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Modulation of Heme Peroxo Nucleophilicities with Axial Ligands 
Reveal Key Insights into the Mechanistic Landscape of Nitric Oxide 
Synthase  
Shanuk Rajapakse,a Yuri Lee,b Samith B. Jayawardana,a Joshua Helms,a Pritam Mondal,a,c Akhil 
Singh,a Brad S. Pierce,a,* Hannah S. Shafaat,b,* and Gayan B. Wijeratnea,* 

Mid-valent heme-oxygen intermediates are central to a medley of pivotal physiological transformations in 
humans, and such systems are increasingly becoming more relevant therapeutic targets for challenging disease 
conditions. Nonetheless, precise mechanistic details pertaining to mid-valent heme intermediates as well as 
key structure-activity relationships remain enigmatic. To this end, this study strives to describe the influence 
of heme proximal ligation on the nucleophilic reactivity patterns of heme peroxo intermediates. A functional 
model system in which organic oxime substrates are used as N-hydroxy-L-arginine mimics reproduces the 
second mechanistic step of nitric oxide synthase. Our findings reveal that axial ligation of heme peroxo adducts 
escalates the rates of nucleophilic reactivity, wherein the anionic ligands exhibited the most pronounced “push 
effect”. Coordination of these axial ligands are accompanied by distinct geometric and electronic 
perturbations, which are supported by complementary theoretical studies. Kinetic interrogations reveal that 
the axially ligated heme peroxo adducts presumably mediate oxime oxidation via the same mechanism as the 
parent (i.e., with only solvent ligation) heme-PO adduct, where the initial nucleophilic attack from the peroxo 
moiety on the oxime substrate is rate-limiting. All reaction products, including the final ketone as well as NO–

, have been characterized in detail.

Introduction 

Heme enzymes are the cornerstones for a broad diversity of 
biological functionalities, and, hence, are ubiquitous within 
various aerobic and anaerobic organisms.1-3 One of the key 
parameters that dictate the functional divergence of heme 
enzymes is the choice of the proximally ligating amino acid 
residue. Nature has meticulously designated these proximal 
amino acids to tailor the electronic properties of heme centers 
toward precise biological roles.4, 5 In dioxygen-activating heme 
enzymes, the proximal ligands are directly involved in 
orchestrating the extent of dioxygen reduction, as well as in 
governing the attributes of heme oxygen intermediates that 
modulate their reactivities. For example, in heme enzymes 
where dioxygen activation leads to O–O bond cleavage giving 
high-valent intermediates such as Compound-I (i.e., (P•+)FeIV=O 
(Cmpd-I); formed via heterolytic O–O bond scission) or 
Compound-II (i.e., (P)FeIV=O (Cmpd-II); formed via homolytic O–
O bond scission or reduction of Cmpd-I), strongly donating 

anionic ligands typically occupy the heme proximal site (e.g., 
cysteinate, tyrosinate, or histidinate/imidazolate (Figure 1A, C 
and D)).1, 6, 7 In contrast, in oxygen carrier proteins (e.g., 
hemoglobin or myoglobin) or heme dioxygenase enzymes (e.g., 
indoleamine/tryptophan 2,3-dioxygenases), where O–O bond 
cleavage is initially unwarranted, a neutral ligand (e.g., histidine 
(Figure 1B)) resides at the proximal site.1-3, 8-11 Moreover, non-
covalent interactions with these proximally ligated amino acids 
further modulate their electronic properties, which Nature has 
evolutionarily optimized to fine-tune the chemistry carried out 
at a specific heme center (see Figure 1A-D dotted lines).12-16 
Correspondingly, intrinsic dissimilarities in the kinetics and 
thermodynamics of formation as well as fundamental 
structural, spectroscopic, and reactivity properties exist across 
various heme-oxygen intermediates, often paralleling the 
donor ability of the proximally ligating amino acid side chains.17-
23 In light of these trends, the influence of various axial ligands 
on the geometric and electronic properties of high-valent heme 
intermediates, such as Cmpd-I or Cmpd-II, has been well-
established utilizing both enzymatic systems as well as their 
synthetic models.24-34 Nonetheless, how those same 
parameters influence the reactivities of mid-valent heme 
oxygen intermediates (i.e., Fe(III) containing adducts such as 
heme superoxo, peroxo, hydroperoxo, or alkylperoxo) are far 
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less understood.35-41 This lack of systematic understanding of 
structure-function relationships is notable, particularly in light 
of the growing body of evidence on heme systems where heme 
peroxo species are either active oxidants or key intermediates 
being pivotal to challenging disease situations in humans (e.g., 
COVID-19, autoimmune and/or neurodegenerative conditions, 
and cancer).42-46 These include nitric oxide synthase (NOS),47 
aromatase (CYP19A1),48 sterol 14α-demethylase (CYP51),49 
cytochrome P450 17α-hydroxylase-17,20-lyase (CYP17A1),50 
and non-canonical heme oxygenase (IsdG-type),51 which have 
emerged as multifaceted therapeutic targets in recent years; 
consequently, identifying potential inhibitory pathways of these 
systems are of prime interest for rational drug design.  
 

 
Figure 1. Active site structures of (A) nitric oxide synthase (PDB: 1NSI52), (B) deoxy-
hemoglobin (PDB: 4HHB53), (C) catalase (PDB: 2IQF54), and (D) peroxidase (PDB: 1ATJ55) 
which encompass cysteinate, histidine, tyrosinate, and histidinate/imidazolate axially 
ligated amino acid residues, respectively. (E) Sequential reactions proposed to be 
catalyzed by nitric oxide synthase, transforming L-arginine into L-citrulline and •NO. 

In particular, NOS has been implicated in a wide variety of 
pathogenic situations, from neurodegenerative disorders (e.g., 
Alzheimer’s,56 Parkinson’s,57 Huntington’s58, 59 diseases, 
amyotrophic lateral sclerosis60) to a variety of cancers (e.g., 
breast,61, 62 prostate,63 colorectal,64 cervical,65 lung,66 brain,67, 68 
colon,69 ovarian70), both due to its proposed direct involvement 
in prognosis and/or the detrimental effects imparted by its main 
reaction product, nitric oxide (•NO).71, 72 Indeed, NOS is central 
to the primary pathway that generates •NO in humans via 

arginine degradation under aerobic conditions.73 •NO serves as 
a crucial signaling agent within the physiological space, with 
paramount roles in blood pressure regulation and cell signaling, 
among others.74 Nonetheless, elevated •NO concentrations can 
impart a multitude of harmful effects via the elevation of 
nitrative and nitrosative stress, leading to undesirable protein 
nitration and disruption of key cell signaling pathways, often 
resulting in apoptosis.75 Accordingly, NOS inhibitors have 
acquired significant momentum in recent years as highly potent 
therapeutic agents.76-78 However, their rational design is 
impeded by the lack of a precise understanding into the NOS 
mechanism.79 Some proposals exist wherein NOS has been 
proposed to operate via a two-step mechanism; the first 
involves the monooxygenation of L-arginine to N-hydroxy-L-
arginine (NHA), followed by further oxidation of NHA to L-
citrulline in the second step, with the concomitant production 
of •NO (Figure 1E).47, 74, 80-83 Exact details pertaining to the latter 
step have been under debate, where several mechanistic 
propositions have been put forward, implicating largely 
different heme-based active oxidants. These involve both high-
valent and mid-valent oxidants, although heme ferric peroxo or 
heme superoxo (i.e., mid-valent) based proposals have been 
heavily reproduced in the literature, while also being 
corroborated by distinct experimental observations.1, 84-91 
Interestingly, when heme peroxo is the active oxidant, the final 
NOx product is nitroxide (NO–). We have recently utilized 
synthetic model systems of both heme peroxo (heme-PO) and 
superoxo intermediates to shine light on the relevant 
mechanistic ambiguities, where we demonstrated that heme-
PO adducts can indeed oxidize oxime substrates (i.e., as NHA 
mimics) in a bioinspired fashion, producing the corresponding 
ketone and nitroxide anions (NO–).92 Moreover, the rate-
limiting step of this reaction landscape was found to be the 
initial nucleophilic attack mediated by the heme-PO adduct on 
the oxime substrate.  Nonetheless, key unknowns still exist with 
respect to the exact structure-activity relationships of both the 
NOS heme center as well as the substrate that precisely 
choreograph the feasibility and efficiency of this unique 
mechanistic step.  
 
Synthetic model complexes can be powerful tools in addressing 
such mechanistic uncertainties, mainly owing to a medley of 
unique advantages (e.g., the feasibility of (i) precise structural 
alterations and (ii) detailed mechanistic investigations under 
cryogenic conditions, etc.) inherent to such systems compared 
to their biological/enzymatic counterparts.93 In this study, we 
evaluate the effect of proximal ligands on the reactivity patterns 
of heme-PO adducts, especially highlighting the details that 
pertain to the second mechanistic step of NOS. In that, we 
utilize a series of axially ligated (either neutral or anionic 
ligands) synthetic heme-PO oxidants, wherein the donor groups 
are biologically relevant. Therein, we utilize acetophenone 
oxime as the NHA mimic substrate (Scheme 1). Intriguingly, the 
nucleophilic reactivity between heme-PO adducts and oxime 
substrate was observed to be tightly regulated by the identity 
of the proximal ligand on heme, where increased donor abilities 
(i.e., the “push effect”) led to faster kinetic rates. Furthermore, 
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we herein demonstrate for the first time how key 
thermodynamic and kinetic parameters of heme-PO driven 
reactivities are affected by various axial ligands, in turn resulting 
in measurable differences in substrate reaction rates.  
Systematic studies that evaluate the effect of axial ligands on 
bio-relevant reactivity landscapes of heme-PO intermediates (in 
either heme or non-heme biomimetic platforms) are sorely 
lacking in the contemporary literature, which underscores the 
importance of this current study.  
 
Scheme 1. Generalized oxime oxidation reaction scheme facilitated by heme peroxo 
intermediates and the divergent exogenously added axial ligands evaluated in this study. 

Results and Discussion 
Formation of Axially Ligated Heme Peroxo Adducts 

In order to survey the effects of various axial ligands on heme-
PO driven nucleophilic reactivities, herein we utilize the ferric 
peroxo complex, [(THF)(TPP)FeIII(O22–)]–, where TPP = 
5,10,15,20-tetraphenylporphyrin.92 The preparation and 
spectroscopic characterization of the side-on ferric peroxo 
species, [(THF)(TPP)FeIII(O22–)]– were carried out as previously 
described,10, 92 and the spectroscopic characterization details 
are in excellent agreement with those reports. In particular, the 
prominent electronic absorption features of the starting ferrous 
complex, [(THF)2(TPP)FeII], centered at 426 (Soret; ε = 3.4×105 
M-1cm-1), 538 (ε = 1.08×104 M-1cm-1) and 558 (ε = 1.1×104 M-

1cm-1) nm shifted to 416 (Soret; ε = 2.0×105 M-1cm-1) and 540 (ε 
= 1.58×104 M-1cm-1) nm upon its dioxygenation, converting into 
[(THF)(TPP)FeIII(O2–•)] at -40 oC in 9:1 DCM:THF solvent mixture 
(Figure 2A). Its subsequent reduction with 1 equiv of 
cobaltocene led to the formation of the corresponding side-on 
ferric peroxo species, [(THF)(TPP)FeIII(O22–)]–, with electronic 

absorption features at 436 (Soret; ε = 2.7×105 M-1cm-1) and 564 
(ε = 2.1×104 M-1cm-1) nm. The neutral or anionic axial ligands 
(e.g., 4-methylimidazole (4-MeIm), 1,5-dicyclohexylimidazole 
(DCHIm), 4-dimethylaminopyridine (4-DMAP), thiophenolate 
(ArS–), and 3,5-dimethoxyphenolate (ArO–); see Scheme 1) were 
then introduced into [(THF)(TPP)FeIII(O22–)]– in order to prepare 
the axially ligated heme-PO adducts.94 In that, the addition of 2 
equiv of 4-MeIm into a solution of [(THF)(TPP)FeIII(O22–)]– in 9:1 
DCM:THF at –40 °C led to the formation of the corresponding 
axially ligated ferric peroxo species, [(4-MeIm)(TPP)FeIII(O22–)]–, 
which was accompanied by only minor electronic absorption 
perturbations with main features observed at 436 (Soret; ε = 
2.5×105 M-1cm-1) and 565 (ε = 2.0×104 M-1cm-1) nm. EPR 
spectroscopic analysis of [(4-MeIm)(TPP)FeIII(O22–)]– resulted in 
a prominent feature at g = 4.2, which again resembles that of 
the parent heme-PO species, [(THF)(TPP)FeIII(O22–)]– (Figure S2); 
this is indicative of a high-spin rhombic heme Fe(III) center in 
[(4-MeIm)(TPP)FeIII(O22–)]–. Nonetheless,  the isotope-sensitive 
ν(Fe–O) and ν(O–O) resonance Raman features of 
[(THF)(TPP)FeIII(O22–)]– shifted from 472 (∆18O2 = –21) cm–1 and 
807 (∆18O2 = –44) cm–1 (Figure S3A) to 479 (∆18O2 = –23) cm–1 
and 803 (∆18O2 = –47) cm–1, respectively (Figure 2B), upon the 
axial ligation of 4-MeIm, implicating an effective strengthening 
of the Fe–O bond of heme-PO, and a corresponding slight 
weakening of the O–O bond. This change in bonding character 
reflects an inflow of electron density into the π*O–O(peroxo) 
manifold (i.e., backbonding from the heme Fe center) upon axial 
ligation.95 We argue that despite these subtle electronic 
perturbations, the heme-PO unit still remains side-on bound to 
the heme center, particularly due to the lack of any isotope-
sensitive Fe-O stretching frequencies in the 550-600 cm-1 
region,96-98 which would be indicative of an end-on 
configuration. Our spectroscopic findings align closely with the 
previous heme-PO model complex, [(TMPIm)FeIII(O22–)]– 
(TMPIm = 3-Imidazol-1-ylmethyl-N-{2-[10,15,20-tris-(2,4,6-
trimethyl-phenyl)-porphyrin-5-yl]-phenyl}-benzamidel),95 
which encompassed a covalently linked imidazole axial ligand, 
and was described as a seven-coordinate side-on heme-PO 
species with a high-spin (S = 5/2) ferric center (Table S1).95 
 
The high-spin nature of the axially ligated heme-PO adduct, [(4-
MeIm)(TPP)FeIII(O22–)]–, contrasts with heme/copper peroxo 
adducts of cytochrome c oxidase model compounds, where the 
addition of axial ligands (e.g., DCHIm) flips the spin state of the 
heme iron center from high-spin to low-spin, with the 
concomitant interconversion of side-on bound peroxo moiety 
(with respect to heme) to end-on.99 Nonetheless, these 
differences should be viewed within the caveat that the 
copper(II) center in those model systems presumably imparts a 
significant “pull effect”, which is absent in heme-only systems. 
This phenomenon has also been discussed by Naruta and co-
workers,98 where both heme (1) secondary sphere interactions 
(i.e., “pull effect”), as well as (2) axial ligation/donation (“push 
effect”) were deemed to play a key role in the formation of truly 
end-on low-spin heme-PO adducts (Table S1). This finding nicely 
complements the analogous biological systems, where the 
intricate interplay between the primary and secondary 
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coordination sphere fine-tunes the salient geometric and 
electronic parameters vital for their functionality.1 Moreover, in 
previous heme-PO models with tethered axial ligands (i.e., 
TMPIm vs F8TPPIm (or PIm)), the spin state of the iron center was 
observed to be influenced by the electronic properties of the 
meso-substituents, wherein electron-donating groups gave rise 
to high-spin peroxo complexes,95 while electron-deficient meso-
substituents have predominantly led to low-spin systems (Table 
S1).97 Despite the lack of large perturbations in the peroxo 
binding mode of [(4-MeIm)(TPP)FeIII(O22–)]–, sizable electronic 
modifications within the heme peroxo moiety were clearly 
evident in NMR spectroscopy. The pyrrole-position deuterated 
TPP-d8 porphyrinate system was utilized to evaluate these 
heme-PO systems by 2H NMR spectroscopy, where the parent 
heme-PO adduct, [(THF)(TPP-d8)FeIII(O22–)]–, exhibited a single 
2H NMR feature at δpyrrole = 38.5 ppm. This feature completely 
shifted upfield to δpyrrole = 9.1 ppm (Figure 2C) upon axial ligation 
of 4-MeIm. Similar changes in NMR were also observed upon 4-
DMAP and DCHIm ligation, where the final 2H NMR features 
were observed at δpyrrole = 12.5 ppm and 9.0 ppm, respectively 
(Figure S4). Given the relevance of proximal thiolate ligation in 
NOS, we also utilized strongly-donating thiophenolate as an 
axial ligand (Scheme 1), where the electronic absorption 
features of [(ArS–)(TPP)FeIII(O22–)]2– were centered at 436 nm 
(Soret; ε = 2.5×105 M-1cm-1) and 564 nm (ε = 1.6×104 M-1cm-1; 
Figure S5A). Intriguingly, attributes of [(ArS–)(TPP)FeIII(O22–)]2– 
was observed to be somewhat unique, exhibiting EPR 
spectroscopic features consistent with a mixture of high- and 
low-spin ferric sites. As shown in Figure S5B, two high spin ferric 
sites (S = 5/2) can be identified at low field. The sharp feature at 
g ~ 6 (■) represents the g┴-region of a near axial (E/D = 0.005) 
heme site. This feature is most prominent at low temperature 
as this resonance originates from the ground doublet of a S = 
5/2 manifold. The second transition observed at g ~ 4.2 (□) is 
attributed to a highly rhombic (E/D = 0.27) high-spin ferric site. 
This signal originates from a transition within the middle 
doublet of the S = 5/2 spin system. Consequently, the decrease 
in its signal intensity with increasing temperature is much less 
pronounced relative to the axial site. The temperature 
dependent signal intensity is diagnostic of the Boltzmann 
population distribution for each doublet. Therefore, the 
magnitude of the axial zero field splitting parameter (D) was 
determined for both species by matching the simulated and 
experimental signal intensity observed across multiple 
temperatures between 4 and 20 K (Figure S5B). Among the 
other spectroscopic parameters provided in Table S2, the D-
values for the axial (■) and rhombic (□) high-spin ferric sites 
were determined to be 8.0 ± 1.0 and 0.9 ± 0.1 cm-1, respectively. 
Notably, the high-spin axial EPR signature at g ~ 6 (■) parallels 
previous reports describing heme ferric hydroxide species, and 
the rhombic g ~ 4.2 (□) is the starting heme peroxo complex. 
Taking this into consideration, we can state that the parent 
heme peroxo complex accounts for over 30% of the observed 
iron whereas the ferric hydroxide species accounts for less than 
4%. The two rhombic signals near g ~ 2 are consistent with low-
spin (S = 1/2) ferric sites (Figure S5B), which originate from the 
low-spin heme peroxo complex (●; g = 2.28, 2.13, and 1.97; 

Table S1 and vide infra) and its decay product (○; g = 2.46, 2.03, 
1.91),95 where the former accounts for 40% of the observable 
iron in the sample. This speciation observed in EPR of [(ArS–
)(TPP)FeIII(O22–)]2– reflects the high reactivity of this complex. 
Thus, we infer that the donor ability of axial ligands is key, 
wherein the superior donor in the series, ArS–, results in the 
strongest ligand-field at the heme iron center, accordingly 
resulting in an equilibrium mixture of high-spin and low-spin 
heme-PO species.  
 

