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Data-Driven Analysis of T-Product-Based
Dynamical Systems
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and Can Chen , Member, IEEE

Abstract—A wide variety of data can be represented
using third-order tensors. Applications of these tensors
include chemometrics, psychometrics, and image/video
processing. However, traditional data-driven frameworks
are not naturally equipped to process tensors without
first unfolding or flattening the data, which can result
in a loss of crucial higher-order structural information.
In this letter, we introduce a novel framework for data-
driven analysis of T-product-based dynamical systems
(TPDSs), where the system evolution is governed by the
T-product between a third-order dynamic tensor and a
third-order state tensor. In particular, we examine the data
informativity of TPDSs concerning system identification,
stability, controllability, and stabilizability and illustrate sig-
nificant computational improvements over unfolding-based
approaches by leveraging the unique properties of the
T-product. The effectiveness of our framework is demon-
strated through both synthetic and real-world examples.

Index Terms—Computational methods, data driven con-
trol, large-scale systems.

I. INTRODUCTION

N
UMEROUS real-world systems, including those found in

image/video processing, biological systems, and social

sciences, exhibit complex, multi-dimensional relationships,

where the states are often represented as third-order or higher-

order tensors [1], [2], [3], [4]. Multi-linear dynamical systems,

newly proposed in recent years, extend classical linear systems
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theory that offer an effective framework for modeling these

tensor-based systems that cannot be adequately captured by

traditional methods [5], [6], [7]. The T-product is a powerful

tool for working with multi-linear dynamical systems, capable

of defining unique inverses, eigenvalue decompositions, and

singular value decompositions for third-order tensors, analo-

gous to their counterparts in linear algebra [8], [9].

The T-product framework provides a versatile approach to

analyzing and controlling multi-linear dynamical systems in

a variety of fields, including physics [10], [11], engineer-

ing [12], and biology [9], [13]. Specifically, the T-product

empowers researchers to perform sophisticated operations

on multidimensional data, e.g., images/videos, which are

often represented as third-order tensors. Traditional matrix-

based methods struggle to capture the complex relationships

between different dimensions of images including height,

width, and color channels. In contrast, T-product-based meth-

ods preserve the inherent multidimensional structure and have

potential applications in tasks such as image denoising, image

compression, image segmentation, and feature extraction, as

demonstrated by recent research [13], [14], [15], [16], [17].

T-product-based dynamical systems (TPDSs) are systems

whose evolution is governed by the T-product between a

third-order dynamic tensor and a third-order state tensor.

The concept was first proposed by Hoover et al. [18] as a

generalization of linear time-invariant (LTI) systems. TPDSs

offer a powerful framework for capturing complex interac-

tions in three-dimensional data. The development of tensor

decomposition techniques and circulant algebra has enabled

a seamless extension of linear systems theory to TPDSs,

covering fundamental concepts like explicit solutions, stability,

controllability, and observability. Nevertheless, the lack of

computational tools for their data-driven analysis has limited

their use in practical applications. This gap is particularly

evident in areas requiring system identification, stability, con-

trollability, and stabilizability from observational data.

Data-driven analysis and control have garnered significant

attention in recent years [19], [20], [21]. The origins of this

field can be traced back to the early 1980s, with the pioneering

work on the fundamental lemma (also known as persistency

of excitation) [22], which laid the theoretical foundation for

using input-output data to infer system properties. Recently,

Van Waarde et al. [19] presented a novel data-driven analysis

and control framework to investigate the data informativity
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of LTI systems, where data are not informative enough to

uniquely identify the system (i.e., the fundamental lemma

fails). Although data-driven research has attracted considerable

interest, the exploration of data-driven approaches specifically

for tensor-based systems, including the fundamental lemma,

remains relatively underdeveloped.

