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ABSTRACT Multi-Agent Reinforcement Learning (MARL) is extensively utilized for addressing intricate
tasks that involve cooperation and competition among agents in Multi-Agent Systems (MAS). However,
learning such tasks from scratch is challenging and often unfeasible, especially forMASswith a large number
of agents. Hence, leveraging knowledge from prior experiences can effectively expedite the MARL learning
process. Prior work has shown that we successfully facilitated transfer learning for MARL by consolidating
various state spaces into fixed-size inputs, enabling a single unified deep-learning policy applicable to
several scenarios within the StarCraft Multi-Agent Challenge (SMAC) environment. In this study, we expand
SMAC toMulti-Player enabled SMAC (MP-SMAC) by enabling the dynamic selection of training opponents
and introducing a co-evolving MARL framework, which creates a co-evolutionary arena where multiple
policies learn simultaneously. Our arena comprised the simultaneous training of multiple policies in diverse
scenarios, pitting them against both static AI opponents and their peers within MP-SMAC. Furthermore,
we integrate co-evolution with curriculum transfer learning into Co-MACTRL framework, enabling our
MARL policies to systematically acquire knowledge and skills across predetermined scenarios organized
by varying difficulty levels, including evolving opponents. The results revealed significant enhancements
in MARL learning performance, demonstrating the advantage of leveraging the co-evolving opponents and
maneuvering skills obtained from different scenarios. Additionally, the Co-MACTRL learners consistently
attained high performance across a range of SMAC scenarios, showcasing the robustness and generalizability
of Co-MACTRL.

INDEX TERMS Deep reinforcement learning, multi-agent system, transfer learning, curriculum learning,
co-evolutionary multi-agent reinforcement learning, StarCraft II, SMAC

I. INTRODUCTION

REMARKABLE accomplishments have been achieved
in the field of Artificial Intelligence (AI) over the past

decades. Gaming platforms, exemplified by Atari games [1],
board games [2], [3], poker [4], and driving simulations
[5], have served as invaluable test beds for AI exploration.
The confined physics and finite action space within single-
agent environments in these games present decision-making
challenges similar to those found in real-world problems,
rendering them ideal platforms for AI research. However,
many real-world problems characterized by complex rules

and the involvement of multiple agents pose more significant
challenges for AI research. Given the presence of diverse
agents in both cooperative and competitive settings, our goal
is to explore AI techniques specifically designed for Multi-
Agent Systems (MAS), extending beyond the domain of
single-agent systems.

Among various AI approaches, reinforcement learning
(RL) combined with deep neural networks (DNN) has
achieved significant breakthroughs for addressing real-world
problems [1], [6], [7]. The framework of deep reinforcement
learning (DRL) presents a promising approach for enabling
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intelligent agents to learn end-to-end solutions for complex
tasks, performing at levels comparable to human champions
across various domains. Techniques like the Deep Q-Network
leverage experience replay and target networks to stabilize
the training process by reducing sample correlation [1]. For
instance, AlphaGo [8], a computer program that defeated
the world champion on the board game Go, employs the
policy gradient method of DRL. However, extending single-
agent RL to Multi-Agent Reinforcement Learning (MARL)
for solving MAS problems presents a significant challenge
due to the constrained generalization capacity of traditional
RL algorithms. The core of this issue lies in the exponential
expansion of states with an escalating number of agents. To
address these challenges and achieve collective objectives, a
popular MARL learning paradigm called centralized training
and decentralized execution (CTDE) has emerged, where
complete information is employed during training and only
local observations are utilized during execution. In this paper,
we adapt the Centralized Training with Semi-Centralized
Execution (CTSCE) learning paradigmwhich is introduced in
our prior work [9]. This approach involves utilizing complete
information during the training phase and abstracted global
information during execution, assisting learning policies in
discovering team objectives.

While DRL and MARL have achieved significant success
in many domains, their effectiveness in tackling complex
problems in large-scale multi-agent settings is constrained
by the extensive training data required and prolonged learn-
ing periods. To tackle this challenge, extensive research has
focused on transfer learning (TL) to reduce sample com-
plexity and accelerate the learning process for autonomous
agents handling complex learning tasks inMAS. TL leverages
knowledge learned from previous tasks or external resources
like human demonstrations or guidance from other learning
agents to expedite learning. To create flexible and robust
techniques for autonomously leveraging knowledge, TL has
made remarkable progress for RL in complex applications.
However, the advancement of TL forMARL still requires fur-
ther development to reach real-world applications and attain
efficient autonomous learning capabilities.

Considerable efforts have been invested in crafting special-
ized neural networks (NN) and thorough training methodolo-
gies to facilitate TL within multi-agent environments [10]. In
such scenarios, the crucial aspect lies in integrating multi-
modal data encoding and decoding to facilitate knowledge
transfer among agents and enable curriculum learning is cru-
cial in enhancing MARL performance. One example of en-
abling TL forMADDPGwas done by Zhang et al. [11], focus-
ing on training autonomous controllers in multi-UAV combat.
Their study correlates the input dimension of NN with the
number of agents, representing the agents’ observation of the
entire environment. However, this method is applicable solely
when the number of agents remains constant during transfer
training. The challenge of enabling autonomous agents ca-
pable of expedited learning through the reuse of knowledge
from diverse sources in MAS remains unresolved.

