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The growing number of Al-driven applications in mobile devices has led to solutions that integrate deep learn-
ing models with the available edge-cloud resources. Due to multiple benefits such as reduction in on-device
energy consumption, improved latency, improved network usage, and certain privacy improvements, split
learning, where deep learning models are split away from the mobile device and computed in a distributed
manner, has become an extensively explored topic. Incorporating compression-aware methods (where learn-
ing adapts to compression level of the communicated data) has made split learning even more advantageous.
This method could even offer a viable alternative to traditional methods, such as federated learning techniques.
In this work, we develop an adaptive compression-aware split learning method (“deprune”) to improve and
train deep learning models so that they are much more network-efficient, which would make them ideal to
deploy in weaker devices with the help of edge-cloud resources. This method is also extended (“prune”) to
very quickly train deep learning models through a transfer learning approach, which tradesoff little accuracy
for much more network-efficient inference abilities. We show that the “deprune” method can reduce network
usage by 4x when compared with a split-learning approach (that does not use our method) without loss of
accuracy, while also improving accuracy over compression-aware split-learning by up to 4 percent. Lastly, we
show that the “prune” method can reduce the training time for certain models by up to 6x without affecting
the accuracy when compared against a compression-aware split-learning approach.
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1 Introduction

The past decade or so has seen a meteoric rise in the scope and abundance of Al applications
with deep learning as a core tool, leading to solutions or better performance in many areas such
as speech recognition, computer vision, and much more [9, 12, 14, 23, 32]. It is estimated that the
global Al market size was 120 billion USD in 2022 and is expected to reach 1.5 trillion dollars by 2030
[43], and even in each of our daily lives the impact of Al is becoming more and more pronounced,
i.e., with the recent release of ChatGPT [40]. While beneficial, these methods, especially deep
learning, tend to be quite expensive to execute. Supervised learning methods rely on huge datasets
to learn, leading to a colossal demand for data acquisition and storage. The increasing demand of
computational resources has also pushed the development of dedicated hardware platforms, i.e.,
Graphics Processing Units (GPUs) and Tensor Processing Units (TPUs), whose goal is to
speed-up the training tasks. Another significant source of cost tends to be energy consumption in
the devices that run the deep learning models, which not only poses an economic challenge but
also raises other concerns such as energy scarcity and climate impacts [35]. It has become quite
necessary to envision and implement these deep learning models in settings that are optimized
toward saving different forms of resources.

There have been various efforts resulting in reduction of computational costs, i.e., through the
implementation of smaller deep learning models [7, 18, 55] and model pruning including numerous
works on parameter pruning [4, 33, 59] as well as some works on feature pruning [13, 15, 37], which
allows for utilization of less GPUs and for shorter periods of time (for both inference as well as
training). While this helps some devices reduce both energy costs as well as computational latency,
it is not adequate for the vast majority of end devices like cell phones, laptops, IoT devices and
AR/VR headsets to locally carry out the implementations [16, 24]; as a result the better alternative
for these devices tends to be utilizing another more powerful source of computation, i.e., via differ-
ent forms of distributed learning. This will inevitably involve transferring certain amount of data
over the communication networks to locations such as data centers, resulting in a higher network
usage as well as introduction of a new source of latency. The ideal solution would therefore involve
selecting a method that minimizes network usage and latency. A paradigm where parameters or
other information are shared for collaborative learning and inference is illustrated in Figure 1.

Different strategies have been proposed for both training and inference of deep learning models
in the networked environments. For instance, with the proliferation of data-driven services, such
as targeted advertisement, personalized suggestion systems and more, it has become crucial to find
an efficient method of conducting deep learning tasks that is both computation and communication
efficient, but also has other features including privacy protection. While one could simply offload
all the computation task to the nearby server for further processing, such an approach has a few
problems and shortcomings, which split learning and inference are able to overcome. Split learning
(at least as we define and discuss in this article) refers to splitting a neural network into multiple
partitions so that different parts of the deep learning model can be computed in different ways.
For instance, consider a neural network with layers [y,...,[;,...,l, where m < n; here split
learning can involve processing [y, .. ., I, locally and then offloading [,;,11, . .., I, to a server for
further computations. Such split learning methods can provide us with various benefits over simply
offloading the model as a whole. First, unlike offloading raw data, we are able to send a processed
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Fig. 1. Illustration of different weaker devices opting for nearby computation sources, for Al tasks.

output, which is able to remain privacy preserving [17, 53, 54, 57, 58]. Second, the granularity
provided by such division of task allows for more optimal scheduling and placement. Third, and
perhaps more promising, as evidenced with recent research works [2, 54], it could also help with
personalization of learned models by keeping the locally trained parts more personalized, and
having a globally shared set of layers for aggregated learning.

Certain other approaches allow for similar benefits in certain cases. Federated learning for in-
stance has emerged as a popular and widely researched method of learning and aggregating the
deep learning models in a privacy-preserving manner. However, split learning has emerged as a
promising alternative to federated learning [50, 52]. Split learning has been shown to perform bet-
ter in numerous scenarios including when the number of model parameters is larger, or when more
clients are involved [50]. They are also more communication-efficient in many situations [52] as
compared with federated learning, and have the capability to be privacy-preserving as raw data
need not be offloaded. Unlike in federated learning scenarios, there is no need to constantly send
the entire parameter space to an aggregating server, which means as the model size grows, split
learning becomes a better method since only the output of a certain layer needs to be offloaded
[50]. Furthermore, as the model sizes become larger, the ability of split learning to only retain
certain layers locally for training at the weaker devices makes it a more promising solution for
devices like the embedded IoT. These reasons make exploration of split learning as a method of
distributed deep learning quite important and promising.

Previous works have explored split learning, i.e., in [6, 19, 47], which we will explore in the
related works section in further details. Some of these works, for example in [6, 47], have explored
the feasibility of conducting split learning and inference in different networked scenarios, and
have introduced state-of-the-art compression methods to reduce network traffic to a great extent,
while minimally affecting the model accuracy. However, while these advances are quite important
for making the split method useful for day-to-day applications, there are certain shortcomings,
which need to be addressed before this method can become widely feasible. While network-
efficient split methods can help conduct spit learning and inference, the most glaring weakness
of current state-of-the-art approaches is that training has to happen again and again for different
split configurations, especially for different compression levels. Various factors like network con-
ditions, operation budget, latency constraints, and tolerance of service level agreement violation,
result in the network operator having different preferences when it comes to compression and
accuracy tradeoff. Hence providing models suited to different compression-accuracy tradeoffs/
compression levels becomes very time and resource consuming, or even outright impractical.

In this work, we introduce a method that uses pruning and transfer learning to very quickly
train deep learning models with different compression levels for the data being transferred
during split learning, allowing for efficient creation of models suitable for different network
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conditions, computation resources, and service level agreements. This is done by introducing
a compression-decompression module with a method of training across different compression
levels and at different positions of splitting. One use case of our approach would be providing
Al-driven services like Augmented Reality (AR) with latency constraints to handheld devices
in a wireless environment. AI/AR applications requiring object detection may employ models like
YOLO [42] or SSD [25] but may not be able to meet the users’ latency requirements [1]. With the
models developed using our aforementioned approach, we could provide each user with different
accuracy-compression tradeoffs, while split learning allows for optimal distribution of workload
and an option to avoid offloading raw user data such as video feed or captured image. Hence,
service level agreements can be met more efficiently.

This compression-decompression module, further explained in Section 3, is a tool that uses the
learned information from a model with a certain compression level, and adaptively learns to opti-
mize for a different compression level. As mentioned above, one of the two goals is to develop these
approximately similar models suitable for different user requirements and environments; however,
a modified version of the aforementioned approach is also very useful in a second way, where this
compression-decompression approach can be used to adaptively change compression configura-
tions to train in a way where the training can result in effectively same level of accuracy at the
end, while significantly cutting down on the network usage during the distributed training. By
training on a high compression level, and then toward the end of the training process, adaptively
switching to a lower compression level using the deprune method (discussed further in Section 3),
we observed that network usage could be reduced without significantly affecting the accuracy of
the final learned model. Such training can be especially beneficial when weaker devices, i.e., at the
edge of the network, have limited computation capability as well as high network cost; and since
split learning is involved, raw data does not have to be offloaded.

The article is organized as follows: In Section 2, we discuss related works and highlight our con-
tributions. Section 3 covers the three major components of our implementation: the compression-
decompression module, the deprune method, and the prune method. In Section 4, we present
testbed implementations and simulations to demonstrate the network efficiency achieved with
our methods. Finally, Section 5 provides the conclusion.

