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An investigation of the validity of the semiclassical approximation to quantum
electrodynamics in 1+1 dimensions is given. The criterion for validity used here in-
volves the impact of quantum fluctuations introduced through a two-point function
which emerges naturally when considering the stability of the backreaction equation
to linear order perturbations, resulting in the linear response equation. Consid-
eration is given to the case of a spatially homogeneous electric field generated by
a classical source, coupled to a quantized massive spin 1/2 field. Solutions to the
linear response equation as well as the impact of quantum fluctuations introduced
through the current density two-point correlation function are presented for two rele-
vant electric field-to-mass parameter values ¢E/m?, indicative of the strength of the
backreaction process. Previous efforts utilized approximate solutions to the linear
response equation that were expected to be valid for early times. A comparative
analysis is given between the exact and approximate solutions in order to validate

this conjecture.
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I. INTRODUCTION

The semiclassical approach, which couples a quantized matter field to a classical back-
ground, has been applied across a wide range of scenarios [1-5]. However, it is typically
regarded as an approximate version of a fully quantized theory. Given that this approxi-
mation relies on the expectation values of objects such as the stress-energy tensor and the
electric current that are constructed from quantum field operators, it is expected to break

down when the associated quantum fluctuations of these objects are in some sense large.

There are two distinct approaches to the semiclassical approximation. One is derived
using a loop expansion of the effective action [6]. In this approach, the semiclassical approx-
imation fails when the quantum corrections become comparable to the classical background
field, as this indicates higher-order terms in the loop expansion may become significant
in that regime. In the second approach, the semiclassical approximation is derived using
the large-N expansion [7], where N identical quantum fields are coupled to the classical
background field at leading order. Quantum corrections due to the background field first
emerge at next-to-leading order. This approach allows for consistent solutions to the semi-
classical backreaction equation when the quantum fields significantly influence the classical

background field.

There have been numerous efforts to develop a method to analyze the degree to which
the semiclassical approximation is an accurate representation for a given physical model
[8-13]. Various correlation functions can be used to characterize quantum fluctuations, such
as (1, (x)T,p(x")) in semiclassical gravity. However, it has been shown that complications
arise when consideration is given to some of these which can manifest as state-dependent
divergences in the coincident point limit [9], varying results from different renormalization

procedures [10], and issues with covariance [11].

Within the framework of linear response theory [14-16], an alternative method that does
not suffer from these difficulties was developed by estimating the importance of certain
quantum fluctuations using a criterion first formulated in [11] for semiclassical gravity. There
it was applied to free scalar fields in flat spacetime evaluated in the Minkowski vacuum state.
The criterion was also applied to the conformally invariant scalar field in the Bunch-Davies
state in de Sitter space [17], with a modified version applied to preheating in models of

chaotic inflation [12] and later to semiclassical electrodynamics [13].



The criterion involves the stability of solutions to the linear response equation, which
can be obtained by perturbing the semiclassical backreaction equation about a background
field solution. In general, the linear response equation obtained in this way is an integro-
differential equation which involves integration over the retarded two-point correlation func-
tion, thereby rendering the evolution of perturbations as manifestly causal. It can be shown
this particular two-point function avoids the technical issues previously described, and there-
fore it is expected that any instability introduced through its presence in the linear response
equation can be taken as one measure of the strength of quantum fluctuations associated
with the quantum source term in the semiclassical backreaction equation. The criterion
used here and in [13] for the validity of the semiclassical approximation is violated if any lin-
earized, gauge-invariant quantity constructed from solutions to the linear response equation,
with finite nonsingular initial data, grows rapidly over some period of time. If this occurs,
then quantum fluctuations are significant and the semiclassical approximation breaks down.
Note that satisfaction of the criterion is a necessary but not sufficient condition. The lin-
ear response criterion provides a natural and well-defined way for this two-point correlation
function to enter into the determination of the validity of the semiclassical approximation.

In what follows, a semiclassical electrodynamics model in 1+1 dimensions is investigated
where a quantized spin !/2 field evolves in the presence of a classical, spatially homogeneous
electric field background which is generated by an external source. The semiclassical Maxwell

field equations take the form
8MFMV: J5+<0A|JCV2|OA> , (1.1)

and are considered to replace the fully quantized theory. Here J{ and (Jg) represent classical
and quantum source terms respectively, and the gauge field A, is taken to be a purely
classical quantity upon which the modes defining the vacuum state |04) implicitly depend.

The semiclassical backreaction equation has been solved for massive scalar and spin 1/2
fields coupled to an electric field in 141 [13, 18-20] and 3+1 [20—-22]dimensions. The electric
field was assumed to be homogeneous in space, but allowed to vary in time. In [13], three
classical current profiles were studied which generated electric fields with well-defined initial
conditions. The first was a current that is proportional to a delta function potential, yielding
an electric field that achieves a nonzero value instantaneously. The second involved the

sudden turn-on of the classical current, but a gradual turn-on of the corresponding electric



field which asymptotically approaches some constant value. The other is the well-known
Sauter pulse generated by a current that has the form of a smooth pulse which only yields
a significant classical electric field for a finite period of time.

From Schwinger’s [1] original pair production rate I' ~ ¢2E2e~™"/9F it can be observed
that the pair production intensity will be exponentially suppressed unless ¢E > m?. A criti-
cal scale can therefore be defined as ¢F /m? ~ 1, above which significant particle production
is expected to occur. Experimental detection of the Schwinger effect via electron-positron
pair production, which at present has yet to be observed, requires an electric field strength
of order E' ~ 10" V/m. A model akin to the Sauter pulse is a likely candidate for a back-
ground profile necessary to detect Schwinger pair production, see e.g. [23] and references
therein.

The validity of the semiclassical approximation for quantum electrodynamics in 141 di-
mensions was investigated in [13] by analyzing homogeneous solutions to the spin /2 field
linear response equation for classical sources which generate either an asymptotically con-
stant or Sauter pulse electric field profile. There, explicit forms of the linear response
equation were derived for both massive complex scalar and spin 1/2 fields. A method of
approximating the homogeneous solutions to the linear response equation for semiclassical
electrodynamics was utilized. It was also used to investigate the validity of the semiclassical
approximation during the preheating phase of chaotic inflation [12]. The method involves
computing the difference between two solutions to the semiclassical backreaction equation
which have similar initial conditions, and was conjectured to be valid at early times. That
conjecture is tested here by comparing the difference between two solutions to the semiclas-
sical backreaction equations with the corresponding solution to the linear response equation.

