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Abstract—A wide variety of data can be represented
using third-order tensors. Applications of these tensors
include chemometrics, psychometrics, and image/video
processing. However, traditional data-driven frameworks
are not naturally equipped to process tensors without
first unfolding or flattening the data, which can resuit
in a loss of crucial higher-order structural information.
In this letter, we introduce a novel framework for data-
driven analysis of T-product-based dynamical systems
(TPDSs), where the system evolution is governed by the
T-product between a third-order dynamic tensor and a
third-order state tensor. In particular, we examine the data
informativity of TPDSs concerning system identification,
stability, controllability, and stabilizability and illustrate sig-
nificant computational improvements over unfolding-based
approaches by leveraging the unique properties of the
T-product. The effectiveness of our framework is demon-
strated through both synthetic and real-world examples.

Index Terms—Computational methods, data driven con-
trol, large-scale systems.

[. INTRODUCTION

UMEROUS real-world systems, including those found in
N image/video processing, biological systems, and social
sciences, exhibit complex, multi-dimensional relationships,
where the states are often represented as third-order or higher-
order tensors [1], [2], [3], [4]. Multi-linear dynamical systems,
newly proposed in recent years, extend classical linear systems
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theory that offer an effective framework for modeling these
tensor-based systems that cannot be adequately captured by
traditional methods [5], [6], [7]. The T-product is a powerful
tool for working with multi-linear dynamical systems, capable
of defining unique inverses, eigenvalue decompositions, and
singular value decompositions for third-order tensors, analo-
gous to their counterparts in linear algebra [8], [9].

The T-product framework provides a versatile approach to
analyzing and controlling multi-linear dynamical systems in
a variety of fields, including physics [10], [11], engineer-
ing [12], and biology [9], [13]. Specifically, the T-product
empowers researchers to perform sophisticated operations
on multidimensional data, e.g., images/videos, which are
often represented as third-order tensors. Traditional matrix-
based methods struggle to capture the complex relationships
between different dimensions of images including height,
width, and color channels. In contrast, T-product-based meth-
ods preserve the inherent multidimensional structure and have
potential applications in tasks such as image denoising, image
compression, image segmentation, and feature extraction, as
demonstrated by recent research [13], [14], [15], [16], [17].

T-product-based dynamical systems (TPDSs) are systems
whose evolution is governed by the T-product between a
third-order dynamic tensor and a third-order state tensor.
The concept was first proposed by Hoover et al. [18] as a
generalization of linear time-invariant (LTI) systems. TPDSs
offer a powerful framework for capturing complex interac-
tions in three-dimensional data. The development of tensor
decomposition techniques and circulant algebra has enabled
a seamless extension of linear systems theory to TPDSs,
covering fundamental concepts like explicit solutions, stability,
controllability, and observability. Nevertheless, the lack of
computational tools for their data-driven analysis has limited
their use in practical applications. This gap is particularly
evident in areas requiring system identification, stability, con-
trollability, and stabilizability from observational data.

Data-driven analysis and control have garnered significant
attention in recent years [19], [20], [21]. The origins of this
field can be traced back to the early 1980s, with the pioneering
work on the fundamental lemma (also known as persistency
of excitation) [22], which laid the theoretical foundation for
using input-output data to infer system properties. Recently,
Van Waarde et al. [19] presented a novel data-driven analysis
and control framework to investigate the data informativity
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of LTI systems, where data are not informative enough to
uniquely identify the system (i.e., the fundamental lemma
fails). Although data-driven research has attracted considerable
interest, the exploration of data-driven approaches specifically
for tensor-based systems, including the fundamental lemma,
remains relatively underdeveloped.

We focus on developing a data-driven approach for discrete-
time TPDSs. Tensor unfolding, which maps tensors into
matrices or vectors, can be used to extend traditional linear
system identification, stability, and controllability analyses to
TPDSs. However, this approach faces significant challenges
due to the curse of dimensionality. We use the properties of the
T-product to address this challenge. We provide effective and
efficient conditions of data informativity for system identifi-
cation (i.e., the fundamental lemma), stability, controllability,
and stabilizability of TPDSs. Additionally, we show how
T-product-based conditions offer significant computational
advantages over unfolding-based approaches, demonstrating
their applicability through numerical experiments. The rest of
this letter is structured as follows. In Section II, we begin
with an overview of T-product operations. In Section III,
we introduce TPDSs and examine the data informativity of
system identification, stability, controllability, and stabilizabil-
ity. In Section IV, we provide numerical examples for the
proposed methods. Finally, we conclude with future directions
in Section V.