Figure 2. (A) UV−vis spectra (in 9:1 DCM:THF at −40 °C) for 50 μM solutions of 
[(THF)2(TPP)FeII] (black), [(THF)(TPP)FeIII(O2

–•)] (red), [(THF)(TPP)FeIII(O2
2–)]– (pink), and 

[(4-MeIm)(TPP)FeIII(O2
2–)]– (green). Inset shows the expanded Q-band region. (B) 

Resonance Raman spectra (λex= 457 nm) collected for a 2 mM 9:1 DCM:THF frozen 
solution sample of [(4-MeIm)(TPP)FeIII(O2

2–)]– prepared with 16O2(g) (light green) and 
18O2(g) (dark green); the difference spectrum is shown in black.  (C) 2H NMR spectra (in 
9:1 DCM:THF at −40 °C) for [(THF)(TPP-d8)FeIII(O22–)]– (pink), and [(4-MeIm)(TPP-
d8)FeIII(O2

2–)]– (green); *peaks correspond to the solvent.   

Resonance Raman characterization of [(ArS–)(TPP)FeIII(O22–)]2– is 
consistent this finding, where the isotope-sensitive ν(Fe–O) 
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feature was observed at 484 cm-1 (∆18O2 = –21 cm-1) (Figure 
S3B), indicative of greater Fe-O interaction when compared to 
the parent THF-bound species. In further support of relative 
increases in Fe-O bond strength, the ν(Fe–O) features of [(ArO–

)(TPP)FeIII(O22–)]2– and [(ArO–)(F20TPP)FeIII(O22–)]2– were 
observed at 474 (∆18O2 = –23) cm-1 and 492 (∆18O2 = –18) cm–1, 
respectively. Unfortunately for spectroscopic characterization 
purposes, the addition of anionic axial ligands destabilizes the 
peroxo adducts, preventing the precise assignment of their 
isotope-sensitive n(O–O) bands (Figure S3B-D). This trend in 
axial ligand donor abilities clearly dictates the observed second-
order reaction rates of corresponding heme-PO adducts (vide-
infra), where stronger axial donors lead to more nucleophilic 
peroxo units, and thereby resulting in faster reaction rates.  
  
Oxime Oxidation Reactivities of Axially Ligated Heme Peroxo 
Adducts 

Our recent work has demonstrated that heme-PO 
intermediates can oxidize oxime substrates leading to the 
corresponding ketone with the simultaneous production of 
nitroxide anion (i.e., NO–), which marks the only functional 
heme model for the second mechanistic step of NOS.92 In this 
work, we set out to interrogate how this unique reactivity 
between heme-PO adducts and the oxime is modulated by the 
ligation of aforementioned axial ligands, and thereby define 
how key reactivity parameters are altered accordingly. Thus, we 
carried out rigorous reactivity studies into the nucleophilic 
reactivities of a series of [(B)(TPP)FeIII(O22–)]– adducts (where B 
= axially coordinated ligands shown in Scheme 1), with 
acetophenone oxime as the NHA mimic substrate. When 200 
equiv of acetophenone oxime was introduced into a 50 µM 
solution of [(4-MeIm)(TPP)FeIII(O22–)]– in 9:1 DCM:THF at –40 °C, 
prominent changes in electronic absorption were observed 
from 436 to 421 nm (Soret; ε = 1.4×105 M-1cm-1) and 565 to 550 
nm (ε = 2.5×103 M-1cm-1; Figures 3A). The final heme product of 
this reaction was characterized to be the corresponding six-
coordinate heme ferric hydroxo adduct, [(4-
MeIm)(TPP)FeIII(OH)] (Figure 3A). When other axial ligands were 
employed, the final heme species was observed to be the five-
coordinate heme ferric hydroxo adduct, [(TPP)FeIII(OH)] (Figure 
3B & S6). Spectroscopic features of the five-coordinate 
[(TPP)FeIII(OH)] final species are in close agreement with those 
of an authentic standard reported previously (Figure S7).92 EPR 
spectroscopy confirms the low-spin rhombic ferric center of [(4-
MeIm)(TPP)FeIII(OH)] with features centered at g = 2.38, 2.17 
and 1.90 (Figure S8A). 2H NMR analysis of this [(4-MeIm)(TPP-
d8)FeIII(OH)] final product resulted in a single resonance at 
δpyrrole= –18 ppm (Figure S8B). These characterization details are 
in excellent agreement with those of an authentically prepared 
standard of [(4-MeIm)(TPP-d8)FeIII(OH)] (Figure S9), further 
solidifying its identity. The final organic product, acetophenone, 
was characterized via 1H NMR and GC-MS (Figure S10 and 
S11A), revealing a yield of ~34%. [(4-DMAP)(TPP)FeIII(O22–)]– and 
[(ArO–)(TPP)FeIII(O22–)]2– resulted in similar acetophenone yields 
of 34% and 37%, respectively (Figure S11B). Notably, these 
yields of acetophenone are comparable to those observed for 
the parent heme-PO complex under identical reaction 

conditions.92 Finally, the formation of nitroxide (NO–) was 
determined by carrying out oxime oxidation in the presence of 
an excess of PPh3,88, 92 where LC-MS analysis confirmed the 
formation of both triphenylphosphine oxide (O=PPh3; ~20% 
yield (Figures S12B and S12C)) and triphenylphosphine aza-ylide 
(HN=PPh3; Figure S12A). 
 

 
Figure 3. (A) Electronic absorption spectral changes observed (in 9:1 DCM: THF at 

–40 oC) during the reaction of a 50 µM solution of (A) [(4-MeIm)(TPP)FeIII(O22–)]– 

and (B) [(4-DMAP)(TPP)FeIII(O22–)]– with 200 equiv of acetophenone oxime (green: 

initial six coordinate heme-PO complex; blue: final ferric product). Insets show the 

expanded Q-band regions, and arrows indicate the direction of peak transition.  
 
In light of our previous findings describing an initial nucleophilic 
attack mediated by the heme-PO adduct on oxime substrate 
being rate-limiting, one would expect axially ligated heme-PO 
adducts to mediate oxime oxidation reactions much faster 
compared to their parent peroxo compound (i.e., with only 
weak solvent ligation).35 To test this hypothesis, we carried out 
kinetic analysis into acetophenone oxime oxidation reactions 
facilitated by the series of [(B)(TPP)FeIII(O22–)]– adducts. In that, 
the pseudo-first-order kinetic rates were computed upon the 
addition of 200−500 equiv of the substrate in DCM:THF 9:1 at –
40 °C. In all cases, the reaction rates (kobs) were observed to 
increase linearly as a function of substrate concentration 
(Figure S13), indicating the rate-limiting nature of initial heme-
PO attack on the oxime substrate. Hence, the reaction 
mechanism presumably remains unaltered as compared with 
the parent heme-PO adduct. Nonetheless, the second-order 
kinetic rates (k2) resulting from these studies illustrated an 
unequivocal relationship with the axial ligand donor abilities, 
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wherein the stronger anionic donor ligands led to faster oxime 
oxidation rates (Table 1). Particularly, the neutral axial ligands, 
4-MeIm, DCHIm, and 4-DMAP (Scheme 1), wherein the donor 
abilities are known to increase in the same order, exhibited 
second-order oxime oxidation reaction rates of 0.79±0.06, 
0.87±0.02, and 1.11±0.08 M-1s-1, respectively (Figure S13). 
Interestingly, all of these rates are faster than that of the parent 
heme-PO adduct reported under identical conditions 
(0.26±0.01 M-1s-1). When anionic axial ligands, ArO– and ArS– 
(Scheme 1) were utilized, these rates escalated even further, up 
to 1.45±0.07 and 1.53±0.04 M-1s-1, respectively (Figure S13). 
Thus, the strongest axial donor within the series, ArS– (soft base) 
most enhanced the nucleophilicity of the heme-PO moiety, 
resulting in the fastest oxime oxidation reaction within the 
series.  
 

Table 1. A comparison of second-order rate constants (k2) for 
[(B)[(TPP)FeIII(O22–)]– at −40 °C and the pKa values of conjugate acids of B 
ligands. 

 
Figure 4.  The correlation between log k2 values for [(B)(TPP)FeIII(O2

2–)]– mediated 
acetophenone oxime oxidation reactions (in 9:1 DCM:THF at –40 oC) and the pKa values 
of conjugate acids of the axially ligating B ligands, where B = THF (magenta), 4-MeIm 
(green), DCHIm (purple), 4-DMAP (orange), ArO– (blue) and ArS– (brick red).  

This “push effect” of the axial ligand can be further clarified in 
terms of the orbital overlap between the donor and the 
acceptor (i.e., axial ligand and Fe center, respectively).106 Metal-
ligand interactions can be either σ, π, or a combination of both 
in nature, and the pKa of the conjugate acid provides a 
reasonable handle for surveying the extent of σ-donation 
resulting from a given ligand. The observed increase in oxime 

oxidation rates in this case show a nice correlation with the 
corresponding pKa values of the axially ligating neutral (i.e., only 
σ-donor) ligands (Figure 4 and Table 1). Moreover, the anionic 
axial ligands have π-donor properties as well, where the lone 
pairs on the donor atom (i.e., O and S in ArO– and ArS–, 
respectively) can be donated to the metal center via a px-dπ type 
overlap (Figure 4; Figure S13 and Table 1).107 Our theoretical 
analysis lends credence to such a π-donation from the 
thiophenolate axial ligand, where it employs an orientation 
(with respect to the heme ring) that maximizes a px-dπ type 
overlap, while minimizing steric interactions with the meso-
phenyl substituents on heme (Figure 7; vide infra). Variable 
temperature kinetic (Eyring) analysis for acetophenone oxime 
oxidation by the parent heme-PO, [(THF)(TPP)FeIII(O22–)]–, as 
well as the axially ligated heme-PO adducts, [(4-
MeIm)(TPP)FeIII(O22–)]– and [(ArO–)(TPP)FeIII(O22–)]2–, was then 
conducted in a 9:1 DCM:THF solvent mixture (Figure S14). 
Evidently, both enthalpy and entropy of activation (i.e., ∆H≠ and 
∆S≠) increase upon axial ligation of 4-MeIm and ArO– to 
[(TPP)FeIII(O22–)]– (Figures 5 and S15). A similar study was 
recently conducted for a Cmpd-I analog, where axial ligation of 
an anionic cyanide ligand led to more positive ΔS≠ and lowered 
ΔH≠ values, ultimately resulting in a diminished activation 
barrier when compared to its five-coordinate analog toward 
oxygen atom transfer substrates.108 
 
 

 

 

 

 

 

 

 

 

 

Figure 5.  Eyring analysis data showing the dependence of ln(k/T) on 1/T for the reaction 
between a 50 µM solution of [(ArO–)(TPP)FeIII(O22–)]2– and acetophenone oxime at −40, 
−50, −60 and -70 °C. Solvent = 9:1 DCM:THF. 

 

Electronic Structure Characterization of Axially Ligated Heme-PO 
Adducts 

Given the significant reactivity perturbations observed in heme-
PO adducts upon axial ligation, we investigated whether such 
modifications could be utilized to ‘turn-on’ the nucleophilic 
reactivity of an otherwise inert,35, 92 electron-deficient heme-PO 
adduct, [(THF)(F20TPP)FeIII(O22–)]– (where F20TPP = 5,10,15,20-
tetra(pentafluorophenyl)porphyrin). To this end, we prepared 
various axially ligated [(B)(F20TPP)FeIII(O22–)]– complexes, where 

Axial Ligand (B) 
pKa of 

conjugate acid 
Second Order Rate 

(k2 in M-1s-1) 
Ref. 

THF -2.05 0.26±0.01 100 
4-MeIm 7.12 0.79±0.06 101 
DCHIm 7.67  0.87±0.02 102 
4-DMAP 9.7 1.11±0.08 103 
ArO– 9.3 1.45±0.07 104 
ArS– 6.5 1.53±0.04 105 
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B = 4-MeIm, DCHIm, 4-DMAP, ArS– (Figure S16). Interestingly, 
EPR investigations into this series revealed that the [(4-
MeIm)(F20TPP)FeIII(O22–)]– adduct maintains its rhombic high-
spin iron center even after the axial ligation of 4-MeIm (Figure 
S17A). In contrast, the neutral yet stronger donor ligands, 4-
DMAP and DCHIm, as well as the anionic ArS– all led to a mixture 
of two distinct high-spin and low-spin species as observed by 
EPR (Figures S17B, S17C, and 6A). Both low field transitions 
observed in Figure 6A (i.e., for [(ArS–)(F20TPP-d8)FeIII(O22–)]2–) 
can be attributed to the high-spin side-on Fe(III)-h2-peroxo 
species. Accordingly, the weak resonance observed at g ~ 9.2 
and the intense signal at 4.2 are assigned to transitions within 
the ground and middle doublet of a S = 5/2 spin manifold, 
respectively. In the absence of inter-doublet mixing, the 
observed position of these g-values is consistent with a highly 
rhombic zero-field splitting (E/D ~ 0.24) term. As the side-on 
(h2) coordination of the peroxo ligand is expected to have 
considerable overlap with Fe(III) dp-orbitals (dxz and dyz), the 
high rhombicity of [(ArS–)(F20TPP-d8)FeIII(O22–)]2– is not 
unexpected.109-112 Indeed, similar rhombicity and high-spin 
electronic configuration appears to be a shared characteristic 
among crystallographically and spectroscopically characterized 
Fe(III)- h2-peroxo complexes.95, 113 Similar to the 
aforementioned EPR characterization of [(ArS–)(TPP)FeIII(O22–

)]2–, the axial zero-field splitting term for the high-spin fraction 
of [(ArS–)(F20TPP-d8)FeIII(O22–)]2– (D = 0.6 ± 0.1 cm-1) was 
obtained by simultaneous simulation of EPR spectra collected at 
temperatures ranging from 4 to 20 K (Figure S18). Within this 
temperature regime, EPR simulations faithfully reproduce the 
relative intensity of transitions within the ground and first 
excited state. The quantitative simulations (Figure 6A, Sim) 
indicate that the high-spin ferric site accounts for 82% of the 
observable spin concentration (i.e., ~1.6 mM). The low-spin (S = 
1/2) [(ArS–)(F20TPP-d8)FeIII(O22–)]2– complex has nearly axial 
symmetry, with observed g-values of 2.31, 2.29, and 1.92. 
Analytical simulations of the low-spin Fe(III)-site account for 
~18% of the observed spin concentration (0.4 mM).  Relative to 
the rhombic g-values observed for the low-spin side-on peroxo 
complexes produced with TPP (2.28, 2.13, and 1.97), the axial g-
values observed for [(ArS–)(F20TPP-d8)FeIII(O22–)]2– suggest a 
change in the F20TPP ligand field strength, thereby altering the 
relative energies of Fe(III) t2g d-orbitals.114-116 This is consistent 
with the differing D-values measured for the high-spin Fe(III)-
h2-peroxo species for TPP and F20-TPP. The 2H NMR spectrum of 
[(THF)(F20TPP-d8)FeIII(O22–)]– in DCM:THF 9:1 at –40 °C exhibited 
a single feature at δpyrrole = 38.7 ppm, which shifted upfield to 
δpyrrole = 8.8 ppm upon ligation of 4-MeIm (Figure S19). On the 
contrary, [(ArS–)(F20TPP-d8)FeIII(O22–)]2– indicated a mixture of 2H 
NMR features at δpyrrole = 38.7 and -2.1 ppm (Figure 6B), which 
closely parallels our EPR characterization. Furthermore, such 
δpyrrole 2H NMR features below 0 ppm are indicative of low-spin 
heme ferric systems, as described in our previous work.10 These 
findings, therefore, suggest clear ‘activation’ of the electron-
deficient heme-PO adduct upon the ligation of strong axial 
donor ligands. Oxime oxidation reactivity studies of this series 
of [(B)(F20TPP)FeIII(O22–)]– adducts nicely echo our spectroscopy-

based interpretation, where [(4-MeIm)(F20TPP)FeIII(O22–)]– was 
found to be inert toward acetophenone oxime, while both 
[(DCHIm)(F20TPP)FeIII(O22–)]– and [(ArS–)(F20TPP)FeIII(O22–)]2– 
reacted (Figure S20), with the latter leading to a reaction rate of 
0.03 s-1 at –40 oC with 500 equiv of substrate (Figure S20B). 
Similar ‘turn-on’ of reactivity of [(F20TPP)FeIII(O22–)]– has 
previously been reported by Valentine and co-workers with 
regard to alkene epoxidation reactivity, where axial ligation of 
DMSO solvent was postulated.35   

 

 

Figure 6. (A) 7 K CW EPR spectra of [(ArS–)(F20TPP)FeIII(O22–)]2– (2 mM) dissolved in 9:1 
DCM:THF (light green), and quantitative EPR simulations for high- and low-spin ferric 
sites (Sim; dashed blue). The isotropic feature (*) at g ~ 2 is from residual (< 1 µM) 
cobaltacene. (B) 2H NMR spectrum (in 9:1 DCM:THF at −40 °C) for [(ArS–)(F20TPP-
d8)FeIII(O2

2–)]2– indicating the presence of both high- and low-spin heme-PO adducts 
(**peaks correspond to the solvent). 
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Table 2. Experimentally and Theoretically Determined Properties of [(THF)(TPP)FeIII(O22–)]–, [(4-MeIm)(TPP)FeIII(O22–)]–, and [(ArS–
)(TPP)FeIII(O22–)]2–. 