To address the aforementioned challenges and overcome
the existing obstacles, in our prior work [12], we incorporated
a spatial feature encoding technique that unifies the individual
agents’ state inputs to NN and presents a standardized output
representation, regardless of different multi-agent scenarios.
We use an influence map (IM) as a spatial abstraction tech-
nique to consolidate various local observations into a consis-
tent dimension combined with abstracted global information
from the multi-agent IM (MAIM) [13], empowering agents
to achieve scenario-independent capability. The spatial fea-
ture representation is combined with an agent’s present state,
training fixed-size NN policies that retain domain knowledge
across various scenarios in MAS.
In our previous experiments, we evaluated the perfor-

mance of our MARL algorithms using the standard StarCraft
Multi-Agent Challenge (SMAC), where our MARL agents
train against the built-in StarCraft AI. Although the built-in
AI poses a formidable challenge, it constrains the potential
for ongoing evolution in the learning agents and limits our
MARL policies from further improvement once it has mas-
tered defeating the static AI opponents. To overcome this con-
straint and facilitate ongoing improvement for MARL agents,
we extended the standard SMAC to multiplayer SMAC (MP-
SMAC) to accommodate dynamic AI as training opponents
and evaluators, transforming MP-SMAC into an optimal co-
evolutionary MARL platform. This not only supports the
evolution of opponents but also allows multiple MARL poli-
cies to concurrently engage and evolve in learning. We then
conducted a thorough analysis to assess our TL model’s
performance across different SMAC and MP-SMAC scenar-
ios. Our approach exhibits promising results, demonstrating
robustness and scalability in both intra-agent and inter-agent
knowledge transfer among agents. The primary contributions
of this research can be summarized as follows:

1) We expanded SMAC into multi-player enabled SMAC
and created adversarial scenarios where both sides can
be controlled by learnable MARL policies. Through
MP-SMAC, we facilitated MARL learners to engage in
competitive interactions while simultaneously learning
alongside evolving opponents.

2) We introduced a curriculum transfer learning (CTL)
MARL framework (MACTRL), with increasing dif-
ficulty levels incorporating both homogeneous and
complex heterogeneous map scenarios. The MACTRL
learners showed significant performance improvement
across all the scenarios compared to baseline MARL
learners.

3) Finally, We proposed a co-evolutionaryMACTRL (Co-
MACTRL) where multiple MARL learners engage in
competition against both static AI opponents and evolv-
ing peers in a learning arena. Co-MACTRL learners
developed distinct winning strategies, achieving higher
win rates through competition with peers utilizing
knowledge from prior scenarios.

We evaluated Co-MACTRL on MP-SMAC by training
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multiple MARL policies concurrently in various scenarios,
pitting them against both static AI opponents and each
other within a multi-player enabled SMAC environment. Co-
MACTRL utilizes scenario-independent representations to
facilitate knowledge transfer among agents, leading to high
MARL learning performance in complex and diverse scenar-
ios. Furthermore, it allows our MARL policies to systemati-
cally gain expertise across predetermined learning scenarios
of differing difficulties, including adapting to evolving oppo-
nents. The results revealed significant enhancements in multi-
agent learning performance, demonstrating the advantage of
leveragingmaneuvering skills obtained from different scenar-
ios compared to agents learning from scratch.

Our MARL algorithm shows great potential for applica-
tions in real-world multi-agent systems, particularly in facil-
itating information sharing and fostering cooperation among
agents. For instance, a group of combat aircraft could progres-
sively improve their maneuvering abilities and collaborative
fighting tactics through the implementation of our MACTRL
algorithm. Furthermore, the Co-MARL approach can be ap-
plied to the training of autonomous vehicles, where learners
alternate between training and simulating adversarial roles,
enhancing adaptability and robustness in varying conditions.
This approach enhances sample efficiency, thereby improving
the overall learning performance of the vehicle.

The rest of this paper is organized as follows. In Sec-
tion II, we delve into the existing research in MARL, TL,
and co-evolutionary learning in MAS. Section III details
the approaches taken in our experimentation. Following this,
Section IV presents the outcomes of the experiments, and
Section V summarizes the findings and proposes potential
future directions for this work.

II. RELATED WORK
Numerous studies have utilized MARL to train agents to
achieve collective objectives in MAS environments. Early
works on RL methods centered around single-agent domains.
Watkins and Dayan proposed Q-Learning for agents to act
optimally in single-agent Markovian problems [14]. Konda
et al. introduced the Actor-Critic (AC) RL algorithm which
combines the advantages of both Q-Learning and policy gra-
dient to further enhance the RL learning performance [15].
Later, Schulman et al. introduced Proximal Policy Optimiza-
tion (PPO), demonstrating its effectiveness in reducing result
variance [16]. Building upon PPO, Yu et al. extended it to
MAPPO, specifically tailored for multi-agent scenarios [17].

While DRL and MARL have seen tremendous success
across various domains, their capability to address intricate is-
sues within large-scale multi-agent settings is hindered by the
substantial training data needed and prolonged learning dura-
tion. To address this challenge, considerable research works
have concentrated on TL to diminish sample complexity and
expedite the learning curve for autonomous agents managing
intricate learning tasks within MAS. Most researchers pre-
sume that the knowledge acquired during the training phase
remains consistent, which may not hold true in real-world ap-

plications where agents might lack perfect knowledge of the
task. In such cases, despite carrying knowledge from previous
tasks, agents still need to explore the environment to learn
the optimal policy. Koga et al. proposed the aggregation of
learned policies into a unified abstracted representation for ef-
fective performance in multi-agent scenarios [18]. However,
their approach fails to choose the optimal policy, especially
with a large observation space leading to scalability issues
that require further investigation of feature extraction before
policies can be effectively generalized. The careful selection
of crucial features in TL holds significance as arbitrary in-
formation may produce subpar performance due to wrong
learning bias. Taylor et al. supported this viewpoint, asserting
that identifying the optimal knowledge to transfer relies on
the standard metrics tuned for the training phase [19]. Subse-
quently, Jason et al. introduced a methodology to assess the
transferability of features at individual layers within a neural
network, providing insights into the degree of generalization
[20]. Chen et al. suggested the Net2Net technique for knowl-
edge transfer from previous networks by utilizing weighted
values in the input [21]. While Net2Net focuses on function-
preserving transformations between network specifications,
our approach involves manipulating the input and output
states without altering the neural network structures to enable
knowledge transfer across neural networks.
Xu et al. introduced a novel approach utilizing Graph Neu-