2 Related Work

Multitude of works have focused on extending placement and scheduling problems in an edge-
cloud paradigm, allowing for a generic workload to be delegated to servers in a networked envi-
ronment. For instance, in [39], any service that requires computational offloading is placed at the
network edge and defined constraints include storage, computation and communication costs, and
in [38] the process is extended to data-intensive tasks. In [36] and [8], algorithms are developed
for service placement with guarantees for near-optimal solutions, with [36] creating a determin-
istic algorithm for general service placement and [8] working on polynomial time solution for
data-intensive tasks. Placement, scheduling, or orchestration strategies have also been developed
with a specific focus on useful and recent applications that could benefit from the edge-cloud par-
adigm. For instance in [31], a new strategy is developed for solving an NP-hard distributed service
chain problem with a heuristic approach, in order to reduce the end-to-end latency and improve
video resolution in the six degrees of freedom VR applications. As we can see in survey articles
such as [26, 27, 51], different types of placement and scheduling methods may be utilized for im-
plementing state-of-the-art techniques for efficient allocation of communication and computation
resources in the edge-cloud paradigm. While these methods are an acceptable improvement over
a naive deployment of deep learning models, for either training or inference, their generalized
scope means that they fail to take into consideration unique features of deep learning models, or
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specific requirements of the clients, that may be leveraged to provide a more efficient allocation
scheme for such implementations under an edge-cloud environment. And our developed methods
can complementarily be implemented together with such placement and scheduling approaches.

In ref [34], the authors develop a measurement-driven framework that decides which deep learn-
ing model to run and where, based on the different model-related metrics such as accuracy, frame
rate of processed videos, energy consumption, and network utilization. In [11], an approximate
model scheduling is developed, where the tradeoff between accuracy and resources is harnessed
to optimize model accuracy. Various factors such as device energy, cloud costs and capacity, and
execution deadline are taken as constraints, and an online variant of the method is also developed.
Complementing the scheduling and placement research, there are methods of creating variants of
the DNNs that aim at reducing space or computational demands, effectively creating a different
NN such as through quantization of the entire network [10], binarization of the models [41], rep-
resentation of the model as a lower rank representation after singular value decomposition [56],
whole model compression through algorithms consisting of low-rank tensor decomposition [20],
and more.

Complementary to a lot of such efforts that treat the model as a whole and attempt to efficiently
orchestrate NN model deployments, it is possible to add granularity to the methods and also poten-
tially improve privacy [17, 57] by splitting the neural network into different parts for computation
at different devices. While methods like deep leakage [60] have haunted federated learning meth-
ods for a while now by eliminating privacy, no such method exists for reverse engineering split
learning data to the best of our knowledge. Intuitively, there are a lot more parameters being up-
dated in federated learning as opposed to the number of feature maps communicated during split
learning, so the process developed to counter split learning is possibly a harder endeavor if not
impossible.

In ref [19], the authors proposed a method for collaborating intelligence among the end devices
and the mobile edge by dividing the neural network for partial computation at each end. Here,
the authors investigated methods of discerning the best points of splitting and also showed that
this method could be used to improve inference latency and energy efficiency of mobile devices
for a wide range of deep learning models. This method is now well-understood as split learn-
ing (or vertical split learning, but we will use the term split learning to mean the vertical case).
Based on the granular distribution afforded by the split learning methods, investigations have
been performed to ensure that split decisions are conducive to desired performance. In [45] for
instance, the authors develop a method focusing on resource-constrained IoT devices, where the
training time is accelerated on those devices, and the energy consumption is reduced, while the
effect of slower devices is minimized. [46] is another work that takes the split learning paradigm
(both vertical and horizontal splitting), and creates a method to accelerate inference time and mini-
mize energy consumption. Capitalizing on this observation regarding the viability of splitting deep
learning models as shown in [19], authors in [6] developed a compression-aware training method
for image classification neural networks that inserts a “bottleneck structure” at the point of model
splitting for efficient lossy compression. These “bottleneck” structures use convolution methods
to decrease the dimensions of the feature map for compression, and use de-convolution to obtain
the larger image once the communication of compressed data has taken place. The authors show
that the lossy compression approach is complementary to lossless methods and also show great
improvements in end-to-end latency and energy consumption. [47] improves on the compression
structure proposed in [6], specifically by considering different network channels. Here, they also
demonstrate the superiority of such compression and decompression-based training method over
the other methods including jpeg [21] method and quantization+Huffman [48] method, toward
improving both communication overhead as well as transmission latency. [28] proposes a method
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for specific classification tasks by running a generalized head network distillation in the first stage
and then targeted knowledge distillation in the second state. Other works such as [3, 29, 30] have
focused on object detection tasks, where the compression mechanism is analyzed for object de-
tection. While many of these efforts have focused on implementing a compression-aware split
learning that reduces network usage by splitting at certain layer and compressing the data to be
transferred, the glaring inadequacy in these methods is that every time a new compression level
is needed, or if compression behavior needs to change, the training has to restart from the scratch.
Once a compression factor has been decided on, i.e., by how much to compress, this value can-
not dynamically change. This limits the scope of compression-aware training approaches since it
would be unfeasible if not just inefficient to train from scratch for every compression configuration.

In our work, we propose an adaptive compression-decompression module that creates approx-
imate models for deep learning architectures suitable for split learning and inference, and we
introduce two different novel algorithms, “deprune” and “prune”, that greatly improve the per-
formance during training as well as inference, i.e., by allowing us to train the deep learning model
much more quickly and by improving models for faster inference. In the first step, we develop
an adaptive compression-decompression method that allows for dynamic adjustment of compres-
sion levels through a “filter” variable that we can change during training. In the second step, we
introduce the “deprune” method which uses this module to significantly reduce network usage
during the training under a split-learning environment, while also reducing the latency. We also
highlight the authenticity of this method by deploying it in networked testbeds. This approach
is highly beneficial for IoT and other weaker end devices with Al tasks, as network usage and
training latency can be significantly improved for split learning. This method improves upon split
learning methods by implementing compression during training but then changing the compres-
sion level to allow for an improved accuracy, which the aforementioned past methods including
[6, 19, 47] do not attempt, leading to either a very high network usage or a reduced accuracy. Our
goal is to not let either of those issues to occur. Finally, we introduce the “prune” method that
can be used to transfer learned parameters to dynamically create deep learning models for infer-
ence that greatly outperform having to train from scratch, in that the training time is significantly
reduced. Such a method can create approximate models for different network requirements that
trade little accuracy for network performance, and help create deep learning models that the Al
tasks can implement in a network-constrained environment; i.e., a network manager may reduce
performance for Al-driven XR tasks by selecting a model with higher compression level if net-
work traffic becomes an issue. Previous works, such as [6, 47], have employed lossy compression
methods to achieve state-of-the-art performance with a pre-selected configuration (i.e., specific
compression levels). However, these approaches require retraining from scratch for each selected
configuration. In contrast, we show that our method significantly reduces the need for network
and computational resources by eliminating the necessity for repeated retraining from scratch for
different configurations.

3 Proposed Methods

In this section, we will describe the split learning architectures, including methods of training
and implementing the algorithms. A primary concept in this work is the implementation of
an adaptive compression-decompression module designed to reduce network traffic during split
learning/inference. Here, the goal is to compress and then decompress the output of a layer,
similar to as proposed in previous works [6, 47], but with a module provided with an abil-
ity to adapt to different compression levels (and therefore different network constraints). This
compression-decompression mechanism is utilized by both deprune and prune methods we men-
tioned earlier. In Section 3.2, we propose a method where the network communication cost of

ACM Trans. Internet Technol., Vol. 24, No. 4, Article 27. Publication date: November 2024.



Adaptive Compression-Aware Split Learning and Inference 27:7

Device 1 | Communication Device 2

! | | |
! | | |

= = | i
' Forward/Back N | A8 Forward/Back | picP !
x; € X [— propagation of oy | @ - propagation l i
| layers: g | . | E of layers: I
o /i N & i
| 1, n Tu ! 3 n+1,....L Loss@u vi) |i
! ¢ ! !  [Alnsa !
! | | |
! | | |
' e fiyl ! '
yicY ' ! y;cY [
i [Al,] i i

Fig. 2. System Overview: split learning representation across multiple devices with the compression-
decompression module involved.

training is reduced using our method. And in Section 3.3, we will describe a method of efficiently
creating deep learning architectures that are able to quickly train and provide a set of models that
offer a tradeoff between accuracy and inference speed. But first, we will describe the formulation
for deep learning architecture, as well as compression and decompression methods that we imple-
ment in our split-learning architecture, in Section 3.1.