 

  
 

UV-visa 436, 565 436, 565 436, 564 
EPRb 4.2 4.2 4.2 & 2.28, 2.13, 1.97 

2H NMRc 38.5 9.1 - 

rRamand  ν(Fe–O) 472 (D18O = -21) 
ν(O–O) 807 (D18O = -44) 

ν(Fe–O) 479 (D18O = -23) 
ν(O–O) 803 (D18O = -47) ν(Fe–O) 484 (D18O = -21) 

Fe–O lengthe 1.978 1.968 1.898 

rRaman (DFT)d ν(Fe–O) 407 (D18O = -14) 
ν(O–O) 899 (D18O = -52) 

ν(Fe–O) 414 (D18O = -15) 
ν(O–O) 896 (D18O = -51) 

ν(Fe–O) 465 (D18O = -14) 
ν(O–O) 1015 (D18O = -63) 

k2 f 0.26±0.01 0.79±0.06 1.53±0.04 
ΔH≠ g 7.6±0.7 9.0±0.9 - 
ΔS≠ h -27.7±3.0 -20.2±3.8 - 
ΔG≠ m 14.0±0.8 13.7±1.2 - 

a𝛌max values in nm; bgapp-values measured at 7 K; cδpyrrole chemical shifts (in ppm) in 9:1 DCM:THF at - 40 °C; din cm-1 
at 77 K; ecomputed with DFT shown in Å; fin M−1 s−1 at –40 oC; gin kcal mol−1; hin cal K−1 mol−1; min kcal mol−1 at -40 
°C. 

Computational Studies 

To further clarify the precise geometric and electronic 
modifications imposed on heme-PO adducts upon axial ligand 
coordination, we carried out theoretical investigations using 
Density Functional Theory (DFT). Therein, optimized ground 
state geometries of [(THF)(TPP)FeIII(O22–)]–, and a series of 
axially ligated [(B)(TPP)FeIII(O22–)]– complexes (where B = THF, 4-
MeIm, ArO– or ArS–; see Figures 7 and S21) over three spin 
surfaces (S = 5/2, 3/2, 1/2) were probed. Figure S22 illustrates 
all spin state energies organized with respect to the energy of 
the S = 5/2 spin state in each case. For the parent peroxo 
species, [(THF)(TPP)FeIII(O22–)]–, the high-spin complex (i.e., S = 
5/2) was found to be the clear ground state.117 Importantly, the 
calculated ground states for the axially ligated heme-PO 
complexes varied depending on the extent of σ- and/or π-
donation from the axial ligand. In that, the neutral axial ligands 
(THF, 4-MeIm) were found to only weakly interact with the 
heme center (Fe•••OTHF and Fe•••NIm distances of 4.4 and 3.2 
Å, respectively). Regardless, the energy disparity between the 
high-spin (i.e., S = 5/2) and low-spin (i.e., S = 1/2) states 
decreased dramatically upon the ligation of those axial ligands. 
For example, in the case of 4-MeIm, the high-spin state remains 
the ground state, however, the difference in energy for the 
high- and low-spin states shrinks to ~2.9 kcal/mol (i.e., from 
~16.3 kcal/mol for [(THF)(TPP)FeIII(O22–)]–). With anionic ligands, 
the low-spin state becomes slightly more favored, and for [(ArS–
)(TPP)FeIII(O22–)]2– the gap is only -1.8 kcal/mol, supporting its 
experimentally observed equilibrium mixture of high- and low-
spin Fe-species.  

 

Figure 7.  Optimized geometries of (A) [(THF)(TPP)FeIII(O22–)]–, and (B) [ArS– (TPP)FeIII(O22–

)]2– with calculated bond lengths shown in Å. 

The trend in theoretically estimated Fe−Operoxo bond lengths 
aligns well with the experimentally predicted (i.e., by resonance 
Raman data; Table 2), where ligation of 4-MeIm was observed 
to result in a shorter Fe-Operoxo bond compared to the parent 
complex (1.968 Å vs. 1.978 Å, respectively; see Table S4118). This 
change in bond length is accompanied by a minor decrease in 
the natural atomic charge at the iron center from 0.937 to 0.929 
upon 4-MeIm coordination. Moreover, the trend in 
theoretically predicted 𝜈(Fe−O) and 𝜈(O−O) Raman stretching 
frequencies for the parent peroxo complex, [(THF)(TPP)FeIII(O22–

)]–, and [(4-MeIm)(TPP)FeIII(O22–)]– are in agreement with the 
experimental observations (i.e., increased and decreased 
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𝜈(Fe−O) and 𝜈(O−O) frequencies, respectively; Tables 2 and S5). 
Furthermore, the calculated 18O isotope shifts, for 𝜈(Fe−O) and 
𝜈(O−O), respectively, are in line with experimental observations 
(Table 2). 
 
Our experimental (vide supra) and theoretical findings 
therefore in concert illustrate that upon ligating of anionic axial 
ligands, the accessibility of the low-spin heme-PO adducts 
increases. The calculated Fe–Operoxo bond lengths for [(ArO–

)(TPP)FeIII(O22–)]2– and [(ArS–)(TPP)FeIII(O22–)]2– were shorter 
compared to other complexes, measuring up to 1.875 Å and 
1.898 Å, respectively (Table S4). This shortening of the Fe–
Operoxo bond is further corroborated by the higher Fe–Operoxo 
Raman stretching frequencies observed/computed for [(ArO–

)(TPP)FeIII(O22–)]2– and [(ArS–)(TPP)FeIII(O22–)]2– (Figure S3; Tables 
2 and S5). However, though our theoretical predictions suggest 
the formation of end-on heme-PO adducts upon anionic axial 
ligation, we see no experimental evidence to support that 
notion. For example, we see no evidence for an isotope-
sensitive Fe-O feature within the 550-600 cm-1 region in 
resonance Raman that would be indicative of an end-on peroxo 
species. Nonetheless, we do observe increased decomposition 
products upon the addition of anionic ligands to the peroxo 
adducts (vide supra), and whether those result from a highly 
reactive but destabilized end-on peroxo adduct is unclear. 
Moreover, the enhanced electron-donation by these anionic 
ligands is evident by the dramatic decrease in the natural atomic 
charge of the iron center upon their ligation (0.214 and 0.047 
for phenolate and thiophenolate, respectively, compared to 
0.937 in the parent complex; see Table S4). To this end, this 
work unequivocally demonstrates the fundamental reasonings 
behind Nature evolutionarily favoring a thiolate proximal ligand 
for NOS oxygenase domain, which effectively enhances the 
feasibility of rate-limiting events of its second mechanistic step.  
 

Conclusions 
Herein, we conduct a detailed discussion into how the primary 
coordination sphere, especially the proximal heme ligation, 
modulates the nucleophilic reactivity patterns of heme-PO 
species, with relevance to their proposed reactivity landscape 
in the second mechanistic step of NOS. We utilized 
acetophenone oxime as an NHA substrate mimic, and surveyed 
its reactivity toward a series of electronically divergent heme-
PO adducts with and without the axial ligation of bioinspired 
neutral and anionic ligands. Spectroscopic and theoretical 
characterization reveals that axial ligation leads to the 
formation of high-spin/low-spin mixtures, while the heme-PO 
structure remains bound side-on. In support, DFT interrogations 
reveal a trend in the energy gap between the high-spin (S = 5/2) 
and low-spin (S = 1/2) heme-PO species decreasing with 
increased axial ligand donor ability (i.e., the “push” effect). The 
lack of transition into a low-spin, end-on heme-PO merely upon 
axial ligation (i.e., the “push” effect) can be attributed to the 
absence of a non-covalently interacting (e.g., hydrogen 
bonding) secondary sphere in these systems (i.e., the “pull” 
effect). The nucleophilic reactivities of these heme-PO systems 

vary as expected with respect to their axial ligand donor 
abilities; that is, in the order of anionic axial ligands > neutral 
axial ligands > parent complex (Table 1), which supports the 
claim that heme-PO nucleophilic attack on the oxime substrate 
is rate-limiting. Moreover, the nucleophilically inert, electron-
deficient heme-PO adduct, [(THF)(F20TPP)FeIII(O22–)]–, could be 
competently activated toward oxime substrate oxidation upon 
the axial ligation of bioinspired anionic ligands. Variable 
temperature kinetic (Eyring) analyses of these systems illustrate 
that upon axial ligation both ∆H≠ and ∆S≠ increase for the oxime 
oxidation reaction (Table 2). This study, therefore, marks the 
first instance where modulation of kinetic and thermodynamic 
parameters of heme-PO mediated nucleophilic reactivities with 
respect to proximal ligation has been clearly demonstrated, 
wherein pivotal structure-activity relationships can be 
elucidated. The distinct structure-activity relations described in 
this work will not only aid in comprehending relevant biological 
implications, but will also unveil new knowledge to be 
integrated into the rational design of novel (e.g., mechanism-
based) drug targets. 
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Experimental Section 

1. Materials and Methods 

All commercially available chemicals were purchased at the highest available purity and used as 

received unless otherwise stated. Air-sensitive compounds were handled either under an argon 

atmosphere using standard Schlenk techniques, or in an MBraun Unilab Pro SP (<0.1 ppm O2, 

<0.1 ppm H2O) nitrogen-filled glovebox. All organic solvents were purchased at HPLC-grade or 

better and degassed (bubbling argon gas for 40 min at room temperature) and dried (passing 

through a 60 cm alumina column) using an Inert Pure Solv MD 5 (2018) solvent purification 

system. These solvents were then stored in dark glass bottles inside the glovebox over 4 Å 

molecular sieves at least for 72 hrs prior to use. Benchtop UV-vis experiments were carried out 

using Agilent Cary 60 spectrophotometer equipped with a liquid nitrogen chilled Unisoku 

CoolSpek UV USP-203-B cryostat. A 2 mm path length quartz cell cuvette modified with an 

extended glass neck with a female 14/19 joint and stopcock was used to perform all UV–vis 

experiments. Low-temperature 2H NMR spectroscopic studies were carried out on a Bruker AV 

360 MHz NMR Spectrometer. 1H NMR spectra were recorded on a Bruker 500 MHz NMR 

spectrometer. All spectra were recorded in 5-mm (outer diameter) NMR tubes. The chemical shifts 

were reported as δ (ppm) values calibrated to natural abundance deuterium or proton solvent peaks. 

For LC-MS analysis, Spectra were obtained in Waters Xevo G2-XS QTOF instrument and Bruker 

Rapiflex instrument. GC-FID analyses were performed on a Agilent Technologies 8860 GC, using 

an Agilent DB-1701 (30 m, 0.32 mm, 1.0 µm) column. GC-MS was carried out using an Agilent 

Technologies 6890N GC, using an Agilent DB-5ms (30 m, 0.25 mm, 0.25 µm) column. The yield 

determinations were conducted with the GC-FID using calibration curves with n-dodecane as an 

internal standard.  CW EPR experiments were performed at the UA EPR facility using a Bruker 

ELEXSYS E540 X-band spectrometer (Bruker-Biospin Billerica, MA). Cryogenic measurements 

were made using a ColdEdge Stinger closed-loop liquid helium cryosystem inserted into an Oxford 

ESR900 cryostat. A LakeShore 336 temperature controller was used to regulate sample 

temperature. EPR simulations were calculated using SpinCount developed by Professor Michael 

Hendrich at Carnegie Mellon University by utilizing the general spin Hamiltonian as shown in 

Equation A.1-3 
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Eq. A  𝐻" = 𝑫%𝑆'!" −

#$!

%
) + 𝑬,𝑆'&" − 𝑆''"- + 𝛽(𝑺𝒄 ∙ 𝒈 ∙ 𝐁 

 
In this expression, g is the g-tensor for the coupled spin-system (Sc), and the axial and rhombic 

zero-field splitting (zfs) parameters are represented by D and E, respectively. This program 

computes the powder pattern for a uniform spherical distribution of the magnetic field vector B, 

and the transition intensities are calculated using ‘Fermi’s golden rule’.4  All simulations were 

generated with consideration of all intensity factors, both theoretical and experimental, to allow 

for determination of species concentration. The only unknown factor relating the spin 

concentration to signal intensity was an instrumental factor that is specific to the microwave 

detection system. However, this was determined by the spin standard, 1 mM Cu(EDTA), prepared 

from a copper atomic absorption standard solution purchased from Sigma-Aldrich. Resonance 

Raman spectra were collected using a setup described previously.5 All resonance Raman spectra 

were collected at 77 K on samples held within a liquid nitrogen finger dewar. Raman spectra were 

collected using 457 nm excitation from a Cobolt Twist diode laser. The excitation beam was 

focused onto the sample using a 100 mm focal length UV plano-convex lens (Thorlabs), and the 

scattered light was collected using a UV-fused aspheric lens (Edmund Physics). Elastic scattering 

of the Rayleigh line was rejected using the corresponding long-pass edge filter (Semrock 

RazorEdge). The Raman scattered light was imaged onto a spectrograph (Princeton Instruments 

Isoplane) furnished with an 1800 gr/mm 500-nm blazed grating and measured with a Peltier-cooled 

CCD detector (Princeton Instruments Pixis 100B).  5,10,15,20 tetraphenylporphyrin iron(III) 

chloride, [(TPP)FeIIICl], 4-Methylimidazole (4-MeIm), 4-Dimethylaminopyridine (DMAP), 1,5-

Dicyclohexylimidazole (DCHIm), Sodium thiophenolate ( ArS-) was purchased from commercial 

sources. The syntheses of H2(F20TPP),6 H2(TPP-d8),7 H2(F20TPP-d8),8 naked [(TPP)FeIII]SbF6,9 

Sodium 3,5-dimethoxyphenolate (ArO-),10 Tetrabutylammonium thiophenolate,11 were carried out 

according to previously published methods. Metalation of the porphyrinates to generate 

[(F20TPP)FeIIICl], and [(TPP-d8)FeIIICl], and the subsequent reduction to [(THF)2(Por)FeII] 

complexes were carried out by following previously reported procedures.12 Formation of the heme 

peroxo [(B)(Por)FeIII(O22–)]– complexes, where Por = the porphyrinate supporting ligand: (where 

Por = TPP, F20TPP) and B = axial ligands, was carried out following a previously reported 

procedure.13, 14  
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2. Formation of axial ligated heme peroxo, [(B)(Por)FeIII(O22–)]– complexes, where Por = 

porphyrinate supporting ligand, and B = axial ligands: Generation of the heme peroxo 

complexes, [(Por)FeIII(O22–)]–, was carried out following a literature-adapted procedure.13, 14 In a 

typical experiment, a 50 µM THF solution (1 mL) of [(THF)2(Por)FeII] was added into a 2 mm 

pathlength Schlenk cuvette inside the glovebox and was sealed using a rubber septum. Upon 

cooling down inside the UV-vis cryostat stabilized at –40 ºC, this solution was bubbled with dry 

dioxygen gas using a needle, and excess O2(g) was removed by three vacuum/Ar purge cycles. 

The complete formation of the superoxide complexes, [(Por)FeIII(O2–•)], was monitored by UV–

vis spectroscopy (Figure 2A). Subsequently, 1 equiv of cobaltocene (in 50 µL of DCM) was added 

to generate the peroxo complex [(Por)FeIII(O22–)]–. To which 2 equiv of axial ligand (in 50 µL of 

DCM) was added to form the axial ligated heme peroxo complex, [(B)(Por)FeIII(O22–)]– (Scheme 

1.) (Figure 2A). Due to solubility issues, 2 equiv of 15-crown-5 was added to sodium 3,5-

dimethoxyphenolate and sodium thiophenolate. 