ral Network (GNN) to represent the input state of RL algo-
rithms for multi-agent combat problems [22]. Furthermore,
Khan et al. developed a neural architecture based on trans-
formers for global state representation and build order predic-
tion, addressing the biases associated with Recurrent Neural
Networks (RNN) and showcasing the superiority of trans-
formers with positional encoding input for the decoder [23].
Despite its exceptional performance, this approach struggles
with parallel loading due to constraints associated with the
utilized dataset. Tan et al. introduced the Transitive Transfer
Learning (TTL) framework that finds suitable intermediate
domains for transferring knowledge between them. Here, the
effectiveness of knowledge transfer is influenced by domain
difficulty and distance [24]. In the domain of transfer learn-
ing, Liu et al. [25] presented an abstract forwardmodel named
Thought Game (TG) that beat the cheating level-10 AI in
StarCraft by 90%. In contrast to this work, we focused on
knowledge transferring on similar problems within the same
domain.
Shao et al. [26] proposed a gradient-based SARSA algo-

rithm where the inputs of neural networks are determined
by the agent’s current hitpoints, cooldown, and cumulative
distance of own units in the StarCraft micromanagement
system. While our research objective shares similarities with
Shao’s work, our approach is distinct in that we specifically
considered both local and abstracted global information in
the state space and specific move actions in the action space.
The agent’s previous and current state information is also
integrated with the uniform state representation to the multi-
agent training process for fine-tuned decision-making.
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Recently, competitive co-evolution has been employed to
enhance the performance of a group of learners by foster-
ing competition. Rosin et al. [27] have introduced innova-
tive approaches for the co-evolution of a population, em-
phasizing direct competition and evolution. Whiteson [28]
demonstrated the effectiveness of evolutionary algorithms
in discovering high-performance RL policies, particularly in
gaming environments where competitive co-evolution leads
to the simultaneous evolution of strong players and their
corresponding opponents. While most research in competi-
tive co-evolution focuses on specific evolutionary algorithms
such as genetic algorithms [29], [30], our study proposes a
co-evolutionary learning framework without relying on any
particular evolutionary algorithm. We introduce RL as our
fundamental learning algorithm for evolving and optimizing
policies within a carefully crafted reward system in compet-
itive multi-agent systems. Cotton et al. [31] have proposed
a co-evolutionary RL technique, where a group of learning
agents undergoes training in competitive scenarios. The most
successful individuals are chosen to serve as parents for the
subsequent epoch. In our Co-MACTRL approach, we have
established an arena where learners evolve through direct
competitionwith each other without implementing a selection
process. Instead, we have integrated CTL with competitive
co-evolution, ensuring that each learning agent receives an
equal opportunity to train and evolve over time.

Olsen et al. [32] demonstrated that using RL to facili-
tate co-evolution between predators and prey enhanced the
learning process for both parties. Pinto et al. [33] proposed
a robust adversarial RL approach, demonstrating significant
performance improvement in the RL learning process by
including dynamic adversary agents. Additionally, Szubert
et al. [34] underscored the significance of behavioral diver-
sity and challenging opponents in driving performance gains
in co-evolving agents. Drawing on their research, we en-
abled co-evolution among multiple training agents by pitting
them against one another in the domain of MARL which
showcased significant performance improvement compared
to only training against the static AI opponent. Through our
Co-MACTRL learning framework, we establish an environ-
ment where agents serve as opponents to one another during
training, alongside the presence of a static AI opponent. This
setup proposes a combination of diverse and dynamically
challenging opponents for the learning agents, aiming to fur-
ther enhance their training efficacy.

III. METHODOLOGY
We formulate the SMAC scenarios as Markov games, which
extend the framework of Markov Decision Processes (MDP)
in a multi-agent setting [35]–[37]. AMarkov game comprises
a collection of states representing the status of both the
agents and the environment. Each participating agent has a set
of actions (A1,A2, ...,AN ) and observations (O1,O2, ...,ON ),
where N signifies the number of agents in a given episode.
The ally and enemy units, along with the environmental in-
formation, are modeled as observations for individual agents

to make decisions and take actions. In a Markov game, each
agent follows a policy π at every step within the environment
and collectively earns a shared reward rshared .

π : S{O1,O2,...On} × {A1, ...,AN} → S ′, rshared (1)

Equation 1 signifies a Markov game transition from state
S{O1,O2,...On} to S ′, which we utilized to model our MAS
where the state is formulated using observations of the agents.

A. SIMULATION ENVIRONMENT
This research builds upon our earlier work [13], [38], where
we evaluated the performance of the proposed MARL mod-
els across a range of multi-agent challenge scenarios within
SMAC. We continue to use SMAC as our primary re-
search platform for all experiments that evaluate both co-
evolutionary multi-agent learning and curriculum transfer
learning performance. SMAC is built upon the foundation
of the StarCraft II Learning Environment, as detailed in the
work by Vinyals et al. [39], offering a variety of multi-agent
micromanagement challenging scenarios where the goal is to
eliminate opponents using a given set of units.
In our previous work, we evaluated our MARL algorithms

using the standard SMAC environments, where our agents
train against the built-in StarCraft AI. Although the built-in
StarCraft AI poses a formidable challenge, it constrains the
potential for ongoing evolution in the learning agents and
limits our MARL learner from further improvement once it
has mastered defeating the static AI opponents. To overcome
this limitation and facilitate ongoing improvement for MARL
learners, we extended SMAC to Multi player enabled SMAC
(MP-SMAC) to accommodate dynamic AI as training oppo-
nents, transforming it into a co-evolutionaryMARL platform.
This not only supports the evolution of opponents but also
allows multiple MARL learners to concurrently engage and
evolve. To introduce dynamic opponents on MP-SMAC, we
designed several multiplayer maps that incorporate a mix
of unit types and quantities through the StarCraft II Editor.
Table 1 provides an overview of the maps on SMAC and MP-
SMAC utilized in this research.

TABLE 1: Multi-Agent Scenarios on SMAC and MP-SMAC

Scenario Platform Units on Each Side Type
3m SMAC Homogeneous

8m SMAC Homogeneous

2s3z SMAC Heterogeneous

3s5z_mp MP-SMAC Heterogeneous

On both SMACandMP-SMAC scenarios, we explored two
types of observation spaces for agents to create a scenario-
independent representation of the state:
1) Local observation: This includes individual details for

each agent, such as hitpoints, unit type, relative posi-
tions, and distances of allied and enemy agents within
the observation range.
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FIGURE 1: Transfer learning model representation for single agents. The agents’ observation is abstracted in fixed size of
influence maps and the action space is also fixed into a finite set, including movements and attacking the closest enemy.