The criterion used here for the validity of the semiclassical approximation in electrody-
namics is based upon the fact that the linear response equation depends on the retarded
two-point correlation function ([Jg(¢, x), Jo(t',2")]) for the spin !/2 current density Jg. It is
expected that if quantum fluctuations associated with this correlation function are signifi-
cant, then its impact will cause solutions to the linear response equation to grow significantly
in time. To investigate this, a detailed analysis of the current density two-point function is
given for the asymptotically constant electric field profile.

For the numerical results, three values of the relative scale qFy/m? are considered. They

are the critical case for pair production qEy/m? = 1, a case where either the maximum



classical electric field or the charge to mass ratio is relatively large, qFy/m? = 103, and for
completeness, the limit in which the mass vanishes for fixed charge and maximum value of
the classical electric field, ¢Ey/m? — co. In the massless case, an analytic solution to the
semiclasscial backreaction equations was obtained in [13] for the asymptotically constant
profile. The corresponding solution to the linear response equation is given here.

In Sec. II, a review of the quantization for a spin !/2 field coupled to a classical source
is presented. In Sec. III, the semiclassical backreaction equation with both classical and
renormalized quantum source terms is discussed. Details of the linear response formalism
applied to the case of a spin !/2 field for both classical background profiles are presented
in Sec. IV. In Sec. V, numerical results for solutions to the linear response equation, a
comparative analysis between the exact and approximate linear response equation solutions
used in [13], and the behavior of the current density two-point function are included for both
classical profiles. In Sec. VI, a discussion of the results is presented. Appendix A contains a
description of the numerical methods used to solve the linear response equation. Appendix
B contains a comparison of the characteristic polarization tensor used in this paper for
the linear response analysis and that used in a different approach involving perturbative

quantum electrodynamics on a nontrivial background [24-27].

II. SPIN !/2 FIELD QUANTIZATION WITH A CLASSICAL SOURCE

The action representing a free spin 1/2 field ¢ coupled to a background electric field in

two dimensions is
_ 1 o -
S[AM, U, )] = /dzx { — ZF’“’FW + AMJ’Cf +apy Dy — mpp | (2.1)

Here F,, = 0,A, — 0,A, is the electromagnetic field strength tensor with gauge field A,
the term J£ is a classical and conserved external source, and D, = 9, — iqA,, is the gauge
covariant derivative with charge ¢. The adjoint of the spin 1/2 field is 1) = 1T7°, with m the
mass of the field. The Dirac matrices v satisfy {7#,7"} = —2n*”. The metric signature is
chosen to be (—,+) with the unit convention h = ¢ = 1.

Variation of (2.1) with respect to the vector potential yields the general form of Maxwell’s
equations with sources

—DAF + 9RO, A" = Jh+ Jb (2.2)



The conserved quantum current density is

Jo = qu(t,x) " ¢t z) (2.3)
Variation of (2.1) with respect to 9 yields the Dirac equation

[z’ WD, — m]w(t, z)=0 . (2.4)

In what follows, the Lorentz gauge 9,A" = 0 is chosen and the vector potential is fixed to
have the form

AP = (0,A()) | (2.5)

which yields Fy; = 9pA; = A = —E. Then (2.4) becomes
[2’ YOy + i7" 0, + gy A(t) — m} Y(t,x) =0 . (2.6)

The spin 1/2 field can be expanded in terms of a complete set of basis mode functions as

Ot z) = /_ "k [Bkuk(t,x) —|—D,T€vk(t,:c)} | (2.7)

o0

where By, Bli, Dy, and DZ are the creation and annihilation operators obeying the canonical
anticommutation relations {By, Bl,} = {Dy, D},} = 6(k — k). Due to the assumption of
spatial homogeneity and utilizing the Weyl representation of the Dirac matrices

0 1 0 1 -1 0

7= , 7= , Y =9 = , (2.8)
1 0 ~1 0 0 1

one can construct two independent spinor solutions [28] as

I N Ny 1220
Uk(tvl’)_\/% —h£1<t) > k(t7 )_\/% hl_*k<t) : (29)

Substituting (2.9) into (2.6) one finds h,(f’H) satisfy the following equations

%hi(z&) —i {k — qA(t)] hi(t) —imhi(t)=0 (2.10a)
%hgf(t) +i {k — qA(t)} hif(t) —imhi(t) =0 . (2.10b)

The normalization condition |hf]? + |hi|> = 1 ensures the anticommutation relations are

satisfied.



It is useful to mention two distinct limits of the solutions to (2.10). The first is the limit
in which the electric field and the vector potential vanish. This is relevant for times ¢ < 0 for

the asymptotically constant profile and for the limit ¢ — —oo for the Sauter pulse. These

I W=FR it
= 2.11
M) =[S (2.11a)
IT wtk
= — 2.11
hi' (1) = =/ 55 ¢ , (2.11b)

where w? = k2 + m2. Note that since the classical current is initially zero, and gives rise to

solutions are

o

an electric field that is initially zero as well, there is no ambiguity in the choice of vacuum
state. The second is the massless limit in which the mode equations (2.10) decouple and

have the general solutions [13]

hL(t) = O(—k)e' Juolb-aAWldr (2.12a)
() = —0(k)e ™ Jiolb-aAtlar (2.12b)

Here 0(x) is the Heaviside step function and ¢, indicates the initial time at which the electric
field turns on. This solution is consistent with the vacuum state when the background source

is shut off.

III. THE SEMICLASSICAL BACKREACTION EQUATION

The time evolution of the electric field, which arises from a classical source and is sub-
sequently modified through quantum effects, is governed by the semiclassical backreaction
equation. This is obtained by the replacement Ji — (Jg) in (2.2). In the Lorentz gauge
with choice (2.5) and for u = 1, this becomes

%ﬁ@:—%ﬂﬂ=h@+@dmm : (3.1)

where Jo = J& and (Jg)ren = (Jég)ren. The u = 0 component for either source corresponds
to the induced electric charge and is identically zero, i.e. no net charge is generated.
Two separate classical background profiles are chosen to couple to the spin 1/2 field. The

asymptotically constant profile has a current density source and electric field of the form

Jelt) = —(11—% | (3.23)



Eo(t) = — /0 ot dt = Ey (%tqt) , (3.2b)

for t > 0. The second choice of profile is the Sauter pulse, with current density source and

electric field given by
Jo(t) = —2qFEqysech®(qt)tanh(qt) (3.3a)

Ec(t) = Eysech®(qt) (3.3b)

for —oo <t < o0.
The renormalized expression for the current (Jg) can be found by evaluating (2.3) in the

vacuum state and is given by [13, 28]

Uolthn =L+ - [~ ar [Ior - P+ | . )

Here the procedure of adiabatic regularization has been used to eliminate the ultraviolet
divergence [13].

