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Abstract

Motivation: Forecasting the synergistic effects of drug combinations facilitates drug discovery and development, especially regarding cancer
therapeutics. While numerous computational methods have emerged, most of them fall short in fully modeling the relationships among clinical
entities including drugs, cell lines, and diseases, which hampers their ability to generalize to drug combinations involving unseen drugs. These
relationships are complex and multidimensional, requiring sophisticated modeling to capture nuanced interplay that can significantly influence
therapeutic efficacy.

Results: \We present a novel deep hypergraph learning method named Heterogeneous Entity Representation for MEdicinal Synergy (HERMES)
prediction to predict the synergistic effects of anti-cancer drugs. Heterogeneous data sources, including drug chemical structures, gene expression
profiles, and disease clinical semantics, are integrated into hypergraph neural networks equipped with a gated residual mechanism to enhance high-
order relationship modeling. HERMES demonstrates state-of-the-art performance on two benchmark datasets, significantly outperforming existing

2* Mingyuan Yan'", Angi Dong ®?3, Shuai Gao*, Ren Wang?®,

methods in predicting the synergistic effects of drug combinations, particularly in cases involving unseen drugs.
Availability and implementation: The source code is available at https://github.com/Christina327/HERMES.

1 Introduction

Exploring drug combinations leads to a promising avenue for
enhancing cancer treatment efficacy while minimizing toxic-
ity and adverse reactions in modern medicine (Jia et al. 2009,
Wang et al. 2012, Csermely et al. 2013, Foucquier and Gued
2015). Combination therapies, involving multiple drugs ad-
ministered as a single treatment regimen, offer potential bene-
fits over traditional single-drug approaches, particularly
under cancer and tumor treatment contexts (Chou 2006,
O’Neil et al. 2016). Not only do they hold the promise of
greater therapeutic efficacy, but also present an opportunity
to mitigate host toxicity and unwanted side effects, as the
doses of drug combinations are often sub-mutagenic com-
pared to individual drug doses. However, optimizing drug
combinations can be challenging, as poorly chosen combina-
tions may lead to adverse effects and sub-optimal outcomes
(Hecht et al. 2009, Tol et al. 2009). Thus, there is a critical
need to identify precise synergistic drug pairs tailored to
different cancer types.

Historically, the identification of effective combination
drugs relied on clinical experience, a process that is not only
time-consuming and resource-intensive but also prone to trial
and error. In contrast, high-throughput screening has
emerged as an affordable and efficient strategy for identifying
synergistic drug pairs, leading to the generation of extensive
datasets (O’Neil et al. 2016, Holbeck et al. 2017, Jaaks et al.
2022). However, certain limitations persist, such as the in-
ability of cancer cell lines to accurately represent in vivo
states and the impracticality of exhaustively testing all mem-
bers of the full combinatorial space with high-throughput
screening (Ferreira et al. 2013, Goswami et al. 2015, Morris
etal. 2016).

Recently, numerous computational methods for predicting
drug synergy have been proposed. Pioneering methods, in-
cluding DeepSynergy (Preuer et al. 2018) and Matchmaker
(Kuru et al. 2022), utilize deep neural networks with both
the chemical properties of drugs and the gene expression
profiles of cell lines. The deep tensor factorization model
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(Sun ef al. 2020) combines tensor decomposition with neural
networks to forecast the synergistic effects of drug combina-
tions. Additionally, TransSynergy (Liu and Xie 2021) adopts a
transformer network model using drug—target and protein—pro-
tein interaction data. DeepDDS (Wang et al. 2022) employs
graph convolutional networks (GCNs) (Wu et al. 2021) and
multi-layer perceptrons (MLP) for synergy prediction. The cur-
rent state-of-the-art method HypergraphSynergy (Liu et al.
2022) made strides in this direction by incorporating hyper-
graph neural networks (HGNNGs) (Feng et al. 2019, Bai et al.
2021) to model these dynamics in a more interconnected and
multifaceted manner. Hypergraphs generalize graphs by allow-
ing hyperedges to connect more than two nodes (Chen and
Rajapakse 2020, Chen et al. 2021, Pickard et al. 2023), and en-
code multidimensional (or high-order) correlations and connec-
tions. However, these existing methods often fall short in
effectively predicting drug synergy due to their neglect of
higher-order drug interactions or lack of important biomedical
knowledge. DeepDDS focuses solely on pairwise drug interac-
tions using GCNs, and HypergraphSynergy, although it
considers higher-order drug-drug-cell line combinations, fails to
incorporate additional biomedical interactions, which hinders
its generalization, particularly involving unseen drug molecules.

