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Impact of Fake Agents on Information Cascades
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Abstract—In online markets, agents often learn from other’s
actions in addition to their private information. Such observa-
tional learning can lead to herding or information cascades in
which agents eventually ignore their private information and
“follow the crowd”. Models for such cascades have been well
studied for Bayes-rational agents that arrive sequentially and
choose pay-off optimal actions. This paper additionally considers
the presence of fake agents that take a fixed action in order
to influence subsequent rational agents towards their preferred
action. We characterize how the fraction of such fake agents
impacts the behavior of rational agents given a fixed quality of
private information. Our model results in a Markov chain with
a countably infinite state space, for which we give an iterative
method to compute an agent’s chances of herding and its welfare
(expected pay-off). Our main result shows a counter-intuitive
phenomenon: there exist infinitely many scenarios where an
increase in the fraction of fake agents in fact reduces the chances
of their preferred outcome. Moreover, this increase causes a
significant improvement in the welfare of every rational agent.
Hence, this increase is not only counter-productive for the fake
agents but is also beneficial to the rational agents.

Index Terms—Information cascades, herding, Bayesian opti-
mality, Perfect Bayesian Equilibrium (PBE).

I. INTRODUCTION

C
ONSIDER a new item that is up for sale in a

recommendation-based market where agents arrive se-

quentially and decide whether to buy the item, with their

choice serving as a recommendation for later agents (eg.,

through a public database). This item has a common qual-

ity/utility (say “good” or “bad”) that is unknown to the agents.

Each agent then makes a pay-off optimal decision by using its

own prior knowledge of the item’s quality and by observing

the choices of its predecessors. Such models of “observational

learning” were first studied by [2], [3], [4] under a Bayesian

learning framework wherein each agent has some prior knowl-

edge in the form of a privately observed signal about a pay-

off-relevant state of the world generated from a commonly

known probability distribution. Agents arrive in an exogenous

order, and every agent chooses its action based on its own

private signal and observations of past agents’ actions. Agents

are assumed to be Bayes rational, i.e., their actions are optimal

with repsect to their posterior beliefs of the true state of the
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world given their observations1. A key result for such models

is the emergence of information cascades or herding, i.e., at

some point, it is optimal for an agent to ignore its own private

signal and follow the actions of the past agents. Subsequent

agents then follow suit due to their homogeneity. As a result,

from the onset of a cascade, the agents’ actions do not reveal

any information conveyed to them by their private signals;

hence learning stops.

The model described above has two possible outcomes.

First, the agents may end up in a correct cascade, that is

the information accumulated within the observation history

eventually forces all successive agents to take the optimal

action with respect to the underlying true state of the world.

In this case, learning or a socially optimal behaviour is said

to be achieved. Second, there is also the possibility that past

observations might get accumulated in a manner that forces all

successive agents to take the action that, although individually

optimal, is in fact socially sub-optimal, which we refer to as

a wrong cascade. Thus, herding to a wrong cascade would

prevent the agents from learning the socially optimal (correct)

choice. Moreover, a main result of work in [2], [3], [4]

(and others) that assumes homogeneous agents and discrete

bounded private signals is that a cascade (correct or wrong)

commences within the arrival of a finite number of agents

with probability one. This leads to a positive probability that

a wrong cascade occurs.

In this paper, we study a Bayesian learning model similar to

[2], [3], [4] where in addition to rational agents, we introduce

randomly arriving fake agents that always take (or fake) a fixed

action, regardless of their pay-off, in order to influence the

outcome of a cascade. For example, this could model a setting

where a poor quality item is posted for sale on a website that

records buyers’ decisions, and fake agents intentionally buy

(or appear to buy) this item to make it seem worth buying

to future buyers [5]. The model could also represent a setting

where rational actions are manipulated or where fake actions

are inserted into a recommendation system [6], [7], [8]. The

objective is to study the impact of varying the amount of these

fake agents on the probability of their preferred cascade and

on the resulting welfares (expected pay-offs) of the rational

agents. Our main result shows a counter-intuitive phenomenon:

the probability with which the cascade preferred by the fake

agents occurs is not monotonically increasing in the fraction

of fake agents, ǫ . In fact, there exist infinitely many cases

where an increase in the fraction of fake agents reduces the

chances of their preferred cascade. We identify a sequence of

thresholds for ǫ where this phenomenon is most pronounced.