 

3. Resonance Raman and EPR sample preparation: In a typical resonance Raman sample 

preparation, 100 μL of the ferrous heme complex, [(THF)2(TPP)FeII] (4 mM in 9:1 DCM:THF), 

was placed in a 250 mm EPR tube (4 mm O.D.) and was sealed with a rubber septum inside the 

glovebox. Following cooling to −40 °C (using liquid nitrogen/acetone cold bath), dry O2(g) (or 
18O2(g)) was bubbled through the solution using a three-way gastight syringe to generate the 

corresponding superoxo complex, [(TPP)FeIII(O2−•)]. Subsequently, 1 equiv of cobaltocene (50 

μL) was added in, and the reaction mixture was quickly homogenized with dry Ar bubbling to 

generate the corresponding [(TPP)FeIII(O22-)]– complexes. To which 2 equiv of 4-MeIm (50 μL) 

(or other axial ligands) was added to form the axial ligated heme peroxo complex, [(4-

MeIm)(TPP)FeIII(O22–)]–. Immediately following the generation of the complexes, the final 

mixtures were frozen in liquid N2. EPR sample preparation was also carried out using the same 

methodology. Tetrabutylammonium thiophenolate/phenolate was used to overcome solubility 

issues in EPR/rR sample preparation. 

 

4. Low-temperature 2H NMR spectroscopic studies: For a typical 2H NMR experiment, 

[(THF)2(TPP-d8)FeII] (15 mg, 0.023 mmol) was dissolved in 0.4 mL of 9:1 DCM:THF, and was 
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sealed in a 5 mm (outer diameter) NMR tube within the glovebox. This tube was then stabilized at 

–40 °C using a liquid nitrogen/acetone cold bath, followed by the addition of O2(g) by means of a 

9” needle to generate the [(TPP-d8)FeIII(O2−•)] complex. Subsequently, 1 equiv of cobaltocene (50 

μL) was added using a Hamilton gas-tight syringe, and was quickly mixed with Ar bubbling to 

form the corresponding [(TPP-d8)FeIII(O22-)]– complex. To which 2 equiv of 4-MeIm (50 μL) (or 

other axial ligands) was added to form the axial ligated heme peroxo complex, [(4-MeIm)(TPP-

d8)FeIII(O22–)]–. The tube was then immediately transferred into the cryostat of the NMR 

spectrometer held at –40 °C. 

 

5. Spectroscopic reactivity and kinetic studies of [(B)(Por)FeIII(O22–)]– with oxime substrates: 

For each kinetic experiment, 50 μM 9:1 DCM:THF solution of [(B)(Por)FeIII(O22–)]– complex (1 

mL) was generated in a 2 mm pathlength Schlenk cuvette as previously described (vide supra). 

Subsequently, 200-500 equiv of acetophenone oxime substrates (50 μL in DCM) was added into 

the cuvette using a gas-tight syringe, and the reaction mixture was quickly mixed with dry argon 

bubbling. The reaction was monitored by the progression of Soret band spectral changes centered 

at 436 nm (for [(B)(TPP)FeIII(O22–)]–) or 432 nm ([(B)(F20TPP)FeIII(O22–)]–) until plateaued. 

Kinetic studies were carried out, under pseudo-first-order conditions, by the addition of 200–500 

equiv of acetophenone oxime to a 50 μM 1 mL 9:1 DCM:THF solution of [(B)(TPP)FeIII(O22–)]– 

at –40 °C and 500 equiv of acetophenone Oxime was used for [(F20TPP)FeIII(O22–)]–. Kinetic 

experiments at variable temperatures (at –30, –40, –50, -60 °C) were performed using 

[(TPP)FeIII(O22–)]– and variable temperatures (at –40, –50, –60, -70 °C) for [(ArO-)(TPP)FeIII(O22–

)]2– for acetophenone oxime substrate (200–500 equiv) following the same procedure as described, 

allowing the cuvette to achieve thermal equilibrium (10 min) in the cryostat, prior to the addition 

of the substrate. The pseudo first-order rate constants, kobs were calculated from plots of ln[(A–

Af)/(Ai–Af)] vs time(s), where Ai and Af are initial and final absorbances, respectively. The second-

order rate constants (k2) were obtained from the slope of the best-fit line from a plot of kobs values 

vs substrate concentration. 

 

6. Bulk oxidation reactions and characterization of organic products: The bulk oxidation 

reaction of acetophenone oxime substrates using [(4-MeIm)(TPP)FeIII(O22–)]– was carried out by 

a generalized procedure as follows: A 100 mL Schlenk flask, equipped with a magnetic stir bar, 
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containing [(THF)2(TPP)FeII] (200 mg, 0.3 mmol) in 9:1 DCM:THF (25 mL) was cooled in a 

liquid N2/ acetone bath adjusted to −40 °C. Upon temperature equilibration, dioxygen gas (O2(g)) 

was bubbled through to form [(THF)(TPP)FeIII(O2−•)]. Subsequently, 1 equiv of cobaltocene (in 1 

mL DCM) was added to form [(THF)(TPP)FeIII(O22–)]–. To which 2 equiv of 4-MeIm (1 mL) was 

added to form the axial ligated heme peroxo complex, [(4-MeIm)(TPP)FeIII(O22–)]–. Then 

acetophenone oxime (2 g, 15 mmol; in 5 mL of DCM) was added to it, and the reaction mixture 

was stirred for another 2 hr at –40 °C before it was dried in vacuum. The final (organic) product, 

acetophenone, was purified by silica gel column chromatography using DCM:hexane (1:1) as an 

eluent. GC-FID analysis for yield quantification of acetophenone was conducted using 1.5 mM 

solutions of [(B)(TPP)FeIII(O22–)]– (B= 4-DMAP, ArO–) complexes. The nitroxyl (NO–) 

identification experiment was carried out following the above procedure using [(4-

MeIm)(TPP)FeIII(O22–)]– and acetophenone oxime as a substrate in the presence of 50 equiv PPh3. 

The final reaction mixture was dried in a vacuum, and the phosphorus-containing products were 

characterized using LC-MS spectroscopy. Yield quantification of triphenylphosphine oxide 

(TPPO) was performed with a 0.5 mM concentration of [(4-MeIm)(TPP)FeIII(O22–)]–, which was 

further diluted for LC-MS analysis. 

 

Acetophenone yield: 14 mg (34%); 1H NMR (400 MHz, CDCl3) δ 7.98-7.96 (m, 2H), 7.59-7.55 

(m, 1H), 7.49-7.45 (m, 2H), 2.61 (s, 3H); GC-MS: m/z = 120.04 (calc. 120.0). 

 

7. Computational Studies: 

All calculations were performed with the package of Gaussian 16, revision C.01.7.15 Geometry 

optimizations were carried out using uB97D within the spin-unrestricted formalism.16, 17 The basis 

set was def2-TZVP for all atoms.18 Counter ions (in phenolate and thiophenolate) were removed 

and not included in the calculations. Vibrational frequencies were obtained for all optimized 

geometries to ensure the latter did not lead to any imaginary frequencies. Complexes 

[(THF)(TPP)FeIII(O22-)], [(4-MeIm)(TPP)FeIII(O22-)] were optimized as charge -1 and sextet, 

quartet and doublet spin multiplicities while [(ArO–)(TPP)FeIII(O22-)] and [(ArS–)(TPP)FeIII(O22-)] 

were optimized as -2 charge and all possible spin multiplicities. A solvent correction (self-

consistent reaction field) using the continuum polarized conductor model with a dielectric constant 

mimicking dichloromethane and zero-point energies has been included in the energy comparison 
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of different spin states.19 Bonding and orbital analysis were done by using Chemcraft software.20 

The natural charges of the atoms were calculated using natural bond orbital (NBO) analysis.21 

 

 

 

  
Figure S1. Electronic absorption spectral changes (in 9:1 DCM:THF at –40 oC) of the self-decay 
of (A) parent heme-PO complex [(THF)(TPP)FeIII(O22–)]– (Purple) and (B) thiophenolate ligated 
[(ArS–)(TPP)FeIII(O22–)]2– (Green). Insets show the kinetic time traces at 436 nm. 
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Figure S2. EPR spectral features (in frozen 9:1 DCM:THF at 7 K) for 2 mM solutions of (A) 
[(THF)(TPP)FeIII(O22–)]–, *feature (g = 1.99) corresponds to an excess of cobaltocene, and (B) [(4-
MeIm)(TPP)FeIII(O22–)]– (g = 4.2); **features (g = 2.6, 2.1) corresponds to the ferric bis-imidazole 
complex. 
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(A)  

           
(B) 
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(C) 

 
(D) 

 
 

Figure S3. Resonance Raman spectra (λex= 457 nm) collected from 2 mM frozen solution samples 
in 9:1 DCM:THF of (A) [(THF)(TPP)FeIII(O22–)]– (B) [(ArS–)(TPP)FeIII(O22–)]2– (C) [(ArO–
)(TPP)FeIII(O22–)]2– (D)[(ArO–)(F20TPP)FeIII(O22–)]2– prepared with 16O2(g) (light color) and 
18O2(g) (dark color); difference spectrum is shown in black. 
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Table S1. Spectroscopic characterization details of axially ligated ferric heme peroxo complexes. 
Heme-PO Complex UV-vis 

(Soret) (nm) 
UV-vis (Q- 
Bands) (nm) 

rR ν(Fe–O) 
(cm-1) 

rR ν(O–O) 
(cm-1) 

Binding 
Mode 

EPR (g) Ref 

[(THF)(TPP)FeIII(O22–)]–  436 (-40 °C; 
9:1 
DCM:THF) 

564 (-40 °C; 9:1 
DCM:THF) 

472 (∆18O2 = 
–21)  

807 (∆18O2 
= –45)  

Side-on 4.2 This work 

[(THF)(F20TPP)FeIII(O22–)]–  432 (-80 °C; 
THF) 

557 (-80 °C; 
THF) 

469 (∆18O2 = 
–15)  

808 (∆18O2 
= –41)  

Side-on 4.2 22 

[(4-MeIm)(TPP)FeIII(O22–)]–  436 (-40 °C; 
9:1 
DCM:THF) 

565 (-40 °C; 9:1 
DCM:THF) 

479 (∆18O2 = 
–23)  

803 (∆18O2 
= –47)  

Side-on 4.2 This work 

[(ArS–)(TPP)FeIII(O22–)]2–  436 (-40 °C; 
9:1 
DCM:THF) 

564 (-40 °C; 9:1 
DCM:THF) 

484 (∆18O2 = 
–21)   

- Side-on 4.2 & 2.28, 
2.13,1.97 

This work 

[(ArO–)(TPP)FeIII(O22–)]2–  436 (-40 °C; 
9:1 
DCM:THF) 

565 (-40 °C; 9:1 
DCM:THF) 

474 (∆18O2 = 
–21)   

- Side-on - This work 

[(ArO–)(F20TPP)FeIII(O22–
)]2–  

432 (-40 °C; 
9:1 
DCM:THF) 

556 (-40 °C; 9:1 
DCM:THF) 

492 (∆18O2 = 
–18)   

- Side-on - This work 

[(TMPIm)FeIII(O22–)]–  440 (-30 °C; 
1:4 
MeCN:THF) 

574 (-30 °C; 1:4 
MeCN:THF) 

475 (∆18O2 = 
–20)  

807 (∆18O2 
= –49)  

Side-on 4.2 23 

[(DMSO)(TMP)FeIII(O22–)]–  - - 476 (∆18O2 = 
–21)  

807 (∆18O2 
= –45)  

Side-on - 23 

[(F8TPPIm)FeIII(O22–)]–  424 (-80 °C; 
THF) 

535 & 567 (-80 
°C; THF) 

578 (∆18O2 = 
–26)  

810 (∆18O2 
= –34)  

End-on 2.25, 2.14 
& 1.95 

24 

[(TMPImXan)FeIII(O22−)]−  430 (-70 °C; 
1:4 
MeCN:THF) 

568 (-70 °C; 1:4 
MeCN:THF) 

585 (∆18O2 = 
–25)  

808 (∆18O2 
= –37)  

End-on 2.27, 2.16 
& 1.96 

25 

[(THF)(F20TPP)FeIII(OOH)]  415 (-80 °C; 
THF) 

530, 553 (-80 
°C; THF) 

597 (∆18O2 = 
–30)  

-  End-on 2.26, 2.15, 
1.96 

22 
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Figure S4. 2H NMR spectra (in 9:1 DCM:THF at −40 °C) for [(4-DMAP)(TPP-d8)FeIII(O22–)]–  
(dark green, top), and (B) [(DCHIm)(TPP-d8)FeIIIO22–)]–  (light green, bottom). *peaks correspond 
to the solvent. 
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(A) 

 

(B) 

 
Figure S5. (A) UV−vis spectra (in 9:1 DCM:THF at −40 °C) for 50 μM solutions of 
[(THF)2(TPP)FeII] (black), [(THF)(TPP)FeIII(O2–•)] (red), [(THF)(TPP)FeIII(O22–)]– (Pink), [(ArS–
)(TPP)FeIII(O22–)]2– (Green). Inset shows the expanded Q-band region. (B) X-band CW EPR 
spectra for a 2 mM solution of [(ArS–)(TPP)FeIII(O22–)]2– (in frozen 9:1 DCM:THF) samples at 
selected temperatures, 4 K (blue), 10 K (orange), and 20 K (red). The axial zero field splitting 
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parameter (D) for E’ (■) and D’ (□) was determined by matching the experimental and simulated 
(blue dashed lines) signal intensity. Within this temperature regime (4 – 20 K), a single set of 
spectroscopic parameters (provided in Table S2) was used to match experimental signal intensity 
for species E’ and D’. Low-spin (S = 1/2) ferric sites A’ and B’ follow Curie law behavior. 
Instrumental parameters: microwave frequency, 9.631 GHz, microwave power, 67 mW (4K) – 
670 mW (20 K); modulation amplitude, 0.92 mT.   
 
Table S2. EPR simulation parameters for Figure S5. 
 
Species Spin g1,2,3 D (cm-1) E/D [X] (%) 
A’ (●) 1/2 2.28, 2.13, 1.97  - - 40 ± 3 
B’ (○) 1/2 2.46, 2.03, 1.91 - - 20 ± 2 
C’ (*) 1/2 2.00, 2.00, 2.00 - - 4 ± 2 
D’ (□) 5/2 2.0, 2.0, 2.0 0.9 ± 0.1 0.27 32 ± 4 
E’ (■) 5/2 2.0, 2.0, 2.0 8.0 ± 1.0 0.005 4 ± 2 
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Figure S6. Electronic absorption spectral changes observed (in 9:1 DCM: THF at –40 oC) during 
the reaction of a 50 µM solution of (A) [(DCHIm)(TPP)FeIII(O22–)]– (B) [(ArO–)(TPP)FeIII(O22–
)]2– (C) [(ArS–)(TPP)FeIII(O22–)]2– with 200 equiv of acetophenone oxime (green: initial 
[(B)(TPP)FeIII(O22–)]– complex; blue: final ferric product). Insets show the kinetic time traces 
(black) at 436 nm overlaid with the exponential fits (red). 
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Figure S7.  UV−vis spectra (in 9:1 DCM:THF at −40 °C) of naked [(TPP)FeIII]SbF6 (brown) and 
upon addition of 1 equiv of TBAOH to form [(TPP)FeIII(OH)] (blue). 

 
Figure S8. (A) EPR spectral features (in frozen 9:1 DCM:THF at 7 K) (g = 2.38, 2.17 & 1.90) and 
(B) 2H NMR spectra (in 9:1 DCM:THF at −40 °C) of the final product from the reaction between 
[(4-MeIm)(TPP-d8) FeIII(O22–)]– and acetophenone oxime. 
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Figure S9. (A) UV−vis (−40 °C), (B) 2H NMR (−40 °C), and (C) EPR (in 7 K) for naked [(TPP-
d8)FeIII]SbF6 (brown), [(4-MeIm)2(TPP-d8)FeIII]+ (orange), and [(4-MeIm)(TPP-d8)FeIII(OH)] 
(blue) in 9:1 DCM:THF; *peaks correspond to the solvent.  
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Figure S10. 1H NMR spectrum (in CDCl3 at 25 °C) of the acetophenone product resulted from a 
reaction between [(4-MeIm) (TPP)FeIII (O22–)]– and acetophenone oxime. 
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Figure S11. (A) GC-MS data for the acetophenone product resulted from a reaction between [(4-
MeIm) (TPP)FeIII (O22–)]– and acetophenone oxime showing [M]+ m/z = 120.04 (calc. 120.0). (B) 
GC-FID generated calibration curve for acetophenone using n-dodecane as an internal standard. 
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(A) 

 
(B) 

 

SR1 methanol_dilute

m/z
278 279 280

%

0

100

m/z
278 279 280

%

0

100
Wijeratne_100124_3  (1.436) Is (1.00,1.00) C18H15PNH2 1: TOF MS ES+ 

8.19e12278.1099

279.1131

280.1164

Wijeratne_100124_3 257 (1.436) 1: TOF MS ES+ 
1.04e4278.1090

279.0927

280.0952

SR1 methanol_dilute

m/z
276 277 278 279 280 281 282 283 284

%

0

100

m/z
276 277 278 279 280 281 282 283 284

%

0

100
Wijeratne_100124_3  (2.237) Is (1.00,1.00) C18H16PO 1: TOF MS ES+ 

2.71e12279.0939

280.0973

281.1004

Wijeratne_100124_3 402 (2.237) 1: TOF MS ES+ 
2.11e5279.0927

280.0952
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Figure S12. LC-MS data for (A) Ph3P=NH showing [M+H]+ m/z = 278.10 (calc. 278.10), and (B) 
Ph3P=O showing [M+H]+ m/z = 279.09 (calc. 279.09) obtained from the reaction between [(4-
MeIm)(TPP)FeIII(O22–)]– and acetophenone oxime in presence of 50 equiv. of PPh3.(C) LC-MS 
generated calibration curve for Ph3P=O in MeCN/H2O (70/30). Control experiments indicate <1% 
yield when heme is not present.  
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Figure S13. The dependence of pseudo-first-order rate constants (kobs) on the acetophenone oxime 
concentration for a 50 µM [(B)[(TPP)FeIII(O22–)]– in 9:1 DCM:THF at −40 °C. B = ArS– (brick 
red), ArO– (blue), 4-DMAP (orange), DCHIm (purple), 4-MeIm (green) or THF (magenta). 