In this article, we propose a novel deep hypergraph learning
method—Heterogeneous Entity Representation for MEdicinal
Synergy (HERMES) prediction—to enhance drug synergy pre-
diction. HERMES distinguishes itself with its innovative strat-
egy for integrating a variety of data sources, including drug
chemical properties, cell line gene expressions, and interac-
tions between drugs and indications. This integration is
achieved through a heterogeneous hypergraph structure,
which aids in assimilating extensive prior knowledge and
enhances the model’s ability to generalize in novel contexts.
Incorporating information about drug indications is particu-
larly important, as some drugs may function through similar
molecular mechanisms in different diseases (e.g. Bevacizumab
is effective against various cancers, including colorectal cancer
and non-small cell lung cancer). In contrast, drugs like gluco-
corticoids demonstrate different mechanisms across diseases
due to distinct biological pathways, such as their anti-
inflammatory action in rheumatoid arthritis versus their
apoptosis-inducing role in leukemia. This approach allows for
a more comprehensive capture of the varied biological con-
texts in which drug combinations achieve synergetic effects.
Another notable breakthrough of HERMES is addressing the
widespread issue of over-smoothing in message-passing net-
works by implementing a gated residual mechanism (Li et al.
2018), which not only retains more information but also nota-
bly enhances the expressiveness of the network.

Our empirical results highlight HERMES’s effectiveness,
especially in novel scenarios, surpassing HypergraphSynergy
and establishing it as a leading solution. The key contribu-
tions of this article are (i) integration of varied knowledge
sources (including drugs, cancer cell lines, and disease indica-
tions) into a scalable and heterogeneous model architecture;
(ii) enhancement of message passing over hypergraphs with
gated residual mechanisms for augmented network expres-
siveness; (iii) empirical evidence showcasing superior perfor-
mance compared to previous methods, highlighting robust
generalization in novel contexts, with an average improve-
ment of 5% in evaluation metrics over the state-of-the-art
methods. This article is structured into four sections. The
main architecture of HERMES is detailed in Section 2.

Wu et al.

We assess the performance of HERMES (along with other
representative drug synergy prediction methods) including a
comprehensive ablation study in Section 3. Finally, we con-
clude by discussing future research directions in Section 4.

2 Materials and methods
2.1 Overview of HERMES

Our framework conceptualizes drug synergy prediction under
a hypergraph framework, treating it as a hyperedge prediction
problem, where drugs, cell lines, and diseases are represented
by nodes while synergistic drug—drug—cell line triplets and
drug-disease pairwise relations are represented by hyperedges.
Hyperedge prediction is a generalization of edge prediction on
graphs (Zhang et al. 2018, Kumar et al. 2020, Yadati et al.
2020, Sharma et al. 2021, Chen and Liu 2023, Chen et al.
2023). This innovative approach unfolds through three inter-
connected phases: initialization, refinement, and consolidation
(Fig. 1). Each phase plays a pivotal role in processing and inte-
grating varied data types, thereby synthesizing comprehensive
information crucial for accurate drug synergy predictions.
Drawing inspiration from HypergraphSynergy, our model
introduces novel methodologies and integrates cutting-edge
techniques to significantly enhance prediction accuracy and
reliability at each phase of analysis.

2.2 Feature initialization

The initialization phase is crucial in our synergy prediction
methodology, as it involves the acquisition of initial features
for drugs, cell lines, and diseases. This phase performs
modality-specific representation learning to transform the raw
features of different modalities into a common feature space.
This alignment process is critical for the subsequent hyper-
graph learning as it ensures consistency in the representations,
allowing for effective integration of features across modalities.

