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Abstract—To protect users’ right to be forgotten in federated learning, federated unlearning aims at eliminating the impact of leaving
users’ data on the global learned model. The current research in federated unlearning mainly concentrates on developing effective
and efficient unlearning techniques. However, the issue of incentivizing valuable users to remain engaged and preventing their data
from being unlearned is still under-explored, yet important to the unlearned model performance. This paper focuses on the incentive
issue and develops an incentive mechanism for federated learning and unlearning. We first characterize the leaving users’ impact
on the global model accuracy and the required communication rounds for unlearning. Building on these results, we propose a four-
stage game to capture the interaction and information updates during the learning and unlearning process. A key contribution is to
summarize users’ multi-dimensional private information into one-dimensional metrics to guide the incentive design. Interestingly, we
prove that allowing federated unlearning can result in reduced payoffs for both the server and users, compared to a scenario without
unlearning. Numerical results demonstrate the necessity of unlearning incentives for retaining valuable leaving users, and also show
that our proposed mechanisms decrease the server’s cost by up to 53.91% compared to state-of-the-art benchmarks.

Index Terms—incentive mechanism, federated learning, federated unlearning

1 INTRODUCTION

1.1 Background and Motivations

EDERATED learning is a promising distributed machine

learning paradigm, in which multiple users collaborate
to train a shared model under the coordination of a central
server [1]. This approach allows users to keep their local
data on their own devices and only share the intermediate
model parameters, which helps protect their raw data. How-
ever, despite these measures, it may not provide sufficient
privacy guarantees [2], [3].

A stronger privacy guarantee is to ensure a user’s “right
to be forgotten” (RTBF), which has been explicitly stated
in the European Union General Data Protection Regula-
tion (GDPR) [4] and the California Consumer Privacy Act
(CCPA) [5]. That is, a user has the right to request deletion
of his private data and its impact on the trained model, if
he no longer desires to participate in the platform. Users
may seek to leave a platform for a variety of reasons. For
example, they may feel that the benefits from the platform
are not sufficient to compensate for their potential privacy
leakage from participation. Furthermore, until they partic-
ipate in the platform, they may not have full knowledge
of these benefits and costs due to incomplete information
about other users’ data. For instance, users’ privacy costs in
federated learning depend on how unique their data is [6],
which they can infer from their training loss after training
[7].

To remove data from a trained federated learning model,
the concept of federated unlearning has recently been pro-
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posed [8]. In this concept, after some users request to revoke
their data, the remaining users will perform additional
training or calculations to eliminate the impact of leaving
users’ data and obtain an unlearned model. A simple yet
costly approach is to retrain the model from scratch with
the requested data being removed from the training dataset
[9]. To be more efficient and effective, existing literature
(e.g., [7], [10], [11]) has focused on alternative federated
unlearning methods that obtain a model similar (in some
distance metrics) to a retrained model with lower compu-
tational costs. However, these studies usually assumed that
users are willing to participate in federated learning and
unlearning. This assumption may not be realistic without
proper incentives since users incur various costs during the
training process (e.g., time, energy, and privacy costs). Our
goal in this paper is to develop incentive mechanisms to
help retain valuable leaving users and create a sustainable
learning platform for both the users and the server.

To design an incentive mechanism for federated learn-
ing and unlearning, there are several challenges to tackle.
First, different leaving users will lead to different unlearned
model performances and unlearning costs, the relationship
among which is still an open problem yet essential for
designing incentives. Second, it is difficult for the server to
design incentives for a large number of heterogeneous users,
when users have multi-dimensional private information
(e.g., training costs and privacy costs) and unknown infor-
mation (e.g., users’ training losses before federated learn-
ing). Third, unlearning incentives for retaining valuable
leaving users require careful design. High incentives may
encourage strategic users to intentionally request revocation
to obtain retention rewards, while low incentives may fail
to retain valuable users. It is also crucial for the server to
distinguish between high-quality leaving users (e.g., with
rare and valuable data) and low-quality ones (e.g., with er-
roneous data), both of which can lead to high training losses.
Fourth, both learning and unlearning incentives affect the
server’s and users’ payoffs but are determined in different
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stages - before or after federated learning. Meanwhile, there
are different information asymmetry levels in each stage, as
the federated learning process can reveal some information
such as users’ training losses and contributions. Thus, the
mutual influence of the incentives and dynamic information
asymmetry further complicate the incentive mechanism de-
sign.

The above discussion motivates us to answer the follow-
ing interesting question:

Question 1. Considering leaving users’ impact, what is the
server’s optimal incentive mechanism for federated learning and
unlearning, when heterogeneous users have strategic data re-
vocation decisions and multi-dimensional private and unknown
information?

Furthermore, although federated unlearning is impor-
tant for protecting users’ right to be forgotten and data
privacy, existing work lacks the understanding of whether
allowing federated unlearning is economically beneficial
to the server or users by comparing the following two
scenarios:

o Unlearning-Allowed Scenario. The federated learning server
allows users to revoke data and will perform federated
unlearning;

o Unlearning-Forbidden Scenario. The federated learning
server does not allow users to revoke data after they
decide to participate in the federated training.

Different unlearning scenarios will lead to different optimal
incentive mechanisms, as well as the server’s and users’
payoffs. When unlearning is optional, studying the out-
comes of each scenario will facilitate the server’s and users’
selection of which scenario to participate in. The perfor-
mance comparison also provides insights into the policy
design of a market regulator. This motivates the second key
question of this paper:

Question 2. Compared with the unlearning-forbidden scenario,
is the federated unlearning-allowed scenario more beneficial to the
server and users in terms of their payoffs?

1.2 Contributions
We summarize our key contributions below.

o Incentive mechanism design for federated learning and un-
learning. We propose a four-stage Stackelberg game to
analyze the optimal incentives of the server and the
optimal strategies of users within this game. To the best of
our knowledge, we are the first to analytically study the
incentive mechanism and economic benefit of federated
unlearning.

o Theoretical characterization of global model accuracy and un-
learning communication rounds. We theoretically derive
bounds on the global model optimality gap given non-
IID data for federated learning algorithms (Scaffold [12]
and FedAvg [1]) and the number of global communication
rounds required for a federated unlearning method.

o Optimal incentives and revocation decisions under multi-
dimensional incomplete information. Due to the complex
interaction, users” multi-dimensional private information,
and dynamically updated knowledge, the server’s opti-
mization problem in Stage I of the four-stage game is
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highly complex. We summarize users’ multi-dimensional
heterogeneity into several one-dimensional metrics and
develop an efficient algorithm with linear complexity, to
handle the exponentially large number of possible cases
involved in optimal mechanism design. We also identify
and analyze a supermodular game among the users to
obtain their optimal data revocation decisions.

o Comparison of unlearning-allowed and unlearning-forbidden
scenarios. We show that (i) when users” unlearning costs
in the unlearning-allowed scenario are large, the server
needs to compensate them with large incentives and thus
prefers the unlearning-forbidden scenario. Surprisingly,
users prefer the unlearning-allowed scenario in which
they have large costs, due to the excess rewards they
obtain under information asymmetry. (ii) When users’
perceived privacy costs in the unlearning-forbidden sce-
nario are large, the server prefers the unlearning-allowed
scenario while users prefer the unlearning-forbidden sce-
nario for similar reasons as in (i).

o Insights and Performance Evaluation. We show that high
costs and training losses motivate users to leave, while
the server will retain the leaving users who make sig-
nificant contributions to model accuracy but not nec-
essarily low training losses, as small losses of retained
users will reduce privacy costs yet increase unlearning
costs. We numerically show that compared with state-of-
the-art benchmarks, our proposed incentive mechanism
decreases the server’s cost by up to 53.91%. Moreover,
the results demonstrate that it is beneficial for the server
to retain valuable leaving users and jointly optimize the
federated learning and unlearning incentive mechanisms.

1.3 Related Work

The concept of machine unlearning, which refers to the pro-
cess of removing the impact of a data sample from a trained
model, was first introduced by Cao et al. in 2015 [13]. Most
related literature was about centralized machine unlearning
(e.g., [9], [14], [15]), in which the unlearned model (not
retrained from scratch) was trained on summarized (e.g.,
aggregates of summations) or partitioned subsets rather
than individual training samples. As a result, the model
only needed to be updated on the subset(s) of data that are
associated with the requested samples.

Centralized unlearning methods are not suited to feder-
ated learning, due to (i) lack of direct data access, (ii) the
fact that the global model is updated based on the aggre-
gated rather than the raw gradients, and (iii) the possibility
that different users may have similar training samples [7].
This motivated the emergence of federated unlearning, which
focuses on deleting the impact of revoked data in federated
learning.