1From a game theoretic point-of-view, this is a dynamic game with
assymmetric information where the agents’ optimal actions are a Perfect
Bayesian Equilibrium (PBE) of this game.
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Moreover, we show that exceeding any such ǫ threshold causes

an abrupt improvement in the welfare of every rational agent.

In our model, we assume that the presence of fake agents is

common knowledge to the buyers and is accounted for in their

actions. This is motivated by several empirical results, such as

in [9] and [10], which suggest that over repeated interactions

with the buying platform and through word-of-mouth, buyers

tend to be conservative with their decisions by taking into

account that a certain fraction of positive reviews for an item

might be fake or that its sales statistics might be exaggerated.

A. Our Contributions

In this paper, we develop a Markov chain model to represent

the process of information accumulation driven by the actions

of sequentially arriving agents (either rational or fake), which

eventually results in a cascade. To obtain this Markov chain,

we identify a sufficient statistic of past observations that

determines whether an agent cascades or follows its private

signal.

Secondly, we analyse the Markov chain for the probability

of cascades as a function of the quality p of the prior knowl-

edge available to every rational agent (i.e., its private signal),

and the fraction of fake agents, ǫ . The Markov chain typically

occupies a countably infinite state-space, and does not readily

allow for a closed-form solution to the cascade probabilities.

Instead, we develop recursive equations that can compute the

cascade probabilities with arbitrary precision. These equations

are motivated by the construction of an iterative method that

enumerates all possible action sequences that would lead to a

cascade. This iterative method also provides exact probabilities

for both correct and wrong cascades to begin within the

arrival of a finite number of agents. Computing these cascade

probabilities in turn yields the welfare for any arbitrary agent.

Thirdly, we study the effects of varying ǫ on the cascade

probabilities and on agents’ welfares for a fixed private signal

quality, p. Our results highlight the following counter-intuitive

phenomenon: there exist an infinite sequence of thresholds

{ǫr }
∞
r=1

where increasing ǫ slightly above ǫr causes an abrupt

decrease in the probability of the cascade preferred by the

fake agents. Thus, a marginal increase in the presence of fake

agents beyond any such threshold reduces the chances of their

preferred cascade instead of increasing it, which is what they

had intended. Further, we analytically show that increasing ǫ

just beyond any such ǫr also causes an abrupt and significant

increase in the welfares of all agents. Therefore, marginally

exceeding ǫr is not only counter-productive for the fake agents

but is also beneficial to the rational agents.

Fourthly, we prove that an agent’s welfare improves if it

chooses to arrive later in the sequence of arrivals. This result

implies that the welfare reaches a limiting maximum value as

the agent’s arrival index tends to infinity. We refer to this value

as the long run or asymptotic welfare. The proof involves the

application of Blackwell’s theorem on comparing information

structures [11], [12], which more generally also shows that

an agent can never do any better by ignoring any of the past

observations or its own signal.

Fifthly, we quantify the cascade probabilities and social

welfare as a function of p in the interesting scenario where

the proportion of fake agents approaches unity. We analytically

show that even when fake agents have overwhelmed the ratio-

nal agents: (i) a better signal quality results in higher chances

of learning the socially optimal action (correct cascade) and

(ii) rational agents continue to benefit from past observations.

Sixthly, we discuss the role of a Platform Co-ordinator in

improving learning through modifications to the observation

database. We analyse and compare the performances of three

approaches for improving the agents’ welfares, namely (a)

increasing the fraction of fake actions, (b) filtering out possibly

fake actions and (c) modifying the possibly fake actions. For a

wide range of values for p, we observe that for low values of ǫ ,

Scenario (c) outperforms all other scenarios, providing the best

improvement in welfare. As ǫ → 0, it entirely mitigates the

reduction in welfare caused by the fake agents. Whereas, for

high values of ǫ , Scenario (b) provides the best improvement.