2.2.1 Drug features

We generate drug features by utilizing molecular graphs,
which are built from the Simplified Molecular Input Line
Entry System (SMILES) representations of drugs (Kim et al.
2019). By employing the ConvMolFeaturizer method from
the DeepChem library (Duvenaud et al. 2015), we construct a
molecular graph for each drug, with atoms represented as
nodes and bonds as edges. Subsequently, we employ advanced
graph transformer networks (GTNs) (Yun et al. 2019) on mo-
lecular graphs to enhance the representations of atoms and
drugs. Denote the feature vector of atom i as a;. The updated
feature (denoted as a’;) through a GTN is then computed as

a/l. = U(W1X,' -+ Z a,-i\Vza/), (1)
JEN (1)

where N (i) denotes the neighboring atoms of atom i, Wy and
W, are learnable weight matrices, and o is a nonlinear activa-
tion function. Here, a;; is the multi-head attention coefficient

defined as

a;; = Softmax (W) ,

where d is the latent size of each head, and W3 and W, are
learnable weight matrices. GTNs can flexibly capture the
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Figure 1. Overview of HERMES framework. HERMES has three key phases: (i) initialization: acquiring and transforming initial features of drugs, cell lines,
and disease indications to a uniform dimensionality; (ii) refinement: enhancing feature representations through the construction of a dual-relationship
hypergraph and the application of hypergraph neural networks with gated residual connections; (iii) consolidation: integrating refined features using a
binary classification model to predict drug synergies with high accuracy. Each phase is integral to the framework’s ability to process diverse data types

and generate precise drug synergy predictions.

intricate and long-range dependencies among drugs’ atoms
by adaptively learning attention weights among them, offer-
ing more comprehensive drug representations over traditional
GCNs which are often limited by local receptive fields.
Finally, we compute the feature vector of a drug by aggregat-
ing all its updated atom features using maximum pooling.
The choice of maximum pooling is motivated by the fact that
drug molecular graphs may vary in the number of atom
nodes. The resulting feature matrix for all drugs is denoted
as Xryg-

2.2.2 Cell line features

We utilize gene expression profiles to generate cell line fea-
tures. Following a log2 transformation and z-score normali-
zation of gene expression data, we employ an MLP to derive
the features for cell lines, ensuring uniform dimensionality
with drug features. Denote the feature vector for cell line i by
ci, the updated feature (denoted as c;) through an MLP is
computed as

ci = 6(Wsc;+bs), (2)

where W5 and bs are learnable weight matrix and a bias vec-
tor, respectively. The resulting feature matrix for all cell lines
is denoted as X .

2.2.3 Disease features

We create disease features by leveraging a novel embedding
method called CODER, a knowledge-graph-guided large lan-
guage model for cross-lingual medical term representation us-
ing contrastive learning (Yuan et al. 2022). CODER excels in
providing close vector representations for various terms rep-
resenting similar medical concepts in multiple languages,
making it particularly beneficial for extracting enriched and
contextually relevant disease features (Yuan et al. 2022).
Similar to cell line features processing, we employ an MLP on
the obtained disease features to align with the consistent di-
mensionality of drug and cell line features. The resulting fea-
ture matrix for all diseases is denoted as Xg;. Notably,
integrating CODER with disease information enhances our
model’s ability to comprehend the intricate relationships

between drugs, cell lines, and diseases within the hyper-
graph framework.

2.3 Feature refinement

In the refinement phase, we focus on transforming the
obtained drug, cell line, and disease features into contextually
enriched representations. This process is achieved through
the construction of a dual-relation hypergraph and the imple-
mentation of an advanced feature enhancement technique,
namely HGNNs with gated residual connections (Li et al.
2018). These elements collectively elevate our model’s ability
to identify complex interrelationships, setting the stage for
more precise synergy predictions.

2.3.1 Hypergraph construction

We construct a novel dual-relationship hypergraph involving
relationships between drugs, cell lines, and diseases. The
hypergraph contains two types of hyperedges: (i) drug-drug—
cell line triplets (third-order interactions), which capture the
potential synergistic effects between specific drugs and cell
lines; (ii) drug—disease relationships (pairwise interactions or
traditional edges), which represent associations between
drugs and their corresponding disease indications. In this
context, diseases refer specifically to drug indications rather
than the broader cancer types represented by cell lines.
Therefore, we do not explicitly construct hyperedges between
cell lines and diseases. This dual-relationship hypergraph,
which has never been considered in previous methods, is piv-
otal in enriching the feature representations by integrating
the various features of drugs, cell lines, and diseases.

