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Previously it was found in two dimensions at late times for spatially separated points
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with a modification of the two-dimensional result due to scattering effects associated
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equivalent to the rate of growth for the Hadamard function found previously for de

Sitter space in cosmological coordinates.
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I. INTRODUCTION

Schwarzschild-de Sitter spacetime (SdS) is an exact solution to the vacuum Einstein

equations in the presence of a positive cosmological constant. It describes an eternal black

hole immersed in an expanding universe and contains both a black hole and cosmological

horizon. The Unruh state [1] is the natural state for a quantum field in an eternal black

hole spacetime to describe the late-time effects of black hole evaporation associated with a

black hole that forms from collapse. Its generalization to SdS has been given in [2, 3]. In

particular, for SdS one can associate Hawking radiation [4] with each horizon. For a given

horizon, the temperature is Th = κh/2π, where κh is the magnitude of the surface gravity of

the horizon [5].

It is interesting to study the behavior of the quantum field modes which comprise the

Unruh state. For a massless minimally-coupled scalar field in two dimensions (2D), there

is no scattering and, in the usual static coordinates, the mode functions for the Unruh

state approach constant values at late times for fixed values of the spatial coordinate. In

contrast, for a massive minimally-coupled scalar field in 2D SdS it was found [6] that the

corresponding mode functions for the Unruh state vanish at late times for fixed values of the

spatial coordinate. This was also found generically for a 2D static asymptotically flat black

hole spacetime when a delta function effective potential is present in the mode equation. In

both cases one can write the modes for the Unruh state in terms of packets of modes for the

Boulware state (see e.g. [6]). The difference between the late time behaviors of the Unruh

state modes was shown to be correlated with the fact that, for a massless minimally-coupled

scalar field in 2D, there are no scattering effects and therefore the infrared divergence present

in the Boulware state modes, originating from normalization, persists. In contrast, for the

case of a massive minimally-coupled scalar field in 2D SdS or a massless minimally-coupled

scalar field in an asymptotically flat 2D eternal black hole spacetime with a delta function

potential, scattering effects remove the infrared divergences in the Boulware modes.

The behavior of the symmetric, or Hadamard, two-point function has been investigated [7]

for a massless minimally coupled scalar field in the Unruh state in 2D for SdS and other 2D

spacetimes containing black hole and/or cosmological horizons. It was found in the static

patch exterior to the black hole horizon and/or inside the cosmological horizon that late-

time, unbounded linear growth occurs if the points are separated along a coincident time
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hypersurface in coordinates natural to the region. The rate of growth for 2D SdS was found

to be

R2D ≡ ∂

∂t
G(1)(t, r; t, r′) =

1

2π
(κb + κc) , (1.1)

where κb and κc are the surface gravities associated with the black hole and cosmological

horizons, respectively. It was found in [6] for asymptotically flat eternal black hole spacetimes

that no such growth in time occurs if a delta function effective potential is included in the

mode equation. This appears to be related to the removal of infrared divergences in the

Boulware modes by scattering effects.

In this paper, the question of whether the above effects found in 2D SdS for a mass-

less minimally-coupled scalar field in the Unruh state persist in four dimensions (4D) is

addressed. Consideration is given to the spherically symmetric modes, whose gray-body

factors do not vanish in the zero-frequency limit [8, 9]. In this case scattering effects do

not remove the infrared divergences in the Boulware modes [10]. In contrast, for ℓ > 0 the

gray-body factors vanish in the zero-frequency limit [11, 12] and therefore it is extremely

likely that the infrared divergences in the Boulware modes will also be removed. In parallel

with the previous 2D SdS calculations [6, 7], spacetime points located between the black

hole and cosmological horizons will be considered.

In Sec. II, a review of SdS spacetime is given with a formulation of the quantum states and

mode equation required for computation of the Hadamard function. In Sec. III, numerical

results for the 4D Unruh state modes and the Hadamard function are presented. An analytic

approximation for the growth rate associated with the 4D Hadamard function is derived in

Sec. IV, including its predictions and comparisons between the 4D numerical and 2D analytic

results. A summary and discussion of the results is given in Sec. V.

