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In a four-dimensional Schwarzschild-de Sitter background, the spherically symmet-
ric (¢ = 0) contribution to the Hadamard two-point correlation function is computed
for a massless minimally-coupled scalar field in the Unruh state. Consideration is
given to spacetime points located between the black hole and cosmological horizons.
Previously it was found in two dimensions at late times for spatially separated points
that the Hadamard function exhibits unbounded linear growth in time, with a rate of
growth proportional to the sum of the black hole and cosmological surface gravities.
Here it is shown numerically that this instability persists in four dimensions, but
with a modification of the two-dimensional result due to scattering effects associated
with the scalar field modes. An analytic approximation is derived for the growth
rate in four dimensions and, in the limit that the black hole vanishes, is found to be
equivalent to the rate of growth for the Hadamard function found previously for de

Sitter space in cosmological coordinates.
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I. INTRODUCTION

Schwarzschild-de Sitter spacetime (SdS) is an exact solution to the vacuum Einstein
equations in the presence of a positive cosmological constant. It describes an eternal black
hole immersed in an expanding universe and contains both a black hole and cosmological
horizon. The Unruh state [1] is the natural state for a quantum field in an eternal black
hole spacetime to describe the late-time effects of black hole evaporation associated with a
black hole that forms from collapse. Its generalization to SdS has been given in [2, 3]. In
particular, for SdS one can associate Hawking radiation [4] with each horizon. For a given
horizon, the temperature is T), = k; /27, where kj, is the magnitude of the surface gravity of

the horizon [5].

It is interesting to study the behavior of the quantum field modes which comprise the
Unruh state. For a massless minimally-coupled scalar field in two dimensions (2D), there
is no scattering and, in the usual static coordinates, the mode functions for the Unruh
state approach constant values at late times for fixed values of the spatial coordinate. In
contrast, for a massive minimally-coupled scalar field in 2D SdS it was found [6] that the
corresponding mode functions for the Unruh state vanish at late times for fixed values of the
spatial coordinate. This was also found generically for a 2D static asymptotically flat black
hole spacetime when a delta function effective potential is present in the mode equation. In
both cases one can write the modes for the Unruh state in terms of packets of modes for the
Boulware state (see e.g. [6]). The difference between the late time behaviors of the Unruh
state modes was shown to be correlated with the fact that, for a massless minimally-coupled
scalar field in 2D, there are no scattering effects and therefore the infrared divergence present
in the Boulware state modes, originating from normalization, persists. In contrast, for the
case of a massive minimally-coupled scalar field in 2D SdS or a massless minimally-coupled
scalar field in an asymptotically flat 2D eternal black hole spacetime with a delta function

potential, scattering effects remove the infrared divergences in the Boulware modes.

The behavior of the symmetric, or Hadamard, two-point function has been investigated [7]
for a massless minimally coupled scalar field in the Unruh state in 2D for SdS and other 2D
spacetimes containing black hole and/or cosmological horizons. It was found in the static
patch exterior to the black hole horizon and/or inside the cosmological horizon that late-

time, unbounded linear growth occurs if the points are separated along a coincident time



hypersurface in coordinates natural to the region. The rate of growth for 2D SdS was found
to be

0 , 1
Rop = EG(I)(t,r;t,r) = %(/{b + Ke) (1.1)

where k;, and k. are the surface gravities associated with the black hole and cosmological
horizons, respectively. It was found in [6] for asymptotically flat eternal black hole spacetimes
that no such growth in time occurs if a delta function effective potential is included in the
mode equation. This appears to be related to the removal of infrared divergences in the
Boulware modes by scattering effects.

In this paper, the question of whether the above effects found in 2D SdS for a mass-
less minimally-coupled scalar field in the Unruh state persist in four dimensions (4D) is
addressed. Consideration is given to the spherically symmetric modes, whose gray-body
factors do not vanish in the zero-frequency limit [8, 9]. In this case scattering effects do
not remove the infrared divergences in the Boulware modes [10]. In contrast, for £ > 0 the
gray-body factors vanish in the zero-frequency limit [11, 12] and therefore it is extremely
likely that the infrared divergences in the Boulware modes will also be removed. In parallel
with the previous 2D SdS calculations [6, 7], spacetime points located between the black
hole and cosmological horizons will be considered.