 

 
Figure S14. Variable-temperature kinetic plots showing the dependence of pseudo-first-order rate 
constants (kobs) on acetophenone oxime concentration (with best fit lines) resulting from a 50 µM 
solution of (A) [(THF)(TPP)FeIII(O22–)]–, (B) [(4-MeIm)(TPP)FeIII(O22–)]–, and (C) [(ArO–
)(TPP)FeIII(O22–)]2– in 9:1 DCM:THF. 
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Figure S15. Eyring plot showing ln(k/T) versus 1/T for the reaction of a 50 μM solution of (A) 
[(THF)(TPP)FeIII(O22–)]– and (B) [(4-MeIm)(TPP)FeIII(O22–)]– with acetophenone oxime substrate 
resulting from the data shown in Figure S18 (solvent = 9:1 DCM:THF). 
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Figure S16. (A) UV−vis spectra (in 9:1 DCM:THF at −40 °C) for 50 μM solutions of 
[(THF)(F20TPP)FeIII(O22–)]– (Purple) and (A) [(4-MeIm)(F20TPP)FeIII(O22–)]– (Green) and (B) 
[(ArS–)(F20TPP)FeIII(O22–)]2– (Green). Inset shows the expanded Q-band region.  
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Figure S17. EPR spectral features (in frozen 9:1 DCM:THF at 7 K) for 2 mM solutions of (A) [(4-
MeIm)(F20TPP)FeIII(O22–)]– (**low spin Fe feature (g = 2.4, 2.1) corresponds to decay product), 
(B) [(4-DMAP)(F20TPP)FeIII(O22–)]– and (C) [(DCHIm)(F20TPP)FeIII(O22–)]– (* feature (g = 1.99) 
corresponds to an excess of cobaltocene).  
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Figure S18. X-band CW EPR spectra of [(ArS–)(F20TPP)FeIII(O22–)]2– samples at selected 
temperatures, 4 K (blue), 7 K (orange), 10 K, (black), and 20 K (red). The axial zero field splitting 
parameter (D) for the high-spin species B was determined by matching the experimental and 
simulated (blue dashed lines) signal. Within this temperature regime (4 – 20 K), a single set of 
spectroscopic parameters was used to match the experimental signal intensity. The low-spin (S = 
1/2) follows the Curie–Weiss law behavior and thus only a single spectrum collected under non-
saturating conditions (7 K, 67 mW) was used for simulation. Instrumental parameters: microwave 
frequency, 9.626 GHz, microwave power, 21 mW (4K) – 211 mW (20 K); modulation amplitude, 
0.92 mT. Simulation parameters and analytical quantitation of species are provided in Table S3. 
The sharp signal observed at g ~ 2 (*) is attributed to residual cobaltocene. 
 
Table S3. EPR simulation parameters for Figure S18. 
 
Species Spin g1,2,3 D (cm-1) E/D [X] (%) 
A 1/2 2.31, 2.29, 1.92 - - 18 ± 2 
B 5/2 2.0, 2.0, 2.0 0.6 ± 0.1 0.24 82 ± 7 
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Figure S19.  2H NMR spectra (in 9:1 DCM:THF at −40 °C) for [(F20TPP-d8) FeIII(O22–)]– (pink), 
and [(4-MeIm)( F20TPP-d8)FeIII(O22–)]– (green); *peaks correspond to the solvent. 

 

 
Figure S20. Electronic absorption spectral changes (in 9:1 DCM:THF at –40 oC) in the presence 
of 500 equiv of acetophenone oxime (A) [(DCHIm)(F20TPP)FeIII(O22–)]– and (B) [(ArS–
)(F20TPP)FeIII(O22–)]2–  (green: initial [(B)(F20TPP)FeIII(O22–)]– and blue: final heme product). 
Insets show the kinetic time traces at 432 nm (red line shows the exponential fit). 
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Figure S21. Optimized geometries of (A) [(4-MeIm)(TPP)FeIII(O22–)]–, (B) [(ArO–) 
(TPP)FeIII(O22–)]2–; key bond lengths are shown next to each structure in Å. 

 

 
Figure S22. Sextet (purple)/quartet (red)/doublet (green) spin-state energies for the heme-PO 
complexes with different axial ligands. All energies are presented with respect to the sextet spin 
state in kcal mol–1. 
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Table S4. Bond lengths (Å) and bond angles (degree) of the optimized heme-PO structures. 

 

 

 

 

 

 

 

 

 

 
[a]bond distances in Å; [b]average value; [c]bond distances between Fe and axially coordinating atom of the 
ligand in Å; [d]value of the angle ∠Fe-Operoxo-Operoxo. 

 

Table S5. ν(Fe-O) and ν(O-O) frequencies, and natural charges for the optimized heme-PO 
structures. 

 [(THF)(TPP)FeIII(O22–)]– [(4-
MeIm)(TPP)FeIII(O22–)]– 

[(ArO–) 
(TPP)FeIII(O22–)]2– 

[(ArS–) 
(TPP)FeIII(O22–)]2– 

ν(Fe-O) 
/cm- 1  

407 (D18O = 14)[a] 414 (D18O =15)[a]  505 (D18O =17)[a] 465 (D18O =14)[a] 

ν(O-O) 
/cm- 1  

899 (D18O = 52)[a] 896 (D18O = 51)[a] 1003 (D18O = 64)[a] 1015 (D18O = 63)[a] 

Natural 
Atomic 
Charge-Fe  

0.937 0.929 0.214 0.047 

Natural 
Atomic 
Charge-O1 

-0.417 -0.411 -0.152 -0.149 

Natural 
Atomic 
Charge-O2 

-0.418 -0.410 -0.439 -0.420 

[a]Isotopic substitution Δ18O is included in the brackets. 

 

 

 [(THF)(TPP)FeIII(
O22–)]– 

[(4-MeIm) 
(TPP)FeIII(O22–)]– 

[(ArO–) 
(TPP)FeIII(O22–)2– 

[(ArS–) 
(TPP)FeIII(O22–)2– 

Fe-O1[a] 1.980 1.968 1.875 1.898 

Fe-O2[a] 1.977 1.969 2.827 2.845 

O1-O2[a] 1.427 1.428 1.337 1.331 

Fe-NPor[b] 2.159 2.169 2.010 2.004 

Fe-L[c] 4.446 3.262 2.147 2.549 

Fe-O1-O2[d] 68.72 68.74 122.45 122.53 
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Cartesian coordinates of optimized geometries 
[(THF)(TPP)FeIII(O22–)]– (uB97D-def2-TZVP) Charge: -1, Multiplicity: 6 
 
26      -0.067379000      0.021975000     -0.991756000 
7        1.914159000      0.609320000     -0.279867000 
7        0.532264000     -1.942112000     -0.401340000 
7       -2.039369000     -0.582396000     -0.292584000 
7       -0.656118000      1.973164000     -0.341919000 
6        1.825592000     -2.404602000     -0.380319000 
6        1.826979000     -3.847588000     -0.283259000 
6        0.522032000     -4.243008000     -0.234861000 
6       -0.282949000     -3.042447000     -0.288877000 
6       -1.689596000     -3.025969000     -0.197204000 
6       -2.491997000     -1.868931000     -0.175986000 
6       -3.926839000     -1.869488000      0.036313000 
6       -4.324042000     -0.565324000      0.034266000 
6       -3.131628000      0.233706000     -0.175860000 
6       -3.109774000      1.642333000     -0.192900000 
6       -1.946623000      2.436912000     -0.252950000 
6       -1.942177000      3.881845000     -0.179186000 
6       -0.635660000      4.274883000     -0.185355000 
6        0.164824000      3.074173000     -0.284685000 
6        1.574052000      3.056111000     -0.249757000 
6        2.375527000      1.897162000     -0.246408000 
6        3.825918000      1.902213000     -0.246404000 
6        4.222488000      0.598604000     -0.283195000 
6        3.014706000     -0.204120000     -0.301797000 
6        2.990924000     -1.611061000     -0.355969000 
8        0.623117000      0.254804000     -2.830026000 
8       -0.744422000     -0.154738000     -2.844962000 
6       -4.424935000      2.341935000     -0.088977000 
6       -4.758332000      3.085808000      1.054743000 
6       -5.362291000      2.252110000     -1.130691000 
6       -5.995732000      3.727808000      1.153451000 
1       -4.040947000      3.151905000      1.869541000 

6       -6.599912000      2.894896000     -1.035439000 
1       -5.111699000      1.675840000     -2.018331000 
6       -6.920912000      3.635470000      0.107564000 
1       -6.239331000      4.295547000      2.049137000 
1       -7.312000000      2.818678000     -1.854783000 
1       -7.884335000      4.135101000      0.183740000 
6       -2.389412000     -4.339185000     -0.067207000 
6       -2.235795000     -5.124457000      1.086900000 
6       -3.227174000     -4.805849000     -1.092735000 
6       -2.899872000     -6.347741000      1.212039000 
1       -1.593889000     -4.765716000      1.888242000 
6       -3.891275000     -6.029859000     -0.971024000 
1       -3.352216000     -4.202165000     -1.988903000 
6       -3.729556000     -6.805324000      0.182219000 
1       -2.772957000     -6.940985000      2.115537000 
1       -4.532703000     -6.378610000     -1.777885000 
1       -4.246817000     -7.757705000      0.278298000 
6        4.301795000     -2.323672000     -0.340900000 
6        5.145402000     -2.247701000      0.779580000 
6        4.714267000     -3.090018000     -1.443270000 
6        6.371170000     -2.918658000      0.797888000 
1        4.829344000     -1.661397000      1.639380000 
6        5.940621000     -3.760287000     -1.428433000 
1        4.066916000     -3.152625000     -2.314997000 
6        6.773681000     -3.676969000     -0.307178000 
1        7.009630000     -2.852628000      1.676840000 
1        6.246753000     -4.344489000     -2.293914000 
1        7.728166000     -4.199082000     -0.294390000 
6        2.272842000      4.373589000     -0.183922000 
6        3.009389000      4.736518000      0.955626000 
6        2.204553000      5.276819000     -1.257078000 
6        3.661980000      5.970551000      1.021461000 

1        3.062967000      4.043767000      1.792450000 
6        2.857821000      6.510813000     -1.194662000 
1        1.637890000      5.001858000     -2.143736000 
6        3.588774000      6.862301000     -0.054410000 
1        4.223848000      6.237170000      1.914505000 
1        2.798621000      7.195933000     -2.038054000 
1        4.096916000      7.823096000     -0.004540000 
1        4.450866000      2.785673000     -0.234921000 
1        5.233458000      0.213301000     -0.305866000 
1        2.710372000     -4.470721000     -0.236094000 
1        0.138457000     -5.251415000     -0.153716000 
1       -4.537543000     -2.750331000      0.187146000 
1       -5.322173000     -0.174323000      0.183799000 
1       -2.821588000      4.508464000     -0.111895000 
1       -0.246964000      5.282179000     -0.113306000 
8       -0.510395000      0.412681000      3.414831000 
6       -0.371221000     -0.930177000      2.909120000 
6        0.661533000      1.100820000      2.934579000 
6        1.126683000     -1.281717000      3.045447000 
1       -1.034556000     -1.576009000      3.496768000 
6        1.825449000      0.107703000      3.113760000 
1        0.536192000      1.345936000      1.871176000 
1        0.767662000      2.023683000      3.517513000 
1        2.574431000      0.232314000      2.325885000 
1        2.310581000      0.248998000      4.086745000 
1        1.466446000     -1.869906000      2.188313000 
1        1.315150000     -1.856168000      3.959913000 
1       -0.673849000     -0.959926000      1.852932000 
 

 

[(THF)(TPP)FeIII(O22–)]– (uB97D-def2-TZVP) Charge: -1, Multiplicity: 4 
26      -0.148823000     -0.039492000     -0.951123000 
7        1.763552000      0.880379000     -0.256608000 
7        0.848107000     -1.855015000     -0.462775000 
7       -1.884657000     -0.883482000     -0.275558000 
7       -0.959677000      1.863960000     -0.438604000 
6        2.196618000     -2.110083000     -0.432791000 
6        2.426648000     -3.538662000     -0.342272000 
6        1.202097000     -4.133698000     -0.293938000 
6        0.217720000     -3.070328000     -0.336252000 
6       -1.165043000     -3.261625000     -0.190490000 
6       -2.127693000     -2.231951000     -0.129348000 
6       -3.527801000     -2.441471000      0.130121000 
6       -4.128511000     -1.211168000      0.110344000 
6       -3.098143000     -0.242141000     -0.156152000 
6       -3.316114000      1.150067000     -0.236799000 
6       -2.307751000      2.120244000     -0.345713000 
6       -2.532931000      3.550707000     -0.273120000 
6       -1.305643000      4.141631000     -0.254560000 
6       -0.324571000      3.077875000     -0.347340000 
6        1.063060000      3.265404000     -0.264237000 
6        2.022470000      2.228112000     -0.235207000 
6        3.448419000      2.460923000     -0.239532000 
6        4.046485000      1.234146000     -0.281397000 
6        2.984841000      0.254438000     -0.296897000 
6        3.207083000     -1.138201000     -0.382222000 
8        0.541095000      0.303161000     -2.755884000 
8       -0.702070000     -0.296241000     -2.716315000 
6       -4.730386000      1.618431000     -0.129227000 
6       -5.175307000      2.319905000      1.002971000 
6       -5.648297000      1.348915000     -1.157211000 
6       -6.502294000      2.747650000      1.103166000 
1       -4.472465000      2.523778000      1.807537000 

6       -6.975750000      1.776185000     -1.060547000 
1       -5.312112000      0.802239000     -2.035513000 
6       -7.407255000      2.477934000      0.070559000 
1       -6.830386000      3.286817000      1.989747000 
1       -7.672024000      1.562987000     -1.869307000 
1       -8.440499000      2.810184000      0.147505000 
6       -1.661384000     -4.661507000     -0.032810000 
6       -1.357975000     -5.406542000      1.118179000 
6       -2.452413000     -5.255251000     -1.029462000 
6       -1.828476000     -6.714262000      1.267920000 
1       -0.751400000     -4.950523000      1.897427000 
6       -2.923538000     -6.563195000     -0.883324000 
1       -2.694029000     -4.683333000     -1.922637000 
6       -2.612687000     -7.297551000      0.266542000 
1       -1.586450000     -7.275650000      2.168278000 
1       -3.530928000     -7.009375000     -1.668396000 
1       -2.979507000     -8.315417000      0.381777000 
6        4.618394000     -1.619319000     -0.364502000 
6        5.433951000     -1.410031000      0.760624000 
6        5.157443000     -2.305572000     -1.465329000 
6        6.752253000     -1.872391000      0.784895000 
1        5.022082000     -0.884927000      1.619356000 
6        6.476479000     -2.767733000     -1.444735000 
1        4.533290000     -2.470992000     -2.340626000 
6        7.279113000     -2.552772000     -0.318978000 
1        7.366678000     -1.706038000      1.667655000 
1        6.878178000     -3.292564000     -2.309363000 
1        8.305787000     -2.912662000     -0.301483000 
6        1.561326000      4.668327000     -0.171415000 
6        2.220633000      5.117969000      0.985239000 
6        1.374919000      5.571358000     -1.231090000 
6        2.680077000      6.434031000      1.081367000 

1        2.365938000      4.425799000      1.811598000 
6        1.835056000      6.888040000     -1.138702000 
1        0.868334000      5.230823000     -2.131308000 
6        2.489268000      7.324534000      0.018521000 
1        3.182954000      6.765671000      1.987771000 
1        1.685933000      7.571714000     -1.972209000 
1        2.847136000      8.349444000      0.091831000 
1        3.926008000      3.431853000     -0.231127000 
1        5.105262000      1.013319000     -0.312776000 
1        3.397971000     -4.013545000     -0.292439000 
1        0.979626000     -5.189525000     -0.211308000 
1       -3.989982000     -3.403201000      0.310130000 
1       -5.173177000     -0.979603000      0.271770000 
1       -3.501353000      4.029571000     -0.210836000 
1       -1.078312000      5.195802000     -0.162546000 
8       -0.621642000      0.192290000      3.378950000 
6       -0.056237000     -1.039075000      2.884464000 
6        0.262399000      1.221742000      2.892519000 
6        1.480062000     -0.872081000      2.961052000 
1       -0.445219000     -1.853561000      3.507394000 
6        1.681469000      0.664187000      3.090465000 
1        0.071535000      1.402330000      1.825516000 
1        0.056218000      2.133977000      3.465103000 
1        2.371561000      1.054667000      2.336502000 
1        2.059421000      0.922458000      4.087101000 
1        1.951520000     -1.264464000      2.056554000 
1        1.896030000     -1.396679000      3.828846000 
1       -0.367064000     -1.196026000      1.842377000 

   

 

[(THF)(TPP)FeIII(O22–)]– (uB97D-def2-TZVP) Charge: -1, Multiplicity: 2 
26       0.071795000      0.025009000     -0.724770000 7       -1.160758000     -1.532757000     -0.183101000 7       -1.496390000      1.246217000     -0.559009000 