II. QUANTUM STATES AND MODE DECOMPOSITION IN

3+1 SCHWARZSCHILD-DE SITTER

The metric for SdS in terms of the usual static coordinates is

ds2 = −f(r)dt2 +
1

f(r)
dr2 + r2

(
dθ2 + sin2 θdϕ2

)
, (2.1)

with

f(r) = 1− 2M

r
−H2r2 = −H2

r

(
r − rb

)(
r − rc

)(
r + rb + rc

)
. (2.2)
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Here M is the black hole mass, H2 = Λ/3 with Λ a positive cosmological constant, and the

black hole and cosmological horizon radii are rb and rc respectively. Throughout, the units

ℏ = c = G = 1 are used. A Penrose diagram for the SdS spacetime is given in Fig. 1. From

the relation (2.2), one can show that [7]

rc = −rb
2
+

1

H

√
1− 3H2r2b

4
. (2.3)

If rb → 0, then rc → 1/H. The black hole and cosmological horizons merge when rb =

1/
√
3H.

Figure 1. Penrose diagram depicting Schwarzschild-de Sitter spacetime. The past black hole and

cosmological horizons are denoted H−
(b,c) while the future horizons are denoted H+

(b,c). The static

patch is indicated by region I, whereas the black hole interior and cosmological far-field region are

indicated by II and III respectively.

The general form of the Hadamard function is

G(1)(x, x′) = ⟨{ϕ(x), ϕ(x′)}⟩ , (2.4)

where the scalar field ϕ satisfies the equation

✷ϕ(x) = 0 . (2.5)

The modes associated with the Unruh state are defined on the Cauchy surface consisting of

the union of the past black hole and cosmological horizons H−
b and H−

c . Two sets of modes

denoted by pbωℓm and pcωℓm comprise the Unruh state. On H−
b

pbωℓm(x) =
1√
4πω

e−iωUb

rb
Yℓm(θ, ϕ) , (2.6a)
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pcωℓm(x) = 0 , (2.6b)

while on H−
c

pbωℓm(x) = 0 , (2.7a)

pcωℓm(x) =
1√
4πω

e−iωVc

rc
Yℓm(θ, ϕ) . (2.7b)

Here Ub and Vc are the Kruskal coordinates associated with H−
b and H−

c , respectively.

Hereafter p
(b,c)
ωℓm are referred to as Kruskal modes. In relation to the null coordinates u = t−r∗

and v = t+ r∗, with dr∗ = dr/f , the quantities Ub and Vc are

Ub = − 1

κb

e−κbu , r > rb , (2.8a)

Vc = − 1

κc

e−κcv , r < rc . (2.8b)

As in [7], the surface gravity associated with a particular horizon r = rh is defined to be

2κh = |f ′(rh)| with the result that

κb =
H2

2rb
(rc − rb)(2rb + rc) , (2.9a)

κc =
H2

2rc
(rc − rb)(rb + 2rc) , (2.9b)

κN =
H2

2(rb + rc)
(rb + 2rc)(2rb + rc) . (2.9c)

The quantity κN denotes the surface gravity associated with the negative root of (2.2),

namely rN = −(rb + rc). An explicit form for r∗ is [7]

r∗(r) =
1

2κb

ln

{
|r − rb|
rc − rb

}
− 1

2κc

ln

{
|r − rc|
rc − rb

}
+

1

2κN

ln

{
r + rc + rb
rc + 2rb

}
− rc

4rbκb

ln

{
2rc + rb
rc + 2rb

}
− rbrc

2(rc − rb)
ln

{
rb
rc

}
. (2.10)

The scalar field for the Unruh state is

ϕ(x) =
∞∑
ℓ=0

ℓ∑
m=−ℓ

∫ ∞

0

dω

[
abωℓm pbωℓm(x) + ab †ωℓm pb ∗ωℓm(x) + acωℓm pcωℓm(x) + ac †ωℓm pc ∗ωℓm(x)

]
,

(2.11)

where [ahωℓm, a
†h′

ω′ℓ′m′ ] = δ(ω − ω′) δℓ,ℓ′ δm,m′ δh,h′ with h = b, c. It follows that the Hadamard

function (2.4) for the Unruh state is

G(1)(x, x′) = 2
∞∑
ℓ=0

ℓ∑
m=−ℓ

∫ ∞

0

dωRe

{
pbωℓm(x) p

b ∗
ωℓm(x

′) + pcωℓm(x) p
c ∗
ωℓm(x

′)