2.3.2 Hypergraph neural networks

We employ advanced HGNNs with gated residual mecha-
nisms to refine drug, cell lines, and disease features. HGNNs
excel in capturing the complex relationships and interactions
within the hypergraph, making it a pivotal component in our
model for drug synergy prediction (Feng et al. 2019). Denote
the feature matrix as X = vercat(Xgyg, Xeel, Xdis) Where ver-
cat is the vertical concatenation operation. The refined fea-
tures (denoted as X') through an HGNN are computed as
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X' = o(D~'HE~'H'XWy), (3)

where D and E are diagonal matrices of node and hyperedge
degrees, respectively. H is the incidence matrix of the hyper-
graph, containing binary values to indicate the presence or
absence of any node in any hyperedge, and Wy is the learn-
able weight matrix. Here, the superscripts —1 and T denote
matrix inversion and transposition, respectively. To enhance
the expressive capacity of our network and extract more in-
tricate patterns from the hypergraph, we increase the number
of layers in the HGNN. However, this approach leads to a
well-known challenge in graph neural networks, i.e. over-
smoothing (Chen et al. 2020).

The phenomenon of over-smoothing occurs when the net-
work layers become too deep, leading to the homogenization
of node features and a loss of valuable information. To miti-
gate this issue and further empower our network’s expressive
capabilities, we introduce a novel solution using gated resid-
ual connections (Li et al. 2018). The implementation of gated
residual connections within an HGNN is defined as

X' =X +0(W76(D~'HE"'H"XW;) +by)X, (4)

where W7 and by are learnable weight matrix and bias vector
of the gate, respectively. The introduction of the gated resid-
ual connection in HGNNs allows our neural network to dy-
namically regulate the integration of original and convoluted
features, which significantly reduces the risk of over-
smoothing by providing a controlled blending of features.
Additionally, we implement the equilibrium bias initialization
(EBI) strategy (Wang et al. 2010), where we initialize b; with
a relatively negative value. The EBI strategy ensures that the
gate functions close to an identity operation at the start of
training, allowing for gradual and more effective feature inte-
gration. Our refinement approach utilizing HGNNs coupled
with gated residual connections significantly enhances the
model’s ability to discern complex patterns and interactions
between drugs, cell lines, and diseases, thereby creating more
accurate representations for them compared to previous
methods such as HypergraphSynergy.

2.4 Feature consolidation

In the consolidation phase, our primary objective is to pro-
duce predictive insights by integrating the refined features
obtained from the earlier phase. We employ a binary classifi-
cation model that uses the features refined over the
dual-relationship hypergraph to identify drug synergies. It
classifies the interactions between drug combinations and cell
lines into two categories: synergistic and non-synergistic,
which provides a clear, binary output for each potential drug
synergy scenario.

2.4.1 Predictive model

The essence of the consolidation phase is using a predictive
model that leverages the features obtained in the refinement
phase to evaluate the potential synergistic effects of drug
combinations on specific cell lines and their implications for
disease treatment. Suppose the final refined features of drug 4,
drug j, and cell line k are denoted by d;, d;, and ¢, respec-
tively. The synergy score (denoted as S) can be computed us-
ing an MLP, i.e.

Wu et al.

S = G(ngercat(ai, &,-, ¢r) +bg), (5)

where Wy and bg are a learnable weight matrix and a bias
vector, respectively.

To address the unordered nature of drug pairs, a critical as-
pect in synergy prediction, we implement a pairwise symmet-
ric permutation augmentation strategy (Zhou et al. 2024).
This approach involves presenting both permutations of each
drug pair in our dataset. For example, if a data sample
includes the combination (drugl, drug2, cell line), we also in-
troduce (drug2, drugl, cell line) as a distinct sample. This
augmentation is essential to ensure that our model is agnostic
to the order of drugs, enhancing its capability to uniformly
recognize synergy.

2.4.2 Model training

Given the binary nature of our prediction task, we utilize the
cross-entropy loss function (Mao et al. 2023), a standard and
effective choice for binary classification models defined as

1 . ~
Loss = = ;> [yilog(3,) + (1 -yi)log(1-3)],  (6)
i=1

where y; and y; represent the actual and predicted label (syn-
ergistic or non-synergistic) of the ith sample, respectively, and
N is the total number of samples. The model is trained on a
dataset consisting of drug pairs, cell lines, and their
corresponding synergy labels. The training process involves
adjusting the weights of the neural network to minimize the
cross-entropy loss, enhancing the model’s ability to
accurately classify drug synergies.

2.5 HERMES and HypergraphSynergy

Although HERMES is inspired by HypergraphSynergy, it sig-
nificantly diverges from HypergraphSynergy in the follow-
ing aspects:

* HERMES integrates an additional knowledge source of
diseases and constructs a dual-relationship hypergraph.