S32 
 

7        1.280567000      1.572162000     -0.123732000 
7        1.636126000     -1.202052000     -0.518736000 
6       -2.830082000      0.893467000     -0.638016000 
6       -3.659522000      2.079094000     -0.682629000 
6       -2.829017000      3.146662000     -0.558507000 
6       -1.485584000      2.623428000     -0.436366000 
6       -0.376110000      3.405984000     -0.123926000 
6        0.916519000      2.887551000      0.054844000 
6        2.070628000      3.685281000      0.365576000 
6        3.154134000      2.853337000      0.295197000 
6        2.654242000      1.549410000     -0.043611000 
6        3.471024000      0.434628000     -0.296637000 
6        2.973021000     -0.848346000     -0.512442000 
6        3.803650000     -2.031301000     -0.581310000 
6        2.969769000     -3.101839000     -0.523636000 
6        1.620042000     -2.582799000     -0.455929000 
6        0.497733000     -3.371296000     -0.208219000 
6       -0.802217000     -2.856197000     -0.063206000 
6       -1.972390000     -3.678023000      0.072389000 
6       -3.052392000     -2.846075000     -0.030193000 
6       -2.537516000     -1.518198000     -0.213750000 
6       -3.338930000     -0.395121000     -0.483654000 
8       -0.330758000     -0.510730000     -2.556247000 
8        0.532646000      0.569480000     -2.538996000 
6        4.949419000      0.640606000     -0.271643000 
6        5.736908000      0.113369000      0.764152000 
6        5.576938000      1.386389000     -1.282286000 
6        7.119213000      0.320549000      0.786905000 
1        5.256288000     -0.458409000      1.554695000 
6        6.959193000      1.593844000     -1.263357000 

1        4.972008000      1.801408000     -2.085412000 
6        7.735226000      1.061046000     -0.228006000 
1        7.713955000     -0.092408000      1.599346000 
1        7.429899000      2.169820000     -2.057691000 
1        8.811062000      1.222856000     -0.211397000 
6       -0.569590000      4.875034000      0.057863000 
6       -1.285071000      5.369666000      1.159914000 
6       -0.033778000      5.788688000     -0.863338000 
6       -1.463645000      6.744766000      1.336741000 
1       -1.699658000      4.666567000      1.878934000 
6       -0.212041000      7.164358000     -0.690223000 
1        0.522619000      5.412134000     -1.718702000 
6       -0.927774000      7.646967000      0.411121000 
1       -2.017987000      7.111273000      2.198529000 
1        0.205616000      7.858745000     -1.416628000 
1       -1.066407000      8.717555000      0.547128000 
6       -4.817293000     -0.576214000     -0.536700000 
6       -5.537227000     -0.958212000      0.607462000 
6       -5.521206000     -0.351290000     -1.730800000 
6       -6.925015000     -1.114283000      0.559089000 
1       -4.999382000     -1.126997000      1.537538000 
6       -6.909456000     -0.506744000     -1.781977000 
1       -4.969906000     -0.055012000     -2.620483000 
6       -7.616503000     -0.889387000     -0.636814000 
1       -7.467249000     -1.405711000      1.456546000 
1       -7.438129000     -0.332236000     -2.717044000 
1       -8.697104000     -1.010348000     -0.675391000 
6        0.682448000     -4.844494000     -0.072369000 
6        0.450301000     -5.479443000      1.158913000 
6        1.089963000     -5.625092000     -1.166036000 

6        0.623147000     -6.859488000      1.294921000 
1        0.135337000     -4.880222000      2.010384000 
6        1.263778000     -7.005702000     -1.032788000 
1        1.266951000     -5.140922000     -2.123778000 
6        1.030987000     -7.627974000      0.198641000 
1        0.443690000     -7.334036000      2.257702000 
1        1.576454000     -7.595783000     -1.892048000 
1        1.165798000     -8.702548000      0.303193000 
1       -1.967025000     -4.753561000      0.187567000 
1       -4.101119000     -3.110109000     -0.013074000 
1       -4.739427000      2.075319000     -0.747945000 
1       -3.089608000      4.195676000     -0.512165000 
1        2.052224000      4.744052000      0.587729000 
1        4.196976000      3.096545000      0.450924000 
1        4.884969000     -2.027014000     -0.611716000 
1        3.231015000     -4.151163000     -0.493182000 
8        0.539578000      0.201581000      3.437784000 
6       -0.549515000      0.997133000      2.925162000 
6        0.287885000     -1.131138000      2.954357000 
6       -1.802276000      0.087415000      2.934032000 
1       -0.639328000      1.882291000      3.566258000 
6       -1.223800000     -1.340990000      3.129115000 
1        0.564747000     -1.204335000      1.891659000 
1        0.905693000     -1.820057000      3.542691000 
1       -1.621677000     -2.053158000      2.400587000 
1       -1.438766000     -1.709709000      4.139490000 
1       -2.339550000      0.174858000      1.986141000 
1       -2.486352000      0.350898000      3.748629000 
1       -0.321153000      1.311733000      1.898557000   

 

[(4-MeIm)(TPP)FeIII(O22–)]– (uB97D-def2-TZVP) Charge: -1, Multiplicity: 6 
7        1.695974000      1.372491000     -0.129074000 
7       -1.183741000      1.610546000     -0.477590000 
6        3.032703000      1.057225000     -0.086437000 
6        3.822507000      2.268037000     -0.050816000 
6        2.945646000      3.313164000     -0.092628000 
6        1.615983000      2.743791000     -0.134707000 
6        0.421280000      3.487495000     -0.177460000 
6       -0.874262000      2.933582000     -0.272888000 
6       -2.086867000      3.694544000     -0.072231000 
6       -3.125157000      2.813143000     -0.151020000 
6       -2.552292000      1.509948000     -0.400621000 
6        3.562943000     -0.244878000     -0.059882000 
6        0.523926000      4.971807000     -0.083788000 
6        1.088477000      5.587718000      1.046315000 
6        1.176472000      6.979434000      1.133486000 
6        0.702261000      7.780617000      0.088767000 
6        0.137488000      7.179087000     -1.041445000 
6        0.047491000      5.787288000     -1.124660000 
6        5.047099000     -0.375768000      0.064283000 
6        5.631980000     -0.804201000      1.265941000 
6        7.020284000     -0.921661000      1.381194000 
6        7.844157000     -0.609716000      0.294129000 
6        7.270380000     -0.180509000     -0.907579000 
6        5.881687000     -0.065147000     -1.020442000 
1        4.903232000      2.309497000     -0.007526000 
1        3.175665000      4.370481000     -0.098634000 
1       -2.131152000      4.754951000      0.138249000 
1       -4.179357000      3.016937000     -0.017599000 
1        1.610478000      7.438246000      2.019660000 
1       -0.230495000      7.793607000     -1.860644000 
1        7.458073000     -1.252979000      2.320760000 
1        7.903215000      0.061855000     -1.759030000 

6       -3.308947000      0.321131000     -0.452758000 
6        2.808661000     -1.432550000     -0.130278000 
6       -2.773950000     -0.981076000     -0.470813000 
6       -4.793635000      0.457633000     -0.425131000 
7        1.450656000     -1.518081000     -0.324603000 
6        3.369097000     -2.758230000      0.009218000 
7       -1.443263000     -1.292710000     -0.413277000 
6       -3.563552000     -2.195157000     -0.554120000 
6       -5.474307000      1.112442000     -1.465068000 
6       -5.539927000     -0.054161000      0.649937000 
6        1.131992000     -2.854066000     -0.288977000 
6        2.329717000     -3.637528000     -0.078767000 
1        4.415314000     -2.980631000      0.173322000 
6       -1.357292000     -2.658120000     -0.434870000 
6       -2.684175000     -3.235986000     -0.533366000 
1       -4.642258000     -2.239390000     -0.627698000 
6       -6.864986000      1.247084000     -1.435195000 
6       -6.929967000      0.082734000      0.683941000 
6       -0.163604000     -3.402956000     -0.373771000 
1        2.364122000     -4.715652000      0.006615000 
1       -2.906520000     -4.293812000     -0.584303000 
6       -7.598005000      0.732856000     -0.359852000 
1       -7.376171000      1.751083000     -2.253027000 
1       -7.490732000     -0.313762000      1.528094000 
6       -0.278718000     -4.890508000     -0.356118000 
6        0.244971000     -5.662410000     -1.406202000 
6       -0.906689000     -5.547695000      0.715011000 
6        0.140082000     -7.055953000     -1.389221000 
6       -1.009943000     -6.941156000      0.735667000 
6       -0.487774000     -7.700359000     -0.317531000 
1        0.545910000     -7.637924000     -2.214333000 
1       -1.494170000     -7.434043000      1.576373000 

1        8.924758000     -0.700151000      0.382931000 
1       -8.680548000      0.838973000     -0.334837000 
1       -0.568658000     -8.785273000     -0.302771000 
1        0.771158000      8.864383000      0.155387000 
26       0.165089000      0.044438000     -1.026517000 
1       -4.903684000      1.511400000     -2.300592000 
1       -5.018937000     -0.552323000      1.463597000 
1        4.990655000     -1.043918000      2.111301000 
1        5.433856000      0.266948000     -1.954494000 
1       -1.306706000     -4.956526000      1.535594000 
1        0.731382000     -5.160203000     -2.239355000 
1       -0.390043000      5.318976000     -2.003267000 
1        1.451798000      4.965186000      1.860565000 
8        0.862319000      0.535240000     -2.801131000 
8       -0.223763000     -0.386312000     -2.907551000 
6        0.246216000     -1.042167000      2.716083000 
6       -1.137346000      0.667341000      2.598920000 
6       -1.707391000     -0.356057000      3.322306000 
7       -0.825667000     -1.423679000      3.395062000 
1        1.130097000     -1.638063000      2.527995000 
1       -1.511950000      1.631777000      2.288280000 
6       -3.070268000     -0.406810000      3.940463000 
1       -3.621300000      0.518228000      3.733418000 
1       -3.651516000     -1.249709000      3.539061000 
1       -3.015800000     -0.539453000      5.030875000 
7        0.111948000      0.219338000      2.231162000 
1        0.741506000      0.679464000      1.571056000 
 
 
 

[(4-MeIm)(TPP)FeIII(O22–)]– (uB97D-def2-TZVP) Charge: -1, Multiplicity: 4 
7       -0.950518000     -1.771837000     -0.324895000 
7        1.761349000     -0.872075000     -0.395425000 
6       -2.303165000     -2.004900000     -0.381893000 
6       -2.568182000     -3.414141000     -0.277359000 
6       -1.353067000     -4.036371000     -0.161218000 
6       -0.354275000     -3.003338000     -0.196962000 
6        1.034088000     -3.236001000     -0.170994000 
6        1.998262000     -2.236739000     -0.295527000 
6        3.421056000     -2.492655000     -0.300970000 
6        4.043172000     -1.290136000     -0.422556000 
6        3.009897000     -0.280607000     -0.463465000 
6       -3.298830000     -1.011643000     -0.473024000 
6        1.490917000     -4.648831000     -0.020805000 
6        1.280375000     -5.339457000      1.183976000 
6        1.700399000     -6.664324000      1.333145000 

6        2.338291000     -7.322434000      0.275465000 
6        2.551294000     -6.645370000     -0.930417000 
6        2.129396000     -5.320414000     -1.075879000 
6       -4.716242000     -1.465155000     -0.574423000 
6       -5.633497000     -1.213312000      0.459309000 
6       -6.958968000     -1.647031000      0.363765000 
6       -7.389957000     -2.344250000     -0.770316000 
6       -6.484948000     -2.603918000     -1.805848000 
6       -5.160434000     -2.168958000     -1.706359000 
1       -3.551510000     -3.866041000     -0.287694000 
1       -1.151325000     -5.095863000     -0.071016000 
1        3.873561000     -3.471483000     -0.213141000 
1        5.105896000     -1.087788000     -0.447162000 
1        1.533044000     -7.181459000      2.276100000 
1        3.041996000     -7.150179000     -1.760425000 

1       -7.653646000     -1.444774000      1.176858000 
1       -6.811353000     -3.142201000     -2.693667000 
6        3.273156000      1.089256000     -0.423866000 
6       -3.037575000      0.357493000     -0.439884000 
6        2.279242000      2.070517000     -0.272705000 
6        4.696757000      1.529345000     -0.486544000 
7       -1.788737000      0.951144000     -0.311876000 
6       -4.064288000      1.374370000     -0.497651000 
7        0.919420000      1.832080000     -0.237674000 
6        2.538165000      3.476454000     -0.146045000 
6        5.449331000      1.349207000     -1.658614000 
6        5.321062000      2.115963000      0.626828000 
6       -2.028120000      2.311542000     -0.232306000 
6       -3.444341000      2.575977000     -0.357349000 
1       -5.120403000      1.179709000     -0.629209000 



S33 
 

6        0.321815000      3.069399000     -0.098855000 
6        1.322979000      4.094670000     -0.015739000 
1        3.519579000      3.931834000     -0.153302000 
6        6.788793000      1.745177000     -1.718437000 
6        6.659674000      2.514054000      0.570557000 
6       -1.063153000      3.310347000     -0.088441000 
1       -3.890973000      3.561709000     -0.355805000 
1        1.123424000      5.150744000      0.108832000 
6        7.399188000      2.329957000     -0.603367000 
1        7.354473000      1.599996000     -2.636850000 
1        7.127183000      2.962236000      1.445328000 
6       -1.531700000      4.719715000      0.054523000 
6       -1.277498000      5.672649000     -0.945920000 
6       -2.248480000      5.120938000      1.194110000 
6       -1.725127000      6.989887000     -0.811212000 
6       -2.697818000      6.437446000      1.332666000 
6       -2.437031000      7.377656000      0.329711000 

1       -1.522840000      7.712242000     -1.599775000 
1       -3.248413000      6.729567000      2.224930000 
1       -8.421310000     -2.682641000     -0.846328000 
1        8.441636000      2.638634000     -0.648197000 
1       -2.786157000      8.402811000      0.435456000 
1        2.665762000     -8.353775000      0.389834000 
26      -0.010405000      0.042844000     -0.349333000 
1        4.973878000      0.894548000     -2.525000000 
1        4.748234000      2.253609000      1.540981000 
1       -5.297624000     -0.673596000      1.341956000 
1       -4.456828000     -2.370246000     -2.511028000 
1       -2.451085000      4.389222000      1.973222000 
1       -0.727799000      5.370339000     -1.834318000 
1        2.291724000     -4.794730000     -2.014180000 
1        0.784938000     -4.826921000      2.005786000 
8       -0.252985000     -0.300583000     -2.602572000 
8        0.192438000      0.743829000     -3.252246000 

6       -1.326718000     -0.342413000      2.594233000 
6        0.147501000     -0.469969000      4.238571000 
6        0.794549000     -0.246639000      3.042150000 
7       -0.143934000     -0.169195000      2.031507000 
1       -2.275232000     -0.346646000      2.074617000 
1        0.512677000     -0.587944000      5.249364000 
6        2.259909000     -0.108020000      2.781835000 
1        2.633332000     -0.944269000      2.177442000 
1        2.468106000      0.806317000      2.213732000 
1        2.814959000     -0.078661000      3.726958000 
7       -1.199616000     -0.529448000      3.933171000 
1       -1.953872000     -0.678862000      4.587876000 
 

 

[(4-MeIm)(TPP)FeIII(O22–)]– (uB97D-def2-TZVP) Charge: -1, Multiplicity: 2 
7       -1.125484000     -1.642941000     -0.359623000 
7        1.646913000     -1.112506000     -0.332188000 
6       -2.488943000     -1.719007000     -0.537031000 
6       -2.926823000     -3.093117000     -0.447603000 
6       -1.819454000     -3.843858000     -0.184759000 
6       -0.698495000     -2.933410000     -0.136686000 
6        0.633362000     -3.334591000      0.033928000 
6        1.727036000     -2.470582000     -0.109278000 
6        3.109050000     -2.891178000     -0.097315000 
6        3.859296000     -1.787116000     -0.375302000 
6        2.942760000     -0.679241000     -0.503866000 
6       -3.357220000     -0.623934000     -0.658602000 
6        0.891676000     -4.773876000      0.328433000 
6        0.479370000     -5.328997000      1.551485000 
6        0.705199000     -6.678070000      1.839534000 
6        1.347782000     -7.497768000      0.904974000 
6        1.760054000     -6.957439000     -0.318310000 
6        1.532248000     -5.607859000     -0.602725000 
6       -4.802078000     -0.911371000     -0.891053000 
6       -5.769913000     -0.621686000      0.085195000 
6       -7.119979000     -0.907596000     -0.136394000 
6       -7.526127000     -1.492238000     -1.341288000 
6       -6.571151000     -1.789665000     -2.319888000 
6       -5.221845000     -1.502490000     -2.094438000 
1       -3.951227000     -3.426130000     -0.554142000 
1       -1.754374000     -4.915716000     -0.048787000 
1        3.450964000     -3.901206000      0.086216000 
1        4.936585000     -1.712604000     -0.449135000 
1        0.382062000     -7.088298000      2.794491000 
1        2.254312000     -7.588468000     -1.054573000 
1       -7.854101000     -0.679109000      0.633995000 