Only a few studies proposed federated unlearning mech-
anisms using methods such as gradient subtraction (e.g., [8],
[10]), gradient scaling (e.g., [7], [16]), isolation (e.g., [17]),
null space calibration (e.g., [18]), or knowledge distillation
(e.g., [11]). Albeit with good numerical performance, there is
usually no theoretical guarantee of these proposed federated
unlearning methods. Several papers (e.g., [19], [20]) have
performed theoretical convergence analysis on federated
unlearning. However, they didn’t reveal the relationship
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between the model accuracy loss and staying users’ data or
the relationship between unlearning time and leaving users’
data. To fill this gap, we derive theoretical bounds on the
model optimality gap and communication rounds for one
approach to federated unlearning in this paper.

Additionally, there is a wide spectrum of literature
on incentive mechanisms for various systems, including
crowdsensing (e.g., [21]), wireless networks (e.g., [22]), data
trading (e.g., [23]), and energy sharing (e.g., [24]). Some
authors have studied incentive mechanism design for fed-
erated learning to discourage valuable clients from leaving
(e.g., [25], [26], [27], [28], [29], [30]). However, very few of
them considered users” multi-dimensional private informa-
tion! (e.g., [26]), and none of them incorporated the unique
aspects of federated unlearning (e.g., unlearning costs) or
the dynamics of users’ payoffs (e.g., pre-/post-training and
before/after some users leave). This paper focuses on in-
centive mechanism design for both federated learning and
unlearning.

Regarding the mechanism design for federated unlearn-
ing, Xia et al. presented four desirable properties for the data
valuation with the sharded structure in machine unlearning
and proposed S-Shapley value to measure the contribution
of data effectively and efficiently [31]. Ding et al. studied
users’ strategic data revocation in federated unlearning [32].
However, these studies didn’t consider the incentive issue
in federated unlearning. Lin ef al. in [33] and our prior
work in [34] proposed incentive mechanisms for federated
unlearning, without comparing with the unlearning forbid-
den scenario or investigating whether allowing unlearning
is economically beneficial. This work is the first to study the
economic benefit of incentivized federated unlearning.

The rest of the paper is organized as follows. In Section
2, we characterize some models of federated learning and
unlearning, which form the basis for the system model
described in Section 3. We give the optimal incentive mecha-
nisms in the unlearning-allowed and unlearning-forbidden
scenarios in Sections 4 and 5, respectively. We provide
simulation results in Section 6 and conclude in Section 7.

2 CHARACTERIZATION OF FEDERATED LEARNING
AND UNLEARNING MODELS

Before modeling the game-theoretic interaction between the
server and the users in the next section, we first discuss
federated learning and unlearning models in this section
as a preliminary. Specifically, we specify the learning and
unlearning objectives in Sections 2.1 and 2.2, respectively.
Then, we derive bounds on global model accuracy and
federated unlearning time in Section 2.3.

2.1 Federated Learning Objective

Consider an example of data (z,, y, ), where z, is the input
(e.g., an image) and y, is the label (e.g., the object in the
image). The objective of learning is to find the proper model
parameter w that can predict the label y,, based on the input
Zq. Let us denote the prediction value as §(xq; w). The gap

1. The multi-dimensional private information means several types of
information (e.g., training costs and privacy costs) that is only known
by users themselves and unknown to others.
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between the prediction §(x,;w) and the ground truth label
Ya is characterized by the prediction loss function f,(w). If
user i selects a set of local data with data size d; to train
the model, the loss function of user ¢ € Z is the average
prediction loss on all his training data:

d;
Fiw) =+ Y fulw). 1)
ta=1

The purpose of federated learning is to compute the model
parameter w by using all users’ local data. The optimal
model parameter w* minimizes the global loss function,
which is an average of all users’ loss functions [12], [35]:2

1
* ; 2 in = .
w” = argmin F(w) = arg min - /EEI F;(w), 2

where I denotes the number of users in 7.

2.2 Federated Unlearning Objective

A federated learning process maps users’ data into a model
space, while a federated unlearning process maps a learned
model, users’ data set, and the data set that is required to
be forgotten into an unlearned model space. The goal of
federated unlearning is to make the unlearned model have
the same distribution as the retrained model (i.e., retrained
from scratch using the remaining data).?

A natural method for federated unlearning is to let the
remaining users (excluding leaving users) continue training
from the learned model w*, until it converges to a new
optimal model parameter w* that minimizes the global loss
function of remaining users:

» o
w* = argmin ——— Z
w T
1€\ Licave

where Zjcqqc is the set of Ijeqqe users who leave the sys-
tem through federated unlearning. This method is typically
more efficient than training from scratch, as the minimum
point may not change much after some users leave.

2.3 Model Accuracy and Unlearning Time

Given the objectives of federated learning and unlearning,
we analyze the model accuracy gap and unlearning time in
the following.

We use two widely adopted algorithms, Scaffold [12]
and FedAvg [1], as the federated learning algorithms when
deriving the optimality gap of the global model. In each
local iteration of the algorithm, every user computes a mini-
batch gradient with batch size s;. A batch or minibatch
refers to equally sized subsets of the training dataset over
which the gradient is calculated. In this paper, we consider
the widely adopted setting that users’ batch sizes {s;}icz
are in the same proportion to their data sizes {d; }:cz (ie.,
s; =ud;, Vi € Z,1 € (0,1)) [9], [26], [36].

2. This model treats each user equally. Some papers (e.g., [1]) adopted
another objective, a weighted sum of all users’ losses, where the weights
(ie. di/ Zle d;) reflect the differences in data size. The two objectives
are equivalent when users’ data sizes are the same. Our results can be
easily extended to the weighted case.

3. The distribution is due to the randomness in the training process
(e.g. randomly sampled data and random ordering of batches).
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The following proposition presents bounds on the opti-
mality gap for the global models trained with Scaffold or
FedAvg:

Proposition 1. Suppose each user’s loss function F; is pi-
strongly-convex and L-Lipschitz-smooth. Consider federated
learning algorithms Scaffold and FedAvg, where K; is the number
of local iterations per global round for user i with local step size

;. Set ) = n; K;. Then, we have for Scaffold with 7 < 12L,

N 227202
—w'|P+ == 1 )

5 E
’LGI

ElJwy1—w*|* < (
where w1 and w, represent the model parameter after global
round t 4+ 1 and t, respectively, s; is user i's local batch size, and

o? is a variance bound of each data sample.* For FedAvg with
1

< 1315
]E||wt+1 _ w*||2 <
7l N _ 197?02 1 5
(1~ BB, — w2 + 672G + -3~ ©
iez %
when the bounded dissimilarity assumption [12] is satisfied, i.e.,
there exist some constants G > 0 and B > 1 such that
(/D YL, [VE(w)|? < G2 + B2 VF )|, V.
Moreover, by selecting ) = {7 for some ¢ > 0, we have
that the expected optimulity gap of the global model satisfies: for
Scaffold with ¢ < 12L,

1
S+l

and for Fed Avg with ¢ <

Efw; — w*||* <

t+11( Z S+ 0(AC” + u *|2> 7

where by, (), m = 1,2 are some monotonically increasing func-
tions of c.

Efwe — w* <

Z -+ l|wo — U)*||2>
zeI
(6)

12LB’

The proof of Proposition 1 is given in Appendix 1. As a
large optimality gap ||w; — w*||* means a high accuracy loss
of the global model, Proposition 1 presents a relationship
between the expected global model accuracy loss and the
users” data sizes. As shown in (6) and (7), the expected
accuracy loss of the global model decreases in the users’
training batch sizes {s;};cz (and thus data sizes {d;}iez).
Moreover, we explain two asymptotic cases of (6) and (7)
for better understanding. When the initial point is optimal
(i.e., wo = w*), the bound does not go to zero due to
sample randomness. When batch size s; is large enough,
the randomness is then highly reduced and the bound is
controlled by the initialization of the algorithm, i.e., the
farther the initial point wy is from the optimal solution w*,
the more iterations are needed.

Then, after applying the result in Proposition 1 to the
natural unlearning model introduced in Section 2.2, we
have the following proposition about federated unlearning
rounds:

4. To estimate the true gradient VF;(w), we uniformly sample one
data point to §enerate a gradient estimate g; (w) and assume E||g; (w) —
VF;w)||? <o? for any w.

4

Proposition 2. Consider the same conditions of Proposition 1
with diminishing step size 1) and suppose

1 (CieTinn IVFi(w )H)
(I Ileave),u G? L=z + Z’LEI\Ileaue Si 507

where m = 1 when using Scaffold and m = 2 for FedAvg. It will
require at most

bm(c) <

b

Tuniearn =

> IVE@w))? ®)

1€ cave

rounds of communication to guarantee E|lwr, , ——w*|| < e
when starting from the original learned model w*, where the new
model w* is defined in (3).