3.1 Formulation

Our implementation is designed for general deep learning models, and so we define a model
M with an arbitrary L number of layers where the outputs of the layers are represented by
I = I, L, ..., I1; in this work, we assume the input to the neural network to be I, and the
model prediction is I;. The parameters of the model are then given by 6 = [0, 02, . .., 0], where
0; represents the parameters of model M corresponding to the layer [. The first step in implement-
ing a split learning design is to split the model into different parts so that the different parts can be
implemented at different locations, i.e., in a model with 15 layers, the first 3 layers may primarily
be computed in the end device which is generating or storing the input data, while the remaining
layers may be computed in the edge device or the cloud. Similarly, for training cases, the backprop-
agation will be calculated at different locations as well, i.e., the last 12 layers may be computed in
the edge/cloud for our example case, and then the needed backpropagation information may be
sent to the end device for backpropagation calculation for the remaining 3 out of 15 layers.
Figure 2 shows an overview of our architecture for split implementation of a deep learning
model. Let us take the model to have L layers, where the splitting takes place after n layers such
that layers 1,. .., n are computed at device 1, and the remaining n + 1, ..., L layers are computed
at device 2. Any input x; € X is generated at or provided to device 1, along with the corresponding
real output y; € Y. In the forward propagation phase, the input x; is computed through the first n
layers in device 1 to give us the output of layer n, which is [,,. But since /,, may be very large com-
pared to the desired communication constraints, we introduce a compression mechanism, which
we will call compression module, to reduce the size of [, through a lossy compression method that
compresses [, to .. This compression module is also computed on device 1. Once the data is com-
municated to device 2, a decompression module acts upon [, to give I, which becomes input for
layer n+1. Then the remaining L—n layers are computed on device 2 to give the prediction output p;.
As we note in Figure 2, the communication from device 1 to 2 not only carries with it [, but
also two other variables, f and y. f is a filter parameter that we will discuss later while talking
about compression and decompression modules (we will refer to them together as compression-
decompression module.); f is used to define which feature maps are communicated across the
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devices. While y; is the real output corresponding to the input x;, y; is not needed in case of infer-
ence and we conclude after getting the prediction p;, which may be sent back to device 1 and, in
any case, it is not a communication costly task, but for training, next steps remain. Taking p; and
y;, we calculate the loss SL(p;, yi), which is then back-propagated through the neural network and
decompression module to obtain 61;. §1; is transmitted to device 1 where the remaining backprop-
agation can take place. Thus, both parts of the vertically split neural networks are trained in two
different devices during the training phase.

While this unit may be a node in a multilayer perceptron or feature maps in CNNs, the method
is designed to achieve compression for a range of general NNs; since the names are different in
different contexts, we will refer to this unit as a feature map for the sake of brevity in explanation.
An equivalent unit would be the nodes at layer n for multilayer perceptron.

Compression and decompression Modules: In this section, we will discuss the compression
and decompression modules mentioned earlier. The first and optional step for the input to the
compression module, [,,, is to go through a compression mechanism to achieve a resolution com-
pression for each node/feature map. This is an optional method and is dependent on the kind of
neural network being implemented. For multi-layer perceptron, the nodes are simply a real num-
ber and do not require this kind of compression. In a convolutional neural network for a potential
resolution compression, this is achieved by controlling the kernel dimension and stride dimension
of the convolution layer. We define resolution compression as the compression in size of each
feature map of the input layer [,,, and resolution compression factor r as the reduction in size of
the feature map. For a given r, to achieve the desired compression, we define kernel height as
kcp = 2 + r, kernel width as kc,, = 2 + r stride value as sc = r and padding value as pc = r. Then
the values are passed through a batch normalization layer. We will refer to this output as [.

Next, we will explain the core compression and decompression modules as illustrated in Figure 3;
we will also refer to them together as compression-decompression module. We begin as input /,,,
the output of n*” layer, with gz; entries/nodes/feature maps (we will refer to as feature map as
usual). For the output of the compression module above, we obtain ¢ number of feature maps
where ¢ < ¢, and the compression filter f is a vector of size ¢. At the beginning of training,
we initialize f as a learning parameter of the neural network, with each value fk € R where
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k =1...¢. After passing through a sigmoid to obtain f from f , we multiply each element of f to
the corresponding feature map, i.e., for layer output I. with ¢ outputs, ZAC, k. the k" feature map, is
nowle r = fi -l; - We will refer to this operation as “mul” for convenience, as referred in Figure 3 as
well, and the output is /.. This method allows for further lossless compression methods, optionally.
This compression module can be considered a method of compression similar to encoding but the
level of compression is controlled by training the entries in the vector f to either be close to zero
or not. The nodes corresponding to zero value need not be used further/communicated further,
and we will explain later how f is trained to represent a desired compression level.

Following the compression, the data is communicated over to device 2, where the decompression
has to take place, with the decompression module restoring the resolution of the feature maps to
what it was during [,,, and giving an output /;. A communication budget B is used to limit how
many of the feature maps are communicated from device 1 to device 2, i.e., the feature map [,  is
communicated if and only if the corresponding fi is larger than B entries in f.

I is then processed further with the remaining n + 1, ..., L layers to produce the prediction
p, to be compared against the real output y during the training phase. So, during the training
phase, we have two learning objectives: first is training the traditional learning parameters (for
example, weights and biases) of the model, and second is learning the values of filter f such that
a communication budget B is satisfied. In this work, we define a single loss function, that is used
to train both sets of parameters, with the loss function Loss(p, y) being an arbitrary loss function
that is traditionally used to train a model, and a pruning loss function pruneLoss(f, B), which is
defined as

pruneLoss = exp|d - Z fi|—B| |+ Aexp|—6 - Z fil-B|]. (1)
¢

i€l,..,¢ i€l,..,

In Equation (1), the exponential functions act as a soft-constraint, or barrier functions, that let
the budget be violated but at a great cost, and as the pruneloss is minimized, the number of nodes
selected can come in agreement with the given budget constraint B. There are two exponential
functions, with the second one (negative exponential) ensuring that the budget constraint is not
over-corrected; this is not necessary but improves the results. Note that 0 < A < 1.

The total loss totalLoss is then defined as

totalLoss = Loss + € - pruneLoss. (2)

In Equation (1), § is a value defining how the violation of budget is handled as a soft constraint
and in Equation (2), € is a value defining how the pruneLoss is weighed against Loss during the
training.

The method described above, including the selected approach of adding pruneloss (shown in
Equation (1)) to the loss, affords certain benefits to the process of training and implementing deep
learning models in a networked system.

— First, notice that the total loss function allows for both [oss (associated with the accuracy of
the model) as well as the pruneLoss (associated with the satisfaction of compression level)
to be learned at the same time. We design and implement the method in such a way that
the deep learning approach, i.e., implementation in the GPU, can be done for both kinds of
learning. Hence these objectives can be trained in parallel.

— Second, notice that the parameter that controls the level of compression, f, is the only param-
eter in this deep learning architecture that needs to be controlled for different compression
levels. So by training for one compression level, i.e., a particular value for }};¢; .4 fi, at the
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beginning, and then changing this value according to budget without resetting other param-
eters, we are able to quickly retrain for different compression levels through this form of
transfer learning.

— Third, by dynamically changing compression levels during learning, we are able to acquire
different deep learning architectures suitable for different communication environments.

As we discussed earlier, this is more of a skeleton method that the aforementioned techniques,
“deprune” and “prune”, employ to achieve their goals.

3.2 Deprune Method

When the source of the data, i.e., device 1 (client device) in the formulation above and devices like
IoT devices in the real world, are incapable of completing the learning process by themselves, or
avoid learning in one location for the sake of saving on-device energy, split learning can be em-
ployed to share the task with the more powerful connected devices, i.e., device 2 (server) in the
formulation above or devices like edge computers. In this instance, if the split learning were to pro-
ceed as is without any compression, depending on the model and the location where the splitting
happens, a large amount of data would have to be transmitted across the network. For instance,
with convolutional neural networks, a huge number of feature maps would have to be transported
across the network for split learning. A solution to this problem is to implement compression, and
with lossy compression, we are able to further increase the compression as discussed earlier. How-
ever, there is a loss of accuracy for the model when too much compression is implemented; the
workaround which lets us achieve both a lower training time and a higher accuracy level is the
“deprune” method based on our formulation.

In the “deprune” method, we begin by taking a filter with a much smaller communication budget,
i.e., the allowed number of 1’s in f, denoted by b and guided by B, is much smaller than the size of
f given by ¢. For instance, after certain layers of computation, at layer n, a VGG neural network
has 128 feature maps, but we may want to begin the training by only allowing 4 feature maps to
be communicated from device 1 to device 2. After training the neural network for a few epochs,
we would then increase the number of feature maps from b << ¢ to maximum value of ¢, i.e., in
case of the example VGG, by increasing the allowed number of features maps to be communicated,
b =4, to b = 128. This method is elaborated in Algorithms 1 and 2.

Algorithm 1 takes place in the client device, or as we referred earlier, device 1. For a model
M with training hyper-parameters H, our goal will be to train the parameters corresponding to
the layers {1, .. ., n}, with the help of two lists: Budgets, where each entry gives the budget B (as
defined earlier) under which the compression is supposed to operate at a given instance of training,
and Epochs where each entry corresponds to the number of epochs to be trained for a given budget
B. The end goal here is to obtain the trained parameters in client device given by 0.j;cy;. Please
note that this value consists of training parameters for the first n layers as well as the parameters
for the compression module, i.e., f. The data is obtained for certain batch sizes as defined by H
through a batch-loading mechanism (any sort of) in the form of (X;, y;), and then we perform a
forward pass on input X; through the first n layers to obtain the output [,,.