1       -6.876958000     -2.242781000     -3.260999000 
6        3.349784000      0.657485000     -0.605424000 
6       -2.953016000      0.708251000     -0.497568000 
6        2.487262000      1.744517000     -0.416649000 
6        4.802087000      0.917597000     -0.821228000 
7       -1.657760000      1.130762000     -0.278034000 
6       -3.854371000      1.837365000     -0.472296000 
7        1.122947000      1.660462000     -0.227292000 
6        2.918658000      3.119296000     -0.318837000 
6        5.415389000      0.546852000     -2.029407000 
6        5.594749000      1.504025000      0.179550000 
6       -1.733027000      2.490250000     -0.073482000 
6       -3.102567000      2.936829000     -0.184512000 
1       -4.920821000      1.785905000     -0.647640000 
6        0.691066000      2.952051000     -0.014033000 
6        1.813234000      3.861762000     -0.029467000 
1        3.937670000      3.462124000     -0.439512000 
6        6.780790000      0.763706000     -2.236569000 
6        6.960197000      1.722221000     -0.023840000 
6       -0.644951000      3.351518000      0.114352000 
1       -3.430007000      3.963665000     -0.084542000 
1        1.751497000      4.930017000      0.130383000 
6        7.558614000      1.353657000     -1.234120000 
1        7.236495000      0.474048000     -3.181542000 
1        7.558382000      2.173800000      0.765409000 
6       -0.941917000      4.788670000      0.384478000 
6       -0.660051000      5.782893000     -0.566800000 
6       -1.537139000      5.172073000      1.597578000 
6       -0.956787000      7.124506000     -0.310173000 
6       -1.835412000      6.512861000      1.858071000 
6       -1.544805000      7.494888000      0.904588000 

1       -0.734536000      7.879957000     -1.061501000 
1       -2.292593000      6.790739000      2.805924000 
1       -8.576815000     -1.715431000     -1.515155000 
1        8.621690000      1.522504000     -1.393387000 
1       -1.776693000      8.538953000      1.105077000 
1        1.524109000     -8.548277000      1.127089000 
26      -0.004426000      0.020393000     -0.324629000 
1        4.810233000      0.086572000     -2.807430000 
1        5.131605000      1.782805000      1.123086000 
1       -5.453749000     -0.172008000      1.023672000 
1       -4.478984000     -1.733779000     -2.854670000 
1       -1.764673000      4.407441000      2.337398000 
1       -0.209862000      5.493845000     -1.513603000 
1        1.847521000     -5.189764000     -1.555889000 
1       -0.020794000     -4.691112000      2.277146000 
8        0.036347000      0.007075000     -2.207262000 
8       -0.178035000      1.108731000     -2.916800000 
6       -1.324276000     -0.265862000      2.380020000 
6        0.142026000     -0.287023000      4.032297000 
6        0.800565000     -0.135546000      2.832422000 
7       -0.134892000     -0.121527000      1.809930000 
1       -2.268555000     -0.302082000      1.858227000 
1        0.505993000     -0.341195000      5.048402000 
6        2.272693000     -0.019586000      2.616249000 
1        2.667531000     -0.902968000      2.100669000 
1        2.510004000      0.847938000      1.992897000 
1        2.781922000      0.081279000      3.582133000 
7       -1.200657000     -0.369623000      3.724125000 
1       -1.960327000     -0.480732000      4.379450000 

 

[(ArO–)(TPP)FeIII(O22–)]2– (uB97D-def2-TZVP) Charge: -2, Multiplicity: 6 
7        0.586466000     -2.070519000     -0.538124000 
7        2.607390000      0.061348000     -0.157547000 
6       -0.509045000     -2.885280000     -0.618870000 
6       -0.108686000     -4.246817000     -0.327971000 
6        1.241733000     -4.226027000     -0.102749000 
6        1.672721000     -2.849638000     -0.249481000 
6        3.005519000     -2.385937000     -0.089382000 
6        3.427986000     -1.036148000     -0.082165000 
6        4.806159000     -0.587500000      0.012373000 
6        4.782695000      0.778627000      0.024992000 
6        3.391093000      1.182761000     -0.068404000 
6       -1.828989000     -2.462474000     -0.918643000 
6        4.057473000     -3.427303000      0.095694000 
6        4.832470000     -3.476079000      1.268003000 
6        5.814053000     -4.455925000      1.441008000 
6        6.040638000     -5.409404000      0.441724000 
6        5.276332000     -5.373371000     -0.730294000 
6        4.295137000     -4.392695000     -0.899001000 
6       -2.868138000     -3.525462000     -1.033157000 
6       -3.981825000     -3.532361000     -0.174833000 
6       -4.955069000     -4.530274000     -0.270171000 
6       -4.835468000     -5.541483000     -1.230303000 
6       -3.733329000     -5.544642000     -2.093464000 
6       -2.759941000     -4.546678000     -1.993563000 
1       -0.770058000     -5.103140000     -0.289152000 
1        1.881236000     -5.062130000      0.151019000 
1        5.675177000     -1.231769000      0.056733000 
1        5.629689000      1.450985000      0.079195000 
1        6.398215000     -4.478526000      2.359238000 

1        5.447501000     -6.106613000     -1.516395000 
1       -5.803603000     -4.521567000      0.411700000 
1       -3.633683000     -6.322417000     -2.848494000 
6        2.922483000      2.518094000     -0.075020000 
6       -2.261627000     -1.128299000     -1.088501000 
6        1.579073000      2.934102000     -0.265992000 
6        3.934677000      3.592070000      0.139918000 
7       -1.497728000     -0.004782000     -0.904612000 
6       -3.601277000     -0.730239000     -1.481203000 
7        0.521905000      2.116917000     -0.578923000 
6        1.099519000      4.293479000     -0.133416000 
6        4.156175000      4.580422000     -0.836178000 
6        4.692158000      3.647046000      1.323738000 
6       -2.299256000      1.086388000     -1.114305000 
6       -3.625167000      0.634182000     -1.496496000 
1       -4.412263000     -1.405774000     -1.721270000 
6       -0.601167000      2.898519000     -0.675657000 
6       -0.246296000      4.271316000     -0.384885000 
1        1.705497000      5.149840000      0.134554000 
6        5.103342000      5.588614000     -0.638294000 
6        5.639981000      4.654061000      1.525763000 
6       -1.908141000      2.437681000     -0.974953000 
1       -4.458630000      1.275189000     -1.753521000 
1       -0.935307000      5.105874000     -0.357233000 
6        5.850139000      5.630055000      0.544825000 
1        5.262269000      6.339005000     -1.410677000 
1        6.210513000      4.680101000      2.452434000 
6       -2.971221000      3.470786000     -1.126446000 
6       -2.862153000      4.487162000     -2.093234000 

6       -4.110768000      3.459523000     -0.301127000 
6       -3.855360000      5.460544000     -2.230184000 
6       -5.104819000      4.431789000     -0.434726000 
6       -4.982160000      5.437992000     -1.399900000 
1       -3.751891000      6.233958000     -2.989222000 
1       -5.971995000      4.408333000      0.222920000 
1       -5.593258000     -6.318939000     -1.306046000 
1        6.587841000      6.414717000      0.700827000 
1       -5.755732000      6.196368000     -1.504118000 
1        6.804495000     -6.172931000      0.575211000 
26       0.569547000      0.024018000     -0.603097000 
8        0.878441000     -0.842008000     -3.656250000 
8        0.910916000     -0.053030000     -2.589290000 
1        3.578604000      4.547207000     -1.757055000 
1        4.526093000      2.892007000      2.088601000 
1       -4.069045000     -2.754832000      0.578556000 
1       -1.905248000     -4.547161000     -2.666048000 
1       -4.201796000      2.689240000      0.459573000 
1       -1.988758000      4.504391000     -2.740991000 
1        3.703284000     -4.362917000     -1.810953000 
1        4.653437000     -2.738618000      2.046996000 
6       -1.663119000      1.186589000      2.333241000 
6       -2.977494000      1.182813000      2.795692000 
6       -3.660509000     -0.014717000      3.067893000 
6       -2.976550000     -1.225639000      2.868606000 
6       -1.660141000     -1.256729000      2.409500000 
6       -0.968614000     -0.042132000      2.105183000 
1       -1.153270000      2.105720000      2.067531000 
1       -4.680654000     -0.004164000      3.441784000 
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1       -1.148193000     -2.190830000      2.206639000 
8       -3.713161000      2.338700000      3.011193000 
8       -3.713453000     -2.365928000      3.154679000 
6       -3.013963000     -3.612118000      3.143356000 
1       -3.744309000     -4.371307000      3.441376000 

1       -2.629617000     -3.845930000      2.141077000 
1       -2.173787000     -3.596386000      3.854063000 
6       -3.009632000      3.580577000      2.926495000 
1       -2.612315000      3.747681000      1.916215000 
1       -3.742282000      4.358316000      3.164725000 

1       -2.178013000      3.608839000      3.647107000 
8        0.240458000     -0.052228000      1.629403000 
 
 

 
 

[(ArO–)(TPP)FeIII(O22–)]2– (uB97D-def2-TZVP) Charge: -2, Multiplicity: 4 
7        0.969071000     -1.891169000     -0.519462000 
7        2.480483000      0.517505000     -0.153232000 
6        0.057947000     -2.921379000     -0.451524000 
6        0.733829000     -4.145403000     -0.161529000 
6        2.083918000     -3.854470000     -0.105446000 
6        2.213680000     -2.453274000     -0.332810000 
6        3.448545000     -1.749681000     -0.316893000 
6        3.544857000     -0.364188000     -0.237829000 
6        4.788544000      0.373237000     -0.162808000 
6        4.466347000      1.680413000      0.030683000 
6        3.018427000      1.769746000      0.039899000 
6       -1.337548000     -2.798627000     -0.686343000 
6        4.692647000     -2.565004000     -0.329574000 
6        5.624901000     -2.506156000      0.722733000 
6        6.788663000     -3.281167000      0.699948000 
6        7.041981000     -4.139985000     -0.374862000 
6        6.118501000     -4.217149000     -1.425712000 
6        4.957476000     -3.441372000     -1.398993000 
6       -2.173253000     -4.025644000     -0.647134000 
6       -3.269610000     -4.111741000      0.232934000 
6       -4.075313000     -5.252528000      0.275164000 
6       -3.801676000     -6.340123000     -0.561561000 
6       -2.713755000     -6.271408000     -1.442023000 
6       -1.911320000     -5.128919000     -1.482191000 
1        0.255383000     -5.105909000     -0.022913000 
1        2.905355000     -4.532727000      0.087347000 
1        5.775576000     -0.063271000     -0.243141000 
1        5.137838000      2.523322000      0.132820000 
1        7.493489000     -3.220293000      1.527485000 
1        6.306356000     -4.879123000     -2.269326000 
1       -4.912153000     -5.294752000      0.970464000 
1       -2.496025000     -7.106876000     -2.105423000 
6        2.312297000      2.968582000      0.165783000 
6       -1.969227000     -1.586239000     -0.964751000 

6        0.916235000      3.087212000     -0.074910000 
6        3.074049000      4.195055000      0.520325000 
7       -1.408462000     -0.332679000     -0.896032000 
6       -3.340390000     -1.477201000     -1.419887000 
7        0.095035000      2.072160000     -0.520860000 
6        0.170235000      4.299711000      0.032543000 
6        3.094973000      5.319634000     -0.327373000 
6        3.814011000      4.261367000      1.716896000 
6       -2.398534000      0.566722000     -1.243176000 
6       -3.596690000     -0.156165000     -1.611854000 
1       -4.003554000     -2.314916000     -1.591480000 
6       -1.141057000      2.643889000     -0.756634000 
6       -1.109456000      4.025618000     -0.411556000 
1        0.561869000      5.245466000      0.383358000 
6        3.827383000      6.461752000      0.003755000 
6        4.550394000      5.401571000      2.051506000 
6       -2.301683000      1.953817000     -1.191181000 
1       -4.512405000      0.297790000     -1.966518000 
1       -1.952417000      4.701738000     -0.471466000 
6        4.560115000      6.509599000      1.197076000 
1        3.834747000      7.313272000     -0.674717000 
1        5.111300000      5.426963000      2.984352000 
6       -3.495801000      2.774976000     -1.525535000 
6       -3.436703000      3.741932000     -2.546608000 
6       -4.705486000      2.632052000     -0.820570000 
6       -4.547966000      4.526911000     -2.862660000 
6       -5.819983000      3.415366000     -1.133858000 
6       -5.747755000      4.366322000     -2.157459000 
1       -4.480151000      5.261255000     -3.663526000 
1       -6.742900000      3.288669000     -0.570413000 
1       -4.426732000     -7.230509000     -0.529330000 
1        5.131083000      7.399102000      1.456230000 
1       -6.614136000      4.978121000     -2.401421000 
1        7.946510000     -4.744873000     -0.393262000 

26       0.531115000      0.086572000     -0.540594000 
8        0.668920000     -0.768848000     -3.287014000 
8        0.846485000      0.161287000     -2.372574000 
1        2.533257000      5.283992000     -1.257731000 
1        3.804329000      3.403173000      2.385186000 
1       -3.475322000     -3.273804000      0.893173000 
1       -1.072431000     -5.076417000     -2.171980000 
1       -4.759077000      1.906579000     -0.013431000 
1       -2.505498000      3.868451000     -3.094214000 
1        4.240636000     -3.501973000     -2.214777000 
1        5.424895000     -1.847158000      1.564218000 
6       -1.814173000      0.931543000      2.098471000 
6       -3.079899000      0.773794000      2.665194000 
6       -3.515468000     -0.472686000      3.143041000 
6       -2.648117000     -1.571420000      3.045539000 
6       -1.378015000     -1.443457000      2.479050000 
6       -0.949526000     -0.185300000      1.982555000 
1       -1.483245000      1.874548000      1.682797000 
1       -4.500696000     -0.582422000      3.588106000 
1       -0.718250000     -2.292478000      2.344772000 
8       -3.992323000      1.802861000      2.788476000 
8       -3.151894000     -2.763032000      3.531173000 
6       -2.260133000     -3.882022000      3.568375000 
1       -2.826956000     -4.701943000      4.020117000 
1       -1.939820000     -4.167521000      2.557187000 
1       -1.372860000     -3.654937000      4.178166000 
6       -3.536810000      3.118339000      2.448435000 
1       -3.233778000      3.177434000      1.395626000 
1       -4.385835000      3.785012000      2.628471000 
1       -2.685256000      3.410561000      3.081358000 
8        0.244730000     -0.070249000      1.433492000 
 

 

[(ArO–)(TPP)FeIII(O22–)]2– (uB97D-def2-TZVP) Charge: -2, Multiplicity: 2 
7       -0.184037000      2.024492000     -0.496042000 
7       -2.503311000      0.387603000     -0.220743000 
6        1.026463000      2.658318000     -0.669323000 
6        0.904983000      4.063988000     -0.363777000 
6       -0.398048000      4.282998000     -0.028718000 
6       -1.078786000      3.014996000     -0.145217000 
6       -2.458041000      2.846293000      0.038310000 
6       -3.114755000      1.612093000     -0.055919000 
6       -4.549043000      1.451519000     -0.003616000 
6       -4.801460000      0.116354000     -0.115158000 
6       -3.519175000     -0.543416000     -0.218703000 
6        2.226317000      2.042473000     -1.044995000 
6       -3.283359000      4.052165000      0.336475000 
6       -3.973613000      4.163643000      1.555804000 
6       -4.751922000      5.289071000      1.841138000 
6       -4.856061000      6.326836000      0.907936000 
6       -4.175527000      6.227910000     -0.311067000 
6       -3.397579000      5.101073000     -0.591940000 
6        3.414937000      2.908043000     -1.281550000 
6        4.568859000      2.789287000     -0.487171000 
6        5.677880000      3.610677000     -0.705727000 
6        5.655806000      4.568000000     -1.726572000 
6        4.513350000      4.696822000     -2.524886000 
6        3.405202000      3.874722000     -2.302360000 
1        1.717882000      4.777839000     -0.389804000 
1       -0.863288000      5.213731000      0.268965000 
1       -5.261989000      2.260174000      0.094248000 
1       -5.761548000     -0.382963000     -0.122117000 
1       -5.273662000      5.357577000      2.794029000 
1       -4.254578000      7.026580000     -1.046442000 
1        6.557623000      3.507731000     -0.072813000 
1        4.486454000      5.435155000     -3.324382000 
6       -3.349506000     -1.934334000     -0.261422000 
6        2.371329000      0.658252000     -1.174768000 
 

 
6       -2.099015000     -2.563973000     -0.353256000 
6       -4.558284000     -2.801504000     -0.166279000 
7        1.396585000     -0.280934000     -0.913767000 
6        3.605920000      0.008984000     -1.548505000 
7       -0.891471000     -1.935117000     -0.555167000 
6       -1.901999000     -3.987414000     -0.197432000 
6       -4.897632000     -3.673688000     -1.215508000 
6       -5.380583000     -2.782220000      0.973860000 
6        2.014100000     -1.505798000     -1.046366000 
6        3.387429000     -1.331745000     -1.456949000 
1        4.515915000      0.518852000     -1.835486000 
6        0.056500000     -2.936195000     -0.573828000 
6       -0.563373000     -4.215298000     -0.320511000 
1       -2.687037000     -4.705730000      0.000911000 
6       -6.023185000     -4.497987000     -1.131129000 
6       -6.507080000     -3.604832000      1.062593000 
6        1.421561000     -2.755887000     -0.829214000 
1        4.082034000     -2.136267000     -1.660026000 
1       -0.038410000     -5.158658000     -0.246042000 
6       -6.833910000     -4.466700000      0.009328000 
1       -6.269684000     -5.161823000     -1.957884000 
1       -7.126407000     -3.577545000      1.957394000 
6        2.304649000     -3.955161000     -0.859505000 
6        2.106111000     -4.990562000     -1.789211000 
6        3.370596000     -4.071353000      0.050300000 
6        2.943268000     -6.109833000     -1.807581000 
6        4.207753000     -5.189805000      0.036234000 
6        3.997969000     -6.214885000     -0.893316000 
1        2.775543000     -6.897521000     -2.540000000 
1        5.021028000     -5.262678000      0.756170000 
1        6.519287000      5.208035000     -1.897552000 
1       -7.710405000     -5.108146000      0.077182000 
1        4.650013000     -7.086156000     -0.906443000 
1       -5.461953000      7.203592000      1.128152000 