We focus on developing a data-driven approach for discrete-

time TPDSs. Tensor unfolding, which maps tensors into

matrices or vectors, can be used to extend traditional linear

system identification, stability, and controllability analyses to

TPDSs. However, this approach faces significant challenges

due to the curse of dimensionality. We use the properties of the

T-product to address this challenge. We provide effective and

efficient conditions of data informativity for system identifi-

cation (i.e., the fundamental lemma), stability, controllability,

and stabilizability of TPDSs. Additionally, we show how

T-product-based conditions offer significant computational

advantages over unfolding-based approaches, demonstrating

their applicability through numerical experiments. The rest of

this letter is structured as follows. In Section II, we begin

with an overview of T-product operations. In Section III,

we introduce TPDSs and examine the data informativity of

system identification, stability, controllability, and stabilizabil-

ity. In Section IV, we provide numerical examples for the

proposed methods. Finally, we conclude with future directions

in Section V.

II. PRELIMINARIES

Tensors can be considered as multidimensional arrays,

which extend the concepts of vectors and matrices to higher-

dimensional settings [23], [24], [25]. The order of a tensor is

defined as the number of dimensions. Of particular interest in

this letter are third-order tensors, which we denote by T ∈
R

n×m×s. A frontal slice of T, denoted by T::j, is a matrix

obtained by fixing the third mode and allowing the first two

modes to vary. In the following, we introduce the notion of the

T-product, an effective operation for manipulating third-order

tensors, that enables their multiplication through the notion

of circular convolution [9], [14], [15]. We first define four

operations for a third-order tensor T ∈ R
n×m×s as follows:

bcirc(T) =

£

¤

¤

¤

¥

T::1 T::s · · · T::2

T::2 T::1 · · · T::3

...
...

. . .
...

T::s T::(s−1) · · · T::1

¦

§

§

§

¨

∈ R
ns×ms,

unfold(T) =
[

T
�
::1 T

�
::2 · · · T�

::s

]� ∈ R
ns×m,

un-bcirc is the reverse operation of bcirc such that

un-bcirc(bcirc(T)) = T, and fold is the reverse

operation of unfold such that fold(unfold(T)) = T.

Definition 1 (T-Product): The T-product between two third-

order tensor T ∈ R
n×m×s and S ∈ R

m×r×s, denoted by T � S,

is defined as

T � S = fold

(

bcirc(T)unfold(S)

)

∈ R
n×r×s. (1)

It is noteworthy that many fundamental matrix operations,

including identity, transpose, inverse, and orthogonality can be

also generalized to third-order tensors using the T-product:

1) The T-identity tensor I is defined as having the first

frontal slice (i.e., I::1) as the identity matrix with all

other frontal slices consisting of zeros.

2) The T-transpose of T ∈ R
n×m×s, denoted by T�, is

obtained by transposing each of the frontal slices and

then reversing the order of the transposed frontal slices

from 2 to s.

3) The T-inverse of T ∈ R
n×n×s, denoted by T−1, is defined

as T � T−1 = T−1 � T = I (similarly for left and right

T-inverse).

4) A third-order tensor T ∈ R
n×n×s is called T-orthogonal

is T � T� = T� � T = I.

All operations explained above can be computed through

the block circulant operation. For example, the T-inverse can

be attained as T−1 = un-bcirc(bcirc(T)−1). Therefore,

the T-product does not form a group in the space of third-order

tensors because a T-inverse does not always exist (though it is

associative). With a slight abuse of notation, we use the same

superscript for both matrix and T-product-based operations.

Notably, eigenvalue decomposition and singular value

decomposition can be defined for third-order tensors in a

similar manner as matrices through the T-product [8], [9].

Definition 2 (T-Eigenvalue Decomposition): The T-eigen-

value decomposition of a third-order tensor T ∈ R
n×n×s is

defined as

T = U � D � U−1, (2)

where U ∈ C
n×n×s and D ∈ C

n×n×s is F-diagonal (i.e., each

of its frontal slices is a diagonal matrix) such that the vectors

Djj: ∈ C
s are referred to the eigentuples of T.