The next step is to perform compression on /,, using the compression module as discussed during
the formulation section and illustrated in Figure 3, which gives as output the parameters . (output
of compression) and f (the filter). Then (I, y, f) is sent to the server device by the client device.

Once (I, y, f) is received by the server device, which is awaiting a request from client as shown
in Algorithm 2, I, is decompressed using the decompression module as explained in the formula-
tion Section 3.1; output [; then goes through forward pass for the remaining layers to obtain the
prediction p. Using Equation (2), we compute the error for the given forward pass, and then the
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ALGORITHM 1: dePrune training at client ALGORITHM 2: dePrune training at server

device device
Input: M, H, n, Budgets, Epochs, I, y Input: M, n, Budgets, Epochs, 8, €, Iy, y
Output: Trained parameters 0.j;¢,; Output: Trained parameters Oserper
1: Initialize: Parameters ¢, for M’s layers 1: Initialize: Parameters 6, for M for M’s lay-
{1,...,n} ers{n+1,...}
2: for B € Budgets do 2: for B € Budgets do

3. fori € Epochs[B] do 3. fori € Epochs[B] do

4 selectLr(lx,y) 4 selectLr(li,y)

5 for X;,y; € batchLoader do 5 while running() do

6: I, « ForwardPass(X;) 6: Await(l.,y, f)

7 le, f < CompressionModule(l,) 7 lg <« decompressionModule(l., )
8 Send(le,yy, f) 8 p <« ForwardPass(ly)

9 9

Al « totalLoss(p,y;) given by

10: Receive(Aly) Equation (2)
11 Backprogagation(Aly) 10: Aly < Backpropagation(ly)
12: end for 11: Send(Aly)
13:  end for 12: end while
14: end for 13:  end for
14: end for
obtained Al is back-propagated through L, ..., n + 1 layers as well as the decompression module.

Then the output of backpropagation on server device may be sent to the client as Al;. Client device,
which is until now waiting to receive Al will now use this value from the server device to finish
the training step.

An important function that is yet to be explained for the deprune methods as shown in
Algorithms 1 and 2 is the dynamic selection of learning rate (selectLr(l;)). During selectLr(lx)
for each non-initial budget level, i.e., when we transfer to a higher budget level, the learning rate
is set to a higher value by a factor of y for the first [ epochs. This approach was observed to sig-
nificantly help avoid unwanted local minima during training and help achieve higher accuracy as
we moved to higher budget levels.

3.3 Prune Method

When the source of the data, i.e., device 1 (client device) from the formulation section and devices
like XR devices in the real world, are not capable of completing the inference process in a timely
manner or of doing so in an energy-permissible way, split learning can be employed to share the
task with the more powerful devices in the network, i.e., device 2 (server) in the formulation section
or devices like edge computers. In such an instance, if the split learning were to proceed without
any compression, depending on the model and other requirements like latency constraints for in-
ference, it might not be feasible to complete the task with just the end device running the inference
model. Hence, we could again rely on compression, including lossy compression to achieve net-
work performance (such as lower latency and network usage) that would otherwise be impossible
when relying only on a weak end device and/or split learning without compression.

As we implement more compression, we expect the model accuracy to fall, as less information
can be transmitted from the source device/client device to the server for further inference. In
any case, for different levels of compression, we will end up achieving different levels of model
efficiency [6]. However, depending on latency/ network usage requirements, the client may want
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to opt for a different level of this accuracy-compression tradeoff. While the lossy compression
model is shown to be efficient, it does take quite a bit of time to train for a given compression
level as training needs to start again from the beginning for that compression level. Therefore, if
we want to train for different compression levels, the completion of training for each process is
anticipated to require a substantial amount of time. With the help of our method, “prune”, based
on the deep learning architecture as defined in the formulation section, we are able to implement
transfer learning approach and generate multiple approximate models with similar accuracy (or,
slightly reduced accuracy), but significantly reduced network costs and computation costs at the
client devices.

In the pruning method, we begin by taking a filter with the largest possible filter size, i.e., where
the communication budget is maximum, i.e., all the feature maps may be communicated so B =
len(f)/¢. For this particular model, we allow the training to fully proceed, and then let this be
the “base model” upon which transfer learning may take place. Let Budgets be a vector containing
each desired feature map compression levels with k‘* compression level given by Bi. Then the
model corresponding to k*# compression level is given by Mj. Hence, after the full model with
no compression (B = ¢) is trained to obtain parameters for M,, we do the same for different
k compression levels as defined in Budgets using the transfer learning approach as defined in
Algorithm 3, which is designed to give us a set of trained parameters ® where each element 0y, is
parameters for model M}, corresponding to compression level By.

Only for budget B = max(Budgets) where the feature map compression is not implemented, the
set of parameters 6}, is randomly initialized as if training a new deep learning architecture; for every
other compression level, we transfer the parameters learned from the previously trained model.
Then for certain epochs given by Epochs[B], we train the deep learning architecture. Later, while
discussing results, we will show that Epochs[B] only needs to be larger when B = max(Budgets)
but can be much smaller for the remaining compression levels. This way, the transfer learning
approach can help us train many subsequent approximate models quickly. Notice that the models
are still split into two parts, with one side computing the first n layers, ie., 1,...,n along with a
compression module, and the other side computing the remaining L — n layers after going through
the decompression module.

This still is in keeping with our split learning formulation, but the major difference here when
compared against the deprune method is that the training phase need not be run in different de-
vices, but may be run in one powerful device that trains the different deep learning architectures
with different network cost and performance tradeoffs. Once the training is completed, the devel-
oped models represented by the output of the prune method/Algorithm 3, ©, may be used by the
client and server devices. In that case, the inference method is equivalent to the forward pass in the
client device (as shown in Algorithm 1) followed by the forward pass in the server device (as shown
in Algorithm 2). The client would in that case only expect the prediction p from the server device;
needless to say, the learning parts including loss predictions are not necessary for these inferences.

One important step after completing the training for each budget level is the resetprune shown
in Algorithm 3, where the filter parameters are reset. Notice that f is always obtained by passing
through sigmoid, and after training at a certain budget level By;, we then move to budget level
Bz < Bgi. So here by making sure that the entries in f that were already greater than 1 during
training for By, are randomized during the training for By,, we make sure that those filters can
potentially be trained to approach 0, or else further compression would not be likely. An additional
noteworthy point is that the pruning algorithm can be executed with various levels of resolution
compression during CNN training. As was the case for the deprune method, we can also employ the
dynamic selection of learning rate (selectLr(ly)). During selectLr(l}) for each non-initial budget
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ALGORITHM 3: prune training
Input: M, H, n, Budgets, Epochs, I, y
Output: Trained parameters set ©

1: for B € Budgets do
2. if B == max(Budgets) then

3 Initialize: Randomized parameters g for M,
4 Initialize ©® « {}

5. else

6 Transfer: O «— 0

7 end if

8: fori e Epochs[B] do

9 for X;,y; € batchLoader do

10: l, < ForwardPass[l,,...,[,](X;)

11 I, f « CompressionModule(l,)

12: lg < decompressionModule(l,, f)

13: P «— ForwardPass[l,11,...,1](lg)

14: Alp, « totalLoss(P, y;) given by Equation (2)
15: Aly < Backpropagation(ly)

16: Backprogagation(Aly)

17: end for

18:  end for

19: 0 « 93

20: @[Mh] «— 0O
21: resetprune
22: end for

level, i.e., when we transfer to a lower budget level, the learning rate is set to a higher value by a
factor of y for the first [ epochs.
Algorithm 3 summarizes our prune method as an algorithm as discussed in Section 3.3.

3.4 Computational Costs

The addition of compression-decompression module is a source of extra computational complex-
ity brought about by the method. In case of convolution-based methods, the only significant extra
computation cost is brought about by the addition of the compression and the decompression lay-
ers. The computation task here is from the layer-wise convolution, so for a compression budget
defined by B, the computation cost analysis will take as number of output features f, = B. Taking
the number of input features (depends on the output of layer at the point of split) f;, and resolution
R, convolution kernel length and breadth k,; and k,;, the computational cost of compression mod-
ule becomes f, fik, ik, R. The decompression module is symmetrical (input and output number of
features are reversed), so the cost can be taken as 2f, fik, 1k, R. For the filter acting on the feature
map, the cost is RB during compression, and during decompression, unused features need to be
added back so the cost is B. For the deprune method (Algorithms 1 and 2 combined), this method
means the extra computation costs for n steps of forward pass is 4f, fik; 1k, Rn + 2nR(B + 1), while
the remaining cost depends on the model being implemented under the split learning paradigm.
and hence, the complexity is O(f, fikr1k,pRn+nRB). As we will show in Section 4.1 through imple-
mentation of proposed method, this extra cost of computation is not going to be severe enough for
the added computation time to cause a significant concern for the end-to-end computation time,
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which is a secondary improvement from the algorithms. Trivial to state, the primary goal of this
article, increased network efficiency, is not negatively affected by this additional complexity. For
“prune method” 3, the algorithm is designed to run on any server, and only the finished and saved
models need to be running on resource-constrained end devices where inference takes place. For
inference, the added computation cost is O(f, fik,ikypRn + nRB).