As particle production occurs, the electric field originating from Jo will accelerate the
created particles. The counter-electric field produced by the current density (Jg)ren will
initially be in opposition to, and therefore begin to cancel, the original background electric
field. This field is completely canceled after some characteristic period of time depending
upon the relative size of ¢E/m?. The result is an electric field with an opposite orientation
compared with the original background field due to the continued motion of the spin 1/2
particles. If particle interactions are ignored, the process will continue indefinitely, with the

particles undergoing plasma oscillations and the total electric field oscillating in time.

A. Massless Limit

In the massless limit, substitution of (2.12) into (3.4) gives

i -7
TrlL1£I>10<JQ(t)>ren = At) (3.5)
and therefore (3.1) becomes
d2 q2
@A(t) + ?A(t) =Jo(t) (3.6)

which is the equation for a harmonic oscillator with frequency |g|/+/7 and source J¢.



For the classical source (3.2a) with initial conditions A(0) = 0 and E(0) = 0, the solution
to (3.6), is given by [13]

The electric field is

E(t) = EO{\/L?SiD (%2 {cj (1:/:;15) —ci g t) ]
G-

where ci(z) = — [° %(t)dt and si(z) = — [ @dt are the cosine and sine integral func-

250

tions respectively. There is no convenient analytic form for solutions to (3.6) for the Sauter
pulse classical source (3.3a). However, it is expected that solutions will be characterized by

similar harmonic behavior as is evidenced numerically in Sec. V A.

IV. THE LINEAR RESPONSE EQUATION

Formally, the semiclassical linear response equation can be derived by taking the second
variation of the effective action. However, for the 1+1 dimensional electrodynamics model
considered here the linear response equation can more simply, but equivalently, be obtained
by perturbing the semiclassical backreaction equation (3.1) about a background solution

such that A — A + § A, resulting in

%M(t) - —%5E(t) = 5Jc(t) + 6 (Jo(t))ren . (4.1)

The type of perturbation being considered is one that is driven by changes in the classical

current density Jo — Jo + dJo. Thus, for (3.2a) the classical perturbation is

5Jc(t) = —ﬁm , (4.2)
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and for the Sauter pulse classical profile one has from (3.3a)
6Jc(t) = 2q sech? (qt) tanh (qt)0E, . (4.3)

A perturbation in the classical current density will necessarily induce a response from (.Jg)yen
to this perturbation since the mode equation (2.10) depends on the background field A. The
leading order contribution is [13]

2

d(Jo(t))ren = —q—(SA(t) —i—z’/_ dt’ /_OO da’ ([Jo(t,x), Jo(t',2")]) 6A(t) (4.4)

™

Excluding the first term on the right hand side, which originates from the adiabatic regu-
larization of (3.4), the form (4.4) takes is a general feature of linear response theory. Here,
JA(t') acts as a source at a past time ¢’ which induces a change 6(.Jg(t)).en measured at the
present time ¢. Therefore, the two-point function ([Jg(t,x), Jo(t',2")]) can be associated
with a generalized susceptibility [14].) Note that for the cases considered here, the vector
potential and its first time derivative are initially zero. As a result, these perturbations do
not cause a change in the vacuum state for the field.

The retarded two-point function can be expressed in terms of a product of mode functions

(2.9) as

(Walts) Jolta ) = i [~ ar [~ e o o)} @
with
Fu (1) = WL (ORI 0) + B D) (16)

Subsequently, the spatial integral present in (4.4) is [13]

» / "o ot Jot ) = 2L / dkTm RO (ORE (ORI ()} . (47)
Thus (4.1) with either perturbed classical source term (4.2) or (4.3) takes the form
ﬁaA( ) = 0Jo(t) — —5A / dt’ / dk T {RL() R (1) hEF ()R (¢) ) SA(H)
(4.8)

1 See Appendix B for a discussion of the retarded two-point correlation function, its relationship to the
polarization tensor, and how it compares with that of scattering theory in perturbative quantum electro-

dynamics on a nontrivial background.
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A. Correlations Prior to Activation of the Background Field

It is interesting to note that the retarded current density two-point correlation function

is nonzero even when the classical current is zero. Substituting (2.11) into (4.5) one finds

([Jo(t,x), Jo(t',a")]) :—@z/ dk:/ dk' xi e (k=) (z=a’ Vsin {(wp +wp)(t—1)}
(4.9)

where

xuwzv@%E[J@%+kMMa—Hy+J@%—kﬂpy+wﬁ . (4.10)

In (4.9) and (4.10) the notation has been slightly modified to distinguish w? = k% + m? and

wi = k2 +m? Tt follows that (4.7) reduces to

—4b/@odx’@J@(taﬁ,JQ(ﬂ,x@D ::gé;il/i:dk rﬂ“{Q“(ﬂ'_t)}} | (4.11)

2
oo w

Since no particles are present prior to activation of the classical current Jo, the fact that
the two-point function is nonzero indicates the existence of vacuum polarization effects in

the absence of a background electric field.

B. Massless Limit

When the time-dependent mode functions h D) take the form (2.12), the current density
two-point function (4.5) vanishes. It then follows from (3.5) that (4.4) simplifies to

lim 5o (t)hen = —L0A() (4.12)

m—0 ™
Thus the linear response equation (4.1) with (4.12) becomes

%M@+§M®:Mﬁ), (4.13)

which is of similar harmonic character as (3.6) with equivalent frequency. The form of (4.13)
guarantees for the massless limit that perturbations in the background field remain bounded
with fixed amplitude for both forms of 6Jo in (4.2) and (4.3). For the case of (4.2), the
solution to (4.13) with initial conditions 6 A(0) = 0 and 0 E(0) = 0 yields the same result as
n (3.7) and (3.8), but with the replacement Ey — §Ey.
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It is interesting to note that given the limit (4.12), the non-local term in (4.4) carries
the additional interpretation of being a measure of the extent to which §(Jg)en differs from

that of its massless counterpart, since

5(Jg(t))ren = lim, 8(JQ (1)) sen + 1 /_ dt’ /_ T (o(t2), Jolt', ') SAW) . (4.14)