* HERMES leverages advanced GTNs to obtain drug fea-
tures, while HypergraphSynergy only utilizes traditional
GCNe.

* HERMES improves HGNNs during the refinement phase
by incorporating gated residual mechanisms to address
the issue of over-smoothing.

* HERMES exploits useful learning techniques such as EBI
and pairwise symmetric permutation augmentation to en-
hance the model’s learning ability.

To mitigate the risk of overfitting, HERMES also includes
various regularization techniques, including dropout layers,
weight decay, and early stopping mechanism. Below, we show
that HERMES significantly outperforms HypergraphSynergy
in two drug synergy datasets, especially under the context of
predicting new drug combinations.

3 Results
3.1 Datasets

We collected four categories of data, including drug synergy
data, molecular information for drugs, genomic characteris-
tics of cancer cell lines, and indications for drug therapy in
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diseases, from multiple publicly available databases. The
details of these data are listed as follows:

* Drug synergy datasets: We gathered data on the synergy
of anti-cancer drugs from two prominent large-scale tu-
mor screening datasets—the O’Neil dataset (O’Neil et al.
2016) and the NCI-ALMANAC dataset (Holbeck et al.
2017). The O’Neil dataset comprises 23 062 samples in-
volving 38 unique drugs and 39 distinct human cancer
cell lines. Each sample measures Loewe synergy scores for
two drugs in combination with a specific cell line. The
NCI-ALMANAC dataset contains 304, 549 samples, in-
cluding ComboScores for 104 FDA-approved drugs in
pairings across the NCI-60 cell line panel.

Drug molecular structures: Information on the SMILES of
drugs is obtained from the PubChem database (Kim
etal. 2019).

Gene expression in cancer cell lines: Data on gene expres-
sion in cancer cell lines are sourced from the Cell Lines
Project within the COSMIC database (Forbes ez al. 2015).
In this context, we specifically considered the expression
values of 651 genes related to the COSMIC cancer gene
census. These expression values are subjected to logarith-
mic (log2) transformation and z-score normalization. We
also utilized the CCLE (Barretina et al. 2012) and GDSC
(Yang et al. 2013) databases as alternative data sources
(see details in Supplementary Data).

Drug indications: The drug-indication annotations are
sourced from PrimeKG (Chandak et al. 2023), a multi-
modal knowledge graph designed for precision medicine.
PrimeKG integrates information from various high-
quality biomedical resources, such as DisGeNET Pinero
et al. (2020) and DrugBank Wishart et al. (2018), as well
as data from different biological scales, including disease
pathways and phenotypes. It provides detailed relation-
ships between drugs and diseases, covering indications,
contraindications, and off-label uses. This comprehensive
knowledge base is particularly valuable for identifying po-
tential new applications for drugs and optimizing treat-
ment approaches based on the underlying molecular
mechanisms of diseases.

We performed a comprehensive data preprocessing on two
primary drug synergy datasets—NCI-ALMANAC and
O’Neil. To ensure the quality and relevance of the data, we
excluded cell lines lacking gene expression information and
drugs without SMILES details. Following this preprocessing
phase, the NCI-ALMANAC dataset comprises 74 139 mea-
surement samples of ComboScores for 87 drugs across 55
cancer cell lines, while the O’Neil dataset encompasses
18 950 samples of Loewe synergy scores for 38 drugs and 39
cancer cell lines (Table 1). Subsequently, we removed drugs
from the ‘drug-disease dataset’ that are not present in the
aforementioned drug synergy datasets. This led to the extrac-
tion of indications for 82 diseases corresponding to 37 drugs
within the NCI-ALMANAC dataset and 42 diseases corre-
sponding to 12 drugs within the O’Neil dataset.

Table 1. Statistics of the two datasets.

Dataset #Drugs #CLine #Samples
NCI-ALMANAC 87 55 74 139
O’Neil 38 39 18950

3.2 Baselines

We conducted a comparative analysis of our approach with
representative drug synergy prediction techniques. Below is a
brief overview of each of the baseline methods:

* DeepSynergy (Preuer et al. 2018): It utilizes a three-layer
feedforward neural network to predict synergy scores, in-
corporating gene expression as cell line features and three
types of chemical descriptors as drug features.