4 Evaluation

In this section, we will show the results demonstrating the efficiency of our method at creating
deep learning architectures in network system paradigms, with a focus on overcoming network
costs, i.e., reduced network usage and decreased communication latency. But we will also focus
on overall processing time. In Section 4.1, we will evaluate the deprune method, alongside its
implementation on testbeds. And in Section 4.2, we will present and describe the benefits of the
pruning method.

4.1 Results: dePrune Method

A primary goal of our deep learning architecture, and of the deprune method, is to reduce band-
width usage and improve latency during the training process; it is then by extension that the bene-
fits are afforded to the end device in the form of manageable reduction in computation cost/energy
consumption through split learning. We begin by showing that our method is able to significantly
reduce bandwidth consumption on a realistic testbed, while also being capable of improving learn-
ing time/latency. Then we run simulations over Python implementations to demonstrate the re-
duction in the network usage as we employ the deprune method on different models, datasets,
split locations, and resolution compressions. The code developed for these simulations is open-
sourced.!

In order to show that our method allows training to continue with a reduction in bandwidth
usage over time, we show that less bytes have to be communicated over the training period (to
reach the same level of accuracy in the same number of epochs) with our method added to a
distributed/split learning paradigm. Additionally, in order to show that the end-to-end latency of
learning episodes can be reduced on average, we show that more samples are processed using
our method over time when a device has to offload a certain fraction of the deep learning task
to a server. Notice that offloading raw data (i.e., image) can be considered a special case where
offloading takes place before layer 1 as opposed to certain arbitrary layer n + 1.

The testbed consists of an embedded GPU serving offload requests, and a laptop hosting data
sources that offload processing. The embedded GPU uses CUDA for most of the tensor process-
ing, and CPU for the rest of the computations, including network message serialization and de-
serialization. The laptop uses CPU for all of the computations, including tensor processing. The
laptop uses a commodity CPU with 8 cores and a base clock frequency of 1.60 GHz. The processing
speed of the GPU according to the manufacturer’s specification is 22 TOPS (INT8 precision). The
laptop and the embedded GPU communicate over a physical Wi-Fi 6 channel.

The software framework used in benchmarks is open-sourced.? In the benchmarks, the laptop
runs multiple parallel data source processes, each of which shares the same wireless channel. The
processes were containerized, and their deployment was automated by using Kubernetes, which
allows for much better orchestration and scaling among other benefits. To emulate the constrained
processing power of mobile devices, and to avoid physical hardware saturation from other applica-
tions running in the laptop affecting the measurements, each of the data sources’ CPU allocation

!https://github.com/amudvari/VCCprune/tree/artifacts
Zhttps://github.com/AnteronGitHub/sparse
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lated linearly to make them more readable.

was limited virtually. Furthermore, the number of data source processes running in the laptop was
set to eight, which the laptop had enough RAM to run without having to use swap memory.

In the benchmarks, we measure the task throughput in terms of samples processed, as well as
the data traffic in terms of bytes sent over the wireless channel. The task throughput is measured
per data source, while the data traffic in the wireless channel is the sum of all of the data sources’
traffic. The benchmark measurement starts after processing the first batch in order to avoid the
cold start resulting from CUDA JIT compilation.

We run benchmarks with eight data sources, limiting the CPU usage of each data source to 40%
cores. The resource usage of the embedded GPU was not limited. Each data source processed sam-
ples in batches of 16 samples, and processed 32 batches in 4 epochs. Split training without pruning
does not include the additional neural network layers, and the compression/de-compression mod-
ules, resulting in less overall processing.

We run the experiment for CIFAR10 dataset [22] running VGG11 model [49] with our
compression-decompression module (referred as “with module”) and compare against implemen-
tation that does the split learning without any compression-decompression module [19] (referred
as “without module”); in both cases splitting takes place at 5th layer with the compression mod-
ule having f = 4 in case of our method. These layer selections are arbitrary and later we show
that our method works across different layers. As seen in Figure 4, the network usage is reduced
significantly with our method when compared against split learning (labeled “without module”),
i.e., the improvement is about 25 times less network usage; and the training throughput as shown
in Figure 5 is reduced by about 2.5 times. The goal here was to demonstrate that the deployment
of our method in a wireless environment can efficiently reduce network usage, and increase task
throughput, i.e., provide improved total latency for the completion of the learning task.

In the next case, we run the experiments with a single data source running CIFAR10 dataset
and learning on VGG11 model, with a batch size of 64, and other similar settings as compared
with testbed results in Section 4.1. The main difference here is the hardware being used, with
both the client and the server devices being CUDA-enabled nodes and connected to the network
over Ethernet. Specifically, the server nodes are set up with an NVIDIA GeForce RTX 3,090 and
an NVIDIA GeForce RTX 4,090 respectively, and the Round Trip Time between these two nodes
over Ethernet connection is 0.670 + 0.219ms. As shown in Figure 6, our method (“with module”) is
able to reduce the total network usage over split learning without our module (“without module”)
by 30%, while as shown in Figure 7, the total throughput is reduced by 1.7 times. Of course, this
throughput performance was a case where computation was the bottleneck and not the network,
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since Ethernet was used; when the network is a bottleneck, it is shown that the method is more
useful; i.e., when WiFi or cellular network is involved, or when network is congested, the method
becomes more useful. Of course, this throughput performance was a case where computation was
the bottleneck and not the network, since Ethernet was used; when the network is a bottleneck, it
is shown that the method is more useful; i.e., when WiFi or cellular network is involved, or when
network is congested, the method becomes more useful.

In Figures 4 or 6, the cumulative bytes of network traffic used up can be interpreted in two ways:
the instantaneous slope can be used to see that the bandwidth consumption was much lower for
our method most of the times, signifying that the bandwidth consumption (bytes sent per unit
time) was lower. The red line (our method, “with module”) ends much faster, signifying that for
the same level of accuracy and same number of epochs run, the training session was finished faster.
Similarly, the slope of the lines in Figures 5 and 7, show that our method (red lines, “with module”),
have a higher slope, denoting faster completion of each training sample, denoting a better end-to-
end processing latency for the training steps. These experiments have shown that the method
could work in different network and hardware settings. Furthermore, the use of multiple workers
in case of WiFi network also demonstrates the usefulness of this method for scaled deployment
(with multiple users participating in the learning environment).

Next, we show how the method runs with less bandwidth consumption, while reaching the
same level of accuracy as non-compressed offloading of the tasks to servers, across different
configurations.

We ran simulations to show the network usage improvement under different circumstances.
In Figure 8 we train a VGG11 [49] NN with CIFAR10 dataset [22] using 3 different approaches.
“no-Compression” method refers to a process in which the filter size f as defined during the for-
mulation is maximum, which means all the data/feature maps are sent from client device to server
device. On the other hand, “high-compression” refers to the case where the compression is im-
plemented so that very few number of feature maps are allowed to be communicated. Finally,
“deprune” is our method as described earlier in Section 3.2. “deprune” is a method where for a
much greater part of the training epochs, we will only train under the lower compression level/
lower value of f, where much fewer filters are communicated across the network. The layer at
which splitting takes place can be chosen based on requirements such as the end device’s capacity
to process a certain number of layers. For example, when we consider the layer to be 0,,/before
the first layer, it represents simply offloading the raw data to the server (i.e., cloud). In case of

ACM Trans. Internet Technol., Vol. 24, No. 4, Article 27. Publication date: November 2024.



Adaptive Compression-Aware Split Learning and Inference 27:17

85

80 70

75
g g”
> 70 et
o &
5 g
o 65 = 50
] 3
< <
!
g 60 B
B = 40

55

30
50
45
0 5 10 15 Zb o 5 10 15 20 5 30 35
Epoch Epoch

—— dePrune  --- high-compression = --- no—compression] —— dePrune  --- high_compression —— micnmpresslon‘
Fig. 8. Progression of training under deprune Fig. 9. Progression of training under deprune
method, cifar10 dataset. method, imagenet dataset.

Figure 8, split location is after the fifth layer, and we will train with the filter size f = 4 out of 128
for the first 15 epochs, and then we may train with full feature size f = 128 for the remaining time.
Here we see that the level of accuracy toward the end is similar to training with full budget, given
by test accuracy in percentage in Figure 8, reached by epoch 18. High compression option here
is with f = 4 and no compression option always has f = 128, i.e., full budget. Here, we realized
that while the accuracy level achieved by “deprune” is similar to that of the accuracy achieved
by “no-compression” approach by 18 epochs, the improvement in network utilization would be
by 420 percent. The accuracy is improved by 3.9 percent as compared to high compression case
by then. Hyperparameters: in case of this illustration Figure 8, the hyperparameters we used were:
Stochastic Gradient Descent (SGD) as optimizer, learning rate [ of 1e-5, weight decay y of 5e-4,
and split layer n = 5. Same other hyperparameters as are used in the following analysis, unless
stated otherwise.