Il. PRELIMINARIES

Tensors can be considered as multidimensional arrays,
which extend the concepts of vectors and matrices to higher-
dimensional settings [23], [24], [25]. The order of a tensor is
defined as the number of dimensions. Of particular interest in
this letter are third-order tensors, which we denote by T €
R™mxs A frontal slice of T, denoted by T.;, is a matrix
obtained by fixing the third mode and allowing the first two
modes to vary. In the following, we introduce the notion of the
T-product, an effective operation for manipulating third-order
tensors, that enables their multiplication through the notion
of circular convolution [9], [14], [15]. We first define four
operations for a third-order tensor T € R"*™*5 as follows:
T T T
%) ‘I::l

becire(T) = e RS

Teis ‘-T::(sf]) < T
unfold(?) = [T7, 7L, - T1]" e ™™,

)

un-bcirc is the reverse operation of bcirc such that
un-becirc(bcire(T)) = T, and fold is the reverse
operation of unfold such that fold(unfold(7)) = TJ.

Definition 1 (T-Product): The T-product between two third-
order tensor T € RS and 8§ € R™*"5  denoted by T x S,
is defined as

T*x8 = fold(bcirc(?)unfold(S)) e RV (1)

It is noteworthy that many fundamental matrix operations,
including identity, transpose, inverse, and orthogonality can be
also generalized to third-order tensors using the T-product:

1) The T-identity tensor J is defined as having the first
frontal slice (i.e., J..;) as the identity matrix with all
other frontal slices consisting of zeros.

2) The T-transpose of T € R™™*5 denoted by TT, is
obtained by transposing each of the frontal slices and
then reversing the order of the transposed frontal slices
from 2 to s.

3) The T-inverse of T € RS denoted by T~!, is defined
as T+« T = T « T = 7 (similarly for left and right
T-inverse).

4) A third-order tensor T € R™*"** is called T-orthogonal
isT*xTT =TT xT=1.

All operations explained above can be computed through
the block circulant operation. For example, the T-inverse can
be attained as T~! = un-becirc(beire(T)~1). Therefore,
the T-product does not form a group in the space of third-order
tensors because a T-inverse does not always exist (though it is
associative). With a slight abuse of notation, we use the same
superscript for both matrix and T-product-based operations.

Notably, eigenvalue decomposition and singular value
decomposition can be defined for third-order tensors in a
similar manner as matrices through the T-product [8], [9].

Definition 2 (T-Eigenvalue Decomposition): The T-eigen-
value decomposition of a third-order tensor T € R™"*¥ jg
defined as

T=UxD*xU", )

where U € C"™ and D € C™"** is F-diagonal (i.e., each
of its frontal slices is a diagonal matrix) such that the vectors
Dj;. € C° are referred to the eigentuples of 7.

The T-eigenvalue decomposition can be computed using cir-
culant operation bcirc and matrix eigenvalue decomposition.
However, employing the discrete Fourier transform can signif-
icantly expedite the process. In particular, a circulant matrix
can be block diagonalized via left and right multiplication by a
block diagonal discrete Fourier transform matrix. The Fourier
transform F{bcirc(T)} is defined as

Flocire(®)}) = (F, ® I)bcirc(T)(F @ L)
=blkdiag(Ty,..., Ty,

where the operation blkdiag denotes the MATLAB block
diagonal function, the superscript * denotes the conjugate
transpose, Iy € R¥** is the identity matrix, and F,, € C"*" is
the discrete Fourier transform matrix defined as

1 1 | |
1|11 o w? o !
Fn = NI : : ’
1 o1 20=D ... =17
with w = exp {%} (note that i denotes the imaginary number
here), and ® denotes the Kronecker product. In practice, the
matrix F, does not need to be explicitly formed, and its
effect can be efficiently implemented using a fast Fourier
transform operation. The T-eigenvalue decomposition of T
can be constructed through the eigenvalue decompositions
of T;. Given that T; = UijUj_l, U can be recovered by
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beirc(U) = (F; ® I)blkdaig(Uy, ..., Uy)(F, ® I;). The
F-diagonal tensor D can be obtained in a similar manner.