The T-eigenvalue decomposition can be computed using cir-

culant operation bcirc and matrix eigenvalue decomposition.

However, employing the discrete Fourier transform can signif-

icantly expedite the process. In particular, a circulant matrix

can be block diagonalized via left and right multiplication by a

block diagonal discrete Fourier transform matrix. The Fourier

transform F{bcirc(T)} is defined as

F{bcirc(T)} = (Fn ⊗ Is)bcirc(T)
(

F
∗
n ⊗ Is

)

= blkdiag(T1, . . . , Ts),

where the operation blkdiag denotes the MATLAB block

diagonal function, the superscript ∗ denotes the conjugate

transpose, Is ∈ R
s×s is the identity matrix, and Fn ∈ C

n×n is

the discrete Fourier transform matrix defined as

Fn =
1

√
n

£

¤

¤

¤

¥

1 1 1 · · · 1

1 ω ω2 · · · ωn−1

...
...

...
. . .

...

1 ωn−1 ω2(n−1) · · · ω(n−1)2

¦

§

§

§

¨

,

with ω = exp {−2π i
n

} (note that i denotes the imaginary number

here), and ⊗ denotes the Kronecker product. In practice, the

matrix Fn does not need to be explicitly formed, and its

effect can be efficiently implemented using a fast Fourier

transform operation. The T-eigenvalue decomposition of T

can be constructed through the eigenvalue decompositions

of Tj. Given that Tj = UjDjU
−1
j , U can be recovered by
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bcirc(U) = (F∗
n ⊗ Is)blkdaig(U1, . . . , Us)(Fn ⊗ Is). The

F-diagonal tensor D can be obtained in a similar manner.

Definition 3 (T-Singular Value Decomposition): T-singular

value decomposition (T-SVD) of a third-order tensor T ∈
R

n×m×s is defined as

T = U � S � V�, (3)

where U ∈ R
n×n×s and V ∈ R

m×m×s are T-orthogonal, and

S ∈ R
n×m×s is a F-(rectangle) diagonal tensor such that Sjj: ∈

R
s are referred to the singular tuples of T.

The T-SVD can be computed analogously by applying the

Fourier transform F{bcirc(T)} and then performing singular

value decomposition on the block diagonal matrices Tj. We

will show that both T-eigenvalue decomposition and T-SVD

play critical roles in data-driven analysis of TPDSs.

III. DATA-DRIVEN ANALYSIS OF TPDSS

We are now positioned to conduct data-driven analysis of

discrete-time TPDSs, which are defined as

X(t + 1) = A � X(t), (4)

with A ∈ R
n×n×r represents the state transition tensor, and

X(t) ∈ R
n×h×r denotes the state. Significantly, the TPDS (4)

can be transformed into LTI systems using bcirc, unfold,

and vec (i.e., the vectorization operation), resulting in three

equivalent linear representations, i.e.,

unfold(X(t + 1)) = bcirc(A)unfold(X(t)), (5)

bcirc(X(t + 1)) = bcirc(A)bcirc(X(t)), (6)

vec(X(t + 1)) = (Ihr ⊗ bcirc(A))vec(X(t)). (7)

As a result, data-driven analysis techniques from LTI systems

can be effectively extended to TPDSs. The state data tensors

are constructed by assembling the data as shown below:

X0 =
[

X(0) X(1) · · · X(l − 1)
]

∈ R
n×lh×r,

X1 =
[

X(1) X(2) · · · X(l)
]

∈ R
n×lh×r.

While the unfolded linear representations are useful for

studying the data-driven analysis of TPDSs, the full compu-

tational benefits are achieved by leveraging the properties of

the T-product. In the following, we first examine the data

informativity of TPDSs with respect to system identification,

stability, controllability, and stabilizability. The efficiency of

T-product-based computations in expressing these conditions

is also illustrated, along with numerical examples.