}
. (2.12)
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The mode equation (2.5) is not separable in either set of Kruskal coordinates. However,

in terms of the static coordinates in (2.1), it is separable and a complete set of solutions can

be obtained in terms of the modes which comprise the Boulware1 state. On H−
b

hb
ωℓm(x) =

1√
4πω

e−iωu

rb
Yℓm(θ, ϕ) , (2.13a)

hc
ωℓm(x) = 0 , (2.13b)

and on H−
c

hb
ωℓm(x) = 0 , (2.14a)

hc
ωℓm(x) =

1√
4πω

e−iωv

rc
Yℓm(θ, ϕ) . (2.14b)

The Kruskal modes p
(b,c)
ωℓm can be expanded in terms of the Boulware modes h

(b,c)
ω′ℓ′m′ using a

Bogolubov transformation with the result

p
(b,c)
ωℓm(x) =

∞∑
ℓ′=0

ℓ′∑
m′=−ℓ′

∫ ∞

0

dω′
[
α
(b,c)
ωℓmω′ℓ′m′ h

(b,c)
ω′ℓ′m′(x) + β

(b,c)
ωℓmω′ℓ′m′ h

(b,c) ∗
ω′ℓ′m′(x)

]
. (2.15)

Here α(b,c) and β(b,c) are Bogolubov coefficients, which can be computed using the usual

scalar product. They are partially diagonal in the sense that αωℓmω′ℓ′m′ ∼ δℓ,ℓ′δm,m′ and

βωℓmω′ℓ′m′ ∼ (−1)mδℓ,ℓ′δm,−m′ [14]. Therefore, for ℓ = 0, one has the simplification

p
(b,c)
ω00 (x) =

∫ ∞

0

dω′
[
α
(b,c)
ωω′ h

(b,c)
ω′00(x) + β

(b,c)
ωω′ h

(b,c) ∗
ω′00 (x)

]
, (2.16)

with [6]

α
(b,c)
ωω′ =

√
ω′

2π
√
ω

(
1

κ(b,c)

)1+iω′/κ(b,c)

(ϵ− iω)iω
′/κ(b,c) Γ

(
δ − iω′

κ(b,c)

)
, (2.17a)

β
(b,c)
ωω′ =

√
ω′

2π
√
ω

(
1

κ(b,c)

)1−iω′/κ(b,c)

(ϵ− iω)−iω′/κ(b,c) Γ

(
δ +

iω′

κ(b,c)

)
. (2.17b)

Here ϵ and δ are integrating factors such that 0 < (ϵ, δ) ≪ 1.

For points in the static patch, the Boulware modes have the general form

h
(b,c)
ω′00(x) =

Y00

r
√
4πω′

e−iω′tχ
(b,c)
ω′0 (r) . (2.18)

1 Here the natural generalization of the Boulware state from that in Schwarzschild spacetime [13] is used.
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The radial mode functions are solutions to the equation

d2

dr2∗
χ
(b,c)
ω′0 (r) +

[
ω′ 2 − Veff(r)

]
χ
(b,c)
ω′0 (r) = 0 , (2.19)

with

Veff(r) =
f(r)

r

d

dr
f(r) . (2.20)

Note that Veff → 0 on the black hole and cosmological horizons.

To numerically solve (2.19), two linearly independent solutions χ∞
(R,L) can be constructed

which, for r → rc, have the following asymptotic behaviors

χ∞
R (r) = eiω

′r∗ , (2.21a)

χ∞
L (r) = e−iω′r∗ . (2.21b)

Since Veff = 0 on H−
b , approaching the black hole horizon r = rb the solutions take the

general form

χ∞
R (r) = ER(ω

′)eiω
′r∗ + FR(ω

′)e−iω′r∗ , (2.22a)

χ∞
L (r) = EL(ω

′)eiω
′r∗ + FL(ω

′)e−iω′r∗ , (2.22b)

where E(R,L) and F(R,L) are scattering parameters that can be determined numerically. The

radial contributions to the Boulware modes χ
(b,c)
ω′0 are [6]

χb
ω′0(r) =

χ∞
R (r)

ER(ω′)
, (2.23a)