The proof of Proposition 2 is given in Appendix 2.
Each user’s gradient ||VF;(w*)| can represent his train-
ing loss (denoted as ¢;) because the calculated gradi-
ent increases in the loss. Hence, Proposition 2 reveals
the relationship between the number of communication
rounds required for federated unlearning and the training
losses of leaving users. As indicated in (8), a larger to-
tal training loss of the leaving users ) ez, 2 (e, a
larger Y. || VF;(w*)||?) requires more communication
rounds T'ypieqrn to achieve unlearning.

We will apply the derived results about model accuracy
loss and unlearning rounds in building the system model in
the next section.

3 SYSTEM MODEL

We consider a federated learning and unlearning system
consisting of a set of heterogeneous users with private data
and a central server. As illustrated in Fig. 1, the server
first incentivizes users to participate in a federated learn-
ing phase through a contract. However, some users may
later choose to revoke their data and leave the system.
In response, the server can provide further incentives to
retain valuable users. Upon the final exit of some users
from the system, the remaining users collectively execute
an algorithm to unlearn the leaving users” data.

In the following, we first divide the heterogeneous users
into different types for the convenience of incentive design,
then formulate a multi-stage game between the strategic
server and users, and finally specify the payoffs of the
server and the users (i.e., their optimization objectives) in
two unlearning scenarios, respectively.

3.1 User Type

We consider a set Z £ {1,2,...,I} of users in the system
with two-dimensional private information: marginal cost for
training effort § and marginal perceived privacy cost £.° We
refer to a user with (0;,&;) as a type j user. We further
assume that the I users belong to a set J = {1,2,...,J} of
J types. Each type j has I; users, with } .., I; = I. The
total number of users I and the number of each type I; are

5. The & represents how much a user values the privacy of his data.
If two users have the same data, the user with a higher £ has a greater
concern for privacy than the one with a lower &.
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Contract Signing
Before Learning

Server announces the contract for federated learning (Stage 1)
Users choose which contract item to sign (Stage Il)

Federated o i . S
Learning Users jointly train a model under server’s coordination

Decision Making
Before Unlearning

Users decide whether to revoke data (Stage I11)
Server decides whether to retain the leaving users (Stage 1V)

Federated

Unlearning Server and users unlearn the leaving users’ data

Fig. 1. Framework of federated learning and unlearning system with
incentive mechanisms.
public information, but each user’s specific type is private
information.®

Under private information, it is difficult for the server to
predict users’ strategies. To this end, we propose to design
a contract mechanism for the server to elicit information.

3.2 Games and Strategies

We use a multi-stage Stackelberg game to model the in-
teraction between the server and users in each of the two
scenarios.

3.2.1 Unlearning-Allowed Scenario

When unlearning is allowed, we consider the following

four-stage game that captures the move sequence of the

server and the users:

« Stage I: The server designs a federated learning incentive
contract ¢ = {¢; }je 7 which contains J contract items

(one for each user type). Each contract item ¢; = (dj, i
specifies the relationship between the required data size
d; of each type-j user (for local computation) and the
corresponding learning reward er.7

« Stage II: Users decide which contract item to choose or
to not participate in. Then, they jointly implement the
federated learning algorithm (Scaffold or FedAvg).

o Stage III: Users decide whether to revoke data after fed-
erated learning. We denote a user 4’s revocation decision

as
J— 07
Tr; = 17

and denote the set of users who revoke their data as Z,,.
If a type-j user revokes his data, then he needs to fully

return the reward er to the server.®? We consider that

if user i does not revoke data,
if user i revokes his data,

)

6. Note that users (even in the same user type) have different data
(i.e., training losses and contributions to the model). In reality, the
server can always divide users with different training and privacy
costs into several groups based on market research, and each group
with similar costs can be approximated as a super-type to simplify
the server’s contract design for the convenience of implementation.
The server can have knowledge about statistics of type information
through market research and past experiences, but it may be hard for
it to know each user’s private type (such as devices, computational
capacities, and privacy preferences). Our framework can also be easily
adapted to higher dimensional information scenarios.

7. We consider that users can generate the required amount of data if
they participate. The server’s primary goal is to improve model perfor-
mance, so the contract in this paper ties training data contributions to
rewards.

8. If there is no such return policy, every user can first participate
to get rewards and then revoke data to reduce costs, resulting in a
catastrophic failure of model training collaboration and a huge cost to
the server.

5
TABLE 1
The Server and Users’ Knowledge in Different Stages
Stage Known Unknown
Server in Stage | I, AL} jeq {0:,&,0i,vi}tieT
. . ther users’ types
U Stagell | h type (0;,&) | © ypes,
ser in Stage is own type (6;,&;) (00, vi}ier
] his own type (0;,&;), | other users’ types,
User in Stage III
B {ti}ticz {vitiez
Server in Stage IV { 9:,{,&{7151%]'0 3}71 ’e , ~
TABLE 2
Key Notations
0; Marginal training cost of type-j users
& Marginal perceived privacy cost of type-j users
1; Number of type-j users
i/T Index/Set of user types in the system

/T Index/Set of users in the system

Tu Set of users who revoke their data in Stage III

I Set of users who are retained by the server in Stage IV
?; Contract item designed for type-j users

d; Required data size for each type-j user in the contract
rJL Learning reward for each type-j user in the contract
r7 Unlearning reward (retention incentive) for user %
T; User ¢’s data revocation decision

D; Historical revocation rate of type-j users

q; Historical retention rate of type-j users
T Number of communication rounds of federated learning
A Coefficient related to unlearning communication rounds
4
~
Vi

Coefficient related to expected accuracy loss
Server’s weight on incentive rewards
User 4’s contribution to global model accuracy
4; User 4’s training loss (representing ||V F; (z*)]])

the server will announce users’ training losses {/;}icz
(without specifying users) after federated learning to help
users decide whether to revoke data.’

« Stage IV: The server decides the set of leaving users to
retain Z, and designs the corresponding retention incen-
tives {r{},_; , such that those receiving the retention
incentives will choose to stay in the system and those
without will leave.l’ The remaining users and server
collectively implement federated unlearning.

In Stage III, we use ¢; = ||VF;(wr)|| to represent the
training loss, where wr is the solution obtained after T'
iterations of Scaffold or FedAvg. We assume 7T is large
enough, such that wr and w* are close. A large ¢; implies
the federated solution is far away from the minimizer of
local loss function F; and therefore a larger training loss.

After federated learning, the server and users have more
information in Stages III and IV compared with Stages I and
II. For example, the users will know their training losses
{¢;}icz. The server can evaluate the users’ contribution to
the global model (denoted by {v;}icz), and it will know
each user’s type by observing users’ contract item choices.
We summarize their knowledge about some key informa-
tion in the four stages in Table 1 and list the key notations

9.1t is not obvious that a strategic server would make such an
announcement, but it can be stipulated by regulations for protecting
users’ right to be forgotten. If we do not make this assumption, the
problem will be even simpler. As we shall see in the analysis in Section
4.2, we just need to replace other users’ training losses {{;}rcz in
(23) with the same expected loss E[¢] and solve the problem through a
similar approach.

10. In this case, Z,,\Z is the set of users who finally leave the system,
and 7\ (Z,\Z) is the set of users who finally stay.
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in this paper in Table 2."!

Moreover, in Stage IV, the server has enough information
to know whether the users will accept the retention incen-
tives. Therefore, we do not model a Stage V in which the
users decide to accept or not accept the retention incentives.
After that, as in Fig. 1, the staying users perform federated
unlearning under the server’s coordination, which makes
staying users incur unlearning costs. We will specify the
payoffs and costs of the server and users in each stage of
the game in the next subsection.

3.2.2 Unlearning-Forbidden Scenario

Without the unlearning process, we consider a two-stage
game that only includes Stages I and II from the unlearning-
allowed case.

3.3 Payoffs in the Unlearning-Allowed Scenario

At each stage, every user or the server seeks to maximize his
expected payoff (or minimize his expected cost) based on his
current knowledge. As knowledge updates occur between
stages, the payoffs of the users or the server (maximization
or minimization objectives respectively) take different forms
in each stage.

3.3.1 Server’s Payoff in Stage |

The server’s objective in Stage I is to minimize the sum
of the expected accuracy loss of the global model and the
expected total incentive rewards for users.