Next, we tested the experiment for a different dataset, Imagenet100, which is a subset of
ImageNet-1k dataset [44] that contains 100 out of the 1,000 classes in the original dataset, using
the same approach as earlier in case of CIFAR10 dataset, but for images with higher resolution.
The result is illustrated in 9, where comparison is once again made with no-compression and high-
compression cases. Here again, training is done for a lower value of f = 4 for 25 epochs, before
switching to f = 128 for the remaining of the training. We see that by epoch 30, the accuracy
of “deprune” method is already similar to the accuracy when no compression happens. Without a
loss of obtained accuracy, within these 30 epochs, the network usage is improved by 418 percent.
While by then the accuracy has improved by 3.8 percent as compared against high-compression
case. Hyperparameters: in case of this illustration Figure 9, the hyperparameters we used were:
SGD as optimizer, learning rate [ of 1le-5, weight decay y of 5e-4, and split layer n = 5.

We also repeated this same experiment with different resolution compression levels for CIFAR10
dataset, as shown in Figure 10, which shows that these compression mechanisms work for different
levels of resolution compression. As our algorithm uses a convolution method during compression,
by increasing the convolution kernel for compression from 1 X 1 to 2 X 2 (center plot of 10) and by
increasing to 3 X 3 (left plot of Figure 10), we observe that our method of compression can work
complementary to resolution compression methods. As expected in each case, as the compression
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factor increases from 1 X 1 to 2 X 2 and 3 X 3, the accuracy falls for each case, but in each case,
our method efficiently matches the maximum test accuracy (no-compression case) for the given
resolution compression level.

As shown in Figure 14, Appendix A, the addition of the compression-decompression module did
not have a significant impact on the performance of the deep learning model, and the addition of
this module at any location within the model did not change the behavior in any significant way
either; the test accuracy was similar after any number of epochs for each of the cases. To make sure
that the addition of compression-decompression module after any arbitrary layer results in similar
efficient behavior, we ran the experiments again for CIFAR10 dataset with different locations of
the split layer (in addition to the original experiment where splitting occurs at layer 5), as shown
in Figure 11. In cases where the compression-decompression module was kept at the 0th layer (i.e.,
compressing the input itself) as shown in Figure 11 (left), after 6th layer as shown in Figure 11
(center), and after 9th layer as shown in Figure 11(right), the efficient behavior from our deprune
method as explained earlier was always observed. This effectively proves that the module could
be added anywhere, as well as that the “deprune” method can be run in any of these cases.

This shows that the method can be deployed in different ways and for different data so that
network resources are saved while training deep learning models in a split-learning environment.
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4.2 Results: Prune Method

As discussed earlier in the related works and methods sections, compression-aware training, where
we train deep learning models to split the tasks in a network and latency-efficient way, requires
substantial training time. This is because we need to train the model for every given compression
level. Our solution based on the compression-decompression module, “prune”, is able to gener-
ate models with different compression-latency tradeoffs by training the largest model first and
then using a transfer learning approach to quickly generate approximate models, as described in
Section 3.3. In this subsection, we will demonstrate the results of our method in reducing the
training times for these approximate models in an efficient way.
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In Figure 12, we train a VGG11 [49] neural network with CIFAR10 dataset [22] using our method,
“prune”. In this case, we begin by training the model first with no compression, i.e., filter size f =
128 so all 128 feature maps in the layer are to be sent across network for the first 30 epochs. Then
we reduce the number of filters to f = 32, and then to f = 4, training for each f for a few epochs.
In Figure 12(top), we compare our method Prune with situations where compression levels are no
compression (labeled “nocomp”), f = 32 (labeled “32comp”, representing a compression by 4 times),
and f = 4 (labeled “4comp”, representing a compression by 32 times). The top image, Figure 12(top),
is showing that our method could generate results that are comparable to the results generated
by “training from start”, with compression by 4 times called 32 comp, compression by 32 times
labeled 4comp, and no compression-case labeled nocomp. In these cases, which we call “training
from scratch” the compression level is predefined and the model is trained without transferring any
learned information from any other model, for each compression level. For our approach prune,
training happens in epochs 0-30 for f = 128, epochs 30-40 for f = 32, and epochs 40-50 for f = 4,
and in all of those cases, accuracy to the “training from scratch” approach is matched.

In Figure 12(bottom), the bottom figure, we are able to see that after training for f = 128 and
transferring to f = 32, the training time is significantly reduced, i.e., the accuracy after training
for just 5 epochs has reached the maximum, while for “training from scratch”, this value is only
achieved (inferred from Figure 12) after about 30 epochs; after 5 epochs accuracy is only 70 percent
of maximum for the “training from scratch” approach. Hence, this is an improvement of 6 times
better training speed. Similarly, for the compression level of f = 4, the training time was an
improvement of about 6 times as well. In case of this illustration Figure 12, the hyperparameters
we used were: SGD as optimizer, learning rate [ of le-5, weight decay y of 5e-4, and split layer
n = 5. Same other hyperparameters are used in the following analysis, unless stated otherwise.

We repeated this experiment with STL10 [5], as illustrated in Figure 13. The same method as
described in case of CIFAR10 above was implemented again. This time for our approach prune,
training happens in epochs 0-30 for f = 128, epochs 30-45 for f = 32, and epochs 45-60
for f = 4 as evident in Figure 13 bottom or top. As seen in 13(top), our method was able to
match the performance of “training from scratch” with 4 times compression (labeled “32Comp” in
Figure 13) by epoch 7 as opposed to taking about 30 epochs to reach the maximum performance,
which is an improvement of 4 times. As seen in 13(bottom), STL10 was even much slower than the
CIFARI10 case of “training from scratch”; here by epoch 7, in either cases of compression, 4 times
compression with f = 32 or 32 times compression with f = 4, within 7 epochs, the training in
case of “training from scratch” had only reached about 60 percent of our method. In case of this
illustration Figure 13, the hyperparameters we used were: SGD as optimizer, learning rate I of
le-5, weight decay y of 5e-4, and split layer n = 5. As we change the compression levels, as was
evident in different figures, i.e., 12 (bottom) and 13 (bottom), it appears that changing the com-
pression level leads to different levels of drop in accuracy before returning to the desired levels
during training for different datasets and compression levels. The observations in the evaluation
section show that these levels of drop vary across datasets as well as compression levels, and split
locations.

In Appendix B, we discuss further configurations for trying out the prune methods. So this
section shows that we are able to obtain network-efficient deep learning architectures quickly.
The next straightforward step in deploying our models, after training, would be to have them in
the edge-cloud split environment for quick inference, while giving the network management entity
the choice of selecting between accuracy and latency; this could help make decisions to optimize
service quality, fulfill latency constraint, or help with any other utility maximization.

In Appendix C, we further discuss some statistical observations to demonstrate the repeatability
of the experiments.
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5 Conclusion

In this work, we developed a novel approach to training deep learning models that improve the
network usage and the training latency. We designed a compression-decompression module, that
when combined with our deprune algorithm, is able to significantly reduce network usage and
make learning faster without significantly affecting accuracy; network usage for learning was
improved by 4X when compared with split learning approach, and the accuracy was improved
by 4 percent when compared with compression-aware split learning. Such algorithms will be very
beneficial to IoT and other resource-constrained end devices in the next-generation network archi-
tectures that must provision Al tasks. We also combined the compression-decompression module
with our prune method to significantly reduce the training time for deep learning models that
trade little accuracy for a significant reduction in network consumption; here we showed that
the training time could be improved by up to 6 times when compared with compression-aware
split learning. Such methods could help develop orchestration options for Al tasks like AR/XR in
network-constrained environments.

Appendices
A Effect of Adding Compression-decompression Module to a Neural Network

In Figure 14, we have shown that putting the compression-decompression module after different
layers produces very similar learning behavior to not putting them anywhere, i.e., the original
model. In other words, the learning trajectory and the outcome after training are very similar. The
results are demonstrated after putting the module after no layers (i.e, image), after 5th layer and
after 7th layer.

B Extended Evaluation for Prune Method

As we are able to observe in Figure 15, we see a similar improvement in speeding up training
with prune method, as was the case in Figure 12 in Section 4.2, with the difference here being
that the compression method is also complemented with a resolution compression factor of 3 X 3
using convolution method discussed in 3.1. Here again, the maximum value for compression by
4 times is reached within 4 epochs for our method, but takes 34 epochs for “training from scratch”
(32 comp). The results are similar for the compression factor of 32. We were able to observe these
over-performances consistently. We did note that while for a lot of cases the obtained accuracy was
similar albeit with different learning speeds, as is a known case for deep learning training meth-
ods, there is uncertainty and variability: sometimes our method gave accuracy levels different than
“training from scratch”. And sometimes the learning could be slower toward reaching the desired
accuracy and sometimes faster, but such variances are expected in learning tasks like deep learning
for vision. As shown in Figure 16, in case of compression by 64 times for CIFAR10 dataset, and reso-
lution compression by 3 X 3 times, both methods, our method as well as training from scratch, gave
output where accuracy varied noticeably across the epochs. As a future potential direction of re-
search, we could find a way to automatically explore right and minimum compression possibilities.