χc
ω′0(r) = χ∞

L (r)− EL(ω
′)

ER(ω′)
χ∞
R (r) . (2.23b)

III. KRUSKAL MODES AND THE HADAMARD FUNCTION:

NUMERICAL RESULTS

The time evolution of the real components to the modes pbω00 and pcω00 are shown for

various frequencies ω in Fig. 2 for the choice Hr = 0.5, which is between the horizons

Hrb = 0.1 and Hrc ≈ 0.95. Note, for some frequencies the early-time oscillatory behavior

of the plot curves has been artificially truncated to assist with visualization.
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It can be seen for all frequencies considered that at sufficiently late times the real parts

of pbω00 and pcω00 approach nonzero constant values which decrease with frequency. The late

time constant values approached by the magnitudes of the real parts of the pcω00 modes are

larger that those for pbω00 and more spread out in terms of frequency. In both cases, the

time required for a mode to achieve a constant value increases with frequency. As a given

pbω00 mode transitions from its early-time oscillatory behavior to its late-time approach to a

constant value, there is a significant decrease in its magnitude. The duration of this decrease

appears to be roughly the same for all frequencies considered. In contrast, the pcω00 modes

approach late time constant values that are comparable to the amplitudes of their early time

oscillations. Furthermore, it was found that the imaginary components of both p
(b,c)
ω00 modes

vanish at late times.

Figure 2. The late time behavior is shown for the magnitude of the real components of the black

hole (left) and cosmological (right) Kruskal modes H−1/2 p
(b,c)
ω00 , for a variety of frequencies in the

range 10−4 ≤ ω/H ≤ 1. Both plots are evaluated at a radial coordinate value Hr = 0.5 between

the horizons Hrb = 0.1 and Hrc ≈ 0.95. From highest to lowest at late times, the frequencies of

the curves in the two plots are the same.

The ℓ = 0 contribution to the Hadamard function (2.12) is plotted as a function of

the static time coordinate t in Fig. 3 for equal times and for radial points Hr = 0.3 and

Hr′ = 0.5, between the horizons Hrb = 0.1 and Hrc ≈ 0.95. There is clear linear growth

over the times considered.

To see the effect of position on the 4D Hadamard growth rate, multiple radial coordinate

pairs in the static patch were investigated for fixed values of rb and rc. To within two

significant digits the growth rate was numerically determined to be ∂
∂t
G(1)(x, x′) = 0.052H3,
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Figure 3. Numerical solutions for the ℓ = 0 contribution to the 4D Hadamard function G(1)/H2

at late times are shown as a function of the time Ht for radially separated points Hr = 0.3 and

Hr′ = 0.5 between the horizons Hrb = 0.1 and Hrc ≈ 0.95.

providing strong evidence that not only does the linear instability persists in 4D, but the

growth rate is independent of the choice of radial coordinates r and r′.

IV. LATE-TIME APPROXIMATION TO THE HADAMARD FUNCTION

In this section, an analytic approximation will be derived for the ℓ = 0 contribution to

the Hadamard function growth rate at late times. First note that (2.16), with (2.17) and

(2.18), can be written as

p
(b,c)
ω00 (x) = iκ(b,c)

∫ ∞

0

dω′
{(

A(b,c)(r)

ω′ + iκ(b,c)δ

)
e
−iω′

[
t−κ−1

(b,c)
ln
(
ω κ−1

(b,c)

)]

−
(

B(b,c)(r)

ω′ − iκ(b,c)δ

)
e
iω′

[
t−κ−1

(b,c)
ln
(
ω κ−1

(b,c)

)]}
, (4.1)

with

A(b,c)(r) = e−πω′κ−1
(b,c)B(b,c)∗(r) =

e
1
2
πω′κ−1

(b,c)

8π2κ(b,c)

√
ω
Γ

(
1− iω′

κ(b,c)

)
χ
(b,c)
ω′0 (r)

r
. (4.2)

For fixed values of ω and r, and at sufficiently late times, the integrand in (4.1) oscillates

rapidly in ω′ due to the factors of e∓iω′t. Therefore, the primary contributions to this integral

originate from small values of ω′. The reason these contributions, and therefore the integral,

do not vanish in the limit t → ∞ is that the integrand contains singularities at ω′ = 0.

