, the proposed model, without CDL, surpasses the state-of-the-art

baselines for c > 1. This highlights its efficacy in open-set settings. While, with CDL,

the model surpasses the baselines across all values of c by a considerable margin.

For both UCF-Crime and UCF-R, when unlabeled data is incorporated, we observe

a consistent performance gain across all values of c, suggesting the effectiveness of the

CDL framework across varying amounts of weakly-labeled and unlabeled data.

4.4 Correlation between Uncertainty Scores and BCE Loss (Proxy to Label

Quality)

To assess the efficacy of the proposed uncertainty quantification method as a proxy for

pseudo-label quality, we compute the non-parametric Spearman correlation between

estimated uncertainty regularization scores and BCE loss between the predicted pseudo-

labels and the corresponding ground truths. For this experiment, we consider UCF-

Crime as the weakly-labeled source set and XDV as the external set. In Figure 3(a),

with λ3 = 1e − 3, CDL step 1 onwards, a consistently high negative correlation (-

0.46 in CDL step 6, with a p-value < 1e-5) emerges, indicating the robustness of the

proposed uncertainty quantification framework. Conversely, setting λ3 to 0 results in a

sustained positive correlation, signifying sub-optimal pseudo-labels in the absence of

cosine similarity loss term.
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Fig. 3: (a) Correlation between uncertainty scores and BCE loss computed between the estimated

scores and ground truth. When λ3 = 1e − 3, as expected, a consistently high negative correla-

tion emerges, demonstrating the effectiveness of the proposed uncertainty quantification method

as a reliable proxy for pseudo-label quality. (b) Cumulative Distribution Function (CDF) plots

illustrating the progression of average uncertainty regularization scores for each video during

training. CDL step 20 has a higher concentration of scores around 1 compared to CDL step 2,

while CDL step 2 has a higher concentration around 1 than CDL step 1. This suggests that, as

training progresses, there is a higher tendency for scores to have elevated values, indicating more

confident pseudo-label predictions. (c) Ablation study on the coefficient of the cosine similarity

loss term, λ3. (d) Ablation study on the number of segments, ns.

4.5 Progression of Uncertainty Scores

To assess the evolution of uncertainty regularization scores through the training process,

in Figure 3(b), we plot the Cumulative Distribution Function (CDF) of average uncer-

tainty regularization scores for external videos across the first epoch of three different

CDL steps. We conduct this experiment considering UCF-Crime as the weakly-labeled

source set and XDV as the external set. We observe that in CDL step 1, 16.65% of the

uncertainty scores fall within the range [0, 0.1]. As training progresses to CDL steps 2

and 20, this proportion decreases to 13.06% and 11.39%, respectively. Meanwhile, the

proportion of uncertainty scores in the range [0.9, 1] increases from 35.11% in CDL

step 1 to 56.70% in CDL step 2 and further to 57.68% in CDL step 20. This trend

indicates a discernible shift towards higher uncertainty scores as training progresses,

suggesting an improvement in model confidence due to increased pseudo-label quality.

4.6 Ablation Studies and Hyper-parameter Analysis

For the sake of consistency, we conduct all ablation studies on UCF-Crime in an open-

set setting, with c = 1. However, it should be noted that for different training setups,

hyper-parameters are tuned separately as well.

Impact of Various Components of the CDL Framework. We assess the effectiveness

of each component of the CDL framework by adding them sequentially. The results

are summarized in Table 5. We consider training on c = 1 anomaly class in a weakly-

supervised fashion as our baseline. The remaining c−1 anomalous classes are placed in

the external set. We first observe that integrating external data into the source set with-

out accounting for pseudo-label uncertainty (Si,j = 1, ∀i, j) and without minimizing

cosine similarity between representations (λ3 = 0) yields a 0.35% gain in AUC, high-

lighting the effectiveness of external data in improving the model’s performance. Next,

we study the impact of uncertainty-aware integration of external data, i.e., adaptively
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Fig. 4: Ablation study on the impact of

the size of external data.

Ext. data Unc. Coef. Cos.-Sim. Loss AUC(%)

: : : 84.32

6 : : 84.67

6 6 : 84.80

6 6 6 85.39

Table 5: Ablation study of various components on

the UCF-R dataset in an open-set setting (c = 1).

reweighing the prediction bias of external data with the computed uncertainty values

and with λ3 set to 0. This results in a gain of 0.13% in AUC, demonstrating the supe-

riority of uncertainty-driven integration compared to the standard integration. Finally,

we assess the impact of adding the cosine similarity loss term during uncertainty-aware

training. This further leads to a significant boost of 0.59%, validating its effectiveness.

Impact of Cosine Similarity Loss. In Figure 3(c), we explore the impact of varying

the coefficient of the cosine similarity loss on the model’s performance. We observe a

gradual increase in AUC as λ3 increases from 1e-9 to 1e-3. This could be due to the

effect of cosine similarity loss getting more pronounced with higher values of λ3. How-

ever, beyond 1e-3, there is a rapid decline in AUC, likely due to the dominance of the

cosine similarity loss over other losses when its coefficient is high. Therefore, we select

1e-3 as the optimal choice for λ3.

Impact of Number of Segments. In Figure 3(d), we observe that the performance con-

sistently improves as no. of segments, ns, increases from 16 to 64, but it begins to

decline rapidly afterward. Therefore, we set ns as 64.

Impact of the Size of External Data. To determine the optimal number of unlabeled

external videos from the HACS dataset to integrate into the weakly-labeled training set

of UCF-Crime, we conduct an ablation study, depicted in Figure 4. We observe that

increasing the size of the external set increases the performance on XDV. However, this

increase tends to plateau after the inclusion of 11,000 videos. Consequently, we do not

include additional videos beyond the 11,000 threshold.

5 Conclusion

In this work, we demonstrated the effectiveness of integrating external, unlabeled data

with weakly-labeled source data to enhance the cross-domain generalization of VAD

models. To enable this integration, we proposed a weakly-supervised CDL (Cross-

Domain Learning) framework that adaptively minimizes the prediction bias on external

data by scaling it with the prediction variance, which serves as an uncertainty regular-

ization score. The proposed method outperforms baseline models significantly in cross-

domain and open-set settings while retaining competitive performance in in-domain

settings.
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