2) Shared global abstraction: Here, all agents on the map
are aggregated along with their features derived from
local observations. This abstraction also includes ad-
ditional details like weapon cooldown and previous
actions of each agent.

Both the local and abstracted global observations’ features
are normalized within the range [0, 1] in our experiments and
utilized as input space to our MARL algorithms in a unified
manner.

B. CURRICULUM TRANSFER LEARNING ARCHITECTURE
To speed up theMARL learning process, we previously intro-
duced a novel Curriculum Transfer Learning (CTL) frame-
work which utilizes a scenario independent state and action
representation to preserve and reuse knowledge across the
scenarios. In SMAC, states are typically depicted based on
the number of units in each scenario, as illustrated in Fig. 1a.
For scenarios 3m, 8m, and 25m, the size of the local state
is provided in the form of 30, 80, and 250 one-dimensional
vectors respectively which are marked with a dotted rectangle
of red color in Fig. 1a. The default state representation is
compact and carries precise agent information for training
MARL. However, it limits the knowledge transfer over mul-
tiple scenarios due to the scenario-dependent state size. To
mitigate this problem, in our prior work, we presented a fixed-
size state representation that is unified in such a way that
the state size remains constant, irrespective of the number
of agents in the scenario. In this study, we utilized the uni-
fied representation with an improved MARL architecture to
experiment with intricate map scenarios in both SMAC and
MP-SMAC. The subsequent sections delve into the specifics
of the MARL components utilized in our experiments.

1) Scenario Independent State Representation
To create a unified input state representation, we consid-
ered both agents’ local observations and abstracted global
information. In our prior work, we employed a spatial in-

formation technique called Agent Influence Map (AIM) to
extract and filter aggregated spatial representation from the
global information in order to discover common objectives
and promote the learning of collaborative behaviors among
agents. We further extended the use of AIM in this study
to construct a scenario-independent local state representation
for enabling knowledge transfer across all scenarios provided
in SMAC and MP-SMAC. Each AIM is determined by three
parameters: the current relative health of the agent I0, the
influence decay rate which equals the inverse of the distance
from the agent λI , and the range of influence dI . A negative
weight is used for enemy agents in order to differentiate
them from the allied agents. With an aggregation of all the
agents’ AIM, a generalized and more robust Multi-Agent
Influence Map (MAIM) is formed. Based on the performance
of different dimensions, a 64× 64MAIM representation has
been used for unifying the abstracted global information in
further experimentation.

In our state representation of local observation, we consid-
ered the local observations of the prior step, the actions per-
formed in that step, along with the current step information.
The local observations include distance, relative position,
health, shield, and unit type for allied and enemy units within
the sight range of each agent. The default states received
from SMAC depend on the number of active agents in the
game environment. In order to remove the dependency on
the number of agents across SMAC scenarios, we extended
the use of IM from global information abstraction to local
observation aggregation. The local IM transformation yields
a fixed dimension of sight range with a resolution of 37× 37,
as determined by experimental findings. The unified subset
of global and local information as shown in Fig. 1b is then
flattened and propagated through the neural network, which
applies to all SMAC scenarios.
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FIGURE 2: Co-MACTRL framework for N independent learners. Each learner takes turns following a predefined CTR step in
standard SMAC and then competes against peers in MP-SMAC to evolve concurrently.

2) Multi-Layer Perceptron (MLP) Structure

To conduct our experiments, we utilized the Asynchronous
Advantage Actor-Critic (A3C) architecture as the founda-
tional learning algorithm.Minh et al. [40] introduced the A3C
framework, which stands out as state-of-the-art across various
gaming tasks. This A3C algorithm offers the flexibility of
choosing complete information and local observation, en-
abling seamless integration into both the training and execu-
tion processes, aligns well with our Centralized Training with
Semi-Centralized Execution (CTSCE) learning approach, as
well as other variations. In our A3C configuration, we utilize
separate MLP components for the actor and critic networks,
without sharing neural layers between them. Each MLP con-
sists of an input layer defined by the state space, two fully
connected hidden layers each with 64 neurons, and an output
layer determined by the unified action space. As illustrated
in Fig. 1c, we employ multiple agents with a shared single
neural network under a multi-task learning scheme, hence
alleviating the computational burden during both training and
inference, as only one network requires evaluation. This de-
sign facilitates faster learning as the parameters in the neural
networks are updated concurrently for each agent. During the
MARL learning process, each agent independently selects an
action from a discrete action space according to the MLP
policy. This is done in a decentralized manner, with the
agent utilizing its scenario independent state representation as
input. Subsequently, we use the critic neural network shown
in Fig. 1d to evaluate the effectiveness of that action and
reward each agent a shared reward based on the outcomes.
While our earlier method demonstrated impressive results on
less intricate maps such as 3m and 8m, it exhibited reduced
performance in heterogeneous scenarios like 2s3z and 3s5z.
All of the results are collected from 7 different random seeds
with each experiment lasting for up to 80 million steps. We
evaluate the performance of the trained MARL model every
25 game episodes throughout the entire training process.

3) Scenario Independent Action Representation

In SMAC, agents are required to make decisions choosing
from a finite action space based on the state information.
For the move actions, agents typically have four directions
to choose from: north, south, east, and west. However, when
it comes to attacking decisions, agents must consider the
number of enemies in their current local observation within
the sight range in the default action space provided in SMAC.
This presents a challenge, as the number of enemies can
vary greatly from scenario to scenario. To address this issue,
we propose a generalized approach that only considers the
closest enemy position for the attacking action to remove the
dependency on the number of agents within the sight range
and make attack actions without knowing specific enemy
agents. This approach is illustrated in Fig. 1d, where the
scenario-dependent output is replaced by an attack action fol-
lowing our custom-generated policy. As we trained our NNs
with the spatial information of the agent’s current position
with detailed policies, targeting the closest enemy instead of
choosing the default scenario-dependent action doesn’t lose
any valuable information required to take action. The gener-
alized outcome enables the agent to share attacking policies,
thereby facilitating the transfer of knowledge across a broad
range of SMAC environments. By reformulating the existing
solution in a unified manner, we were able to achieve both
improved performance in large-scale scenarios and enhanced
efficiency in the simulation environment.