C Extended Statistical Evaluations

In this section, we demonstrate the repeatability of our adaptive compression-decompression mod-
ule by conducting multiple experimental runs. Additionally, we analyze the behavior of the de-
prune and prune methods across various settings.

In Figure 17, We show the results for the deprune experiments described in Figure 8 repeated
multiple times to show that the improvements could be replicated. Here, we repeated the
experiments 3 times (besides the one shown in Figure 8), and measured the mean and the standard
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Fig. 14. Progression of training for models with compression-decompression modules after different layers
along with a model without the module.
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Fig. 15. Progression of training under prune method, for CIFAR10 dataset with resolution compression factor
of 3x 3.

deviation of the test accuracy at each epoch (error bars represent the standard deviation in
Figure 17) It was seen that the accuracy on average over high compression method improved
by 3.9 percent for 22 epochs. After 18 epochs, about when the deprune method is very close in
accuracy to the no compression approach, the improvements are already at 3.1 percent.
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Fig. 16. Progession of training with prune method, for CIFAR10 dataset, when compression can get very
high.
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Fig. 17. Progression of training in deprune method for CIFAR10 dataset and VGG11 model, mean and stan-
dard deviation plot.

We consider statistical average improvements across different settings for prune and deprune
methods to obtain the mean performance. For deprune methods observed in Section 4.1 Figures 8
and 9, averaging across CIFAR10 and Imagenet datasets, we see an average improvement of
3.85 percent and reduction in network usage by 420 percent. For the prune method and obser-
vations in Section 4.2, we observe across different datasets, and the training time for the models
with different compression levels was on average improved by 5.1 times.

References

[1] 2019. Retrieved June 2023 from https://www.gsma.com/futurenetworks/wiki/cloud-ar-vr-whitepaper
[2] Manoj Ghuhan Arivazhagan, Vinay Aggarwal, Aaditya Kumar Singh, and Sunav Choudhary. 2019. Federated learning
with personalization layers. arXiv preprint arXiv:1912.00818 (2019).

ACM Trans. Internet Technol., Vol. 24, No. 4, Article 27. Publication date: November 2024.



27:24 A. Mudvari et al.

(3]

[4

—

(5]

[6

—

[7

—

8

[

[9

—

[10]

[11]

[12]
[13]

[14]

[15]
[16]

(17]

(18]

[19]

[20]
[21]
[22]
[23]
[24]

[25]

Juliano S. Assine, Eduardo Valle, and J. C. S. Santos Filho. 2021. Single-training collaborative object detectors adaptive
to bandwidth and computation. arXiv preprint arXiv:2105.00591 (2021).

Miguel A. Carreira-Perpinan and Yerlan Idelbayev. 2018. “Learning-compression” algorithms for neural net pruning.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 8532-8541.

Adam Coates, Andrew Ng, and Honglak Lee. 2011. An analysis of single-layer networks in unsupervised feature
learning. In Proceedings of the 14th International Conference on Artificial Intelligence and Statistics. JMLR Workshop
and Conference Proceedings, 215-223.

Amir Erfan Eshratifar, Amirhossein Esmaili, and Massoud Pedram. 2019. Bottlenet: A deep learning architecture for
intelligent mobile cloud computing services. In Proceedings of the 2019 IEEE/ACM International Symposium on Low
Power Electronics and Design. IEEE, 1-6.

Wei Fang, Lin Wang, and Peiming Ren. 2019. Tinier-YOLO: A real-time object detection method for constrained envi-
ronments. IEEE Access 8 (Dec. 2019), 1935-1944.

Vajiheh Farhadi, Fidan Mehmeti, Ting He, Thomas F. La Porta, Hana Khamfroush, Shigiang Wang, Kevin S. Chan,
and Konstantinos Poularakis. 2021. Service placement and request scheduling for data-intensive applications in edge
clouds. IEEE/ACM Transactions on Networking 29, 2 (2021), 779-792.

Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. 2015. Region-based convolutional networks for ac-
curate object detection and segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 38, 1 (2015),
142-158.

Song Han, Huizi Mao, and William J. Dally. 2015. Deep compression: Compressing deep neural networks with pruning,
trained quantization and huffman coding. arXiv preprint arXiv:1510.00149 (2015).

Seungyeop Han, Haichen Shen, Matthai Philipose, Sharad Agarwal, Alec Wolman, and Arvind Krishnamurthy. 2016.
Mcdnn: An approximation-based execution framework for deep stream processing under resource constraints. In
Proceedings of the 14th Annual International Conference on Mobile Systems, Applications, and Services. 123-136.
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image recognition. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 770-778.

Yihui He, Xiangyu Zhang, and Jian Sun. 2017. Channel pruning for accelerating very deep neural networks. In Pro-
ceedings of the IEEE International Conference on Computer Vision. 1389-1397.

Geoffrey Hinton, Li Deng, Dong Yu, George E. Dahl, Abdel-rahman Mohamed, Navdeep Jaitly, Andrew Senior, Vincent
Vanhoucke, Patrick Nguyen, Tara N. Sainath, and Brian Kingsbury. 2012. Deep neural networks for acoustic modeling
in speech recognition: The shared views of four research groups. IEEE Signal Processing Magazine 29, 6 (2012), 82-97.
Hengyuan Hu, Rui Peng, Yu-Wing Tai, and Chi-Keung Tang. 2016. Network trimming: A data-driven neuron pruning
approach towards efficient deep architectures. arXiv preprint arXiv:1607.03250 (2016).

Zhaohui Huang and Vasilis Friderikos. 2021. Proactive edge cloud optimization for mobile augmented reality applica-
tions. In Proceedings of the 2021 IEEE Wireless Communications and Networking Conference. IEEE, 1-6.

Hyuk-Jin Jeong, InChang Jeong, Hyeon-Jae Lee, and Soo-Mook Moon. 2018. Computation offloading for machine
learning web apps in the edge server environment. In Proceedings of the 2018 IEEE 38th International Conference on
Distributed Computing Systems. IEEE, 1492-1499.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, and Qun Liu. 2020. TinyBERT: Dis-
tilling BERT for natural language understanding. In Findings of the Association for Computational Linguistics: EVINLP
2020. Association for Computational Linguistics, Online, 4163-4174. https://doi.org/10.18653/v1/2020.findingsemnlp.
372

Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovinski, Trevor Mudge, Jason Mars, and Lingjia Tang. 2017. Neuro-
surgeon: Collaborative intelligence between the cloud and mobile edge. ACM SIGARCH Computer Architecture News
45,1 (2017), 615-629.

Yong-Deok Kim, Eunhyeok Park, Sungjoo Yoo, Taelim Choi, Lu Yang, and Dongjun Shin. 2015. Compression of deep
convolutional neural networks for fast and low power mobile applications. arXiv preprint arXiv:1511.06530 (2015).
Jong Hwan Ko, Taesik Na, Mohammad Faisal Amir, and Saibal Mukhopadhyay. 2018. Edge-host partitioning of deep
neural networks with feature space encoding for resource-constrained internet-of-things platforms. In Proceedings of
the 2018 15th IEEE International Conference on Advanced Video and Signal Based Surveillance. IEEE, 1-6.

A. Krizhevsky. 2009. Learning multiple layers of features from tiny images. Master’s thesis, University of Toronto (2009).
Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2017. Imagenet classification with deep convolutional neural
networks. Communications of the ACM 60, 6 (2017), 84-90.

Qiang Liu, Sigi Huang, Johnson Opadere, and Tao Han. 2018. An edge network orchestrator for mobile augmented
reality. In Proceedings of the IEEE INFOCOM 2018-IEEE Conference on Computer Communications. IEEE, 756-764.

Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C. Berg.
2016. Ssd: Single shot multibox detector. In Computer Vision—ECCV 2016: 14th European Conference, Amsterdam, The
Netherlands, October 11-14, 2016, Proceedings, Part I 14. Springer, 21-37.

ACM Trans. Internet Technol., Vol. 24, No. 4, Article 27. Publication date: November 2024.



Adaptive Compression-Aware Split Learning and Inference 27:25

[26] Quyuan Luo, Shihong Hu, Changle Li, Guanghui Li, and Weisong Shi. 2021. Resource scheduling in edge computing:

A survey. [EEE Communications Surveys & Tutorials 23, 4 (2021), 2131-2165.

Hadi Tabatabaee Malazi, Saqib Rasool Chaudhry, Ageel Kazmi, Andrei Palade, Christian Cabrera, Gary White, and

Siobhan Clarke. 2022. Dynamic service placement in multi-access edge computing: A systematic literature review.