In what follows, a late-time approximation for this integral is derived that, in agreement

with the numerical results in Fig. 2, shows the modes p
(b,c)
ω00 approach constant values at late
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times. The analytic approximation to the Hadamard function is derived by isolating the

contribution from those Kruskal modes which have approximately constant values at any

given time t.

To obtain the late-time approximations for p
(b,c)
ω00 one can evaluate A(b,c) and B(b,c) at

ω′ = 0 with the result

A(b,c)(r) = B(b,c)∗(r) =
1

8π2κ(b,c)

√
ω

χ
(b,c)
00 (r)

r
. (4.3)

The calculation of χ
(b,c)
ω′0 in this limit has been done for ℓ = 0 in [10], where it was found that

χ∞
R (r) = χ∞∗

L (r) =
r

rc
. (4.4)

The scattering parameters are

ER =
1

2

(
r2b + r2c
rb rc

)
, EL =

1

2

(
r2b − r2c
rb rc

)
. (4.5)

Substituting these expressions into (2.23) gives

χ
(b,c)
00 (r)

r
=

2 r(b,c)
r2b + r2c

. (4.6)

This implies that B(b,c) = B(b,c)∗ when ω′ = 0. Therefore, one can take ω′ → −ω′ for

the second integral in (4.1) and combine it with the first integral to obtain the late-time

approximation to the Kruskal modes

p
(b,c)
ω00 (x) ≈ iκ(b,c)A

(b,c)(r)

∫ ∞

−∞
dω′

(
1

ω′ + iκ(b,c)δ

)
e
−iω′

[
t−κ−1

(b,c)
ln
(
ω κ−1

(b,c)

)]
. (4.7)

This integral can be evaluated using contour integration. The result, which is valid for

κ(b,c) t ≫ ln
(
ω κ−1

(b,c)

)
, is

p
(b,c)
ω00 (x) ≈

r(b,c)
2π(r2b + r2c )

√
ω

, (4.8)

which indicates that the Kruskal modes approach constant values at late times.

For t′ = t, the contribution to G(1)(x, x′) that grows linearly in time originates from those

Kruskal modes which have already approached the above constant values. The contribution

from these modes to the Hadamard function is obtained by substituting (4.8) into (2.12)

and inserting the upper limit cutoffs γκ(b,c)e
κ(b,c)t into the integrals for some γ ≪ 1. Then

the late-time approximation to the growth rate is

R4D ≡ ∂

∂t
G(1)(t, r, θ, ϕ; t, r′, θ′, ϕ′) =

1

2π2(r2b + r2c )
2

(
r2bκb + r2cκc

)
. (4.9)



11

In Fig. 4, the analytic approximation for the 4D growth rate is plotted as a function of

the black hole radius rb along with the numerically computed rate for several values of rb.

There is excellent agreement between the two 2.

Figure 4. The analytic approximation to R4D/H
3 is shown as a function of the black hole radius

Hrb. The blue dots are results from the full numerical calculations of this rate.

Interesting features emerge upon comparing the 2D and 4D cases. From (1.1) and (2.9),

it can be seen that as rb → 0, the 2D SdS growth rate diverges since R2D ∼ 1/rb, while in

4D SdS the growth rate is R4D = H3/2π2, which is in agreement with that found in [15] for

4D de Sitter space in cosmological coordinates. For intermediate values of the black hole

horizon radius, there exists a maximum that occurs in 4D when Hrb ≈ 0.12. There is no

maximum in 2D. Both the 2D and 4D Hadamard function growth rates terminate when

Hrb = Hrc = 1/
√
3 since κb and κc vanish in this limit.

V. DISCUSSION AND CONCLUSIONS

The spherically symmetric contribution to the Hadamard two-point function has been

computed in 4D SdS for a massless minimally-coupled scalar field in the Unruh state for

points that are separated along a coincident time hypersurface in the region between the

black hole and cosmological horizons. Two sets of modes characterize the Unruh state. For

one set, the modes are positive frequency with respect to the Kruskal time on the past black

2 Note that as rb increases, rc necessarily decreases, thereby causing the radial solutions χ∞
(R,L) between

the horizons to exhibit more rapid, oscillatory behavior in r. Thus, it becomes increasingly difficult to

numerically compute the 4D Hadamard growth rate for larger values of rb.
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hole horizon and for the other they are positive frequency with respect to the Kruskal time

on the past cosmological horizon. The mode equation is not separable in either set of Kruskal

coordinates, so Bogolubov transformations were used to express the Kruskal modes in terms

of wave packets of Boulware modes. The Boulware modes were obtained using separation

of variables and the equation for the radial part of the modes was solved numerically.