DTF (Sun et al. 2020): It extracts latent features from the
drug synergy matrix through tensor factorization and
employs them to train a deep neural network model for
predicting drug synergy.

HypergraphSynergy (Liu et al. 2022) (the current state-of-
the-art method): It formulates synergistic drug combina-
tions across cancer cell lines as a hypergraph. In this
hypergraph, drugs and cell lines are represented by nodes,
while synergistic drug-drug—cell line triplets are repre-
sented by hyperedges. It leverages the biochemical fea-
tures of drugs and cell lines as node attributes.
Additionally, a HGNN is employed to learn drug and cell
line embeddings from the hypergraph and predict drug
synergy.

NHP (Yadati et al. 2020): It is a GCN-based model spe-
cifically designed for hypergraphs to capture complex,
higher-order relationships among multiple nodes. NHP
employs hyperlink-aware GCN layers to transform hyper-
edges into clique expansions, which enables the modeling
of multi-way interactions among drugs and cell lines in
the drug synergy prediction task.

3.3 Experiment setup

In this study, we trained and validated the models indepen-
dently using the NCI-ALMANAC and O’Neil datasets. For
each dataset, it is initially divided into two distinct sets: a
training set, accounting for 90% of the total data, and a test
set comprising the remaining 10%. The training set under-
goes a rigorous five-fold cross-validation process. This pro-
cess is structured in three unique partitioning strategies to
ensure comprehensive evaluation:

* Random: Samples are randomly divided, providing a
baseline assessment of model performance.

* CLine: Samples are stratified by target cell line, ensuring
each fold’s validation set contains unique cell lines not
present in its training set.

* DrugComb: Samples are stratified based on drug combi-
nations. Each validation set included drug combinations
not seen in the training set, although individual drugs
might overlap.

The test set is used for final evaluation, whereby an unbi-
ased assessment of the model’s predictive power is ensured.

Additionally, for the classification task, synergy scores are
converted to binary outcomes. Following established proto-
cols (Preuer et al. 2018, Sun et al. 2020), a threshold of 30 is
used. Scores above this threshold indicate a positive synergy,
while scores below are deemed negative. Ultimately, the mod-
el’s performance is evaluated using key metrics: area under
the receiver operating characteristic curve (AUROC), area
under the precision-recall curve (AUPRC), and F1-score.
These three metrics together provide a comprehensive view of
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the model’s effectiveness in terms of precision, recall, and
overall balance between precision and recall.

3.4 Hyperparameters

We conducted a grid search for optimized hyperparameters.
Hyperparameters that yielded the highest AUROC in cross-
validation were chosen for subsequent test experiments.
Table 2 presents the range of values considered for each
hyperparameter. The optimal values (in bold) are selected
based on their performance during the training and valida-
tion phases.

3.5 Performance comparison and analysis

In the NCI-ALMANAC dataset, HERMES exhibits superior
performance across all evaluation strategies compared to the
baseline methods (Fig. 2A). Under the random partitioning
strategy, HERMES achieves an AUROC of 85.91% (std:
0.0046), which is significantly higher than HypergraphSynergy,
DTF, NHP, and DeepSynergy, which score 85.30%, 82.38%,
77.69%, and 83.50%, respectively (HERMES vs.
HypergraphSynergy: P-value < 0.05, two-sample #-test). In the
more challenging ‘DrugComb’ mode, HERMES achieves an
AUROC of 79.75% (std: 0.0112), significantly outperforming
the other methods, with HypergraphSynergy recording
77.98% (P-value < 0.01, two-sample #-test), NHP achieving

Table 2. Hyperparameter selection (selected hyperparameters are
highlighted in bold).

Hyperparameter Values

Learning rate
Weight decay
Attention heads
Refinement layer
Interaction weight

{1e-3, Se-4, 2e-4, 1e-4, Se-5, 2e-5}
{le-1, 1e-2, 1e-3, 1e-4}
{2,4,8}

{2,3,4}

{0, 0.02, 0.05,0.1,0.2, 0.5, 1.0}

Wu et al.

75.71%, and DTF and DeepSynergy achieving even lower
scores. For the ‘CLine’ mode, HERMES also performs better
than the rest of the methods. Additionally, the AUPRC and F1-
score results reflect a similar trend (middle and right panels).