Definition 3 (T-Singular Value Decomposition): T-singular
value decomposition (T-SVD) of a third-order tensor J €
R™m*s is defined as

T=UxSxV', (3)

where U € RS and V € R™™** are T-orthogonal, and
8§ € R js a F-(rectangle) diagonal tensor such that 8. €
RS are referred to the singular tuples of 7.

The T-SVD can be computed analogously by applying the
Fourier transform F{bcirc(7)} and then performing singular
value decomposition on the block diagonal matrices T;. We
will show that both T-eigenvalue decomposition and T-SVD
play critical roles in data-driven analysis of TPDSs.

[1l. DATA-DRIVEN ANALYSIS OF TPDSs

We are now positioned to conduct data-driven analysis of
discrete-time TPDSs, which are defined as

X+ 1) = A xX(0), 4)

with A € R™"*" represents the state transition tensor, and
X(r) € R™" " denotes the state. Significantly, the TPDS (4)
can be transformed into LTI systems using bcirc, unfold,
and vec (i.e., the vectorization operation), resulting in three
equivalent linear representations, i.e.,

unfold(X(t + 1)) = bcirc(A)unfold(X(r)), 5)
becirc(X(t+ 1)) = becirc(A)becirc(X(?)), (6)
vec(X(#+ 1)) = dp @ becirc(A))vec(X(r)). (7)

As a result, data-driven analysis techniques from LTI systems
can be effectively extended to TPDSs. The state data tensors
are constructed by assembling the data as shown below:

Xo = [:X:(O) X)) --- X — 1)] e RxIhxr,
Xi = [X(1) XQ2) -~ X(D)] € R,

While the unfolded linear representations are useful for
studying the data-driven analysis of TPDSs, the full compu-
tational benefits are achieved by leveraging the properties of
the T-product. In the following, we first examine the data
informativity of TPDSs with respect to system identification,
stability, controllability, and stabilizability. The efficiency of
T-product-based computations in expressing these conditions
is also illustrated, along with numerical examples.

A. System Identification

The data informativity for system identification of TPDSs
involves determining the conditions under which the state
transition tensor A can be uniquely identified. It plays a crucial
role in extracting valuable information from time-series data
of third-order tensors, such as distinguishing foregrounds and
backgrounds in image/video data.

Definition 4 (System Identification): We say the data
(Xo, X1) are informative for system identification if the state
transition tensor A can be uniquely identified.

Proposition 1: The data (Xp,X;) are informative for
system identification if and only if the rank of bcirc(Xy) is
equal to nr.

Proof: Substituting data (Xg, X1) into the TPDS (4) gives
X1 = A x Xp. Due to the properties of block circulant matrix
operation, it follows that

bcirc(A) = bcirc(f)ﬁ)bcirc(xo)T.

According to linear matrix theory, bcirc(A) can be uniquely
determined if and only if bcirc(Xg) has full row rank, i.e.,
nr. The result thus follows immediately. |

We choose to use the second linear representation (6)
because the rank of bcirc(Xy) can be determined through
T-product-based computations. Specifically, we can leverage
the T-SVD of Xy and the associated block diagonal matrices
in the Fourier domain.

Corollary 1: The data (Xo, X{) are informative for system
identification if and only if all entries of the singular tuples of
Xo in the Fourier domain are nonzero.

Proof: Based on the finding in [11], the singular values
of bcirc(Xp) are the union of elements from the singular
tuples of Xp in the Fourier domain. According to linear matrix
theory, the rank of bcirc(Xp) is determined by the number
of its nonzero singular values. Therefore, the result follows
from Proposition 1. |

Corollary 2: The data (Xo, X1) are informative for system
identification if and only if the sum of the ranks of the block
diagonal matrices of F{bcirc(Xp)} is equal to nr.

Proof: The singular tuples of X in the Fourier domain can
be computed from the SVDs of the block diagonal matrices
of F{bcirc(Xo)}. Therefore, each block diagonal matrix has
full rank if and only if the corresponding singular tuples in
the Fourier domain contains nonzero entries. The result then
follows from Proposition 1. |

Remark 1: The time complexity of directly computing the
rank of beirc(Xo) is about O(n?r31h) (assuming n < Ih).
Note that the complexity reduces to O(n’r*Ih) by using the
linear representation (5). On the other hand, both Corollaries 1
and 2 only require O(n’rlh) operations for determining
the data informativity for system identification of TPDSs.
Therefore, T-product-based computations offer computational
benefits over the unfolding-based approach.