First, we specify the expected model accuracy loss,
which depends on the data of users who finally stay in
the system. Since the server cannot predict which users
will leave and who to retain due to the lack of information
in Stage I, it can only base its decision on knowledge of
the typical user distribution. Specifically, we assume that
according to the historical experience and market statistics,
the server knows the probability of a type-j user revoking
his data (i.e., his revocation rate) p; and the probability that
a type-j user who wants to revoke data is retained (ie.,
his retention rate) g;, where p; and ¢; are independent.
Following Proposition 1, we model the server’s expected
accuracy loss after federated unlearning as:'?

%ij(l—pj +quj)%, (10)

jeg J

where T' is the number of communication rounds of fed-
erated learning, ¢ is a coefficient related to the sample
variance, and 1 — p; + p;q; is the percentage of type j users
remaining in the system in the end. This captures that the
expected model accuracy loss decreases in the data sizes of
all staying users.!3

11. As analyzing the four-stage game is complicated, this paper does
not model the information update in a fully Bayesian framework but
specifies plausible beliefs that the players hold in each stage.

12. It is similar to the expected accuracy loss of the model retrained
by the remaining users.

13. As the server aims to incentivize users to contribute data in
federated learning, we only model the impact of data sizes and omit
the independent term about the initial point wg in (6) and (7). Since we
consider that users’ batch sizes {s;};c7 are in the same proportion to
their data sizes {d;}icz, it is equivalent to substitute s; with d; in (6)
and (7).

6

The server’s payoff also includes the cost of all rewards
it pays to users, which comprises the initial contract an-
nounced in Stage I and incentives offered to encourage
leaving users to remain in Stage IV. If all users choose to
participate in the contract and choose their correspond-
ing contract items,'* the expected total learning reward
is Y jer (1 —pj + quj)er. Note that if a type-j user
successfully revokes his data, he needs to fully return the
reward r]L to the server. The server’s expected incentive
for retaining leaving users is E[}_,.; 7], which depends
on p, g, and training losses and will be calculated through
backward induction in Section 4.4.

Combining these terms, the server’s expected cost in
Stage I is

s-1_ 0 1
W= o D L =pj+pjgs)

jeg d;
+ Z.Tj(l—pj'f'qu]')le-/'f']E[ZTZU] R
JjeT €L,

(11)

where v is how much weight the server puts on the in-
centive reward payments compared to the model accuracy
loss. A smaller v means that the server is less concerned
about minimizing the incentive rewards and more con-
cerned about reducing the accuracy loss.

3.3.2 Users’ Payoffs in Stage Il

In the overall game, there are three possible outcomes for

a user (not revoke data, revoke and retained, revoke and

not retained). However, in this stage, a user does not have

enough information to know which outcome will realize, so
he must calculate his expected payoff by considering three
cases:

o Case (a): not revoke. With probability 1 — p;, a type-j user
will not revoke his data after federated learning. In this
case, his expected payoff is the difference between the
learning reward 7 and costs (including the learning cost,

J
privacy cost, and unlearning cost):

U2 =rf —0;d;T — &E[(;]d; — E[ejde > z?],
i€TN\T,

12)
where 0;d;T is the total learning cost in 7' rounds. As
we consider that each user’s sampled data size in each
local round is proportional to his total data size, the
learning cost is linear in his data size d; (e.g., [9], [26],
[36]). Similarly, in the unlearning cost 6;d;A} ;7 \7, 2,
Aziezu\n ¢2 models the number of communication
rounds for unlearning, which increases in the leaving
users’ training losses (according to Proposition 2).° A
type j user’s perceived privacy cost §;E[{;]d; increases
in his expected training loss E[¢;] and data size d;. As

14. As we shall see in Section 4.4, we will design the contract to
ensure that each user will participate (i.e., individual rationality) and
choose the contract item designed for his type (i.e., incentive compati-
bility).

15. We use the simplified model of (8) in Proposition 2 to cap-
ture the key relationship between the unlearning communication
rounds Typiearn and leaving users’ training losses (represented by
IV £ (w™) ))-

Authorized licensed use limited to: Northwestern University. Downloaded on April 29,2025 at 14:54:24 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. Al rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3557857

a high training loss ¢; reflects a large distance of user
j’s data from the average of other users’ distribution,
we use it to measure the uniqueness of a user. Thus,
the model captures that the privacy cost increases in the
uniqueness and size of one’s training data (e.g., [37],
[38]). As each user cannot know his exact training loss
{; before federated learning, we assume that he estimates
the expected loss using the public distribution (with mean
E[¢;] and variance D(¢;)).

o Case (b): revoke but retained. With probability p;g;, a type-j
user will revoke his data after federated learning but will
be retained by the server through more incentives TJU. In
this case, his expected payoff is the difference between
total rewards (including both learning and unlearning
incentives) and costs:

U5y =rf + B[] - 0,7

(13)
— &Elt]d; - E{doj)\ > 5?}-
i €T \Tr
The unlearning incentive r§] will be determined by the

server in Stage IV based on users’ training losses, contri-
butions, and data revocation, which are unknown in this
stage. Thus, each user can only calculate the expectation
of the unlearning incentive.

o Case (c): revoke and not retained. With probability p;(1—g;),
a type-j user will revoke his data and will not be retained
by the server, i.e., the user’s data will be unlearned. The
user needs to return the reward er to the server but will
not incur any privacy cost or unlearning cost. In this case,
his expected payoff is

Us %= —0;d,T,

i (14)

which is the sunk training cost from federated learning.
In summary, a type-j user’s expected payoff if he partici-
pates in Stage Il is

U= = (1= p))U;2" + U357 + 0y (1= q)) U572 (19)

IfU ;72 > 0, the type-j user will choose to participate in the
federated learning in Stage II.

3.3.3 Users’ Payoffs in Stage Il

After federated learning, each user ¢ has knowledge about
his training loss ¢;. If user ¢ chooses not to revoke his data,
his expected payoff in Stage III is (updating (12) in Case (a)
with the realized training loss ¢;):

Us,? =l — 6,47 — €itd, E{Hidi/\ > gg] 16)
k€T \T,

The reason for using expectation here is that users do not
know the set of retained users Z, determined in Stage IV.
Users’ expected payoffs of Cases (b) and (c) in Stage III
follow the same approach (i.e., updating (13) and (14) with
the realized training loss ¢;).

Note that users of the same type may have different
training losses and thus different payoffs, so the payoff in
Stage III is user-specific instead of type-specific. Moreover,
after some users leave, the remaining users’ training losses
may change as the global model will be updated. Since users

7

cannot accurately predict their future expected loss even if
they know all users’ current losses, we assume that each
user still approximates his future expected loss as equal to
his current loss.

3.3.4 Server's Payoff in Stage IV

When some users want to leave the system, it is important
for the server to know their contributions to the global
model for retaining valuable users.

A fair and effective method to compute a user’s contribu-
tion to a coalition is the Shapley value [39]. Wang et al. [40]
introduced a related concept called federated Shapley value
to evaluate each user’s contribution in a federated learning
setting.'® The federated Shapley value for user i, denoted as
v;, is calculated by the server during the federated learning
process and is unknown to the users.

After obtaining users’ contributions (federated Shapley
values), the server can calculate its realized cost in Stage IV.
This cost is the sum of two factors: the realized accuracy loss,
which is estimated by the sum of federated Shapley values
of all users who remain in the system, and the realized
incentives, i.e.,

st4 _

>

1€\ (Zu\Zr)

>

iEI\(Iu\IT)

L U
ri+§ T

1€L,

v; + 7y

17)
The first term in (17) represents the model accuracy loss, the
second is the learning reward paid to all remaining users
for participation in federated learning, and the last term
is the total retention incentive. The additivity property of
federated Shapley values allows the server to compare all
the possible sets of users to retain and find the optimal one.
Note that a smaller federated Shapley value is better, as it
means a larger contribution to the accuracy of the global
model, and the federated Shapley values can be negative.

3.4 Payoffs in the Unlearning-Forbidden Scenario

Similar to Stages I and I in the unlearning-allowed scenario,
we now specify the users and the server’s payoffs in the
unlearning-forbidden scenario. The difference here is that
there are no unlearning considerations (e.g., data revocation
or retention incentives). We will use the superscript ’ for the
unlearning-forbidden scenario to differentiate the notations
in the two scenarios.

3.4.1 Server’s Payoff in Stage |

The server needs to minimize the sum of the expected
accuracy loss and the incentive rewards paid for federated
learning:

Q I//
W= > dj +y Y Ll (18)
jreJg’ 3! jeJg’

16. This method calculates the marginal contribution of each user by
assessing how much value that user adds to the model accuracy across
all possible subsets of users. Due to the space limit, we present the
detailed method and properties in Appendix 12. Our mechanisms can
also be applied to other contribution measurement methods.