In Sec. 11, a review of SAS spacetime is given with a formulation of the quantum states and
mode equation required for computation of the Hadamard function. In Sec. III, numerical
results for the 4D Unruh state modes and the Hadamard function are presented. An analytic
approximation for the growth rate associated with the 4D Hadamard function is derived in
Sec. IV, including its predictions and comparisons between the 4D numerical and 2D analytic

results. A summary and discussion of the results is given in Sec. V.

II. QUANTUM STATES AND MODE DECOMPOSITION IN
3+1 SCHWARZSCHILD-DE SITTER

The metric for SdS in terms of the usual static coordinates is
1

ds* = —f(r)dt +f(r)

dr* 4+ r* (d6* + sin® 6d¢®) | (2.1)

with
2M H?
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Here M is the black hole mass, H> = A/3 with A a positive cosmological constant, and the
black hole and cosmological horizon radii are r, and r. respectively. Throughout, the units
h=c¢=G =1 are used. A Penrose diagram for the SdS spacetime is given in Fig. 1. From

the relation (2.2), one can show that [7]

Ty 1 3H2r2
c— T & —1/1 =
" > T 4

(2.3)

If r, — 0, then r. — 1/H. The black hole and cosmological horizons merge when r, =

1/V/3H.

Figure 1. Penrose diagram depicting Schwarzschild-de Sitter spacetime. The past black hole and
cosmological horizons are denoted H, (; 0 while the future horizons are denoted H (41; 0" The static
patch is indicated by region I, whereas the black hole interior and cosmological far-field region are

indicated by Il and I11I respectively.

The general form of the Hadamard function is
GW(z,2') = ({¢(x),0(z")}) (2.4)
where the scalar field ¢ satisfies the equation
Dg(z) =0 . (2.5)

The modes associated with the Unruh state are defined on the Cauchy surface consisting of
the union of the past black hole and cosmological horizons H, and H_. Two sets of modes
denoted by p°,, . and p¢,,. comprise the Unruh state. On H,

1 e—inb

P () = Yim(0,9) (2.6a)

drw T



while on H_

Pom(®) =0, (2.7a)

1 67'inc
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Here U, and V. are the Kruskal coordinates associated with H, and H_, respectively.
(b,e)

wlm

Hereafter p are referred to as Kruskal modes. In relation to the null coordinates u = t—r,
and v =t + r,, with dr, = dr/f, the quantities U, and V, are

1

Uy=——e"™" | r>r, |, (2.8a)
Kb
1

Ve=——e"" | r<r. . (2.8b)
Re

As in [7], the surface gravity associated with a particular horizon r = ry, is defined to be

2k, = | f'(ry)| with the result that

2

iy = o (re— )27 (2.92)
27"b
HQ
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2r,
2
=— 2r.)(2 ¢) - 2.9
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The quantity xy denotes the surface gravity associated with the negative root of (2.2),
namely ry = — (1, 4+ r.). An explicit form for r, is [7]
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The scalar field for the Unruh state is

00 14 00
¢($) = Z Z / dw |:a<l,)u€m pclz)ém(aj) + a’i)zm pf.;m(x) + af.)ﬁm pccuﬂm(x) + a((;il;m pEJZm($):| )

=0 m=—¢"0
(2.11)
where [a, | alz,m,] = 0(w — W) 0 Ommy Oppy With h = b, c. It follows that the Hadamard

function (2.4) for the Unruh state is
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The mode equation (2.5) is not separable in either set of Kruskal coordinates. However,
in terms of the static coordinates in (2.1), it is separable and a complete set of solutions can

be obtained in terms of the modes which comprise the Boulware® state. On H,

1 e—iwu
h’i}fm(x) = —nm(ea ¢) ) (213&)
drw T
oo () =0, (2.13b)
and on H
() =0, (2.14a)
. 1 efiwv
otm (T) = —Yin(0,0) (2.14b)
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The Kruskal modes pwe can be expanded in terms of the Boulware modes h ,g, , using a

Bogolubov transformation with the result
b,c b,c b,c) *
i) =3 S [ oK) 4 B i) 235
=0m/=—r'

Here o®9 and B9 are Bogolubov coefficients, which can be computed using the usual
scalar product. They are partially diagonal in the sense that owimwerm ~ 0,p0m m and

Butme rm: ~ (—1)™8p 00, —m [14]. Therefore, for £ = 0, one has the simplification
b,c > (b,e) 1.(b,e (b,e) 7 (b,e) *
pi;oo)(x) :/ dwl{ )h '00( )JFB )h '0()) (z )} ) (2.16)
0
with [6]
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Here € and § are integrating factors such that 0 < (e,d) < 1.