V. NUMERICAL RESULTS

The relative scale between the electric field strength Ey and the mass m associated
with spin 1/ particles is characterized by the quantity qEy/m?. For all numerical results
presented, the cases qFy/m? = 1 and ¢Ey/m? = 10® are considered, the former being
identified with the critical threshold for Schwinger pair production in the case of a constant
electric field. A larger value of ¢Ey/m? corresponds to an electric field which has a higher
energy density to fuel the pair production process, generating on average larger backreaction
effects resulting from a more significant quantum current density (Jp). In the large mass
limit ¢E/m? — 0, the electric field will not supply sufficient energy to create particles,
so one expects that (Jg)en — 0 and £ — E¢. As highlighted in [13], this outcome is
consistent with the decoupling theorem in perturbative quantum field theory [29], which
states that heavy masses decouple in the low-energy description of the theory. Here, in the

limit m? — oo while keeping Ej fixed, the theory simplifies to classical electrodynamics.

A. Backreaction and Linear Response Equation Solutions

For the classical source terms (3.2a) and (3.3a) associated with the asymptotically con-
stant and Sauter pulse profiles, both the backreaction process, represented through the elec-
tric field E, the renormalized current density (.Jg)ren, and their associated linear response
to perturbations, 0 £ and d(Jg)ren, are shown in Fig. 1 and Fig. 2 respectively. The results
for E and (Jg)en Were previously shown in [13]. Note that in this subsection the focus is on
the behaviors of solutions to the linear response equation. In Sec. VB, a discussion is given
between these solutions and the validity of the semiclassical approximation.

For qFy/m?* = 1, the deviation of the electric field from the classical solution for the
asymptotically constant profile increases monotonically over the times considered. In con-

trast for the Sauter pulse profile, after the maximum of the pulse occurs at time gt = 0,
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the electric field undergoes long period oscillations which are modulated by shorter-period,
smaller-amplitude oscillations. For qFy/m? = 103, backreaction effects are significantly
stronger. In all cases plasma oscillations occur at sufficiently late times. The strongest
backreaction effects occur in the massless limit, qFy/m? — oo, resulting in pure harmonic

behavior for the electric field.

o i L
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/ ! !
J ,' 1 ’/
7 \ ~ s ’ 1 1
-05F \\ / == g/ m?=10°| ] 0ot \\ "/ y /
o’ —un/m2=1 \\‘ i \\ //
- Ec \\\_// \\_/l
-1 : : : : -0.4 : : :
0 5 10 15 20 25 0 5 10 15 20 25
qt qt

qt qt

Figure 1. The classical electric field E/q including backreaction effects (top-left), the associated
spin 1/2 current density (Jg)ren/q? (top-right), the linear response solution §E/q (bottom-left), and
the associated perturbation of the current density §(Jg)ren/q* (bottom-right), are all shown as a
function of time gt for the classical sources (3.2a) and (4.2). The characteristic cases qEp/m? = 1
and qFEo/m? = 103 are shown for all plots, with the classical electric field solution also included.
For both cases, Ey/q = 1 so that m?/q? = 1 for the top row plots and m?/q? = 10~3 for the bottom
row plots. Included for comparison, the dotted horizontal curve indicates when the corresponding

quantity being plotted is zero.

The current density (Jg)ren in the case ¢Ey/m? = 1 for the asymptotically constant profile
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Figure 2. The electric field E/q including backreaction effects (top-left), the associated spin 1/2
current density (Jg)ren/q> (top-right), the linear response solution §E/q (bottom-left), and the
associated perturbation of the current density §(Jg)ren/q? (bottom-right), are all shown as a func-
tion of time gt for the classical sources (3.3a) and (4.3). The characteristic cases ¢Ep/m? = 1 and
qEo/m? = 10 are shown for all plots, with the classical electric field solution also included. For
both cases, Eg/q = 1 so that m?/¢> = 1 for the top row plots and m?/¢?> = 1073 for the bottom
row plots. Included for comparison, the dotted horizontal curve indicates when the corresponding

quantity being plotted is zero.

exhibits small oscillations at early times which decay away, likely having their origin in the
sudden activation of the background current Jo. At late times, large timescale oscillations
are present. For the Sauter pulse profile, once the pulse occurs at qt = 0 there is an initial
increase in the current density which begins to dampen soon after. The higher frequency
modulations present are similar in nature to those seen for very early times in the case of

the asymptotically constant profile. However, for the Sauter pulse these modulations do not
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damp away. The amount of damping appears to be correlated with the size of the classical
current, which after the Sauter pulse is very small. For qFy/m? = 103, the current density
for both profiles undergoes a more rapid increase with larger amplitude, indicative of an
increase in pair production events, and begins to oscillate with an approximately constant
frequency.

The linear response solutions JF to (4.8) for the asymptotically constant profile with
qEy/m? = 1 undergo oscillatory behavior with an amplitude that grows in time, indicative
of an instability. For the Sauter pulse when qE,/m? = 1, after the maximum of the pulse
occurs at time gt = 0, the solution § E undergoes long period oscillations which are modu-
lated by shorter-period, smaller-amplitude oscillations which grow in time. For the case of
qEy/m? = 103, both solutions are characterized by approximate simple harmonic behavior
with a frequency similar to that of the electric field.

The associated current density perturbation 6(Jg)en in the case of gEy/m? = 1 for the
asymptotically constant profile exhibits relatively large amplitude, long time-scale oscilla-
tions as well as smaller amplitude, higher frequency modulations. The Sauter pulse current
density perturbation for ¢Ey/m? = 1 after gt = 0 initially exhibits sporadic oscillatory be-
havior before settling down to constant frequency oscillations which grow in amplitude, gen-
erating the modulations seen at late times for  E. Both profiles for the case of ¢Fy/m? = 103
exhibit approximate simple harmonic behavior for §(Jg)en, growing to a relatively constant

amplitude with oscillations of constant frequency similar to that of (Jg)ren-

B. Exact vs. Approximate Solutions to the Linear Response Equation

There are various way in which one can perturb the semiclassical backreaction equation,
each yielding a modified solution Ey that differs from the original solution F;. The expansion
of the electric field E5 in terms of the unperturbed field F; is of the form Fy, = F1 + 0E +
O(0E?), where JF is a solution to the linear response equation (4.1). For two solutions F;
and Fs to the backreaction equation (3.1), whose initial conditions differ by a sufficiently
small amount, one can construct AE = F, — F; such that to linear order the perturbations
can be approximated as AE ~ §E. One would expect such an approximation to hold at
early times prior to significant particle production. Here, two solutions are considered with

slightly different values of Ej for either the asymptotically constant classical profile (3.2b)
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or the Sauter pulse (3.3b). For both profiles, Ey is the maximum value the classical electric
field will have.