There also exist several intervals with moderate ǫ-values where

Scenario (a) performs the best.

We conclude by showing that the analysis, results and

discussions presented in this work readily extend to general

priors and agent pay-offs, as long as the ex-ante pay-off is zero.

Moreover, our analytic techniques can be easily modified to

include a non-zero ex-ante pay-off.

B. Related Work

Our work follows the basic model studied in [2], [3], [4],

except we introduce fake agents which arrive at random amidst

the sequence of rational agents. Many variations of this basic

model have been studied, some of which we review here

briefly. The work in [13] relaxed the assumptions of agents’

homegeneity and binary valued private signals made in [2],

[3], [4]. It showed in particular that allowing for a richer class

of signals, such that their likelihood ratio is unbounded, could

result in learning to occur with probability one. Our model

maintains the assumptions of [2], [3], [4], i.e., homegenous

agents and binary valued private signals.

Another change to the basic model is to consider different

structures for observing past actions. For example, [14] con-

siders that agents can observe only a subset of the past actions,

defined by an underlying network structure. This work finds

conditions on the network structure that guarantee asymptotic

learning. Whereas [15] makes the network formation endoge-

nous by allowing agents to select their observations at a cost.

Another variation, studied in [16], forces a fixed number of

initial agents to only observe their private signals. These agents

thereby act as "guinea pigs", used to explore the unknown

true value. This causes improved welfares of the subsequent

agents at the cost of the guinea pigs’ welfares. Our work here

stays with the original model [2], [3], [4] which assumes that

actions are recorded to a common database, thereby allowing

each agent to observe all prior actions (although in our case,

each action could be either rational or fake).

Closer to our work is the model in [17], which assumes that

the recording of actions for subsequent agents is subject to an

error that is unbiased towards each of the possible actions. In

our setting, an action being either fake or rational depending

on the agent-type could equivalently be perceived as an error
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while recording a rational action (as in [17]); except that in

our case, the error is biased only towards a preferred action.2

There is also a body of work that considers agents similar

to our fake agents, who only take a single action regardless

of the true state. This includes the crazy agents considered in

[13], stubborn agents in [18] and zealots in [19]. While [13]

relaxes the assumption of binary signals, it does not consider

how changing the fraction of crazy agents affects the cascade

probability, which is the main focus of our work. The works

in [18] and [19] do not consider learning, instead they model

opinion/belief dynamics in the presence of their respective

types of abnormal agents. They consider non-Bayesian models

for updating agents’ beliefs, while our work remains with

the Bayesian model. Other types of agents considered in the

literature include the revealers in [20], experts and laymen in

[21] and non-myopic agents in [22].

The learning models considered in this line of work also

have ties to early work on sequential detection with finite

memory, e.g, [23] and [24]. There, the sequence of i.i.d. signals

has to be summarized by a test-statistic of finite cardinality,

which gets updated as per a rule designed by a planner with the

objective of maximizing the chance of asymptotically learning

the true state of the world. Our model does not assume any

memory constraints and all past actions are perfectly observed.

The more important distinction is that in [23], [24], agents

simply follow the rule prescribed by the planner, i.e., agents

are not strategic and thus their actions might not constitute an

equilibrium. Our work instead considers a setting where there

is no planner and agents are strategic and act in their best

interests. Thus, agents’ actions are in a PBE.

Our work is a substantial extension of [1], where we first

proposed the iterative method to compute cascade probabilities

and identified the infinite sequence of ǫ-thresholds at which an

abrupt reduction in the preferred cascade probability occurs.

This paper makes several contributions beyond [1], such as

studying the cascade probability for finite agents, identifying

important properties exhibited by agents’ welfares, and explor-

ing the effects of a Platform Co-ordinator on learning, among

others as stated earlier.