Authorized licensed use limited to: Northwestern University. Downloaded on April 29,2025 at 14:54:24 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. Al rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3557857

3.4.2 Users’ Payoffs in Stage Il

A type-j’ user’s payoff is the difference between the learn-
ing reward and training costs (including the learning cost
and perceived privacy cost)

Uy =rf = 0;d;, T — &R0 )d). (19)

Note that the marginal perceived privacy cost £}, here
should be no smaller than that in the unlearning-allowed
scenario {; for the same user. This is because a user can-
not revoke his data once he decides to participate in the
unlearning-forbidden scenario and thus may incur larger
privacy concerns.

Next, we will use the standard backward induction to
analyze the server and users’ optimal strategies in the two
unlearning scenarios.

4 OPTIMAL INCENTIVE MECHANISM IN
UNLEARNING-ALLOWED SCENARIO

In this section, we analyze an optimal incentive mechanism
for the unlearning-allowed scenario. Based on backward
induction, we will derive the optimal strategies from Stage
IV to Stage I in Sections 4.1-4.4, respectively.

4.1 Server’s Retention Strategies in Stage IV

Given the server’s contract ¢ in Stage I, the users’ contract
item choices in Stage II, and the users’ revocation decisions
7, in Stage III, the server needs to determine which users
to retain Z, and the corresponding retention incentives
{rY}iez, in Stage IV.

As we discussed in Section 3.3.4, the server seeks to min-
imize the cost in (17) in Stage IV, which can be formulated
as follows:

Problem 1 (Server’s Optimization Problem in Stage IV).

min Z v + 7y Z rl 4 Z rY (20a)
1€I\(Z,\Z) 1€I\(Z,\Z,) €L,
s.t. TZU + ’I"iL —0;d;T — &lid; — 0;d; )\ Z gi
keET\I,
> _0,d,T,Vi €T,  (20b)
var. Ir g Iu7 {TzU}iEI,V- (ZOC)

The constraint (20b) is to ensure that the retention incen-
tives are enough to make the target users stay in the system.
The left-hand side of the constraint is a user i’s payoff
after accepting the retention incentive (including unlearning
reward, learning reward, learning cost, privacy cost, and
unlearning cost), and the right-hand side is his payoff of
not accepting (i.e., he has to return the learning reward to
the server and only has sunk learning cost).

The following proposition presents the solution to Prob-
lem 1.

Proposition 3. The server’s optimal set of users to retain is

keT,\Z,

TF = arg min
! S et
i€Z,

21

and the optimal retention incentives are

’I"lU* = ezdzA Z fi + fzézdz — ’I“iL,Vi S I:
keZ \Z;

(22)

The proof of Proposition 3 is given in Appendix 3.
Proposition 3 highlights a trade-off regarding the retention
of users and their training losses. Users who have larger
training losses incur higher privacy costs and thus require
higher incentives to retain (indicated by ~¢;¢;d; in (21)).
However, retaining such users also helps reduce the un-
learning costs since the objective in (21) increases with the
aggregated loss of the leaving users. Furthermore, the server
has the incentive to retain users who contribute more to the
model accuracy, which corresponds to smaller values of v;.
Additionally, users with smaller marginal costs 6; and &; are
also desirable to reduce unlearning incentives."”

4.2 Users’ Revocation Decisions in Stage lll

Considering the server’s optimal retention strategies in
Stage IV, each user ¢ decides whether to revoke his data
in Stage III given the information announced in Stages I and
II.

Based on the server’s optimal retention incentives (22)
and the user’s payoffs in Stage III (i.e., the updated (13) and
(14) with realized losses), a user ¢’s payoff after revoking
data is —6,;d; T, regardless of whether the user is retained by
the server or not. Thus, user i’s expected payoff in Stage III
can be rewritten as

Uisig(l‘i; l‘,i) = T; (—GZdZT)

kel
(23)

where x_; = {&p}rer\{i} is the revocation decisions of
all users except user i and ¢ = Elg;] is the expected
retention rate of all users, as users do not know each other’s
type.'® As shown in (23), each user’s payoff depends on the
other users’ revocation decisions, so users engage in a non-
cooperative game in Stage III

We formally define users’ non-cooperative sub-game as
follows.

Sub-Game 1 (Users’ Revocation Sub-Game in Stage III).

17. Note that in (21), the server may not only include users with
a negative value in the brackets, as retaining some users with positive
values may reduce the server’s objective through the aggregated losses.
This is an integer programming problem. When the number of leaving
users I, is large, the server can reduce the complexity by classifying
the leaving users into several categories to retain, each category with
similar contributions and costs.

18. Here we use the historical retention rate ¢ to calculate the ex-
pected payoffs instead of the retention rate obtained in Stage IV (i.e.,
|Z;|/|Zw|)- This is because users do not know their federated Shapley
values and cannot calculate Z}'. If they calculate the expectation E[Z']
based on type statistics, according to (21), the result will be user type
retention instead of user retention (e.g., retain all type-i users and
not retain all type-j users regardless of different data distributions
and losses of the same type of users), which is not true. Conversely,
historical rates ranging between [0, 1] allow for more realistic partial
retention of same-type users. Therefore, we assume that the users have
a belief at this stage in the retention rate which is the same as the
historical rate. In the following analysis in Stages I and II, we will also
use the historical rates for calculating the expected cost/payoffs for
similar reasons.
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e Players: all users in set I.

o Strategy space: each user i € I decides whether to revoke his
data, i.e., x; € {0,1} (0: not revoke, 1: revoke).

o Payoff function: each user i € I maximizes his payoff in (23).

The following proposition characterizes the Nash equi-
librium (NE) of Sub-Game 1:

Proposition 4. Sub-Game 1 is a supermodular game, where pure
NE exists but may not be unique. Algorithm 1 converges to one
NE.

Algorithm 1: Users’ optimal revocation decisions
Input : {rf &0, di.0i}iez, Mg
Output: Optimal revocation decisions {z} };cz
1 Initialize 7 < 0,7 € Z;
2 while 327 =
0& T’Z-L — fngdz — 91d7>\(1 — q) ZkEZ\{z} ka% <0
do
3 | a} « 1,Vi satisfying conditions in line 2;
4 end

The proof of Proposition 4 is given in Appendix 4. Based
on Algorithm 1, we can find the set of users who revoke data
inoneNE, ie., I} = {i : 2} = 1,7 € T}. Basically, Algorithm
1 corresponds to doing the best response updates of the
users starting from all users choosing not to revoke (i.e., 0). It
is well known that for supermodular games, these updates
will converge monotonically to an NE. Algorithm 1 will
terminate within [ iterations.! The resulting equilibrium
strategies and insights will be illustrated through simulation
in Section 6.1.2.

4.3 Users’ Contract Item Choices in Stage I

Based on the analysis in Stages III and 1V, a type-j user’s
expected payoff in Stage II (15) can be rewritten as:

U;_Q = (1 — pj)’l“jl“ — dej, (24)

where
ki = (1 —p;)&E] +6,T

+ Gj(l - pj)/\ Z Impm(l - Qm) (E[em]Q + D(em)) )
meJ (25)

and D({,,) is the variance of type-m users’ training losses.

Each type-j user in Stage II will choose a contract item
that gives him a maximum non-negative expected payoff,
leading to the constraints that the server needs to consider
in Stage I.

4.4 Server’s Contract in Stage |

In Stage I, the server designs a contract to minimize its
expected cost, considering the results in Stages II-IV.

When designing the contract, the server needs to ensure
that each user achieves a non-negative payoff, so that the
user will accept the corresponding contract item. Moreover,

19. We can also initialize all the users’ decisions as 1 and check
whether there exists a user who wants to change his action from 1 to 0
for payoff improvement. If the equilibrium is the same as that found by
Algorithm 1, it is the unique NE, as Game 1 is a supermodular game.