C. CURRICULUM TRANSFER LEARNING PROCEDURE

Curriculum learning is a specific type of transfer learning
that arranges a series of tasks according to their increasing
level of complexity [41]. This approach involved training on
how to play a game against simulated opponents who became
progressively more competent, allowing the agents to learn
useful strategies and gain knowledge that they could apply
to real-world challenges [42]. In our previous experiments,
we delved into the intriguing question of how the transfer of
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winning strategies among Marines learned in scenarios 3m
and 8m can positively impact the behavior of Stalkers and
Zealots in an extended heterogeneous environment 2s3z. The
curricular process flow of our training policy from the sim-
plest scenario, 3m, retrains the learned model in a medium-
level scenario, 8m, and finally carries the knowledge learned
from 3m and 8m to tackle a muchmore complex scenario 2s3z
with different unit types and heterogeneous team units that
the policy has never seen in prior training scenarios. Building
upon our previous study, we continued the transfer learning
curriculum with scenario 3s5z, involving three Stalkers and
five Zealots in competitive interactions on MP-SMAC. The
CTL process is summarised in Equation 2.

π : S{mi} × {Au} → S{mi+1} × {Au} → ...→ S{mN} × {Au}
C ∈ {m1,m2, ...mN}, i ∈ {1, 2, ...N}

(2)
We characterize curriculum C as a compilation of SMAC
Maps (m1,m2, ...,mN ), each presenting escalating challenges
and encompassing diverse combinations of ally and enemy
units. Initially, the MARL policy π is trained within the start
map m1 using a unified state Sm and action Au representation
independent of specific scenarios. Subsequently, the policy
undergoes training across successive tasks within curriculum
C until reaching the designated final map mN . A comprehen-
sive detail of the CTL process is provided in Algorithm 1.

Algorithm 1 MACTRL Algorithm

1: procedureMACTRL(maps[], policy, curriculum_len)
2: for map in maps[] do
3: env← load env for map
4: buffer ← init Replay Buffer for map
5: for stepCount ← 1 to curriculum_len do
6: take_actions(policy)
7: step++
8: update_policy(policy)
9: end for
10: end for
11: return policy
12: end procedure

Additionally, we introduced novel evaluation metrics to
appraise the robustness and adaptability of the CTL learner
across diverse SMAC scenarios. We further extended our
MARL learning process to utilize the effectiveness of CTL
and co-evolution and propose a dynamic co-evolving learning
framework Co-MACTRL. The details of the Co-MACTRL
framework are described in the following subsection.

D. CO-EVOLVING LEARNING FRAMEWORK FOR MULTIPLE
LEARNERS
Inspired by the natural world, co-evolution leverages com-
petitive forces to foster the development of more effective
behaviors [31]. In this research, we introduced Co-MACTRL
that facilitates the evolution of multiple learners through
competition against both stationary AI opponents and fellow

Algorithm 2 Co-MACTRL Algorithm

1: maps[]← [3m, 8m, 2s3z, 3s5z]
2: arena[]← [Learner1, Learner2, Learner3]
3: step← 0
4: while step ≤ max_step do
5: for curLearner in arena[] do
6: curPolicy← MACTRL(maps, curPolicy, 1M)
7: for enemyPlayer in arena[] do
8: if curLearner ̸= enemyPlayer then
9: enemyPolicy← init policy for 3s5z_mp
10: env_mp← load env for 3s5z_mp
11: if policy saved for enemyPlayer then
12: enemyPolicy← load saved policy
13: end if
14: for stepCount ← 1 to 1,000,000 do
15: take_actions(curPolicy, enemyPolicy)
16: step++
17: update_policy(curPolicy)
18: end for
19: save_policy(curPolicy)
20: end if
21: end for
22: end for
23: end while

learners across a variety of SMAC and MP-SMAC maps,
leveraging curriculum transfer learning.
The detailed Co-MACRTL framework is shown in Algo-

rithm 2, where at first, we established a CTL sequence that
includes both homogeneous and heterogeneous map scenar-
ios organized by difficulty levels. For our experiments, we use
CTL in the sequence of 3m→ 8m→ 2s3z→ 3s5z, fostering
inter-agent and intra-agent knowledge transfer. Given the
substantial computational load, we introduce three separate
MARL learners in a co-evolutionary arena, enabling them
to train and compete simultaneously against stationary AI
opponents and each other. Each MARL learner undergoes
sequential training for 1M steps against the built-in StarCraft
AI across maps such as 3m, 8m, 2s3z, and 3s5z. Note that the
1M game steps were selected based on experimental results
after trying several different training lengths on CTL maps.
After completing 4M game steps against the built-in AIs on

CTL maps, the learner begins selecting a fellow learner from
the arena as the opponent and engages in gameplay against
this dynamic opponent within our MP-SMAC environment.
Given that the 3 Stalkers and 5 Zealots scenario presents
the most difficult challenge in our CTL sequence, we exclu-
sively train ourMARL learners against the dynamic opponent
using only 3s5z_mp. Additionally, training against dynamic
opponents across all scenarios would introduce substantial
computational complexity and significantly prolong our train-
ing duration. To streamline the collection of Co-MACTRL
training outcomes, we opt to focus solely on the most in-
tricate map scenario for co-evolutionary learning. Engaging

VOLUME 11, 2023 7



Ayesha Siddiqua et al.: Co-evolving Multi-Agent Transfer Reinforcement Learning via Scenario Independent Representation

with constantly improving opponents offers the chance to
surpass the constraints of the static StarCraft AI and develop
novel winning strategies through enhanced skill and collab-
oration. Within the learning arena, each MARL participant
takes turns following this learning procedure and the evolving
cycle persists until the maximum training length is reached.
Within this co-evolutionary MARL framework, we utilized
the advantages of scenario-independent state representation
and unified action space, and seamlessly integrated these el-
ements with CTL and our MP-SMAC environment, fostering
the evolution of multiple learners over time. The learning
structure depicted in Fig. 2 is the Co-MACTRL learning
architecture. In this framework, several learners go through a
CTL sequence before engaging in competition with adaptive
adversaries within the MP-SMAC environment, facilitating a
process of co-evolution.