For points in the static patch, the Boulware modes have the general form

b,c i’ b,c
(@) = —rm=e 0D (2.18)

! Here the natural generalization of the Boulware state from that in Schwarzschild spacetime [13] is used.



The radial mode functions are solutions to the equation

(;‘l—;xgﬁ) (r) + {w” - Veff(r)} Xy () =0, (2.19)
with
Ve(r) = @% f(r) . (2.20)

Note that Veg — 0 on the black hole and cosmological horizons.
To numerically solve (2.19), two linearly independent solutions X(k,z) can be constructed

which, for » — r., have the following asymptotic behaviors

() = e (2.21a)

XP(r) = e ™ (2.21b)

Since Veg = 0 on H, , approaching the black hole horizon r = r;, the solutions take the
general form

X (r) = Br(w)e™ ™ + Fp(we ™™ | (2.22a)

XE(r) = Br(w)e™™ + Fr(w)e ™™ | (2.22Dh)

where E(g 1) and Fg ) are scattering parameters that can be determined numerically. The

radial contributions to the Boulware modes XS’,’OC) are [6]

Xeno(r) = gf(g,)) ; (2.23a)
o) =) - ZHDG0) (2.28)

IIT. KRUSKAL MODES AND THE HADAMARD FUNCTION:
NUMERICAL RESULTS

The time evolution of the real components to the modes p°,, and p¢,, are shown for
various frequencies w in Fig. 2 for the choice Hr = 0.5, which is between the horizons
Hr, = 0.1 and Hr. =~ 0.95. Note, for some frequencies the early-time oscillatory behavior

of the plot curves has been artificially truncated to assist with visualization.



It can be seen for all frequencies considered that at sufficiently late times the real parts
of pb 4o and p¢,, approach nonzero constant values which decrease with frequency. The late
time constant values approached by the magnitudes of the real parts of the p¢,, modes are
larger that those for p?,, and more spread out in terms of frequency. In both cases, the
time required for a mode to achieve a constant value increases with frequency. As a given
100 mode transitions from its early-time oscillatory behavior to its late-time approach to a
constant value, there is a significant decrease in its magnitude. The duration of this decrease
appears to be roughly the same for all frequencies considered. In contrast, the p{,, modes
approach late time constant values that are comparable to the amplitudes of their early time
oscillations. Furthermore, it was found that the imaginary components of both pg)ég) modes

vanish at late times.
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Figure 2. The late time behavior is shown for the magnitude of the real components of the black
hole (left) and cosmological (right) Kruskal modes H~1/2 p(%%), for a variety of frequencies in the
range 107* < w/H < 1. Both plots are evaluated at a radial coordinate value Hr = 0.5 between

the horizons Hry, = 0.1 and Hr. ~ 0.95. From highest to lowest at late times, the frequencies of

the curves in the two plots are the same.

The ¢ = 0 contribution to the Hadamard function (2.12) is plotted as a function of
the static time coordinate ¢ in Fig. 3 for equal times and for radial points Hr = 0.3 and
Hr" = 0.5, between the horizons Hr, = 0.1 and Hr. =~ 0.95. There is clear linear growth
over the times considered.

To see the effect of position on the 4D Hadamard growth rate, multiple radial coordinate
pairs in the static patch were investigated for fixed values of r, and r.. To within two

significant digits the growth rate was numerically determined to be % GO (z,2") = 0.052 H?,



0.80 .
0.79 .
0.78 .o

< 0.77

O 0.76

H2

0.75 ..o‘

0.0 0.2 04 06 08 1.0

Figure 3. Numerical solutions for the £ = 0 contribution to the 4D Hadamard function G")/H?
at late times are shown as a function of the time Ht for radially separated points Hr = 0.3 and

Hr' = 0.5 between the horizons Hry, = 0.1 and Hr. ~ 0.95.

providing strong evidence that not only does the linear instability persists in 4D, but the

growth rate is independent of the choice of radial coordinates r and 7’.