9

since the server does not know each user’s type in Stage I,
the server also needs to make a user choose the contract
item intended for him (i.e., the user does not misreport
his type).”’ In other words, a contract is feasible if and
only if it satisfies Individual Rationality (IR) and Incentive
Compatibility (IC) constraints:

Definition 1 (Individual Rationality). A contract is individu-
ally rational if each type-j user receives a non-negative payoff by
accepting the contract item ¢; = (dj, T]L ) intended for his type,
ie.,

(1—pj)r¥ —kjd; >0,Vj € J. (26)

Definition 2 (Incentive Compatibility). A contract is incentive
compatible if each type-j user maximizes his own payoff by

choosing the contract item ¢; = (dj, TJL) intended for his type,

ie.,
(1 —pj)er —rid; > (1 —pj)rﬁl/ — Kjdm,Yj,m e J. (27)

Considering the constraints in Definitions 1 and 2,
the server in Stage I seeks to design the contract ¢ =
{(dj,r¥)}jes to minimize its expected cost in (11), which
is rewritten as follows after combining the results in Stages

II-IV:

Problem 2.
. ol;(1 —p;j +p;q;
min Z J( J J J) +’yIj(1—pj)er
“ Td;
JjeT

+vLipiqi(ad; + EJE[fj])dj> ,
s.t. (1 —pj)TJL - Iijdj >0,VjeJ,
(1 —pj)ry —rKid; > (1 —pj)rfn — Kjdm,Yj,m e J,

L
J
var. {(dj, T']L) }jeJ ,

where

(28)

a2 XY Lpi(1—q) EG+ D). (29)
FISVE

Solving Problem 2 involves two challenges. First,
users’ multi-dimensional heterogeneity leads to a challeng-
ing multi-dimensional contract design for the server. We
will simplify the analysis by summarizing users’” multi-
dimensional heterogeneity into several one-dimensional
metrics, to guide the server’s design of the optimal rewards
and data sizes in the contract. Second, as the total number
of IR and IC constraints is large (i.e., J?), it is challenging
to obtain the optimal contract directly. To overcome such a
complexity issue, we will first transform the constraints into
a smaller number of equivalent ones (Lemma 1). Then, for
any given data size d = {d;};cs, we derive the server’s
optimal reward {r}*(d)};cs (Lemma 2) in Section 4.4.1.
Finally, we derive the optimal data size d* (Proposition 5
and Theorem 1) in Section 4.4.2.

20. The revelation principle demonstrates that if a social choice
function can be implemented by an arbitrary mechanism, then the
same function can be implemented by an incentive-compatible-direct-
mechanism (i.e. in which users truthfully report types) with the same
equilibrium outcome. Thus, requiring IC will simplify the mechanism
design without affecting optimality.
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4.4.1

Without loss of generality, we assume that users are indexed
in ascending order of

Optimal Rewards in Contract

A ejT
71-] 1 7pj 6] [ ] 1— p]
O Y Lol — g) (B[] + D(6)

meJ

which can be regarded as a type-j user’s aggregated
marginal cost. That is,

m <me < .. <y

(30)

In the following Lemma 1, we present an equivalent version
of the IR and IC constraints to simplify Problem 2.

Lemma 1. A contract ¢ = {(d;,7; ri)}jeq is feasible (ie.,
satisfies IR and IC constraints) if and only if the contract items
satisfy the following three constraints:

a) 1"5 *WJdJ Z 0;

b) 1"1 > >rJ >0anddy > ...>dy > 0;
o) i + mi(dj — djy1) < rf < rho 4 mia(dy — djg),
jeJ.

The proof of Lemma 1 is given in Appendix 5. Constraint
(a) ensures that each user can get a non-negative payoff by
accepting the contract item of type-J users, corresponding
to the IR constraints. Both constraints (b) and (c) are re-
lated to IC constraints. Constraint (b) shows that the server
should request more data from a user type with a lower
marginal cost m and provide a larger reward in return.
Constraint (c¢) characterizes the relationship between any
two neighboring contract items.

Based on Lemma 1, the following Lemma 2 characterizes
the server’s optimal learning rewards for any feasible data
size:

Lemma 2. For any given data size d = {d;};c s (even if it is
not optimal), the unique optimal reward for a type j user is:
er*(d) =
ifj = J,;
- '/Tm—l)dm.,ifj = ]-a ceey

{ Uy dj y (31)
mjd; +Z;’]n=j+1(7rm J—1.

The proof of Lemma 2 is given in Appendix 6. Lemma 2
indicates that all user types except the boundary type J will
obtain positive expected payoffs (type-J users receive zero
expected payoff), which can be interpreted as the information
rent in economics due to information asymmetry.

4.4.2 Optimal Data Sizes in Contract

Based on Lemma 2, we can significantly simplify Problem
2 but still need to derive the optimal values of J variables
{d;};c under J constraints d; > ... > dj > 0.

For the convenience of presentation, we define

48 ol;(1 —p; +quj)7 (32)
T
Bj 291 (psg; (ab; + GE]) + (1= py) m5)
j—1 (33)
+ Z V(1 = pm)(j — 1)
m=1
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Based on these two metrics, we first present two spe-
cial cases of the optimal data sizes, which we call all-
independent and all-dependent.

Proposition 5. Two special cases of the optimal data sizes follow:

o All-independent. If

Ay Ay Ay

—_— > —=>..> = 34
By~ By = T By’ (34)
then the optimal data sizes in the contract are
A
di=|=jed. (35)
3 B;
o All-dependent. If
Am J 1 Am
Lmes > Lm=1 Vi=1,2,..,J—1, (36)
ZmGJ Bm Z‘Zn:l Bm
then the optimal data sizes in the contract are
Am
g — | Zmeg Am ~jed. (37)

/ ZmEJ Bm

The proof of Proposition 5 is given in Appendix 7. The
all-independent case means that if {A4;/B,};cs follow a
descending order, then the optimal data size for each type-
j user only depends on his own parameters (A;, B;). The
condition for the all-dependent case means that for any type
J, there always exists at least one type m > j with A,,/B;,
larger than A;/B; (ie., not in descending order). In this
case, each type’s optimal data size depends on all types’
parameters {(A;, B;j)}jecz-

Next, we give an efficient algorithm to compute the
optimal data sizes in any possible case based on the insights
in Proposition 5.

Theorem 1. For a fixed J, there are 271 possible cases of the
optimal data sizes depending on the values of {(A;, B;)}jez. For
any given {(A;, B;)} ez, the unique optimal data sizes can be
calculated by Algorithm 2.

The proof of Theorem 1 is given in Appendlx 8. The
computation complexity of Algorithm 2 is O(Y.X_ J,),
which is no larger than O(J). We can interpret Algorithm 2
as greedily merging non-descending types based on A;/B;,
so that all merged types have }~; A;/>", B; in a descending
order. The optimal data sizes of the merged types are the
same and follow the dependent form (37) in Proposition 5,
while the optimal data sizes of the not-merged types follow
the independent form (35).

For example, if Ai > g‘* > A3 > gz > % > gs >
g; > g;,thenX =2, 7 = {2, 3 ,4}, and J» = {6,7,8},
which corresponds to Lines 2-4 in Algorithm 2. Further,
according to Lines 5-7 in Algorithm 2, if 48 > A7+A8

then J> can be divided into two subsets {6} and {7, 8} The

optimal data sizes in this example are d; = /4 B—J_, 7 =1,5,6,
dtds j=1,8.

v _  [AytAstAs i _ . _
dj =\ BoxBatByJ = 2:3,4, and d; Br+Bs’
> Art+Ag

Al A2+A3+A4 A% AG
Eventually, we have 3+ > 32535t > 52 > 58 > S50,
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Algorithm 2: Optimal data sizes in contract

Input :Parameters {(A4;, B;)};ecs indexed based
on (30)

Output: Optimal data sizes {(d})} ecs

— \/%gg,j €J;

2 Find all non- descending types
{j: E|m>j,B’”> orE|m<],Bm< }

3 Put each group of non-descendmg types that have
adjacent indexes into one auxiliary set Jy;

4 X < the number of these auxiliary sets;// i.e.,

zxe{l,2,..,X}
sfor z=1,2< X, z+ +do

1 Initialize d}f

6 check (J;);// divide each auxiliary
set J, into subsets {JY} that
satisfy (36)
7 end
8 Function check (J):
9 Reindex the typesin J with 17,27, ..., J7.
10 | if |J| # 1then
11 flag+1;
12 form=15to(J—1)7 do
13 if ZJEJB < SZ 1;]_// J does not
Jej j=lg 73
satisfy (36)
14 then
15 flag<0;
16 d;:,/fllijg,je{lj,..., m};
17 check({erl,...,JJ})
18 break;
19 end
20 end
21 if flag=1 then
» d; = % eJi/l T
satisfies (36)
23 end
24 end
5 OPTIMAL INCENTIVE MECHANISM IN

UNLEARNING-FORBIDDEN SCENARIO

In this section, we first derive the server’s optimal in-
centive mechanism in the unlearning-forbidden scenario
in Section 5.1, then we compare the unlearning-allowed
and unlearning-forbidden scenarios based on the server’s
expected cost and users’ expected payoffs in Section 5.2.