The difference between two solutions to the backreaction equation (3.1) satisfies

—%AE(t) = AJo(t) + AlJo(®)hen (5.1)

with
AJe(t) = Joa(t) — Joa(t) (5.2a)
A<‘]Q(t)>ren = <JQ,2(t)>ren - <JQ71(t)>ren . (5-2b)

In order for AE ~ §E, it is clear that A(Jg)ren = 0(Jg)ren must hold, since one can set
AJc = 0J¢ for all times.

To analyze the behaviors of solutions to (4.1) and compare them with (5.1), it is useful
to isolate the quantum contribution to the electric field Eq by subtracting from the exact

electric field F the corresponding solution to the classical equation E¢o as
Eq(t)=E(t) — Ec(t) . (5.3)

From the structure of (4.1) and (5.1), the quantum contributions to the exact and approx-
imate solutions to the linear response equation §F and AFE can be similarly isolated, i.e.
0Eg =0FE —0E¢c and AEg = E — E¢. The criterion for the validity of the semiclassical ap-
proximation can therefore be modified to state that if quantities constructed from either 0 £
or AEg grow significantly during some period of time then the semiclassical approximation
is considered to be invalid [13].

In order to provide a meaningful description of the growth in time for d Eg, a useful quan-
tity to consider is the relative difference between § Eg or AEg and the quantum contribution

to the associated background field Ey, formulated as?

RQ(t)E% , (5.4a)
Rdt)z% . (5.4b)

The degree to which AEy ~ dEg will be characterized in a scale invariant way by the degree
to which Ry ~ Rg. In [13], Rg was used to characterize the growth of the approximate

2 For ease of comparison with the solutions to the linear response equation, we use a slightly different

definition of R¢g than was used in [13].
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solutions to the linear response equation. For the classical solutions one can define in the
same way as above
_ 0Ec(t
R = PEcO E;é;' (5.5)
The early time behaviors of both Rg and Rg are shown in Fig. 3 for the asymptotically
constant background profile and in Fig. 4 for the Sauter pulse background profile. For both
profiles, the perturbed electric field present in (4.2) and (4.3) was set to 6Ey = 1073, The

classical quantity R¢ is also included for comparison.

%107 %1078

1.025

1.02}

1.015¢

1.01¢p

1.005|

N W A O OO N

[y

O 1 1 1 1 1 1 L 0-995
0

Figure 3. The early time behavior is shown for the quantities R¢ (dashed curve) and Rg (solid
curve) for cases qEo/m? = 1 (left) and ¢Fy/m? = 103 (right), and for the classical current (3.2a).
The quantity R (black-dotted curve) is included for comparison. For both cases, Eg/q = 1 so

that m?/q? = 1 for the left plot and m?/¢?> = 1073 for the right plot.

For the case ¢Ey/m? = 1, the approximate solution AEg consistently undervalues 6 Fg
for both profiles. Given the form of the perturbative expansion AEgy = 6Eg + O(éEé),
the extent to which AEg # 0Eq directly reflects the impact of higher-order perturbative
terms. The early time regime for which growth in Ry was investigated in [13] can be
adequately attenuated at gt = 5, at which point the relative difference between Rg(qt = 5)
and Rg(qt = 5) is of order 107! for both profiles. For ¢Fy/m? = 103, the same relative
difference is of order 10~2 for the asymptotically constant profile and of order 10~3 for the
Sauter pulse profile.

Numerical results were also obtained for the cases ¢Ey/m? = 0.5,2,10,100. The results

provide evidence that if ¢Ey/m? > 1, then AEg &~ §Eq for an extended period of time,
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Figure 4. The early time behavior is shown for the quantities R (dashed curve) and Rg (solid
curve) for cases ¢Eg/m? = 1 (left) and ¢Fy/m? = 103 (right), and for the classical current (3.3a).
The quantity Rc (black-dotted curve) is included for comparison. For both cases, Eg/q = 1 so

that m?/q? = 1 for the left plot and m?/q?> = 1073 for the right plot.

whereas AEg ~ 0 Eg only for relatively early times if ¢Fy/m?* ~ 1. Since the validity analysis
in [13] was for early times, the conclusion in that paper that the semiclassical approximation
breaks down for both the asymptotically constant and Sauter pulse profiles if ¢Ey/m? ~ 1
is verified here. The conclusion that the criterion used for the validity of the semiclassical
approximation is not violated at eary times for large values of qFEy/m? is also verified.
What is also indicated by the above results is that over an extended period of time, it is
likely that all solutions to the linear response equation (4.8) are unstable for qEy/m? < oo,
and only in the true massless limit (4.13) is pure harmonic motion achieved and no instability
present in Rg. However, consideration of sufficiently late times is not physically realistic
given the two major simplifications made of one spatial degree of freedom and ignoring
spin !/2 particle interactions. Major modifications to the backreaction process and its linear
response to perturbations are expected to occur if one, or both, of these limitations are

relaxed.

C. Impact of Quantum Fluctuations on Solutions to the Linear Response Equation

The question of whether or not quantum fluctuations associated with the current density

two-point function ([Jg(t,x), Jo(t',2")]) are responsible for the instability observed in the
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solutions of the linear response equation (4.1), and hence the validity of the semiclassical
approximation, will now be addressed. For simplicity, the asymptotically constant classical
source (3.2a) will be considered here. However, similar qualitative results hold for the Sauter
pulse classical source (3.3a).

From (4.14), one can see that 0(Jg)en can be written in terms of its massless limit plus a
non-local term. In the massless limit, one can see from (4.13) that ([J(t, ), Jo(t',2')]) = 0.
This results in bounded harmonic behavior, leading to a constant value for Rg in (5.4b).
Thus for gFy/m? < oo, if there is growth in Rg it must be driven by the non-local term,
which depends in part on ([Jg(t, x), Jo(t',2')]).