B. Stability

The data informativity for the stability of TPDSs involves
determining whether any state transition tensor A identified
from the data is stable. Specifically, a state transition tensor
A is considered stable if bcirc(A) is stable, meaning that
the eigenvalues of bcirc(A) lie within the unit circle. As
an illustrative example, assessing the stability of image/video
data is essential for ensuring the reliability and consistency of
visual information over time across different conditions (e.g.,
distortions, noise, or transformations).

Definition 5 (Stability): We say the data (Xg, X{) are infor-
mative for stability if any state transition tensor A identified
from the data is stable.

Proposition 2: The data (Xg, X;) are informative for sta-
bility if the following conditions: (i) the rank of bcirc(Xp)
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is equal to nr; (i) becirc(X * DCS) is stable for any right
T-inverse DC(T), are satisfied.

Proof: Based on the finding of the data informativ-
ity for stability of LTI systems [19], the matrix data
(becire(Xp), bcirce(Xy)) are informative for stability if
and only if the rank of bcirc(Xp) is equal to nr and
beire(X)beire(Xo)' is stable. Additionally, according to
the properties of block circulant matrices, it follows that

beire(X)beire(Xo) = bcirc(fxl * DC:;)

Therefore, the result follows immediately. [ |

Similar to LTI systems, the data (Xo, X{) are informative
for stability only if the system can be uniquely identified
(i.e., the data are informative for system identification). In the
following, we exploit the T-eigenvalue decomposition/T-SVD
and the corresponding block diagonal matrices in the Fourier
domain to articulate the aforementioned conditions.

Corollary 3: The data (X, X;) are informative for stability
if and only if the following conditions: (i) all entries of the
singular tuples of X in the Fourier domain are nonzero; (ii) all
entries of the eigentuples of X x DCS in the Fourier domain lie
within the unit circle for any right T-inverse DCS, are satisfied.

Proof: The first condition follows Corollary 1. For the
second condition, based on the finding in [11], the eigenvalues
of becirc(X; * DCS) are the union of elements from the
eigentuples of X; * DC(T) in the Fourier domain. Therefore, the
result follows from Proposition 2. |

Corollary 4: The data (X, X) are informative for stability
if and only if the following conditions: (i) the sum of the ranks
of the block diagonal matrices of F{bcirc(Xp)} is equal to
nr; (ii) the block diagonal matrices of F{bcirc(X| % DC(T))}
are stable for any right T-inverse X! are satisfied.

Proof: The first condition follows Corollary 2. For the
second condition, the eigentuples of X; I)CS in the Fourier
domain can be computed from the eigenvalue decomposition
of the block diagonal matrices of F{bcirc(X; DCS)}.
Therefore, each block diagonal matrix is stable if and only if
the corresponding eigentuple in the Fourier domain contains
nonzero entries. The result follows from Proposition 2. |

Remark 2: The time complexity of directly computing the
eigenvalues of bcirc(X; » .'X?g) is estimated as O#3r3). On
the contrary, both Corollaries 3 and 4 only involve O(n’r)
operations for determining the data informativity for stability
of TPDSs (excluding the time for system identification).
Hence, the T-product-based computations are advantageous
compared to the unfolding-based approach.

C. Controllability & Stabilizability

The data informativity for controllability/stabilizability of
TPDSs entails determining the conditions under which any
system identified from the data is controllable/stabilizable.
Both notions have significant implications for optimal control
design, e.g., driving image/video data to a desired state for
specific applications like object tracking or scene manipula-
tion. First, we introduce the model of TPDSs with control

N+ 1) = AxX(0) + B« W), (8)

where B € R™™*" represents the control matrix, and U(r) €
R™*hxr denotes the control input. Let 7 denote the finite
time horizon. The system (8) is said to be controllable if for
any initial state X(0) and target state X(7T), there exists a
sequence of inputs U(¢) that drives the system from X (0) to
X(T) [23]. The system (8) is considered stabilizable if there
exists a sequence of inputs of the form U(r) = K x X(r) for
K e R™™7 such that the new system A + B x X is stable.
Finally, suppose that the input data is collected as

Up = [UO) UL --- U — 1)] € R™xIxr,

The data informativity of controllability and stabilizability
for controlled TPDSs can be defined as follows.