5.1 Server’s Optimal Contact Design

Similar to the server’s contract design in the unlearning-
allowed scenario (i.e., Problem 2), the server designs the
contract to minimize its expected cost in (18) under the IR
and IC constraints in the unlearning-forbidden scenario:

11

Problem 3.

. ol
min Z <del
j/ejl

+ I’,r/>,

s.t.rl/ —1d), > 0,Vj' € J', (IR) (38)
ril —ydy, > vk —1d, V5’ ,m € J', (IC)
L
var. {(d; ,rJ,') }j/ej' ,
where

For the convenience of presentation, we re-indexed users
with j’ in an ascending order of I, i.e.,

Iy <Ily < ... <1y, (40)
and define I’
PN j’
i-1
B, &y | 1L ZI’—H7_1/ZI’ (42)
m=1’ m=1’

After a similar analysis to Section 4.4, we obtain the
following theorem about the server’s optimal contract in the
unlearning-forbidden scenario.

Theorem 2. The optimal data sizes d'* can be obtained from The-
orem 1 by substituting {(A;, B;j)}jer with {(A}, Bj)}jreg
The optimal rewards are

L/*(d/*) _

I d if = J';

TLd + Sy (M — My y)dig i § =1, T — 1.
(43)

The proof of Theorem 2 is given in Appendix 9.

5.2 Comparison

In this subsection, we compare the unlearning-allowed and
unlearning-forbidden scenarios, to reveal the economic im-
pact of federated unlearning.

Suppose that a type-j user in the unlearning-allowed
scenario corresponds to type j’ in the unlearning-forbidden
scenario. For the convenience of presentation, we first intro-
duce the following definitions:

J
> (1= p)(mm — Tm1) Lime, Am

AU; =
’ m=j+1 Yomedn Bm
B @
/
meJ,,
- Z (Hm - Hm—l) 273,’
m=j+1’ meJ),
AW = Z y j Y An| | D Ba
J meJ; meJ;
(45)

-y

/_1/

> oA

mEj;,

> B

mEJJ{,

IJ’
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Fig. 2. Relationship between the revocation Fig. 3. Relationship between the retention rate Fig. 4. Different types of users’ expected

rate |Z;:|/I and historical revocation rate p.

Given the definitions, we present the comparison results in
Proposition 6.

Proposition 6. If AU; > 0, then at equilibrium a type-j user
has a larger payoff (i.e., more beneficial) in the unlearning-allowed
scenario than the unlearning-forbidden scenario. If AW < 0,
then the server has a smaller cost (i.e., more beneficial) in the
unlearning-allowed scenario than the unlearning-forbidden sce-
nario.

The proof of Proposition 6 is given in Appendix 10. We
can obtain some insights from qualitative analysis:

o If users’ perceived privacy costs (e.g., {£ }j/es/) in the
unlearning-forbidden scenario are very large but unlearn-
ing costs (e.g., A and D(¥)) are relatively small, then we
will have AU; < 0 and AW < 0, i.e., the unlearning-
allowed scenario is worse for users but more beneficial to
the server.

« If the unlearning costs are very large but users’ perceived
privacy costs in the unlearning-forbidden scenario are
relatively small, then AU; > 0 and AW > 0, i.e., the
unlearning-allowed scenario is better for users but worse
for the server.

It is counter-intuitive that users prefer the scenario where
they have large costs. One explanation is that due to in-
formation asymmetry, the server would pay an exceedingly
large reward to incentivize such users to participate. We will
present detailed illustrations of the preferences of users and
the server through simulations in Section 6.1.1.

6 SIMULATIONS

In this section, we use simulations to evaluate the perfor-
mance of our proposed mechanism. Specifically, in Section
6.1, we validate the optimal strategies of the users and
the server in unlearning-allowed and unlearning-forbidden
scenarios, and we also compare our mechanism with state-
of-the-art benchmarks. In Section 6.1.3, we conduct experi-
ments based on public datasets to show the model perfor-
mance under our mechanism. We discuss the mechanism
application and implementation in Section 6.3.

6.1 Strategies and Payoffs

We consider J = 5 types of users with marginal train-
ing costs @ = [1,4,6,9,10], marginal perceived privacy
costs in the unlearning-allowed scenario & = [0.8,1.7,1.4,
2.2,1.2] x 103! and marginal perceived privacy costs in the

21. Different orders of magnitude are to balance different units of
users’ training costs and privacy costs.

|Z)|/|Zz| and historical retention rate q.

payoff difference (unlearning-allowed minus
unlearning-forbidden) versus the multiplier of
3

unlearning-forbidden scenario &’ = M - £, where nominally
the multiplier M = 8. Each type has I; = I/J = 1000 users.
Heterogeneous users’ training losses follow a truncated
normal distribution N(0.5,0.2) over the support [0, 1], and
users’ federated Shapley values follow a normal distribution
N(5 x 1075,0.04).* Users perform T = 100 rounds of
federated learning, and the unlearning rounds coefficient
A = 4. The server’s accuracy loss coefficient o = 1 and its
weight on the incentives v = 107! (to balance different
units of incentives and model accuracy loss).

We perform experiments to find the appropriate values
of historical revocation rate p and retention rate q. As shown
in Fig. 2 and Fig. 3, when we set different values of p and g,
both the realized revocation rate |Z|/I and retention rate
|Zx|/|Zk| at the equilibrium have a stationary point, i.e.,
(2.8 x 1073,2.8 x 1073) in Fig. 2 and (0.5,0.5) in Fig. 3,
respectively. Therefore, we take the historical revocation rate
p = 0.28% and the historical retention rate ¢ = 50% in the
following simulations.

In Section 6.1.1, we compare the server’s expected costs
and users’ expected payoffs under the optimal contracts in
the unlearning-allowed and unlearning-forbidden scenar-
ios. Then, we show users” optimal equilibrium revocation
decisions and the server’s optimal retention decision in
Section 6.1.2. Finally, in Section 6.1.3, we present comparison
results between our mechanism and two benchmarks.

6.1.1 Users’ Expected Payoffs and Server’s Expected Cost
Comparison

In the following, we show the expected payoff/cost com-
parison considering three dimensions: privacy cost in the
unlearning-forbidden scenario, unlearning cost, and train-
ing cost.

(i) Impact of marginal perceived privacy cost in the
unlearning-forbidden scenario &'

Fig. 4 shows various types of users’ payoff differences
in unlearning-allowed and unlearning-forbidden scenarios,
which indicate their preferences between the two scenarios.
Different types of users may have different preferences,
which are closely related to their type ranking (ranked by
m in (30) and II in (40), respectively) in the two scenarios.

Specifically, as shown in Fig. 5, a negative type ranking
difference is more likely to lead to a positive payoff differ-

22. In future work, we may use real-world datasets to calculate users’
true training losses and federated Shapley values. The simulation data
here can also demonstrate our results. As in Appendix 11, we further
validate that if we change the simulation setting, we will obtain similar
experiment results and insights.
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Fig. 8. Server's expected cost difference

and users’ expected total payoff difference Fig. 9. Users’ training losses {¢;};cz.

(unlearning-allowed minus unlearning-
forbidden) versus the multiplier of 6.

ence, i.e., a high ranking corresponds to a high payoff. This
is consistent with the server’s optimal rewards in Lemma 2
and Theorem 2.

Fig. 6 shows users’ total expected payoff difference and
the server’s expected cost difference. When the perceived
privacy cost in the unlearning-forbidden scenario &’ in-
creases, it is more likely that the unlearning-forbidden sce-
nario is more beneficial to users (i.e., negative payoff differ-
ence) but worse for the server (i.e., negative cost difference).
The server’s preference is straightforward, as a larger &’
means larger incentive costs for the server. However, it is
counter-intuitive that users prefer the scenario where they
have larger costs, as we may naturally presume that large
costs will discourage users’ participation. This is because
the server will set the rewards larger than users’ costs due
to information asymmetry, and the gap (i.e., users’ total
payoff) increases in users’ costs (as indicated in Lemma 2
and Theorem 2).

(ii) Impact of unlearning cost:

Increasing unlearning rounds coefficient A or users’
training loss variance D({) will both increase the unlearning
cost, so we only simulate the impact of A here. As shown in
Fig. 7, when we increase the unlearning cost, it is more likely
that the unlearning-allowed scenario is worse for the server
but better for users. This is because larger unlearning costs
mean larger incentive costs for the server but more rewards
for users in the unlearning-allowed scenario.

Moreover, as shown in Fig. 7, the server and users’ pref-
erences are not always the same (i.e., one positive and the
other negative) or different (i.e., the same sign). However, in
most cases, they have different preferences.