The non-local term introduces a memory effect in the evolution of perturbations in the
background field 6 A, the behavior of which depends not only on its current value at time
t, but also on its entire history for past times ¢'. Initially, dA(t' = 0) = 0, but as JA(¢)
evolves according to (4.1), the time-dependent integration fot dt' over the product of both
[ da'([Jg(t, x), Jo(t',2")]) and 6A(t) accumulates contributions from the current density
two-point function. Additionally, the quantity d A(') itself depends on the two-point function
for all past times t’, creating a feedback loop where earlier perturbations in dA(t") exert a
delayed influence on 0A(t). As the upper limit of integration grows with ¢, the system
continuously incorporates the effects of quantum fluctuations associated with the spin 1/2
field, causing the current density two-point function to act as a type of amplifying source
term. This drives the growth in §A(¢) leading to instability due to the influence of quantum
fluctuations.

The rate of this growth depends on the relative strength of ¢Ey/m?. For qEy/m? > 1,
the time-dependent modes h,(f’m approach (2.12), thereby reducing the contribution of
([Jo(t,x), Jo(t',2")]). This implies that quantum fluctuations as measured by this particu-
lar two-point correlation function diminish as the field strength grows, which is consistent
with the behavior discusses previously for the massless case. However, one expects particle
production to increase in this limit, emphasizing the point that the criterion for the validity
of the semiclassical approximation used here is a necessary, but not sufficient condition.
As the critical scale ¢Ey/m? ~ 1 is approached, the contribution of ([Jq(t, ), Jo(t',2')]) is
expected to be significant, indicating that the associated quantum fluctuations are large.

These features can be seen numerically in Fig. 5, where the contents of the temporal

integrand present in (4.4) are shown as a function of the past time ¢’ up to the current time
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t, which is chosen to be gt = 25. For both characteristic cases ¢Ey/m? shown in the plots of
the spatial integral of the current density two-point function, both situations in which the

background field Ey # 0 as well as Ey = 0 prior to activation are included.
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Figure 5. The contents of the temporal integrand present in (4.4) with perturbed classical source
(4.2) are shown for cases ¢Fy/m? =1 (top row) and qEp/m? = 10® (bottom row). For both cases,
FEo/q = 1 so that m?/q? = 1 for the top row plots and m?/¢?> = 1073 for the bottom row plots.
The spatial integral of the current density two-point function —q% 7o dal ([Jg(t,x), Jo(t', 2")])
(left), the perturbation in the gauge field §A(¢') (center), and the magnitude of their product

7 o0
g3 J—o0

da'([Jo(t,x), Jo(t',x")])dA(t') (right) are plotted as a function of the past time gt’ up
to a choice of current time gt = 25. The current density two-point function in the absence of
a background field (black dot-dashed curve) in (4.11) is included for comparison. Included for
comparison, the dotted horizontal curve indicates when the corresponding quantity being plotted

is zero.

For qEy/m? = 1, the spatial integral of the current density two-point function has an
amplitude of oscillation which grows rapidly to a maximum as ¢ — ¢ before terminating to
zero when t' = t. This property is shared by both cases where Fy = 1 and Ey = 0, with
there being good agreement between the two. However, for earlier values of ¢’ the amplitude

of oscillations for Fy = 1 are damped significantly with an increase in the frequency relative
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to Ey = 0 occurring, resulting in a smaller contribution from earlier times for the integral
over time t’. The amplitude of the quantity dA(¢') also grows significantly over the same
time scale, which is a consequence of past contributions from the current density two-point
function driving this growth. The magnitude of their product therefore results in rapid
growth as ¢/ — ¢ which, when integrated in time ¢’ up to the current time ¢, drives the
instability seen for Rg in Fig. 3.

For qFEy/m? = 103, the spatial integral of the current density two-point function is char-
acterized by sporadic oscillations, with a relative amplitude approximately two orders of
magnitude smaller than the critical case. Also, the maximum amplitude occurs for much
earlier times ', with damping occurring as ¢ — t. Furthermore, it is only when [t/ —¢| < 1
that there is any agreement between the Fy = 1 and Ey = 0 cases, with the latter case
having oscillations which take place over a much longer timescale. Consequently, the am-
plitude of dA(t') does not grow significantly over the timescale considered, maintaining an
approximately harmonic behavior. The integration of their product therefore yields a mini-
mal contribution to the linear response equation, which in turn leads to much slower growth

n RQ.

VI. DISCUSSION AND CONCLUSIONS

A linear response analysis has been conducted to investigate the validity of the semi-
classical approximation to quantum electrodynamics in 1+1 dimensions for models in which
pair production occurs due to the presence of a sufficiently strong electric field. A quantized
massive spin /2 field was considered which couples to a spatially homogeneous background
electric field generated by a classical and conserved external source. Two classical current
profiles were used which generate electric fields that are initially zero, as would be expected
in a laboratory setting. The first involved the sudden activation of the current, with a cor-
responding electric field which asymptotically approaches a constant value. The second was
the Sauter pulse, generated by a current that forms a smooth, time-dependent electric field
pulse which is significant only over a finite time interval.

Numerical results for the solutions to the linear response equation have been presented for
both the critical threshold for pair production qEy/m? = 1 as well as for ¢Ey/m? = 10 where

significant pair production occurs. An analytic solution to the linear response equation was



22

found in the massless limit where ¢Ey/m? — oo for the asymptotically constant classical
profile.

A method of approximating homogeneous solutions to the linear response equation for
semiclassical electrodynamics was utilized in [13]. It involves computing the difference be-
tween two solutions to the semiclassical backreaction equation which have similar initial
conditions and was conjectured to be valid at sufficiently early times. That conjecture has
been tested here for both classical source terms. For the critical threshold for pair pro-
duction qEy/m? = 1, it was found that the approximate solutions are in good agreement
with the exact numerical solutions only for very early times. For the much larger value
qEo/m? = 103, the agreement is significantly better at early times and extends to much
later times. In the massless limit with ¢Ey/m? — oo, there is exact agreement between the
difference between two solutions and the exact solution to the linear response equation for
all times.