FIGURE 3: Multi Agent Influence Map for two players
SMAC

To match the input space of the opponent policy, we cre-
ated MAIM from the enemy agent’s perspective and crafted
unified local and global observations to guide the decision-
making of peer learners acting as opponents. In order to
differentiate between allied and enemy agents, the initial
influence of allied units is the negative value of their relative
health as provided by SMAC. Despite sharing the same global
observation, we maintained two separateMAIMs to represent
the perspectives of the two adversarial players. An example
of multi-agent influence maps from two players’ perspectives
is shown in Fig 3. The maps are derived from the same game
step where the green color denotes the ally team’s influence
and the purple color denotes the opponent team’s influence.

In our earlier research, we discovered that MARL learners
can leverage insights acquired from simpler scenarios to gain
proficiency in more complex ones, employing curriculum
transfer learning. In this study, we propose a co-evolutionary
MARL framework for a group of concurrent learners, where
each learner trains through direct competition with others
within a fixed arena of learners. Furthermore, by incorporat-
ing training phases in a cyclic fashion that integrates CTL
with co-evolutionary learning, the MARL learners within
the arena progressively enhance their capabilities with each
cycle. In contrast to our prior CTL approach, where a learner
concludes its curriculum learningwithout revisiting it, our hy-

pothesis suggests that repeating curriculum transfer learning
in cycles can enable learners to develop amore robust learning
technique.

IV. RESULTS AND DISCUSSION
Co-MACTRL’s transfer learning presents a promising solu-
tion to enhance agents’ asymptotic performance, empowering
them to achieve higher proficiency in mastering intricate
tasks in MAS. To facilitate knowledge transfer, we adapted
the scenario-independent input and output representations
that allow one unified deep-learning policy viable across
various scenarios within SMAC. In our earlier experiments,
we compared performance across different input state res-
olutions with varying local state dimensions ranging from
19 × 19 to 55 × 55. As experimental results demonstrated
that, 37×37 yielded the highest performance, we adapted it as
the local state representation for our subsequent experiments.
The performance of our Co-MACTRL has been evaluated
across both homogeneous and heterogeneous scenarios in
SMAC and MP-SMAC. This evaluation involved multiple
performance metrics, including average winning rates within
specific scenarios and an overall performance evaluation cal-
culated across all 7 instances of each co-evolutionary training.

A. CURRICULUM TRANSFER LEARNING FOR MARL
MACTRL’s curriculum transfer learning demonstrates sub-
stantial performance enhancements across both homoge-
neous and heterogeneous scenarios. In our prior work, we
relied on average episode rewards to evaluate learning perfor-
mance. To delve deeper into MACTRL’s and Co-MACTRL’s
learning capabilities, we’ve implemented a comprehensive
evaluation matrix across all experiments conducted in this
study. We arranged CTL in the sequence of 3m → 8m →
2s3z→ 3s5z ordered by the difficulty levels, aiming to inves-
tigate how knowledge is acquired and transferred throughout
the learning process. In our CTL procedure, a MARL policy
undergoes training against static AI in the 3m scenario for
1M game steps, following which it learns to navigate the 8m
scenario for an additional 1M steps. Sequentially, wemove on
to the 2s3z scenario and, finally, the 3s5z scenario. Our goal
is to understand how much knowledge the learning MARL
policy retains from the 3m scenario while being trained in
the 8m scenario at the early training stage. Similarly, as the
training advances towards more challenging scenarios like
2s3z and 3s5z, we anticipate that the knowledge and skills
acquired from previous scenarios could potentially augment
the learning performance or expedite the learning process.We
hypothesize that training our MARL policy across all four
maps following the CTL sequence would not only achieve
high performance quickly but also foster generalized playing
skills rather than specialized ones for specific scenarios.

To demonstrate the CTL policy’s robustness and gener-
alizability, we designed a comprehensive evaluation matrix
encompassing all four maps outlined in the CTL sequence.
At each evaluation phase, we conducted 32 distinct game
episodes on each map separately, enabling us to analyze the
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(a) Agg. Eval Win Rate on 3m (b) Agg. Eval Win Rate on 8m (c) Agg. Eval Win Rate on 2s3z

(d) Agg. Eval Win Rate on 3s5z (e) Agg. Average Win Rate over 4 Scenarios

FIGURE 4: Results of MACTRL on 3m→ 8m→ 2s3z→ 3s5z compared to MARL only on 3s5z.

TABLE 2: Peak evaluation results against built-in AI oppo-
nent during 8M training steps across scenarios.

MARL Algorithms Avg Win Rate 3m 8m 2s3z 3s5z
MACTRL Learner 80% 87% 68% 84% 85%
MARL Leaner 3s5z 40% 38% 41% 50% 72%

average win rate for each map individually and determine
the overall average win rate of allied agents. Fig. 4 displays
the CTL results obtained from seven different random seeds
across 8M training steps. The blue lines represent training
outcomes for the 3s5z scenario without prior knowledge,
while the red lines depict outcomes for CTL following the
sequence 3m → 8m → 2s3z → 3s5z. The MACTRL learner
initiated training in a homogeneous scenario, 3m, for 1M
steps from scratch, achieving an 87% winning rate during
this training phase, as illustrated in Fig. 4a. In contrast, the
standard 3s5z learner exhibited subpar performance in the 3m
scenario, attaining an average winning rate of only 15%.