(iil) Impact of marginal training cost 0:

We increase the value of the marginal training cost 6
by multiplying by a multiplier. As shown in Fig. 8, the

600

and users’ expected total payoff difference ang ysers’ expected total payoff differ-
(unlearning-allowed minus unlearning-forbidden) gnce (unlearning-allowed minus unlearning-

forbidden) versus .
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Fig. 10. Users’ optimal revocation decisions
{z} tiez

insights are similar to that of unlearning cost. The training
cost @ affects both learning cost and unlearning cost. As both
scenarios have learning costs, increasing 6 is similar to the
effect of increasing the unlearning cost.

6.1.2 Users’ Revocation Decisions and Server's Retention
Decision

In Fig. 9, we visualize all users’ training losses in federated
learning by ranking each type of users in ascending order of
their training losses. This is for the convenience of present-
ing insights in Fig. 10.

To obtain Fig. 10, we calculate each user’s decision on
whether to revoke data based on Algorithm 1. Output
decision 1 means the user revoking data while 0 means not
revoking data, so the yellow region is the users who revoke
data and the blue region is users who do not revoke data.
By referring to Fig. 9, Fig. 10 shows that at the equilibrium,
users with larger aggregated marginal costs 7 (i.e., type 5)
and training losses ¢ (i.e., users 986-1000) are more likely to
revoke their data. This is because (i) users with larger costs
receive smaller learning incentives from the server in the
contract (Lemma 2); (ii) they do not know their high training
losses before federated learning and their realized privacy
costs (training losses) significantly exceed their expectations.

Fig. 11 illustrates the server’s optimal retention decision.
We rank the users who want to revoke their data in ascend-
ing order of their federated Shapley values {v;};cz,. Users
with smaller federated Shapley values are more likely to be
retained by the server, as smaller Shapley values represent
larger contributions to the global model accuracy. Users
with smaller training losses have lower privacy costs and
may require fewer incentives from the server, compared to
users with larger losses. However, Fig. 11 shows that the
server does not necessarily retain users with smaller training
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losses (i.e., “average” users). This is because given a fixed set
of users, reducing the total training losses of retained users
means increasing the total losses of leaving users, resulting
in higher unlearning costs (Proposition 3).

6.1.3 Comparison with Benchmarks

We compare our incentive mechanism with two benchmarks
to evaluate the performance.

o No Retention Incentive (NRI): the server does not retain
users who want to revoke their data.

o Limited Look Ahead (LLA) (adapted from [26]): the server
first optimizes the incentive mechanism for federated
learning without considering the unlearning part, and
then designs the retention incentive in unlearning (i.e.,
separate optimization).

e Our proposed incentive mechanism (RAR): the server
is Rational in jointly optimizing both federated learning
and unlearning And designs Retention incentive to retain
valuable leaving users.

Fig. 12 shows the server’s costs in the three mechanisms
under different numbers of users. Our proposed RAR re-
duces the server’s cost by around 53.91% (black dotted line)
compared with LLA. The reduced cost of RAR compared
with NRI can reach 11.59% (black dashed line) and will
increase in the number of users, as the server retains more
valuable users when the number of users increases. There-
fore, it is beneficial for the server to retain valuable leaving
users and make joint optimization of federated learning and
unlearning incentive mechanisms. As the objective of our
incentive mechanism design is to minimize the server’s cost,
the server’s cost reduction is at the expense of users’ payoffs
(as shown in Fig. 13).

6.2 Model Performance

We perform experiments based on CIFAR-10 dataset
with users possessing non-IID data. Specifically, we consider
that there are J = 5 types of users, with marginal training
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costs 6 = [0.4,1.2,2.4,2.8,4] and marginal perceived pri-
vacy costs & = [2.8,1.7,3.4,4.2,1.2] x 10%. Each type has
I; = I/J = 20 users, totaling I = 100 users. Each user
is randomly assigned 2 labels, each containing 250 data
points. Users perform 1" = 450 rounds of federated learning
training and 150 rounds of unlearning. Users conduct local
training using stochastic gradient descent (SGD) with an
initial point = 0, epoch = 3, batch size = 10, and learning
rate = 0.01. The server’s accuracy loss coefficient p = 1,
and the server’s weight on the incentives v = 10710.
Our convolutional neural network (CNN) model consists
of two convolutional layers with 5x5 kernels, each followed
by a ReLU activation and a 2x2 max pooling layer. After
the convolutional layers, the network includes three fully
connected layers: the first with 1024 neurons, the second
with 512 neurons, both followed by ReLU activations, and
a final output layer. We take the historical revocation rate
p = 17% and the historical retention rate ¢ = 40%.

Fig. 14, Fig. 15, and Fig. 16 show the users’ training
losses, the users’ revocation decisions, and the server’s re-
tention decisions under the new experiment setting, respec-
tively. The key insights are consistent with our theoretical
analysis (Lemma 2 and Proposition 3) and the experiment
results under another setting in Section 6.1.2.

Fig. 17 shows the convergence performance about the
training loss as the number of communication rounds in-
creases. In Fig 18, we compare the test accuracy of our
proposed mechanism and two benchmarks in the paper.
The results show that, when users request to revoke their
data in round 450, our mechanism RAR achieves the highest
accuracy (i.e., lowest accuracy drop) in general. The LLA
benchmark has a slightly worse performance, as it also
retains leaving users but makes limited look ahead opti-
mization. The NRI benchmark does not retain users, leading
to the largest accuracy drop.

6.3 Discussion on Application and Implementation

Consider an application scenario of a mobile phone key-
board such as Gboard (Google Keyboard), where a large
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amount of local data will be generated when users use the
keyboard app on their mobile devices. Suppose that the
Google server wants to train a next-word prediction model
based on users’ data through federated learning.

The incentivized federated learning and unlearning pro-
cess works as follows. The server first announces the learn-
ing project to users through the app and encourages their
participation through incentives (e.g., money, credit, or ad-
vanced service). If the user thinks one incentive contract
item is optimal and beneficial to him, he will choose the
contract item and sign the contract with the server. Once
enough users decide to participate, the server will start the
training process by broadcasting an initial global model to
all participating users. On behalf of the user, the app can
download this global model and upload the model updates
generated by the training on the user’s local data. After
finishing the model training project, some users may want
to leave the system due to reasons like privacy concerns or
training costs. Upon receiving users’ unlearning requests,
the server can retain certain valuable users by giving them
some further incentives to keep them in the system. Users
who are not retained by the server will leave the system, and
their data will be unlearned by the server and remaining
users. During this process, the server aims to achieve a
small model accuracy loss while keeping the total incentives
paid to users low. By using our mechanism, the server’s
cost (including both the model accuracy loss and incentives)
can be reduced up to 53.91% in our experiment, which
can greatly benefit the server and promote the sustainable
development of the application.

Note that our mechanism can effectively avoid false
data issues. The server evaluates users’ contributions to
the model accuracy by calculating their federated Shapley
values, ensuring that rewards are assigned based on actual
contributions. If a user with false or poor-quality data at-
tempts to gain excessive rewards by threatening to leave
after model convergence, even if he has a larger training
loss, the server won't provide him incentives and will let
him leave the system. This user will obtain nothing except
for a sunk learning cost.

The implementation of our proposed method may be
constrained by the limited budget of the server. Although
we aim to minimize the server’s total incentives paid to
users, the server may still have some financial budget con-
straints on the incentives, which may be insufficient espe-
cially when the number of participating users is very large.
Nevertheless, we can adapt our modeling and analysis to
this case by adding the budget constraints to the server’s

learning and unlearning.

optimization problems.”® Moreover, the current mechanism
compensates for privacy costs but cannot prevent data pri-
vacy leakage. In future work, we can extend our framework
to incorporate more factors related to privacy protection,
such as differential privacy techniques.

7 CONCLUSION

To the best of our knowledge, we are the first to analytically
study the incentive mechanism and economic benefit of
federated unlearning We derive theoretical bounds on the
global model optimality gap and the number of commu-
nication rounds of natural federated unlearning, based on
Scaffold and FedAvg algorithms, and use these to motivate
a multi-stage game model. Our approach tackles a chal-
lenging problem in incentive design, by summarizing users’
multi-dimensional heterogeneity into one-dimensional met-
rics and developing an efficient algorithm for an expo-
nentially large number of possible cases. We compare the
unlearning-forbidden and unlearning-allowed scenarios in
terms of users’ payoffs and the server’s cost. Counter-
intuitively, users usually prefer the scenario where they
have larger costs. This is because the server will give them
even higher incentives than their costs due to information
asymmetry. We also identify what types of users will leave
the system or be retained by the server. The experiments
demonstrate the superior performance of our proposed in-
centive mechanism and the benefits of unlearning incentives
for retaining leaving users.
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