It was found that the Kruskal modes approach nonzero constants at late times for fixed

spatial points; the higher the frequency of a mode, the later in time that damping and

subsequent approach to a nonzero constant occurs. Similar behavior manifests in 2D where

there is no scattering, but the nonzero constant value approached is different than that in

4D.

The contribution to the 4D Hadamard function from the spherically symmetric modes

in the Unruh state is found to exhibit unbounded linear growth at late times in terms of

the usual static time coordinate for radially separated points. This same effect was found

previously in 2D [7]. However, the rate of growth is suppressed in 4D by scattering effects.

In particular, the contribution from the Kruskal modes that are defined on the past black

hole horizon is significantly smaller than that from the Kruskal modes that are defined on

the past cosmological horizon.

These effects are corroborated by the derivation of an analytic expression for the rate of

growth of the Hadamard function using various approximations. The analytic expression

was found to be in good agreement with the numerical results, and furthermore, in the limit

that the black hole event horizon vanishes, it agrees with the result found previously for 4D

de Sitter spacetime [15] in cosmological coordinates.

There are infrared divergences associated with the Boulware modes which in 2D have

been seen to have a significant impact not only on the late-time behaviors of the Kruskal

modes, but also on the late-time behavior of the Hadamard function. In particular, it was

shown in [6] for 2D asymptotically flat static black holes, that when a delta function potential

is included in the radial mode equation, scattering effects remove the infrared divergences

in the Boulware modes. In this case, the Kruskal modes vanish at late times for fixed

spatial points and no linear growth in time of the Hadamard function occurs. In 4D SdS,

scattering effects do not remove the infrared divergences for the spherically symmetric modes

of the massless minimally-coupled scalar field. However, they are expected to remove these

divergences for the modes with higher order spherical harmonics. Thus, the only contribution
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to the Hadamard function that is expected to result in unbounded linear growth is from the

spherically symmetric modes.

The linear growth in time of the Hadamard function is a sign of some type of instability

associated with the Unruh state. In 2D Schwarzschild spacetime, the linear growth in time

of the Hadamard function leads to a linear growth in time of the quantity ⟨ϕ2⟩ [16]. There

is good reason to expect this will also occur for 4D SdS. However, the stress-energy tensor

is not expected to undergo any linear growth in time because it involves two derivatives of

the Hadamard function.

The effect found here for SdS is similar in nature to the well-known linear growth in

time of the Hadamard function in 4D de Sitter spacetime for the Bunch-Davies state shown

in [15]. There it was found that for de Sitter space there are alternative homogeneous and

isotropic vacuum states for which no such instability occurs. The stress-energy tensor for

the massless minimally-coupled scalar field in this case has an asymptotic de Sitter-invariant

value for these states that is different than that for the Bunch-Davies state, which is also de

Sitter invariant.

What distinguishes SdS from de Sitter space is the presence of an eternal black hole.

The Unruh state is thought to be the most physically relevant state for an eternal black

hole because it yields a flux of radiation emanating from the black hole equivalent to that

predicted by Hawking for black holes that form from collapse at late times. As mentioned

above, it is clear from our result is that for a massless minimally-coupled scalar field in 4D

SdS, there is some type of instability for the Unruh state. One can ask whether such an

instability is likely to persist in models in which the black hole forms from collapse, since

then the initial vacuum state for the field is not the Unruh state. This has been tested in

2D in the case of a Schwarzschild black hole that forms from the implosion of a null shell

of radiation [7]. In this case, there is no past horizon and there is a well-defined initial

vacuum state. For that state, the leading order contribution to the Hadamard function at

late times has the same linear growth in time as for an eternal Schwarzschild black hole in

2D. Therefore, it is quite possible that the instability found here for the Unruh state in 4D

SdS would persist in models in which a black hole in de Sitter space forms from collapse.
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