A. System Identification

The data informativity for system identification of TPDSs

involves determining the conditions under which the state

transition tensor A can be uniquely identified. It plays a crucial

role in extracting valuable information from time-series data

of third-order tensors, such as distinguishing foregrounds and

backgrounds in image/video data.

Definition 4 (System Identification): We say the data

(X0,X1) are informative for system identification if the state

transition tensor A can be uniquely identified.

Proposition 1: The data (X0,X1) are informative for

system identification if and only if the rank of bcirc(X0) is

equal to nr.

Proof: Substituting data (X0,X1) into the TPDS (4) gives

X1 = A � X0. Due to the properties of block circulant matrix

operation, it follows that

bcirc(A) = bcirc(X1)bcirc(X0)
†.

According to linear matrix theory, bcirc(A) can be uniquely

determined if and only if bcirc(X0) has full row rank, i.e.,

nr. The result thus follows immediately.

We choose to use the second linear representation (6)

because the rank of bcirc(X0) can be determined through

T-product-based computations. Specifically, we can leverage

the T-SVD of X0 and the associated block diagonal matrices

in the Fourier domain.

Corollary 1: The data (X0,X1) are informative for system

identification if and only if all entries of the singular tuples of

X0 in the Fourier domain are nonzero.

Proof: Based on the finding in [11], the singular values

of bcirc(X0) are the union of elements from the singular

tuples of X0 in the Fourier domain. According to linear matrix

theory, the rank of bcirc(X0) is determined by the number

of its nonzero singular values. Therefore, the result follows

from Proposition 1.

Corollary 2: The data (X0,X1) are informative for system

identification if and only if the sum of the ranks of the block

diagonal matrices of F{bcirc(X0)} is equal to nr.

Proof: The singular tuples of X0 in the Fourier domain can

be computed from the SVDs of the block diagonal matrices

of F{bcirc(X0)}. Therefore, each block diagonal matrix has

full rank if and only if the corresponding singular tuples in

the Fourier domain contains nonzero entries. The result then

follows from Proposition 1.

Remark 1: The time complexity of directly computing the

rank of bcirc(X0) is about O(n2r3lh) (assuming n < lh).

Note that the complexity reduces to O(n2r2lh) by using the

linear representation (5). On the other hand, both Corollaries 1

and 2 only require O(n2rlh) operations for determining

the data informativity for system identification of TPDSs.

Therefore, T-product-based computations offer computational

benefits over the unfolding-based approach.

B. Stability

The data informativity for the stability of TPDSs involves

determining whether any state transition tensor A identified

from the data is stable. Specifically, a state transition tensor

A is considered stable if bcirc(A) is stable, meaning that

the eigenvalues of bcirc(A) lie within the unit circle. As

an illustrative example, assessing the stability of image/video

data is essential for ensuring the reliability and consistency of

visual information over time across different conditions (e.g.,

distortions, noise, or transformations).

Definition 5 (Stability): We say the data (X0,X1) are infor-

mative for stability if any state transition tensor A identified

from the data is stable.

Proposition 2: The data (X0,X1) are informative for sta-

bility if the following conditions: (i) the rank of bcirc(X0)
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is equal to nr; (ii) bcirc(X1 � X
†
0) is stable for any right

T-inverse X
†
0, are satisfied.

Proof: Based on the finding of the data informativ-

ity for stability of LTI systems [19], the matrix data

(bcirc(X0),bcirc(X1)) are informative for stability if

and only if the rank of bcirc(X0) is equal to nr and

bcirc(X1)bcirc(X0)
† is stable. Additionally, according to

the properties of block circulant matrices, it follows that

bcirc(X1)bcirc(X0)
† = bcirc

(

X1 � X
†
0

)

.

Therefore, the result follows immediately.

Similar to LTI systems, the data (X0,X1) are informative

for stability only if the system can be uniquely identified

(i.e., the data are informative for system identification). In the

following, we exploit the T-eigenvalue decomposition/T-SVD

and the corresponding block diagonal matrices in the Fourier

domain to articulate the aforementioned conditions.