The performance of HERMES is further validated using
the O’NEIL dataset (Fig. 2B), where similar results are ob-
served across the three modes in terms of AUROC, AUPRC,
and Fl-score. In the random stratification, HERMES attains
an AUROC of 93.67% (std: 0.0032), significantly outper-
forming HypergraphSynergy, DTF, NHP, and DeepSynergy,
which score 92.30%, 91.38%, 87.07%, and 90.60%, respec-
tively (HERMES vs. HypergraphSynergy: P-value < 0.001,
two-sample ¢-test). In the DrugComb mode, HERMES main-
tains a competitive edge with an AUROC of 88.34% (std:
0.0205), significantly surpassing HypergraphSynergy at
86.22% (P-value < 0.05, two-sample #-test) and outperform-
ing NHP at 82.92%. HERMES also achieves better perfor-
mance under the CLine mode compared to the other
methods, further supporting its robustness across differ-
ent datasets.

To further validate the performance of our model, we con-
sidered two new validation modes using the ALMANAC
dataset (Fig. 3) to assess the model’s generalization ability to
previously unseen drugs. The two modes are defined as fol-
lows: (i) DrugSingle, where samples are stratified based on in-
dividual drugs, with one drug in each drug combination in
the validation set being novel to the training set. This ap-
proach reduces the dataset size and challenges the model to
predict synergies involving new drugs; (ii) DrugDouble,
where samples are stratified such that each drug combination
in the validation set contains two drugs, neither of which
appears in the training set, further reducing the dataset size
and increasing the difficulty. The results of ‘DrugSingle’ and
‘DrugDouble’ are shown in Fig. 3. In the ‘DrugSingle’ mode,
HERMES achieves an AUROC of 72.13% (std: 0.0118),
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Figure 2. Model performance comparison for (A) ALMANAC dataset and (B) O'Neil Dataset. The left panels show the AUROC (%), the middle panels
present the AUPRC (%), and the right panels display the F1-score (%) for different models across three validation modes (Random, CLine, DrugComb).
Asterisks indicate statistical significance between HERMES and HypergraphSynergy (***P-value < 0.001; **P-value < 0.01; *P-value < 0.05; two-sample
t-test).
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HERMES

which is significantly higher than HypergraphSynergy’s
67.84% (P-value < 0.001, two-sample t-test). Similarly, in
the ‘DrugDouble’ mode, HERMES scores an AUROC of
68.39%  (std:  0.0468), significantly outperforming
HypergraphSynergy (P-value < 0.001, two-sample z-test).
The AUPRC metrics also show a consistent advantage
for HERMES.

The comprehensive evaluation across different datasets
and validation modes underscores the efficacy of HERMES
in drug synergy prediction. Although statistical insignificance
is observed in certain validation modes, indicating that the
extent of improvement can vary based on data distribution,
sample size, and task difficulty, HERMES consistently dem-
onstrates competitive and robust performance compared to
other methods. These results validate the superiority of
HERMES in addressing diverse drug synergy prediction tasks
and emphasize its potential for predicting untested drug syn-
ergies in clinical applications.

3.6 Ablation study

The ablation study, as detailed in Table 3, scrutinizes the con-
tributions of various components within the HERMES model
utilizing the NCI-ALMANAC dataset. The evaluation
encompasses three distinct modes: ‘Random’, ‘CLine’, and
‘DrugComb’, with the primary metric being the average test
AUROC for each configuration. The benchmark perfor-
mance of the complete HERMES model registers an AUROC
of 85.9% in the ‘Random’ mode, 79.4% in the ‘CLine’ mode,
and 79.8% in the ‘DrugComb’ mode. These figures provide a
baseline for evaluating the effects of systematically removing
specific components or combinations of components.

75 30
K%k .

70 ks 2%
3 o & 22
2 )
60 18
16

55

DrugSingle DrugDouble DrugSingle DrugDouble
Figure 3. Performance comparison of HERMES and HypergraphSynergy
in the DrugSingle and DrugDouble modes using the ALMANAC dataset.
Asterisks indicate statistical significance between HERMES and
HypergraphSynergy(*** Pvalue < 0.001; ** P-value < 0.01; two-sample
ttest).

Table 3. Ablation study results.

3.6.1 Contribution of transformer architecture

Excluding the transformer component results in significant
performance drops across all three modes. These findings
highlight the indispensable role of the transformer in captur-
ing intricate relationships within the data.