As a result, the conclusions regarding the validity of the semiclassical approximation
in [13] have been verified by the analysis here. In particular, the solutions to the linear
response equation, as measured by Rq in (5.4b), exhibit significant growth at relatively
early times for the critical case ¢Fy/m?* = 1, indicating the validity criterion is violated and
the semiclassical approximation breaks down. For considerably larger values of qFEy/m?
the solutions to the linear response equation do not grow significantly at early times and
the criterion is satisfied. However, the solutions do exhibit significant relative growth at
sufficiently late times, suggesting that for all scales qEy/m? < oo there will always be an
instability present. These later times are not physically realistic for the 141 dimensional
model considered here which neglects interactions between the produced particles. In the

2 — o0, the solutions to the linear response equation do not

massless limit where ¢FEy/m
grow in time so the criterion is never violated. In the large mass limit where qEy/m? — 0
for fixed Ey, particle production does not occur and the behavior of the electric field can be
predicted by classical electrodynamics. If one extends to 3+1 dimensions, and/or if particle
interactions are considered, then it is expected that there will be significant modifications
to the behavior of the linear response equation. This is a subject of future investigation.
The relationship between the growth of the solutions to the linear response equation and

quantum fluctuations as measured by the retarded two-point correlation function for the

current density has also been investigated in detail. The criterion for the validity of the
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semiclassical approximation used here assumes that quantum fluctuations associated with
the current density two-point function are the mechanism by which relative growth occurs
for perturbations of the semiclassical solutions. The question of whether this assumption
is correct was addressed by examining (4.14), which gives the perturbation of the current
density in terms of the perturbation in the massless case plus a non-local integral which
contains the two-point correlation function. It was shown that the latter drives the growth
in solutions since, by itself, the perturbed current in the massless case never causes the
amplitudes of the solutions to increase in time.

This was investigated further by considering the behavior of the retarded two-point func-
tion for the current density as a function of time in the case where there is no electric field,
in the critical case with qEy/m? = 1 and in the case qEy/m? = 103. The details differ
significantly between the three cases, but one thing that is true for all three is that for a
given value of qFy/m?, the maximum value of the two-point correlation function does not
grow significantly in time, even when solutions to the linear response equation do. It was
also found that the two-point function does not vanish in the limit that the electric field
does, even though the quantum current (Jg) does.

If the electric field is zero, then for fixed values of the current time parameter ¢, the spatial
integral over the two-point function oscillates with a constant frequency and increasing
amplitude as a function of the past time parameter t'. For qFy/m? = 1, the behavior of
this quantity for t' relatively close to t is the same as when Ey = 0. However, for earlier
values of ¢’ the oscillations are damped significantly. As a result, the contribution to the
non-local term in (4.4) which involves the product of JA(¢') and this quantity, is heavily
weighted towards the current time ¢, although the integrand vanishes in the limit ¢ — ¢.
For qFEy/m? = 103, the largest amplitude oscillations in the spatial integral of the two-point
function come from significantly earlier times. This has the effect of slowing down the growth
of solutions to the linear response equation.

While these results specifically pertain to the semiclassical approximation to quantum
electrodynamics in 141 dimensions for a spatially homogeneous electric field, it is very likely
that they will generalize to other cases. In particular, it is often much easier to compute
the difference between two solutions to the semiclassical backreaction equation with similar
initial conditions than it is to solve the actual linear response equation. This will make it

much easier to study the validity of the semiclassical approximation in other applications
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such as early universe cosmology.
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Appendix A: Linear Response Equation Numerical Method for Homogeneous

Perturbations

The linear response equation (4.1) is a second order integro-differential equation governing
the time evolution of homogeneous perturbations to the gauge field 0 A(t), and by extension
the electric field 0 E(¢), in the presence of sources §Jo and §(Jg)ren. For numerical purposes,

(4.1) can be separated into two first order equations as

CHAM) = x(1) (Ala)
CX(0) = Ic(1) + 5 lIa(D)en (A1b)

where it is understood that 6 E(t) = —x(t). A 4'"® order Runge Kutta method was imple-
mented to solve the system of equations (A1), iterating through the i*" value of the solution

associated with the current time ¢; using

5Az'+1 = (SAl —f- g (k)l + 2]{72 + 2]{73 —f- k4) s (A2a)
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h

Here h = At, for a chosen timestep At. The relevant contributions are

ki=xi (A3a)
ke = xi + % , (A3b)
ks = xi + %2 , (A3c)
ky=xi+ 105 (A3d)
and
b =6Jo(t;) + 0 (Jg (i, 6 A)) .., (Ada)
ly="4Jc (t“Lg) +5<JQ (ti+g,5Ai+%)> , (A4b)
U3 =0Jc (ti—kg) +5<JQ <ti+g75Ai+%)> , (A4c)
by =0Jc (ti+h) +6(Jg (t; +h,0A; + k3))... (A4d)

From (4.4), the quantum source perturbation d(Jg).en present in (A4) can be expanded as

2 t; 00
St 54 e = — L 54, 4 / ' / da! ([Jo(ts, 2), Jo(t' 2))) SA()
to —0o0

(Aba)
2
5<JQ (ti + g,éAi + %>> - <5Ai + %)

ren @
ti-‘r% 00 h
—I—Z/ dt,/ dz’ <|:JQ (tl+§,l‘) ,JQ(t’7gj’):|> 5A(t/)7
to —0o0

(A5b)
2
5<JQ (ti + g,éAi + %>> = —% (Mi + %)

ti+l 00
+ 2/ dt,/ dx’ < |:JQ (ti + g, 33) y JQ(t,, $/):| > 5A(t/) s
to —00

(Abc)

3Tt + hy OAi + ka))eon = — 1 (3A; + k)

ti+h e’}
i / at' / da ([Jo(t: + b ), Jo(t',2)]) SA()
to —00

(A5d)
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For spatially homogeneous perturbations, the retarded two-point function for the current

density will have the general property

o0

| e ot ay ~ [ ket (A6)

where the function gx(¢,t") depends on the relevant mode functions, which in turn depend on
the background field. The relevant terms in (A5) can be found from (4.7). For the numerical
results presented in this paper, the k-integral in (A6) was computed using Simpson’s /3 rule.