Corollary 3: The data (X0,X1) are informative for stability

if and only if the following conditions: (i) all entries of the

singular tuples of X0 in the Fourier domain are nonzero; (ii) all

entries of the eigentuples of X1 �X
†
0 in the Fourier domain lie

within the unit circle for any right T-inverse X
†
0, are satisfied.

Proof: The first condition follows Corollary 1. For the

second condition, based on the finding in [11], the eigenvalues

of bcirc(X1 � X
†
0) are the union of elements from the

eigentuples of X1 � X
†
0 in the Fourier domain. Therefore, the

result follows from Proposition 2.

Corollary 4: The data (X0,X1) are informative for stability

if and only if the following conditions: (i) the sum of the ranks

of the block diagonal matrices of F{bcirc(X0)} is equal to

nr; (ii) the block diagonal matrices of F{bcirc(X1 � X
†
0)}

are stable for any right T-inverse X
†
0,are satisfied.

Proof: The first condition follows Corollary 2. For the

second condition, the eigentuples of X1 � X
†
0 in the Fourier

domain can be computed from the eigenvalue decomposition

of the block diagonal matrices of F{bcirc(X1 � X
†
0)}.

Therefore, each block diagonal matrix is stable if and only if

the corresponding eigentuple in the Fourier domain contains

nonzero entries. The result follows from Proposition 2.

Remark 2: The time complexity of directly computing the

eigenvalues of bcirc(X1 � X
†
0) is estimated as O(n3r3). On

the contrary, both Corollaries 3 and 4 only involve O(n3r)

operations for determining the data informativity for stability

of TPDSs (excluding the time for system identification).

Hence, the T-product-based computations are advantageous

compared to the unfolding-based approach.

C. Controllability & Stabilizability

The data informativity for controllability/stabilizability of

TPDSs entails determining the conditions under which any

system identified from the data is controllable/stabilizable.

Both notions have significant implications for optimal control

design, e.g., driving image/video data to a desired state for

specific applications like object tracking or scene manipula-

tion. First, we introduce the model of TPDSs with control

X(t + 1) = A � X(t) + B � U(t), (8)

where B ∈ R
n×m×r represents the control matrix, and U(t) ∈

R
m×h×r denotes the control input. Let T denote the finite

time horizon. The system (8) is said to be controllable if for

any initial state X(0) and target state X(T), there exists a

sequence of inputs U(t) that drives the system from X(0) to

X(T) [23]. The system (8) is considered stabilizable if there

exists a sequence of inputs of the form U(t) = K � X(t) for

K ∈ R
m×n×r, such that the new system A + B � K is stable.

Finally, suppose that the input data is collected as

U0 =
[

U(0) U(1) · · · U(l − 1)
]

∈ R
m×lh×r.

The data informativity of controllability and stabilizability

for controlled TPDSs can be defined as follows.

Definition 6 (Controllability): We say data (U0,X0,X1)

are informative for controllability if any pair (A,B) identified

by the data is controllable.

Definition 7 (Stabilizability): We say data (U0,X0,X1) are

informative for stabilizability if any pair (A,B) identified by

the data is stabilizable.

Proposition 3: The data (U0,X0,X1) are informative for

controllability if and only if the rank of bcirc(X1 − λX0) is

equal to nr for any λ ∈ C.

Proof: Based on the finding of the data informativity

for controllability of LTI systems [19], the matrix data

(bcirc(X0),bcirc(X1)) are informative for controllability

if and only if the rank of bcirc(X1)−λbcirc(X0) is equal

to nr for any λ ∈ C. Moreover, according to the properties of

block circulant matrices, it follows that

bcirc(X1) − λbcirc(X0) = bcirc(X1 − λX0),

and the result follows immediately.