IV. LATE-TIME APPROXIMATION TO THE HADAMARD FUNCTION

In this section, an analytic approximation will be derived for the ¢ = 0 contribution to
the Hadamard function growth rate at late times. First note that (2.16), with (2.17) and

(2.18), can be written as

c o A(b’c) —iw! _H—l n w/ifl
pffdo) (z) = iﬁ(b,c)/ dw’{ (#) e [t=rat (wng) )]
0

W+ Z"f(b,C)é
(B0 ) st
)0 |

W — K@
with
(i Aoy i\ 2 )
AP (r) = 7™ 00 BEO* (1) = 82k o : (1 N ) K . 42
726 b,y VW K (b.c) r

For fixed values of w and r, and at sufficiently late times, the integrand in (4.1) oscillates
rapidly in w’ due to the factors of e¥'*. Therefore, the primary contributions to this integral
originate from small values of w’. The reason these contributions, and therefore the integral,
do not vanish in the limit ¢ — oo is that the integrand contains singularities at w’ = 0.

In what follows, a late-time approximation for this integral is derived that, in agreement

with the numerical results in Fig. 2, shows the modes pg’(’)f]) approach constant values at late
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times. The analytic approximation to the Hadamard function is derived by isolating the
contribution from those Kruskal modes which have approximately constant values at any
given time t.

To obtain the late-time approximations for pffég) one can evaluate A®° and B®°) at

w’' = 0 with the result
b,c
1 )

Abe) (T‘) _ B(b’c)*(r) _ 87T2Ku(b )\/a . . (43)

in this limit has been done for £ = 0 in [10], where it was found that

The calculation of y %

XEr) = xTH ) =~ (4.4)

The scattering parameters are

1 /r2+1r? 1 [/r2—1r?
Er=_—[2""¢ FEr == b ¢ . 4.5
B9 < ThTe ) ’ L= ( ThTe (4.5)

Substituting these expressions into (2.23) gives

b,c
X6 (r) _ 270
r re 412

(4.6)

This implies that B®9 = B®9* when ' = 0. Therefore, one can take w' — —w’ for

the second integral in (4.1) and combine it with the first integral to obtain the late-time
approximation to the Kruskal modes

(b,e) ~ A(b’c) > du’ 1 —iw’ [tf/{(_b’lc) ln(wn(_b,lc)ﬂ 47

Paoo () T (r) /oo “ (w’ + i/i(b,c)5> ¢ ' (4.7)

This integral can be evaluated using contour integration. The result, which is valid for

K(be)t > In (w /i(z’lc)>, is

(b)) A T(bo) A8
prO (l‘) 271'(7“?"‘7“3)\/5 ) ( . )

which indicates that the Kruskal modes approach constant values at late times.

For t' = t, the contribution to G (x, ') that grows linearly in time originates from those
Kruskal modes which have already approached the above constant values. The contribution
from these modes to the Hadamard function is obtained by substituting (4.8) into (2.12)
and inserting the upper limit cutoffs vk e’ into the integrals for some v < 1. Then

the late-time approximation to the growth rate is

P 1
— Y () . ' A= ———
R4D = atG (t,T,9,¢,t,T 70 7¢) 271.2(7,.? _|_7/.2)2(

C

oKy + oK) (4.9)
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In Fig. 4, the analytic approximation for the 4D growth rate is plotted as a function of
the black hole radius 7, along with the numerically computed rate for several values of ry.

There is excellent agreement between the two 2.
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Figure 4. The analytic approximation to Ryp/H? is shown as a function of the black hole radius

Hry. The blue dots are results from the full numerical calculations of this rate.

Interesting features emerge upon comparing the 2D and 4D cases. From (1.1) and (2.9),
it can be seen that as 7, — 0, the 2D SdS growth rate diverges since Rop ~ 1/rp, while in
4D SdS the growth rate is Ryp = H?/27?%, which is in agreement with that found in [15] for
4D de Sitter space in cosmological coordinates. For intermediate values of the black hole
horizon radius, there exists a maximum that occurs in 4D when Hr, &~ 0.12. There is no
maximum in 2D. Both the 2D and 4D Hadamard function growth rates terminate when

Hry,=Hr.=1/ V3 since K, and k, vanish in this limit.