The initial conditions §A(t = t) = 0 and 6 A(t = o) = 0 are the only available pieces of
information one has from the outset, and therefore a left-handed Riemann sum method can

be used to approximate the integral over ¢’ present in (A5). The relevant integrals are

/ti it /Oo da’ ([Jo(t;, x), JQ(tlv 2)]) 0A(t)

(i—to)
At/ -1

~ 3 o [ atts a), Jolt, ) 54 (ATa)

[ e ([ (o) e

(ti+h/2—tg)

Z ot [t ([0 (54 ) a6 ) saey . (amy

/t T /_ " dr (o(ts + b, 2), Jo(t's 2)]) SAF)

o0

Q

(t; +h to) 1

~ Z A / a2’ ([Tgt: + o), Jo(t), a')]) SA(E) (ATc)

However, the 4" order Runge-Kutta algorithm requires data, in part, for the solution §A
at a future half time step ¢; + h/2 and a full time step ¢; + h as indicated by the upper
limit of integration seen in (A7b) and (A7c). In terms of the left-handed Riemann sum

method of approximating the ¢'-integral, this is data required of §A; for the index values

_ (ti+h/2—t0)
- At

(ti+h—to)

~7 — 1, respectively. Therefore, a method to estimate what

—land j=
these values for the linear response equation solutions 0 A would be for the relevant future

timesteps involves forward interpolation, to linear order, as

h
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SA(t' =t + h) ~ 6A(t:) + hx(t) (A8b)

This completes the necessary elements required to obtain solutions to the linear response
equation (4.1) for homogeneous perturbations.

The above method has been shown to yield accurate results for a test integro-differential
equation of the form

d? t
i =1- 10~ [ae-0)5e) (29)
dt? to
Here J is taken to be a constant. With ¢, = 0, such that the initial conditions are f(t =

0) = 0 and f(t = 0) = 0, the analytic solution to (A9) is

f(t) = %J sin (?t) sinh (%) . (A10)

With a step size At’ = 1073, the relative difference between the exact and numerical solution

was found to be of order 1071?, providing evidence of this method’s accuracy.

Appendix B: Comparison of Two Polarization Tensors

For the semiclassical investigation contained in this paper, a retarded polarization tensor
can be defined as

I (@, 2') = i0(t — ') ([Ju(2), L(a)]) (B1)

such that the perturbed quantum source term (4.4) present in the linear response equation

(4.1) can be written as

5(JTo(t))ren = —q;(SA(t) + / T / T (0, 1) SA() (B2)

A different approach to studying the Schwinger effect involves using scattering theory in
perturbative quantum electrodynamics [24-27]. In this case the polarization tensor is defined
as [27]

M, (z,2") =ig* Tr {v,S(z, 2" ). S(«',z)} (B3)

where S(z,2’) is the Feynman propagator.
However, (B3) can be related to a two-point function for the current density similar in

character to (B1). To see this, first consider the following

o (2,2) = (T (Ju(2) L (")) (B4)
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Substituting (2.3) into the time-ordered product in (B4) yields the following

T (Ju(@) (@) = ¢ Y~ )y W)ea T (Yal@) () dela’) dala’)) (B5)

a,b,c,d
Here, the subscripts {a, b, c,d} correspond to spinor indices. Utilizing Wick’s theorem for

time-ordered products of fermion fields, one has
T ($a(x) ¥(x) Pola’) Ya(a')) =: Va(@) (7) (") Yala’) :

- (1) () D) (e :

o (@) () Tl’) wala)

+ o+ o+ 4+ A
E
5

() wam @) (B6)

I | _
where a term such as 1, (x) 1p(z) represents a contraction between the fields v, (z) and

() and is given by
G (2) () = (01T (Falx) vo(2) [0) (BT)

When considering the vacuum state expectation value of (B6), one is left with

(T (@) ¥y(@) De(a’) Yala’))) = (T (da() wb<x>)> (T (Pela’) a(2')))
(T (Yal@) Yala’)) (T (@) ve(2))) (BS8)

These remaining terms are related to the Feynman propagators defined in [27], which are
given by

S(z,2') = i(T (Y(x)P(2))) . (B9)
In order to make contact with this form of the propagator, one can utilize the equal time

anticommutation relations

{©at, ), (. )} = () 6D (7T~ 7) (B10)
to re-arrange the first three time-ordered products on the right-hand-side of (B8). Recall
the time-ordering operator is given by
Ya(@)thp(z')  if t>1

) (B11)
—p(2 e (x) if t <t

T (dula)u(a)) = {
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For the case when the spacetime points are equal inside the time-ordering operation, which

occurs for the first two time-ordered products in (B8), one is left with the relation

(Wa(@)s(2)) = —(W(2)¢a(2)) + (7)as 8 (0) . (B12)

For the case when the spacetime points are not equal, and assuming ¢ < t’, one simply has

(T (Ga(@)p(a")) = —(T (Yo(a')a(2))) - (B13)

Therefore, (B4) can be expressed as

My (e,0') = i [ S (s Sral@ )+ 3 ()y (Vs 5<3><o>}

a,b a,b

<13 Sl ) + 3 (00)s (008910

c,d c,d
+1 q2 Z ('VM)ab SbC(xa JZ/) (/VV)cd Sda(xla I)
a,b,c,d

— i 1T (5.0} + T {3} 690

<[ st ) + 1 {69 0)
+iq* Tr {v,S(z,2')7,S(2',z)} (B14)

where the following trace relations were implemented

Tr{AB} =Y AwBi. . (B15a)
a,b
Tr{ABCD} = Y AwBiCutDaa - (B15b)
a,b,c,d

The polarization tensor in (B14) is comprised of a sum of disconnected and connected
quantities. In physical applications, one is typically concerned with the connected correlator
because it encodes the interaction structure between fields. The disconnected part, while
nonzero, often represents background contributions that are subtracted or ignored in defining
physical observables. However, the vacuum state expectation value of the current density

can be put into the form

(Ju(@)) = q (P (@)7u1(x))
=4 ()ap (al@)t(2))

a,b
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~ 4% (s |~ () + (07570
=1iq Z (/Yﬂ)ab Spa(z,7) +¢q Z ('VM)ab (’70)5a 5(3)(0)
=iqTr {7,S(z,2)} + ¢ Tr {,1°} 6¥(0) | (B16)

where in the fourth equality the property (7°)a = (7°)pq was used. Therefore, one can define

the connected part of (B4) as
I (2, 2")conn = My (2, 27) — i(Ju(2))(L(27)) (B17)

which is equivalent to 11, (z,2’) in (B3).

Although the polarization tensors (B1) and (B4) are superficially similar, the physical
context in which they are utilized is quite different. In the scattering theory framework, the
electromagnetic field is quantized and treated as a nontrivial background, enabling the per-
turbative study of particle production processes and quantum corrections, such as vacuum
polarization effects that modify the photon propagator. However, strong backreaction effects
on the background field are not included in this formalism. In contrast, strong backreac-
tion effects can be taken into account by solving the semiclassical backreaction equations.
The linear response analysis used in this paper involves perturbations of solutions to the

semiclassical backreaction equations.
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