Similar to the result in [19], the above condition is equiv-

alent to the rank of bcirc(X1) being equal to nr, and the

rank of bcirc(X1 − λX0) being equal to nr for all λ �= 0,

with λ−1 ∈ σ(bcirc(X0)bcirc(X1)
†), where σ denotes the

spectrum of a matrix. The following two corollaries can be

proven similarly as Corollaries 1 and 2 with T-SVD and block

diagonal matrices in the Fourier domain.

Corollary 5: The data (X0,X1) are informative for con-

trollability if and only if all entries of the singular tuples of

X1 − λX0 in the Fourier domain are nonzero for any λ ∈ C.

Corollary 6: The data (X0,X1) are informative for stabi-

lizability if and only if the sum of the ranks of the block

diagonal matrices of F{bcirc(X1 − λX0)} is equal to nr for

any λ ∈ C.

For the data informativity regarding the stabilizability of

TPDSs, an additional condition of |λ| ≥ 1 is required, as

established by [19]. The computational complexity analysis

follows similar principles as those presented in Remark 1.

IV. NUMERICAL EXAMPLES

We proceed to illustrate our framework with the following

numerical experiments. All experiments in this section were

conducted on a platform equipped with an M1 Pro CPU and

16GB of memory. The code used for these experiments is

available at https://github.com/dytroshut/TPDSs.
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Fig. 1. Computational time comparison in determining the data
informativity for system identification between the unfolding-based and
T-product-based approaches. a. Log-log plot of computational time with
respect to the dimension of the third mode r . b. Ratio of time to the
dimension of the third mode r (i.e., time/r3 for the unfolding-based
approach and time/r for the T-product-based approach).

Fig. 2. Computational time comparison in determining the data
informativity for stability between the unfolding-based and T-product-
based approaches. a. Log-log plot of computational time with respect
to the dimension of the third mode r . b. Ratio of time to the dimension
of the third mode r (i.e., time/r3 for the unfolding-based approach and
time/r for the T-product-based approach).

A. System Identification

In this example, we evaluated our approach for determining

the data informativity for system identification of TPDSs.

We first generated image data X(0), X(1), . . . , X(l) ∈
R

2×2×r from a predefined TPDS and constructed the state

data tensor X0 ∈ R
2×2l×r with l = 10 and r = 2p for p =

2, 3, . . . , 10. By Corollary 2, the sum of the ranks of the

block diagonal matrices of F{bcirc(X0)} is equivalent to

the rank of bcirc(X0). We then compared the computational

efficiency of computing the ranks of all block matrices in

F{bcirc(X0)} with Proposition 1 that directly computes the

rank of bcirc(X0). The computation time for each rank

relative to the corresponding dimension r is shown in Fig. 1a,

demonstrating that our approach significantly outperforms the

direct rank computation. Fig. 1b also shows that our results

are consistent with the complexity analysis.

B. Stability

In this example, we evaluated our approach for determin-

ing the data informativity for stability of TPDSs. We first

generated image data X(0), X(1), . . . , X(l) ∈ R
2×2×r from

a predefined TPDS and constructed the state data tensors

X0, X1 ∈ R
2×2l×r with l = 10 and r = 2p for p =

2, 3, . . . , 11. By Corollary 4, the eigenvalues of the block

diagonal matrices of F{bcirc(X1 � X
†
0)} are equivalent to

the eigenvalues of bcirc(X1 � X
†
0). After ensuring the first

condition, we computed the eigenvalue decompositions of all

Fig. 3. Computational time comparison in determining the data
informativity for controllability between the unfolding-based and T-
product-based approaches. a. Log-log plot of computational time with
respect to the dimension of the third mode r . b. Ratio of time to the
dimension of the third mode r (i.e., time/r3 for the unfolding-based
approach and time/r for the T-product-based approach).

block matrices in F{bcirc(X1 � X
†
0)} and compared the

computational efficiency with Proposition 2 which directly

computes the eigenvalue decomposition of bcirc(X1 � X
†
0).