Definition 6 (Controllability): We say data (Ug, Xo, X1)
are informative for controllability if any pair (A, B) identified
by the data is controllable.

Definition 7 (Stabilizability): We say data (Ug, Xo, X1) are
informative for stabilizability if any pair (A, B) identified by
the data is stabilizable.

Proposition 3: The data (Up, Xo, X;) are informative for
controllability if and only if the rank of bcirc(X; —AXp) is
equal to nr for any A € C.

Proof: Based on the finding of the data informativity
for controllability of LTI systems [19], the matrix data
(becire(Xp), bcire(X;)) are informative for controllability
if and only if the rank of bcirc(X;) — Abcirc(Xp) is equal
to nr for any A € C. Moreover, according to the properties of
block circulant matrices, it follows that

beirce(X;) — Abcirce(Xp) = becirce(X; — AXy),

and the result follows immediately. |

Similar to the result in [19], the above condition is equiv-
alent to the rank of bcirc(X;) being equal to nr, and the
rank of bcirc(X; — AXg) being equal to nr for all A # 0,
with A~! € o (becire(Xg)becire(X)T), where o denotes the
spectrum of a matrix. The following two corollaries can be
proven similarly as Corollaries 1 and 2 with T-SVD and block
diagonal matrices in the Fourier domain.

Corollary 5: The data (Xg, X;) are informative for con-
trollability if and only if all entries of the singular tuples of
X1 — AXp in the Fourier domain are nonzero for any A € C.

Corollary 6: The data (Xo, X{) are informative for stabi-
lizability if and only if the sum of the ranks of the block
diagonal matrices of F{bcirc(X; —AXp)} is equal to nr for
any A € C.

For the data informativity regarding the stabilizability of
TPDSs, an additional condition of [A| > 1 is required, as
established by [19]. The computational complexity analysis
follows similar principles as those presented in Remark 1.

IV. NUMERICAL EXAMPLES

We proceed to illustrate our framework with the following
numerical experiments. All experiments in this section were
conducted on a platform equipped with an M1 Pro CPU and
16GB of memory. The code used for these experiments is
available at https://github.com/dytroshut/TPDSs.
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approach and time/r for the T-product-based approach).
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Fig. 2. Computational time comparison in determining the data

informativity for stability between the unfolding-based and T-product-
based approaches. a. Log-log plot of computational time with respect
to the dimension of the third mode r. b. Ratio of time to the dimension
of the third mode r (i.e., time/r3 for the unfolding-based approach and
time/r for the T-product-based approach).

A. System Identification

In this example, we evaluated our approach for determining
the data informativity for system identification of TPDSs.
We first generated image data X(0), X(1), ..., X() €
R?*2%" from a predefined TPDS and constructed the state
data tensor Xo € R?*?*" with [ = 10 and r = 27 for p =
2,3,...,10. By Corollary 2, the sum of the ranks of the
block diagonal matrices of F{bcirc(Xp)} is equivalent to
the rank of bcirc(Xp). We then compared the computational
efficiency of computing the ranks of all block matrices in
F{bcirc(Xp)} with Proposition 1 that directly computes the
rank of bcirc(Xp). The computation time for each rank
relative to the corresponding dimension 7 is shown in Fig. 1a,
demonstrating that our approach significantly outperforms the
direct rank computation. Fig. 1b also shows that our results
are consistent with the complexity analysis.

B. Stability

In this example, we evaluated our approach for determin-
ing the data informativity for stability of TPDSs. We first
generated image data X(0), X(1), ..., X() € R2X2%7 from
a predefined TPDS and constructed the state data tensors
Xo, X1 € R¥ZXr with [ = 10 and r = 27 for p =
2,3,...,11. By Corollary 4, the eigenvalues of the block
diagonal matrices of F{bcirc(X] DC(T))} are equivalent to
the eigenvalues of bcirc(X; » xg). After ensuring the first
condition, we computed the eigenvalue decompositions of all

informativity for controllability between the unfolding-based and T-
product-based approaches. a. Log-log plot of computational time with
respect to the dimension of the third mode r. b. Ratio of time to the
dimension of the third mode r (i.e., time/r® for the unfolding-based
approach and time/r for the T-product-based approach).

block matrices in F{bcirc(X; * xg)} and compared the
computational efficiency with Proposition 2 which directly
computes the eigenvalue decomposition of bcirc(X; » DC(T)).
As with the first example, the computational time for using
Corollary 4 is significantly less than that of the unfolding-
based approach as r increases, see Fig. 2a. Moreover, this
result is consistent with our complexity analysis, see Fig. 2(b).