 
26      -0.542728000      0.058273000     -0.587324000 
8       -0.196436000      0.733183000     -3.311279000 
8       -0.951525000      0.086238000     -2.417152000 
1       -4.267751000     -3.698109000     -2.101928000 
1       -5.124460000     -2.116631000      1.794880000 
1        4.581599000      2.057769000      0.316044000 
1        2.517355000      3.973284000     -2.922863000 
1        3.530315000     -3.278515000      0.775683000 
1        1.289459000     -4.907680000     -2.502563000 
1       -2.871080000      5.022816000     -1.540321000 
1       -3.891598000      3.357329000      2.281160000 
6        1.429825000     -1.443148000      2.452679000 
6        2.725903000     -1.533231000      2.960857000 
6        3.541174000     -0.398580000      3.099818000 
6        3.013644000      0.847759000      2.722202000 
6        1.720316000      0.970411000      2.217182000 
6        0.898609000     -0.182189000      2.047267000 
1        0.817116000     -2.322663000      2.289649000 
1        4.545569000     -0.479743000      3.506447000 
1        1.326974000      1.919923000      1.876143000 
8        3.313827000     -2.728244000      3.348497000 
8        3.874491000      1.921736000      2.883441000 
6        3.327516000      3.227292000      2.674080000 
1        4.141559000      3.930574000      2.876606000 
1        2.977426000      3.354659000      1.641513000 
1        2.487247000      3.412797000      3.360525000 
6        2.467786000     -3.879090000      3.411909000 
1        2.082604000     -4.148174000      2.418712000 
1        3.093435000     -4.692152000      3.793925000 
1        1.618778000     -3.704074000      4.089989000 
8       -0.301321000     -0.093848000      1.541472000 
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[(ArS–)(TPP)FeIII(O22–)]2– (uB97D-def2-TZVP) Charge: -2, Multiplicity: 6 
7       -0.949476000      1.985508000     -0.356687000 
7       -2.328411000     -0.593033000     -0.227286000 
6       -0.112696000      3.073471000     -0.332568000 
6       -0.875937000      4.259540000     -0.002852000 
6       -2.173897000      3.867913000      0.156229000 
6       -2.215728000      2.438701000     -0.076106000 
6       -3.377706000      1.642225000      0.001154000 
6       -3.418001000      0.233215000     -0.097108000 
6       -4.624914000     -0.565754000     -0.062199000 
6       -4.240239000     -1.873566000     -0.143966000 
6       -2.795473000     -1.884986000     -0.229767000 
6        1.280451000      3.048557000     -0.557771000 
6       -4.672230000      2.349878000      0.225426000 
6       -5.423256000      2.126259000      1.391941000 
6       -6.633080000      2.792921000      1.603426000 
6       -7.114697000      3.695875000      0.648858000 
6       -6.375741000      3.927309000     -0.516727000 
6       -5.165141000      3.260662000     -0.724461000 
6        1.987995000      4.362108000     -0.566821000 
6        2.945046000      4.669588000      0.414708000 
6        3.603197000      5.902228000      0.411612000 
6        3.315059000      6.850092000     -0.576842000 
6        2.362952000      6.555632000     -1.559273000 
6        1.704688000      5.322716000     -1.552029000 
1       -0.465918000      5.254691000      0.111711000 
1       -3.022769000      4.482760000      0.425883000 
1       -5.631698000     -0.176284000      0.014011000 
1       -4.874902000     -2.750131000     -0.148827000 
1       -7.197005000      2.610941000      2.516287000 
1       -6.743584000      4.624607000     -1.267041000 
1        4.336967000      6.124090000      1.184149000 

1        2.134711000      7.284915000     -2.334215000 
6       -1.996198000     -3.047391000     -0.292614000 
6        2.064852000      1.889365000     -0.738203000 
6       -0.590244000     -3.072153000     -0.410324000 
6       -2.691204000     -4.363755000     -0.192582000 
7        1.605963000      0.597830000     -0.678667000 
6        3.489970000      1.882539000     -0.987427000 
7        0.220060000     -1.979280000     -0.601356000 
6        0.226235000     -4.262911000     -0.295994000 
6       -2.631333000     -5.286974000     -1.250286000 
6       -3.412315000     -4.712705000      0.962022000 
6        2.693523000     -0.225905000     -0.827980000 
6        3.878901000      0.575659000     -1.040083000 
1        4.109883000      2.762349000     -1.100539000 
6        1.516114000     -2.433549000     -0.621549000 
6        1.526256000     -3.868616000     -0.424062000 
1       -0.148452000     -5.261737000     -0.113329000 
6       -3.278617000     -6.522259000     -1.160039000 
6       -4.058326000     -5.948221000      1.056115000 
6        2.670507000     -1.635346000     -0.772196000 
1        4.875654000      0.187407000     -1.202990000 
1        2.414204000     -4.484460000     -0.365655000 
6       -3.995189000     -6.857552000     -0.005755000 
1       -3.226050000     -7.221344000     -1.992501000 
1       -4.606440000     -6.202938000      1.961154000 
6        3.982497000     -2.342360000     -0.837171000 
6        4.275728000     -3.226515000     -1.888765000 
6        4.947733000     -2.141459000      0.164176000 
6        5.504260000     -3.891112000     -1.941950000 
6        6.174905000     -2.807988000      0.114008000 
6        6.458952000     -3.684452000     -0.939626000 

1        5.716982000     -4.567744000     -2.767512000 
1        6.907751000     -2.646188000      0.902590000 
1        3.827271000      7.810134000     -0.580874000 
1       -4.498607000     -7.819538000      0.066325000 
1        7.414894000     -4.203045000     -0.979166000 
1       -8.056898000      4.215104000      0.812285000 
26      -0.405394000      0.012626000     -0.829209000 
8       -0.355065000      0.763528000     -3.840695000 
8       -0.627138000      0.104212000     -2.711391000 
1       -2.075132000     -5.025022000     -2.147410000 
1       -3.455252000     -4.008218000      1.789256000 
1        3.162462000      3.935587000      1.186462000 
1        0.966443000      5.091313000     -2.316486000 
1        4.722336000     -1.467428000      0.987282000 
1        3.533557000     -3.385984000     -2.667772000 
1       -4.591304000      3.438703000     -1.630997000 
1       -5.046136000      1.428227000      2.135667000 
6        2.616395000     -1.165511000      3.732474000 
6        3.996602000     -0.966614000      3.656929000 
6        4.522923000      0.183419000      3.052649000 
6        3.630961000      1.122746000      2.516875000 
6        2.252046000      0.929290000      2.593457000 
6        1.691053000     -0.219956000      3.212778000 
1        2.228670000     -2.067821000      4.203793000 
1        5.598570000      0.334940000      2.985377000 
1        1.583657000      1.664030000      2.150441000 
16      -0.043891000     -0.457652000      3.336620000 
1        4.015675000      2.008448000      2.014372000 
1        4.667799000     -1.721071000      4.067978000 

 

[(ArS–)(TPP)FeIII(O22–)]2– (uB97D-def2-TZVP) Charge: -2, Multiplicity: 4 
7        0.809026000     -1.947019000     -0.316911000 
7        2.319373000      0.454820000     -0.232452000 
6       -0.085483000     -2.998686000     -0.339332000 
6        0.582847000     -4.229556000     -0.000381000 
6        1.896109000     -3.926052000      0.202861000 
6        2.036266000     -2.508176000     -0.019038000 
6        3.254775000     -1.821852000      0.041309000 
6        3.369936000     -0.433686000     -0.106797000 
6        4.626226000      0.272954000     -0.133576000 
6        4.332192000      1.599751000     -0.242363000 
6        2.896093000      1.710613000     -0.275211000 
6       -1.450112000     -2.907210000     -0.638753000 
6        4.498018000     -2.610397000      0.277994000 
6        5.263347000     -2.411949000      1.439516000 
6        6.428437000     -3.150290000      1.664368000 
6        6.849902000     -4.101098000      0.727974000 
6        6.096383000     -4.307423000     -0.433080000 
6        4.930867000     -3.568450000     -0.654134000 
6       -2.231909000     -4.174205000     -0.720348000 
6       -3.239813000     -4.458749000      0.215516000 
6       -3.966543000     -5.650340000      0.144109000 
6       -3.696549000     -6.578310000     -0.868089000 
6       -2.693743000     -6.305870000     -1.805475000 
6       -1.967091000     -5.114236000     -1.729703000 
1        0.099197000     -5.194042000      0.082880000 
1        2.700617000     -4.592296000      0.484599000 
1        5.601051000     -0.193089000     -0.078826000 
1        5.019831000      2.433438000     -0.295025000 
1        7.004455000     -2.986350000      2.573131000 
1        6.418233000     -5.041316000     -1.169554000 
1       -4.739809000     -5.856068000      0.881842000 
1       -2.478860000     -7.020098000     -2.598092000 

6        2.200765000      2.925257000     -0.306703000 
6       -2.125501000     -1.696405000     -0.825042000 
6        0.804902000      3.019671000     -0.356129000 
6        2.986031000      4.191810000     -0.253178000 
7       -1.571602000     -0.439785000     -0.691786000 
6       -3.530824000     -1.593150000     -1.124018000 
7       -0.073353000      1.962085000     -0.505554000 
6        0.077930000      4.257794000     -0.233271000 
6        2.953646000      5.099391000     -1.325134000 
6        3.767122000      4.508698000      0.870822000 
6       -2.620617000      0.444896000     -0.832849000 
6       -3.839815000     -0.266771000     -1.121804000 
1       -4.190800000     -2.432768000     -1.297370000 
6       -1.335407000      2.526031000     -0.517617000 
6       -1.246846000      3.952212000     -0.325770000 
1        0.530561000      5.228374000     -0.078534000 
6        3.684682000      6.289645000     -1.277844000 
6        4.497211000      5.699249000      0.922245000 
6       -2.538531000      1.835677000     -0.705138000 
1       -4.801906000      0.197206000     -1.293054000 
1       -2.093797000      4.622288000     -0.262733000 
6        4.459644000      6.594080000     -0.153080000 
1        3.651531000      6.977594000     -2.120546000 
1        5.091458000      5.930347000      1.804245000 
6       -3.804996000      2.620761000     -0.754437000 
6       -4.045876000      3.545609000     -1.783661000 
6       -4.783715000      2.445716000      0.238184000 
6       -5.236380000      4.277290000     -1.822498000 
6       -5.973261000      3.178443000      0.202282000 
6       -6.204962000      4.096591000     -0.828442000 
1       -5.409189000      4.985507000     -2.630763000 
1       -6.717826000      3.034703000      0.983393000 

1       -4.262021000     -7.506264000     -0.925248000 
1        5.028180000      7.521091000     -0.114267000 
1       -7.131526000      4.666709000     -0.857229000 
1        7.757128000     -4.676317000      0.901678000 
26       0.389886000      0.005494000     -0.599252000 
8        0.295748000     -0.831060000     -3.639828000 
8        0.617201000     -0.089530000     -2.597365000 
1        2.350833000      4.861700000     -2.198643000 
1        3.791769000      3.814806000      1.707766000 
1       -3.443266000     -3.740030000      1.005217000 
1       -1.188158000     -4.899539000     -2.457885000 
1       -4.600527000      1.735572000      1.041242000 
1       -3.293192000      3.684416000     -2.556545000 
1        4.345708000     -3.726919000     -1.557072000 
1        4.933314000     -1.675096000      2.168159000 
6       -2.587784000      1.105667000      3.776645000 
6       -3.979896000      1.030477000      3.693922000 
6       -4.601271000     -0.027323000      3.015935000 
6       -3.791882000     -1.001426000      2.414941000 
6       -2.401576000     -0.932035000      2.499115000 
6       -1.746182000      0.121557000      3.190751000 
1       -2.125271000      1.937966000      4.305820000 
1       -5.685813000     -0.081528000      2.942805000 
1       -1.797261000     -1.689836000      2.006417000 
16       0.002827000      0.202483000      3.321235000 
1       -4.250110000     -1.815787000      1.856416000 
1       -4.585095000      1.809900000      4.1574900 
 
 
 

 

[(ArS–)(TPP)FeIII(O22–)]2– (uB97D-def2-TZVP) Charge: -2, Multiplicity: 2 
7        1.429902000     -1.646761000     -0.255747000 
7        1.993359000      1.134083000     -0.193450000 
6        0.970370000     -2.936850000     -0.100055000 
6        2.079764000     -3.844420000      0.085322000 
6        3.217081000     -3.099289000     -0.005230000 

6        2.805523000     -1.729939000     -0.211958000 
6        3.698532000     -0.651101000     -0.269885000 
6        3.299447000      0.691827000     -0.246245000 
6        4.207604000      1.813676000     -0.208652000 
6        3.443436000      2.935873000     -0.077845000 

6        2.065067000      2.503761000     -0.068075000 
6       -0.372372000     -3.330950000     -0.140124000 
6        5.156981000     -0.960544000     -0.299929000 
6        6.002469000     -0.597260000      0.762276000 
6        7.366393000     -0.901600000      0.731382000 
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6        7.911457000     -1.578968000     -0.365445000 
6        7.080126000     -1.949575000     -1.428572000 
6        5.716691000     -1.643231000     -1.393618000 
6       -0.705902000     -4.769679000      0.058262000 
6       -1.503393000     -5.167017000      1.145974000 
6       -1.834824000     -6.510452000      1.342110000 
6       -1.375053000     -7.485677000      0.449424000 
6       -0.584131000     -7.103498000     -0.640227000 
6       -0.255182000     -5.758607000     -0.832871000 
1        1.992419000     -4.908806000      0.259307000 
1        4.243225000     -3.432141000      0.084492000 
1        5.286013000      1.744365000     -0.267951000 
1        3.772010000      3.965317000     -0.013541000 
1        8.002492000     -0.615721000      1.567201000 
1        7.493918000     -2.474809000     -2.287525000 
1       -2.449114000     -6.796477000      2.194081000 
1       -0.228471000     -7.852662000     -1.345403000 
6        0.972370000      3.379619000     -0.002557000 
6       -1.430372000     -2.449418000     -0.399532000 
6       -0.355716000      2.981741000     -0.199940000 
6        1.256285000      4.821828000      0.248486000 
7       -1.332819000     -1.081280000     -0.504715000 
6       -2.781235000     -2.879295000     -0.676674000 
7       -0.776735000      1.692883000     -0.448405000 
6       -1.480104000      3.889266000     -0.228083000 
6        0.996433000      5.800479000     -0.725783000 

6        1.808284000      5.231731000      1.474340000 
6       -2.602324000     -0.636987000     -0.812960000 
6       -3.501613000     -1.756929000     -0.955715000 
1       -3.117186000     -3.908174000     -0.680389000 
6       -2.131102000      1.780825000     -0.687923000 
6       -2.575353000      3.147124000     -0.555241000 
1       -1.428052000      4.951882000     -0.030182000 
6        1.274913000      7.148556000     -0.482162000 
6        2.088062000      6.578596000      1.722377000 
6       -2.991078000      0.702333000     -0.926602000 
1       -4.547005000     -1.684957000     -1.225500000 
1       -3.599277000      3.479863000     -0.666736000 
6        1.821708000      7.543516000      0.744178000 
1        1.070323000      7.890112000     -1.252366000 
1        2.510542000      6.875173000      2.680746000 
6       -4.413322000      1.011224000     -1.247052000 
6       -4.742751000      1.702570000     -2.425649000 
6       -5.453106000      0.641531000     -0.376747000 
6       -6.071729000      2.010734000     -2.730816000 
6       -6.782806000      0.948685000     -0.678618000 
6       -7.098623000      1.633796000     -1.857759000 
1       -6.305581000      2.542018000     -3.651735000 
1       -7.573125000      0.659299000      0.012107000 
1       -1.632206000     -8.532336000      0.600131000 
1        2.039179000      8.592599000      0.935068000 
1       -8.133887000      1.873447000     -2.092984000 

1        8.973030000     -1.817155000     -0.390481000 
26       0.325290000      0.014516000     -0.377256000 
8        0.432322000     -0.963075000     -3.046912000 
8        0.507202000      0.111254000     -2.264327000 
1        0.575814000      5.493573000     -1.680614000 
1        2.013125000      4.480625000      2.234151000 
1       -1.861674000     -4.407845000      1.837540000 
1        0.353513000     -5.461468000     -1.683643000 
1       -5.203524000      0.126969000      0.547020000 
1       -3.944082000      1.995945000     -3.103508000 
1        5.069729000     -1.931431000     -2.219244000 
1        5.578167000     -0.076588000      1.617555000 
6       -2.321629000      1.142155000      2.435231000 
6       -3.684260000      1.117113000      2.734450000 
6       -4.307675000     -0.072985000      3.132728000 
6       -3.539781000     -1.241427000      3.221137000 
6       -2.175786000     -1.216938000      2.919890000 
6       -1.527007000     -0.024244000      2.524634000 
1       -1.858324000      2.067051000      2.101921000 
1       -5.372153000     -0.091121000      3.359867000 
1       -1.592733000     -2.134140000      2.975777000 
16       0.195952000      0.006957000      2.168859000 
1       -4.007437000     -2.180457000      3.516868000 
1       -4.269207000      2.031355000      2.639051000 
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