3.6.2 Impact of disease knowledge

The exclusion of disease (drug-indication relation) demon-
strates a slight yet notable impact on the model’s perfor-
mance. These findings suggest that incorporating disease
knowledge provides a performance advantage, but the mar-
gin remains relatively narrow. This may stem from the single-
modal nature of the current disease data and the limitations
of the classical CODER model. Exploring the integration of
multimodal disease knowledge and adapting more advanced
large language models could potentially enhance this perfor-
mance benefit.

3.6.3 Role of gated residuals

Omitting the gated residual connections results in a notable
performance degradation, particularly in the ‘Random’
mode. This emphasizes the significance of gated residuals in
maintaining high predictive accuracy, especially in scenarios
with higher data variability.

3.6.4 Importance of gating mechanisms

The removal of the gating mechanism induces the most pro-
nounced decline in performance across all modes. This under-
scores the critical function of gating mechanisms in
modulating information flow and enhancing the mod-
el’s resilience.

3.6.5 Effect of weighted hyperedges

The absence of weighted hyperedges also leads to consider-
able performance decline across all three modes. This under-
scores the necessity of weighted hyperedges for accurately
modeling complex interactions, particularly in the diverse
Random mode.

In summary, the ablation study clearly demonstrates that
each component of the HERMES model contributes uniquely
to its overall efficacy. Transformer architecture, molecule in-
dication relation, gated residuals, gating mechanisms, and
weighted hyperedges collectively enhance the model’s predic-
tive performance. These results affirm the sophisticated de-
sign of HERMES, showcasing the synergistic effect of its
components in achieving superior predictive accuracy across
various validation strategies.

Strategy Random

CLine DrugComb

HERMES 85.9% =0.005

w/o transformer 82.8%=+0.007
w/o disease 85.7%+0.006
w/o gated residual 84.0%+0.060
w/o gate 82.5%+0.006

82.1%+0.005
82.0%=0.004
80.4%=0.006

w/o transformer + w/o disease

w/o transformer + w/o gate

w/o transformer + w/o disease +
w/o gate

79.4% = 0.017
78.5%%0.013
79.2%+0.016
79.0%=*0.014
78.7%%0.013
77.8%*0.015
77.7%%0.014
76.5%*0.016

79.8% = 0.011
78.3%+0.011
79.5%%0.007
78.8%=+0.009
78.5%%0.009
77.3%*0.021
77.2%%0.021
77.8%%0.024

Average test AUROC (with standard derivation) of HERMES with and without key components.
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4 Conclusion

In this article, we introduced HERMES, a novel deep hyper-
graph learning framework for drug synergy prediction that
integrates heterogeneous biomedical data, including drug mo-
lecular structures, gene expression profiles of cell lines, and
disease indications. Our results demonstrate that HERMES
consistently achieves superior performance across two large-
scale benchmark datasets, excelling particularly in challeng-
ing scenarios with previously untested drug combinations.
The model’s gated residual mechanism mitigates over-
smoothing in message-passing, enabling it to capture intricate
high-order relationships among drugs, cell lines, and diseases
with enhanced precision.

While HERMES establishes a flexible and general frame-
work for drug synergy prediction, there are areas for
improvement. First, the model currently incorporates only
drug, cell line, and disease information, limiting its ability to
leverage other relevant biomedical knowledge, such as
protein—protein interactions, drug-target interactions, and
disease—gene interactions. Integrating such information
would further enrich the hypergraph structure and improve
the model’s generalizability and predictive accuracy.
Additionally, HERMES’s computational demands, particu-
larly in terms of CPU and GPU usage, could present chal-
lenges when scaling to extremely large datasets or
incorporating more data sources. To address this, innovative
graph/hypergraph sampling techniques and optimized mem-
ory management strategies should be explored. Finally,
HERMES presently models interactions between only two
drugs. Extending the framework to accommodate multi-drug
combinations could open promising new avenues for explor-
ing complex treatment regimens and identifying synergies in
multi-drug therapies.

In summary, HERMES presents a scalable and adaptable
approach to drug synergy prediction, with potential applica-
tions extending into other biomedical and clinical research
domains, such as drug discovery, personalized medicine,
and the development of more effective and efficient thera-
peutic strategies. It enhances the ease of laboratory imple-
mentation while also providing cost-effective solutions for
assessing drug synergy. The framework’s flexibility opens
further opportunities to incorporate additional data sources
and adapt to diverse predictive tasks, making it a founda-
tional step towards more accurate and generalizable drug
synergy models.
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