C. Controllability

In this example, we evaluated our approach for determining
the data informativity for controllability of TPDSs. We first
generated image data X(0), X(1), ..., X()) € R¥*?*" from
a predefined TPDS and constructed the state data tensors
Xo, X1 € R¥ZX with [ = 10 and r = 27 for p =
2,3,...,9. By Corollary 6, the sum of the ranks of the block
diagonal matrices of F{bcirc(X; — AXp)} is equivalent to
the rank of bcirc(X; — AXp). We then computed the ranks
of all block matrices in F{bcirc(X; —AXp)} and compared
the computational efficiency with Proposition 3 that directly
computes the rank of bcirc(X; — AXy). Here, we used the
MATLAB symbolic computation to compute the ranks (i.e.,
symbolic ranks). As with the first two examples, our approach
is significantly faster in determining the data informativity
for controllability when r is large compared to the unfolding-
based approach, see Fig. 3a. Again, our results align with the
complexity analysis, see Fig. 3b.

D. Case Study on Video Data

We conducted a case study on a video dataset to illus-
trate the efficacy of our proposed framework. The video
consists of a static noisy background overlaid with a single
white square that moves horizontally from left to right at a
constant speed. Two snapshots from the video at different
time stamps are shown in Fig. 4. The video comprises 70
frames, each defined at a specific time instant and having
a resolution of 70 x 70 pixels. Thus, it is represented as
a three-dimensional tensor, while each individual frame is
represented as a two-dimensional matrix. The spatial dimen-
sions (height and width) correspond to pixel locations, and
the temporal dimension captures the sequence of frames. We
compared the computational efficiency of the T-product-based
methods with the corresponding unfolding-based approaches
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Fig. 4. Snapshots of the video at two time stamps. The white square
moves horizontally across a static noisy background. The left image
shows the initial position of the square, while the right image illustrates
its position after horizontal motion.

TABLE |
COMPUTATIONAL TIME COMPARISON (IN SECONDS) IN DETERMINING
THE DATA INFORMATIVITY FOR SYSTEM IDENTIFICATION, STABILITY,
AND CONTROLLABILITY OF THE VIDEO DATASET

unfolding-based | T-product-based
System Identification 32.48 0.33
Stability 68.00 1.15
Controllability 23567.02 201.10

in determining data informativity for system identification,
stability, and controllability of the underlying video dynamics.
The results are shown in Table I, where the T-product-based
methods significantly reduce computation time. Additionally,
our findings have practical implications. For instance, our
ongoing work has demonstrated that data informativity for
system identification is crucial for effectively distinguishing
the static noise background from the foreground (i.e., the white
square) in this video data.

V. CONCLUSION

In this letter, we introduced a data-driven analysis frame-
work for TPDSs, where the system evolution is governed by
the T-product. We established effective and efficient criteria
for determining the data informativity for system identifi-
cation, stability, controllability, and stabilzability of TPDSs
by leveraging the unique properties of the T-product. We
further offered detailed complexity analyses for the proposed
criteria and verified them with numerical examples. Our T-
product-based framework can handle tensors with up to 230
double-precision floating-point numbers (equivalent to 8§ GB
data) on standard laptops with 16 GB of memory, demon-
strating its effectiveness in managing large-scale datasets. The
results can also be readily generalized to continuous-time
TPDSs by approximating the continuous-valued dynamics
through sampling. In the future, it will be valuable to explore
data-driven control of TPDSs, e.g., data informativity for state
feedback and quadratic regulators. Additionally, applying the
data-driven framework of TPDSs to real-world tasks where
data are often imperfect and noisy is essential. Generalizing
the results to nonlinear and hybrid systems with higher-order
tensors (integrated with tensor decompositions, such as tensor
trains) will also be an important direction for future work.
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