V. DISCUSSION AND CONCLUSIONS

The spherically symmetric contribution to the Hadamard two-point function has been
computed in 4D SdS for a massless minimally-coupled scalar field in the Unruh state for
points that are separated along a coincident time hypersurface in the region between the
black hole and cosmological horizons. Two sets of modes characterize the Unruh state. For

one set, the modes are positive frequency with respect to the Kruskal time on the past black

2 Note that as r; increases, r. necessarily decreases, thereby causing the radial solutions XE’% L) between
the horizons to exhibit more rapid, oscillatory behavior in r. Thus, it becomes increasingly difficult to

numerically compute the 4D Hadamard growth rate for larger values of ry.
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hole horizon and for the other they are positive frequency with respect to the Kruskal time
on the past cosmological horizon. The mode equation is not separable in either set of Kruskal
coordinates, so Bogolubov transformations were used to express the Kruskal modes in terms
of wave packets of Boulware modes. The Boulware modes were obtained using separation
of variables and the equation for the radial part of the modes was solved numerically.

It was found that the Kruskal modes approach nonzero constants at late times for fixed
spatial points; the higher the frequency of a mode, the later in time that damping and
subsequent approach to a nonzero constant occurs. Similar behavior manifests in 2D where
there is no scattering, but the nonzero constant value approached is different than that in
4D.

The contribution to the 4D Hadamard function from the spherically symmetric modes
in the Unruh state is found to exhibit unbounded linear growth at late times in terms of
the usual static time coordinate for radially separated points. This same effect was found
previously in 2D [7]. However, the rate of growth is suppressed in 4D by scattering effects.
In particular, the contribution from the Kruskal modes that are defined on the past black
hole horizon is significantly smaller than that from the Kruskal modes that are defined on
the past cosmological horizon.

These effects are corroborated by the derivation of an analytic expression for the rate of
growth of the Hadamard function using various approximations. The analytic expression
was found to be in good agreement with the numerical results, and furthermore, in the limit
that the black hole event horizon vanishes, it agrees with the result found previously for 4D
de Sitter spacetime [15] in cosmological coordinates.

There are infrared divergences associated with the Boulware modes which in 2D have
been seen to have a significant impact not only on the late-time behaviors of the Kruskal
modes, but also on the late-time behavior of the Hadamard function. In particular, it was
shown in [6] for 2D asymptotically flat static black holes, that when a delta function potential
is included in the radial mode equation, scattering effects remove the infrared divergences
in the Boulware modes. In this case, the Kruskal modes vanish at late times for fixed
spatial points and no linear growth in time of the Hadamard function occurs. In 4D SdS,
scattering effects do not remove the infrared divergences for the spherically symmetric modes
of the massless minimally-coupled scalar field. However, they are expected to remove these

divergences for the modes with higher order spherical harmonics. Thus, the only contribution



13

to the Hadamard function that is expected to result in unbounded linear growth is from the
spherically symmetric modes.

The linear growth in time of the Hadamard function is a sign of some type of instability
associated with the Unruh state. In 2D Schwarzschild spacetime, the linear growth in time
of the Hadamard function leads to a linear growth in time of the quantity (¢?) [16]. There
is good reason to expect this will also occur for 4D SdS. However, the stress-energy tensor
is not expected to undergo any linear growth in time because it involves two derivatives of
the Hadamard function.

The effect found here for SdS is similar in nature to the well-known linear growth in
time of the Hadamard function in 4D de Sitter spacetime for the Bunch-Davies state shown
in [15]. There it was found that for de Sitter space there are alternative homogeneous and
isotropic vacuum states for which no such instability occurs. The stress-energy tensor for
the massless minimally-coupled scalar field in this case has an asymptotic de Sitter-invariant
value for these states that is different than that for the Bunch-Davies state, which is also de
Sitter invariant.

What distinguishes SdS from de Sitter space is the presence of an eternal black hole.
The Unruh state is thought to be the most physically relevant state for an eternal black
hole because it yields a flux of radiation emanating from the black hole equivalent to that
predicted by Hawking for black holes that form from collapse at late times. As mentioned
above, it is clear from our result is that for a massless minimally-coupled scalar field in 4D
SdS, there is some type of instability for the Unruh state. One can ask whether such an
instability is likely to persist in models in which the black hole forms from collapse, since
then the initial vacuum state for the field is not the Unruh state. This has been tested in
2D in the case of a Schwarzschild black hole that forms from the implosion of a null shell
of radiation [7]. In this case, there is no past horizon and there is a well-defined initial
vacuum state. For that state, the leading order contribution to the Hadamard function at
late times has the same linear growth in time as for an eternal Schwarzschild black hole in
2D. Therefore, it is quite possible that the instability found here for the Unruh state in 4D

SdS would persist in models in which a black hole in de Sitter space forms from collapse.
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