C. Organisation

The remainder of the paper is organized as follows. We

describe our model in Section II. We analyze this model and

identify the resulting cascade properties in Section III. In

Section IV, we present our Markov chain formulation, identify

error thresholds and devise an iterative method to compute cas-

cade probabilties. Further, in Subsection IV-C, we quantify the

abrupt reduction in chances of a correct cascade at these error

thresholds. Subsection IV-D investigates the preferred cascade

probability for low values of ǫ and contrasts it to the case

when fake agents are absent (ǫ = 0). Section V characterizes

agents’ welfares and identifies important properties exhibited

by them. In Section VI, we investigate learning in the limiting

scenario where the proportion of fake agents approaches one.

2This change requires a different analysis approach than that in [17] as the
underlying Markov chain now typically has a countably infinite state-space,
while in [17] it was finite. We show that this change also yields substantially
different outcomes.

Section VII introduces a Platform Co-ordinator and presents

approaches for modifying the observations that could improve

learning. Section VIII extends this work to general priors and

agent pay-offs, while maintaining zero ex-ante pay-off. Lastly,

we present our conclusions in Section IX. Detailed proofs,

extended analyses and supporting plots are provided in the

Appendices of [25].

II. MODEL

We consider a model similar to [2] in which there is a

countable sequence of agents, indexed i = 1, 2, . . . where the

index represents both the time and the order of actions. Each

agent i takes an action Ai of either buying (Y ) or not buying

(N) a new item that has a true value (V), which could either

be good (G) or bad (B). For simplicity, both possibilities of

V are assumed to be equally likely.

The agents are Bayes-rational utility maximizers where the

pay-off received by each agent i, denoted by πi, depends on

its action Ai and the true value V as follows. If the agent

chooses N , his payoff is 0. Whereas, if the agent chooses Y ,

he incurs a cost of C = 1/2 for buying the item and gains an

amount that reflects the item’s value/utility to its buyer. The

buyer loses an amount y = 0 if V = B and gains an amount

x = 1 if V = G. The agent’s net pay-off is given by

πi =





x − C = 1/2, if Ai = Y and V = G,

−y − C = −1/2, if Ai = Y and V = B,

0, if Ai = N .

(1)

Given the values considered for x, y and C, observe that since

V is equiprobable, the ex ante expected pay-off for any agent

is 0 for either of the actions.3 Thus, to begin with, an agent

is indifferent to the two actions.

H

L

G

B

V Si

p

p

1 −
p

1 −
p

(a)

Y

N

Y

N

Ai Oi

1

1 − ǫ

ǫ

(b)

Fig. 1: (a) The BSC through which agents receive private signals.
(b) The channel through which agents’ actions are corrupted.

To incorporate agents’ private beliefs about the new item,

every agent i receives a private signal Si ∈ {H (high), L (low)}.

This signal, as shown in Figure 1a, partially reveals the

information about the true value of the item through a binary

symmetric channel (BSC) with crossover probability 1 − p,

where 1/2 < p < 1. This implies that the signal is informative

but not revealing. Moreover, the sequence of private signals

{S1, S2, . . .} is assumed to be i.i.d. given the true value V .

Each agent i takes a rational action Ai that depends on his

private signal Si and the past observations {O1,O2, . . . ,Oi−1}

of actions {A1, A2, . . . , Ai−1}. Next, we modify the information

structure in [2] by assuming that at each time instant, an

3Section VIII generalizes the model to possibly non-uniform priors for V
and a general pay-off structure for agents, while still retaining the condition
of zero ex-ante pay-off.
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agent could either be fake with probability (w.p.) ǫ ∈ [0, 1) or

ordinary w.p. 1−ǫ , where the value ǫ is assumed to be common

knowledge, so that all agents know the probability that any

agent is fake but do not know which specific agents are fake.

An ordinary agent i honestly reports his action, i.e. Oi = Ai.

On the contrary, a fake agent always reports a Y , reflecting

his intention of influencing the successors into buying the new

item, regardless of its true value. This implies that at any time

i, if Ai = N then with probability 1 − ǫ , the reported action

Oi = N and with probability ǫ , Oi = Y . Whereas, if Ai = Y

then Oi = Y with probability 1. Refer to Figure 1b.