Following completion of the training on 3m, the MACTRL
learner progressed to training against the 8m scenario, which
presents a more challenging homogeneous scenario featuring
8 Marines. The evaluation depicted in Fig. 4b shows that the
learner equipped with prior knowledge from the 3m scenario
exhibited a rapid learning curve, achieving a 68% winning
rate against the built-in AI opponent in the 8m scenario. In
contrast, the regular learner shows a poor performance on the
8m scenario by achieving only a 20% winning rate. Notably,
the MACTRL learner’s performance on the 3m map scenario
remained consistent even when not actively training in that
specific scenario, suggesting the retention of prior knowledge
while acquiring expertise in the new scenario.

After finishing the training on 8m, the learner proceeded
to train in the heterogeneous scenario, 2s3z. The evaluation

results depicted in Fig. 4c show the exceptional performance
of theMACTRL learners, achieving an 85%winning rate. On
the contrary, the learner exclusively trained on 3s5z achieved
only a 30% winning rate in the 2s3z scenario. Throughout
our assessments on the 3m, 8m, and 2s3z maps, the regu-
lar learner exhibited subpar performance, as these scenarios
were entirely unfamiliar to the learner whereas the MACTRL
learner consistently demonstrated improved performance, re-
taining its proficiency in the simpler scenarios. Finally, we
extended our CTL to the complex heterogeneous scenario,
3s5z, and trained the MACTRL learner for another 5M steps.
Leveraging prior knowledge from simpler map scenarios,
the learners achieved an 85% winning rate within the initial
training steps. In contrast, the regular MARL learner archives
a 72%winning rate within the entire 8M steps. The evaluation
result on 3s5z is presented in Fig. 4d, demonstrating that the
MACTRL learner, equipped with prior knowledge, achieves
excellent performance faster than regular learners.

The highest average win rate achieved by MACTRL learn-
ers across the four scenarios is 80%, showing the robust-
ness and generalizability of the CTL learning approach in
addressing various MARL scenarios. The maximum training
values displayed in Table 2 demonstrate that the MACTRL
learner outperforms regular MARL learner by an average
of 50% across all four scenarios. Fig. 4e shows the average
winning rate of the learners at each evaluation phase across
all four scenarios. TheMACTRL learners maintained an 80%
winning rate on average during the first 4M training steps.
Based on the training outcomes, we can assert that prior
knowledge in the simpler map facilitates the MACTRL learn-
ers in achieving competitive performance more rapidly than
the regular learner, establishing a winning strategy applicable
to all scenarios.
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FIGURE 5: The aggregated average win rates from evaluations involving three MARL learners in Co-MACTRL on MP-SMAC
scenarios 3m, 8m, 2s3z, and 3s5z when competed against the standard built-in AI opponents.

TABLE 3: Peak evaluation results over cycles of Co-MACTRL and Co-MARL learners.

Learner Scenario Cycle 1 Cycle 2 Cycle 3 Cycle 4
Co-
MACTRL

Co-MARL Co-
MACTRL

Co-MARL Co-
MACTRL

Co-MARL Co-
MACTRL

Co-
MARL

Learner1

3m 80% 55% 85% 42% 82% 32% 90% 38%
8m 60% 52% 68% 29% 62% 26% 73% 29%
2s3z 89% 59% 87% 63% 85% 60% 90% 54%
3s5z 83% 65% 89% 67% 86% 73% 90% 65%

Learner1 avg. win rate 75% 53% 82% 50% 78% 44% 84% 39%
Learner2 avg. win rate 80% 44% 78% 45% 73% 45% 79% 38%
Learner3 avg. win rate 83% 51% 83% 42% 82% 38% 83% 54%

However, as the MACTRL learner continues training on
3s5z, its performance on the earlier maps gradually declines.
This trend is evident in the results depicted in Fig. 4, where
after 7M steps, the performance on 3s5z stabilizes, but the
performance on the other three maps starts to decline. To
avoid the deterioration of the performance and to enable mul-
tiple learners to train and evolve together within a co-evolving
arena following a CTL sequence in an iterative manner, we
have introduced the Co-MACTLR framework described in
Subsection III-D. The results of the Co-MACTRL are de-
scribed in the following subsection.

B. CO-MACTRL PERFORMANCE

Given the substantial computational load, we select three
learners arbitrarily to assess the co-evolutionary performance
among the learning participants in our Co-MACTRL learning
experiments. The three individual MARL learners take turns
to train and evolve against both static AI opponents as well
as peer competitors across multiple SMAC and MP-SMAC
scenarios. The training process operates iteratively, and the
assessment results, depicted cyclically in Fig. 5, illustrate
the ongoing evolution of all the MARL learners. We estab-
lished an arena comprising three MARL learners, designated
as Learner1, Learner2, and Learner3. During the training,
Learner1 engages with the built-in SMAC AI in the map
sequence of 3m→ 8m→ 2s3z→ 3s5z for 1M training steps
on each scenario. Following the initial 4M training steps,
Learner1 transitions to training against the other two learners,
Learner2 and Learner3, on 3s5z_mp, with each comprising
1M steps, totaling 6M steps for Learner1. Fig. 5 displays the

aggregated average win rate across all four maps for the three
learners, illustrating that Learner1 achieves a 75% average
winning rate during the first training phase. The performance
of the three learners in each scenario is depicted in Fig. 5.

After the completion of Learner1, Learner2 initiates the
CTL training procedure, following the same curriculum
learning process as Learner1. Learner2 confronts predefined
SMAC maps from 7M to 10M steps mark before engaging
in competition and training against Learner1 and Learner3
as opponent policies for an additional 2M steps. Note that,
Learner1, having mastered the CTL maps, poses novel chal-
lenges to Learner2, whereas Learner3 is not yet trained.
Learner2 attains an average winning rate of 80% during the
first cycle of training. Subsequently, Learner3 follows the
same curriculum as Learner1 and Learner2, completing the
initial training phase in 18M training steps and achieving an
average winning rate of 83% across all maps.