As with the first example, the computational time for using

Corollary 4 is significantly less than that of the unfolding-

based approach as r increases, see Fig. 2a. Moreover, this

result is consistent with our complexity analysis, see Fig. 2(b).

C. Controllability

In this example, we evaluated our approach for determining

the data informativity for controllability of TPDSs. We first

generated image data X(0), X(1), . . . , X(l) ∈ R
2×2×r from

a predefined TPDS and constructed the state data tensors

X0, X1 ∈ R
2×2l×r with l = 10 and r = 2p for p =

2, 3, . . . , 9. By Corollary 6, the sum of the ranks of the block

diagonal matrices of F{bcirc(X1 − λX0)} is equivalent to

the rank of bcirc(X1 − λX0). We then computed the ranks

of all block matrices in F{bcirc(X1 − λX0)} and compared

the computational efficiency with Proposition 3 that directly

computes the rank of bcirc(X1 − λX0). Here, we used the

MATLAB symbolic computation to compute the ranks (i.e.,

symbolic ranks). As with the first two examples, our approach

is significantly faster in determining the data informativity

for controllability when r is large compared to the unfolding-

based approach, see Fig. 3a. Again, our results align with the

complexity analysis, see Fig. 3b.

D. Case Study on Video Data

We conducted a case study on a video dataset to illus-

trate the efficacy of our proposed framework. The video

consists of a static noisy background overlaid with a single

white square that moves horizontally from left to right at a

constant speed. Two snapshots from the video at different

time stamps are shown in Fig. 4. The video comprises 70

frames, each defined at a specific time instant and having

a resolution of 70 × 70 pixels. Thus, it is represented as

a three-dimensional tensor, while each individual frame is

represented as a two-dimensional matrix. The spatial dimen-

sions (height and width) correspond to pixel locations, and

the temporal dimension captures the sequence of frames. We

compared the computational efficiency of the T-product-based

methods with the corresponding unfolding-based approaches
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Fig. 4. Snapshots of the video at two time stamps. The white square
moves horizontally across a static noisy background. The left image
shows the initial position of the square, while the right image illustrates
its position after horizontal motion.

TABLE I
COMPUTATIONAL TIME COMPARISON (IN SECONDS) IN DETERMINING

THE DATA INFORMATIVITY FOR SYSTEM IDENTIFICATION, STABILITY,
AND CONTROLLABILITY OF THE VIDEO DATASET

in determining data informativity for system identification,

stability, and controllability of the underlying video dynamics.

The results are shown in Table I, where the T-product-based

methods significantly reduce computation time. Additionally,

our findings have practical implications. For instance, our

ongoing work has demonstrated that data informativity for

system identification is crucial for effectively distinguishing

the static noise background from the foreground (i.e., the white

square) in this video data.

V. CONCLUSION

In this letter, we introduced a data-driven analysis frame-

work for TPDSs, where the system evolution is governed by

the T-product. We established effective and efficient criteria

for determining the data informativity for system identifi-

cation, stability, controllability, and stabilzability of TPDSs

by leveraging the unique properties of the T-product. We

further offered detailed complexity analyses for the proposed

criteria and verified them with numerical examples. Our T-

product-based framework can handle tensors with up to 230

double-precision floating-point numbers (equivalent to 8 GB

data) on standard laptops with 16 GB of memory, demon-

strating its effectiveness in managing large-scale datasets. The

results can also be readily generalized to continuous-time

TPDSs by approximating the continuous-valued dynamics

through sampling. In the future, it will be valuable to explore

data-driven control of TPDSs, e.g., data informativity for state

feedback and quadratic regulators. Additionally, applying the

data-driven framework of TPDSs to real-world tasks where

data are often imperfect and noisy is essential. Generalizing

the results to nonlinear and hybrid systems with higher-order

tensors (integrated with tensor decompositions, such as tensor

trains) will also be an important direction for future work.
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