IEEE Access 10 (March 2022), 32639-32688.

Yoshitomo Matsubara, Davide Callegaro, Sameer Singh, Marco Levorato, and Francesco Restuccia. 2022. Bottlefit:

Learning compressed representations in deep neural networks for effective and efficient split computing. In Proceed-

ings of the 2022 IEEE 23rd International Symposium on a World of Wireless, Mobile and Multimedia Networks . IEEE,

337-346.

Yoshitomo Matsubara and Marco Levorato. 2020. Split computing for complex object detectors: Challenges and pre-

liminary results. In Proceedings of the 4th International Workshop on Embedded and Mobile Deep Learning. 7-12.

Yoshitomo Matsubara and Marco Levorato. 2021. Neural compression and filtering for edge-assisted real-time object

detection in challenged networks. In Proceedings of the 2020 25th International Conference on Pattern Recognition. IEEE,

2272-2279.

Alisson Medeiros, Antonio Di Maio, Torsten Braun, and Augusto Neto. 2023. TENET: Adaptive service chain orches-

trator for MEC-enabled low-latency 6DoF virtual reality. IEEE Transactions on Network and Service Management 21, 2

(2024), 1894-1911. https://doi.org/10.1109/TNSM.2023.3331755

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Corrado, and Jeff Dean. 2013. Distributed representations of words

and phrases and their compositionality. In Advances in Neural Information Processing Systems, C. J. Burges, L. Bottou,

M. Welling, Z. Ghahramani, and K. Q. Weinberger (Eds.). Vol. 26. Curran Associates, Inc. https://proceedings.neurips.

cc/paper_files/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf

[33] Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio, and Jan Kautz. 2019. Importance estimation for neural

network pruning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 11264-11272.

Venkatesh N. Murthy, Vivek Singh, Terrence Chen, R. Manmatha, and Dorin Comaniciu. 2016. Deep decision network

for multi-class image classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

2240-2248.

Anders Nordgren. 2022. Artificial intelligence and climate change: Ethical issues. Journal of Information, Communica-

tion and Ethics in Society 21, 1 (2022), 1-15.

Stephen Pasteris, Shigiang Wang, Mark Herbster, and Ting He. 2019. Service placement with provable guarantees

in heterogeneous edge computing systems. In Proceedings of the IEEE INFOCOM 2019-IEEE Conference on Computer

Communications. IEEE, 514-522.

Hanyu Peng, Jiaxiang Wu, Shifeng Chen, and Junzhou Huang. 2019. Collaborative channel pruning for deep networks.

In Proceedings of the International Conference on Machine Learning. PMLR, 5113-5122.

Konstantinos Poularakis, Jaime Llorca, Antonia M. Tulino, and Leandros Tassiulas. 2020. Approximation algorithms

for data-intensive service chain embedding. In Proceedings of the 21st International Symposium on Theory, Algorithmic

Foundations, and Protocol Design for Mobile Networks and Mobile Computing. 131-140.

Konstantinos Poularakis, Jaime Llorca, Antonia M. Tulino, Ian Taylor, and Leandros Tassiulas. 2020. Service place-

ment and request routing in MEC networks with storage, computation, and communication constraints. IEEE/ACM

Transactions on Networking 28, 3 (2020), 1047-1060.

[40] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. 2018. Improving language understanding by
generative pre-training. OpenAl (2018). https://cdn.openai.com/research-covers/language-unsupervised/language_
understanding_paper.pdf. Accessed: June 2023.

[41] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. 2016. Xnor-net: Imagenet classification
using binary convolutional neural networks. In Computer Vision—-ECCV 2016: 14th European Conference, Amsterdam,
The Netherlands, October 11-14, 2016, Proceedings, Part IV. Springer, 525-542.

[42] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. 2016. You only look once: Unified, real-time object
detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 779-788.

[43] Precedence Research. 2023. Artificial Intelligence (AI) Market Size, Growth, Report 2022-2030. Retrieved April 2024 from
https://www.precedenceresearch.com/artificial-intelligence-market

[44] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. 2015. Imagenet large scale visual recognition
challenge. International Journal of Computer Vision 115, 3 (Dec 2015), 211-252.

[45] Eric Samikwa, Antonio Di Maio, and Torsten Braun. 2022. Ares: Adaptive resource-aware split learning for Internet
of Things. Computer Networks 218 (2022), 109380.

[46] Eric Samikwa, Antonio Di Maio, and Torsten Braun. 2024. DISNET: Distributed micro-split deep learning in heteroge-
neous dynamic IoT. IEEE Internet of Things Journal 11, 4 (2024), 6199-6216. https://doi.org/10.1109/JI0T.2023.3313514

[27

—

[28

[}

—
Do
N

[}

(30

—

(31

—

(32

—

[34

flan)

(35

=

[36

—

(37

—

(38

[t

[39

—

ACM Trans. Internet Technol., Vol. 24, No. 4, Article 27. Publication date: November 2024.



27:26 A. Mudvari et al.

[47]

[48]

[49]
[50]
[51]
[52]

[53]

[54]

[55]

[56]
[57]
[58]

[59]

[60]

Jiawei Shao and Jun Zhang. 2020. Bottlenet++: An end-to-end approach for feature compression in device-edge co-
inference systems. In Proceedings of the 2020 IEEE International Conference on Communications Workshops. IEEE, 1-6.
Wengqi Shi, Yunzhong Hou, Sheng Zhou, Zhisheng Niu, Yang Zhang, and Lu Geng. 2019. Improving device-edge
cooperative inference of deep learning via 2-step pruning. In Proceedings of the IEEE INFOCOM 2019-IEEE Conference
on Computer Communications Workshops. IEEE, 1-6.

K. Simonyan and A. Zisserman. 2015. Very deep convolutional networks for large-scale image recognition. In 3rd
International Conference on Learning Representations (ICLR’15). Computational and Biological Learning Society.
Abhishek Singh, Praneeth Vepakomma, Otkrist Gupta, and Ramesh Raskar. 2019. Detailed comparison of communi-
cation efficiency of split learning and federated learning. arXiv preprint arXiv:1909.09145 (2019).

Balazs Sonkoly, Janos Czentye, Mark Szalay, Balazs Németh, and Laszl6 Toka. 2021. Survey on placement methods in
the edge and beyond. IEEE Communications Surveys & Tutorials 23, 4 (2021), 2590-2629.

Chandra Thapa, Pathum Chamikara Mahawaga Arachchige, Seyit Camtepe, and Lichao Sun. 2022. Splitfed: When
federated learning meets split learning. In Proceedings of the AAAI Conference on Artificial Intelligence. 8485-8493.
Chandra Thapa, M. A. P. Chamikara, and Seyit A. Camtepe. 2021. Advancements of federated learning towards pri-
vacy preservation: From federated learning to split learning. In Federated Learning Systems. Studies in Computational
Intelligence, Vol. 965. Springer, 79-109. Published in June 2021.

Manas Wadhwa, Gagan Raj Gupta, Ashutosh Sahu, Rahul Saini, and Vidhi Mittal. 2023. PFSL: Personalized & fair split
learning with data & label privacy for thin clients. In 2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud
and Internet Computing (CCGrid). IEEE, 377-390.

Alexander Womg, Mohammad Javad Shafiee, Francis Li, and Brendan Chwyl. 2018. Tiny SSD: A tiny single-shot
detection deep convolutional neural network for real-time embedded object detection. In Proceedings of the 2018 15th
Conference on Computer and Robot Vision. IEEE, 95-101.

Jian Xue, Jinyu Li, Dong Yu, Mike Seltzer, and Yifan Gong. 2014. Singular value decomposition based low-footprint
speaker adaptation and personalization for deep neural network. In IEEE, 6359-6363.

Xin Yang, Jiankai Sun, Yuanshun Yao, Junyuan Xie, and Chong Wang. 2022. Differentially private label protection in
split learning. arXiv preprint arXiv:2203.02073 (2022).

Dixi Yao, Liyao Xiang, Hengyuan Xu, Hangyu Ye, and Yingqi Chen. 2022. Privacy-preserving split learning via patch
shuffling over transformers. In Proceedings of the 2022 IEEE International Conference on Data Mining. IEEE, 638-647.
Chenglong Zhao, Bingbing Ni, Jian Zhang, Qiwei Zhao, Wenjun Zhang, and Qi Tian. 2019. Variational convolutional
neural network pruning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2780—
2789.

Ligeng Zhu, Zhijian Liu, and Song Han. 2019. Deep Leakage from Gradients. In Advances in Neural Information Pro-
cessing Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett (Eds.). Vol. 32. Cur-
ran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2019/file/60a6c4002cc7b29142def8871531281a-
Paper.pdf

Received 10 January 2024; revised 22 May 2024; accepted 18 July 2024

ACM Trans. Internet Technol., Vol. 24, No. 4, Article 27. Publication date: November 2024.