The Co-MACTRL learners undergo continuous training in
a sequential manner, repeatedly engaging with the same cur-
riculum. In each training phase, the learners face increasingly
formidable opponents, as these opponents evolve alongside
them, fostering a process of co-evolution. The highest evalu-
ation win rates of Learner1 on all four maps throughout the
training cycles are outlined in Table 3. It is evident that, with
each iteration of the training phase, the peak winning rate
shows improvement for each scenario. In the case of the 3m
scenario, the winning rate rises from 80% to 90%, and for
the 8m scenario, it increases from 60% to 73%. Furthermore,
the winning rates for the 2s3z and 3s5z scenarios also exhibit
gradual increments with the progression of training cycles.
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Moreover, the Co-MACTRL learners surpass the MACTRL
learners by a margin of nearly 7% when considering the
peak evaluation values for each map scenario. This indicates
that the dynamic arena framework used by Co-MACTRL
learners has empowered them to discover distinctive winning
strategies through engagements against evolving opponents,
a capability absent in MACTRL, which relies solely on static
AI opponents. Note that, the drops shown in the results are due
to training against dynamic opponents but evaluating against
the built-in SMAC AI. For our experiments, we considered
SMAC AI as the baseline performance evaluator. Despite
the declines evident at the end of each cycle, the learners
exhibited performance enhancement in subsequent cycles,
indicating that the dynamic opponents aid in exploring and
expanding the learning paradigm, resulting in unique maneu-
vering skills.

To demonstrate the efficacy of Co-MACTRL, we con-
ducted a comparison with Co-MARL, consisting of three
individual learners evolved and assessed on the 3s5z and
3s5z_mp maps. Notably, both Co-MARL and Co-MACTRL
learners undergo cycles of competition and evolution. How-
ever, Co-MACTRL incorporates CTL sequences during train-
ing, whereas Co-MARL does not. The training outcomes are
depicted in Table 3. The evaluations on the 3s5zmap indicate
that Co-MARL learners showed performance improvement
over four training cycles, with Learner1 achieving a peak
winning rate of 73%, comparable to Co-MACTRL learners.
However, their performance significantly decreased in other
maps that the learners had not encountered before, resulting
in an average winning rate nearly 50% lower than that of
Co-MACTRL learners. These results suggest that integrating
CTL with Co-evolution effectively generates a robust and
generalized winning strategy across all scenarios.

C. LEARNED BEHAVIOR ANALYSIS
After training the Co-MACTRL learners for 72M game steps
over four complete cycles of each learner, we collected the
best-performed learners and examined their acquired behav-
iors across various scenarios. The Co-MACRTL learners
learned to position and attack the opponents coordinately.
Remarkably, this learner exhibited outstanding performance
in both simple scenarios like 3m and intricate ones like 3s5z.
Fig. 6 illustrates the Co-MACTRL learner’s initial positioning
and focus fire on a specific enemy agent as a team across
four distinct scenarios. The strategy deployed by the learner is
commonly referred to as ‘‘focus fire", which involves a player
directing a group of units to collectively attack a designated
target, aiming to eliminate enemy units more rapidly.

In Fig. 6a, all three ally Marines concentrate their fire on
a single enemy unit highlighted by a red square box. In the
3m scenario, the allied units keep firing at the opponent units
one by one, leading to a strong winning strategy effective
in almost 90% cases. When the same strategy transfers to
a larger team with 8 Marines shown in Fig. 6b, the allied
team coordinates their attack on four distinct enemy agents.
Notably, the transfer of knowledge from the simple scenario

(a) 3m (b) 8m (c) 2s3z (d) 3s5z

FIGURE 6: Co-MACTRL learners performing ‘‘focus fire’’
on four scenarios showcasing a generalized winning strategy.

has led the learner to find the winning strategy faster as shown
in Fig. 4. To further assess the effectiveness of the knowledge
transferring between different types of agents (Marine to
Zealot and Stalker), we evaluated the learner on both 2s3z
and 3s5z scenarios shown in Fig. 6c and Fig. 6d respectively.
Although the allied team is following the same focus fire
strategy, the allied unit maintains the position of Stalkers
and Zealots separately. In both scenarios, the allied units are
focusing fire on the enemy unit’s Zealots first to weaken the
opponent team hence leading to a winning move.

V. CONCLUSION AND FUTURE WORK
This study presented a co-evolutionary multi-agent curricu-
lum transfer learning (Co-MACTRL) framework to enable
multiple MARL policies to concurrently engage and evolve
on learning cooperative tasks across various scenarios within
the StarCraft Multi-Agent Challenges (SMAC) platforms.
We first extended the standard SMAC platform into MP-
SMAC, allowing both sides to be controlled by adaptable AI
policies. Subsequently, we integrated the co-evolving MARL
approach with curriculum transfer learning, empowering our
MARL policies to systematically accumulate expertise across
predefined learning scenarios organized by varying difficulty
levels. This approach promotes knowledge transfer between
agents and across various learning stages, leading to enhanced
multi-agent learning performance in increasingly complex
and diverse scenarios against evolving opponents. We eval-
uated Co-MACTRL on SMAC and MP-SMAC by simul-
taneously training multiple MARL policies across diverse
scenarios, pitting them against both static AI opponents and
peer learners within a multi-player enabled SMAC environ-
ment. Co-MACTRL employs scenario-independent represen-
tations, enabling effective knowledge transfer among agents,
resulting in high MARL performance in complex scenarios.
Moreover, it enables our MARL policies to systematically
acquire proficiency across varying difficulty levels and adapt
to evolving opponents. The results showed significant im-
provements in multi-agent learning, highlighting the advan-
tage of leveraging maneuvering skills obtained from diverse
scenarios over agents starting from scratch.
This study opens avenues for further exploration in several

areas. Firstly, our MARL policy’s testing was confined to
a restricted set of scenarios, prompting future research to
assess its performance across a broader spectrum of hetero-
geneous environments featuring more intricate maps. More-
over, there is potential to explore more advanced curricu-
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lum learning designs and knowledge transfer approaches for
co-evolutionary MARL, aiming to further enhance MARL
learning performance. Lastly, integrating additional deep RL
techniques, such as recurrent neural networks, holds promise
in enhancing multi-agent systems and widening the scope for
improvement.
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