An equivalent model is where action Ai is rational only if

agent i is ordinary and is fixed to Y otherwise, while Oi = Ai

for all agents. This yields the same information structure as

the model above and so the same analysis applies to model the

behavior of the ordinary agents. We chose the former model

mainly to simplify our notation.

III. OPTIMAL DECISION, CASCADES AND WELFARE

For the nth agent, let the history of past observations be

denoted by Hn−1= {O1,O2, . . . ,On−1}. As the first agent does

not have any observation history, he always follows his private

signal, i.e., he buys if and only if the signal is H. From the

second agent onwards, the Bayes’ optimal action for every

agent n, An is chosen according to the hypothesis (V = G or B)

that has the higher posterior probability given the information

set In = {Sn,Hn−1}. Let γn(Sn,Hn−1) , P(G |Sn,Hn−1) denote

the posterior probability for the item being good, V = G. Then

the Bayes’ optimal decision rule is

An =




Y, if γn > 1/2,

N, if γn < 1/2,

follows Sn, if γn = 1/2.

(2)

Note that when γn = 1/2, an agent is indifferent to the two

actions. Similar to [17], our decision rule in this case follows

the private signal Sn, unlike [2], which employs a randomized

tie-breaking rule. Another choice in this case is to follow the

history Hn−1, i.e., to take the action that is most observed in

the past. Techniques in this paper can be readily adapted to

reflect this alternate choice of breaking ties [26].

Definition 1. An information cascade is said to occur when

an agent’s decision becomes independent of his private signal.

It follows from (2) that, agent n cascades to a Y (N) if and

only if γn > 1/2 (< 1/2) for all Sn ∈ {H, L}. The other case

being γn ≥ 1/2 for Sn = H and γn ≤ 1/2 for Sn = L; in which

case, agent n follows Sn. A more intuitive way to present this

condition is to first express the information contained in the

history Hn−1 observed by agent n in the form of its public

likelihood ratio,

ln−1(Hn−1) :=
P(Hn−1 |B)

P(Hn−1 |G)
, (3)

and then state it as follows.

Lemma 1. Agent n cascades to a Y (N) if and only if ln−1 <
1−p

p

(
ln−1 >

p

1−p

)
and otherwise follows its private signal Sn.

To prove this lemma, first define agent n’s private likelihood

ratio, βn(Sn) := P(Sn |B)/P(Sn |G). It follows from Figure 1a

that βn(H) = (1 − p)/p and βn(L) = p/(1 − p). Next, using

Bayes’ rule, express γn in terms of ln−1 and βn as γn = 1/(1+

βnln−1). As a result, the condition on γn for a Y (N) cascade

translates to ln−1 < 1/βn (> 1/βn) for all Sn; this simplifies

to give Lemma 1.

If agent n cascades, then the observation On does not

provide any additional information about the true value V to

the successors over what is contained in Hn−1. As a result,

ln+i = ln−1 for all i = 0, 1, 2, . . . and hence they remain in

the cascade, which leads us to the following property, also

exhibited by prior models, e.g. [2], [3], [4], [17].

Property 1. Once a cascade occurs, it lasts forever.

On the other hand, if agent n does not cascade, then Property

1 and Lemma 1 imply that all the agents until and including n

follow their own private signals ignoring the observations of

their predecessors. For every such observation Oi, i ≤ n, as Si
is conditionally independent of the history Hi−1 given V, the

likelihood ratio can be updated as

li =





(
1−b
a

)
li−1, if Oi = Y,

(
b

1−a

)
li−1, if Oi = N,

(4)

a := P(Oi = Y |V = G) and b := P(Oi = N |V = B). (5)

Here, a and b denote the probabilities that an observation Oi

follows V if agent i follows its private signal, given V = G

and B, respectively. It can be shown from Figures 1a and 1b

that in the above case, i.e., when Ai follows Si,

a = p + (1 − p)ǫ and b = p(1 − ǫ). (6)

As a result of the updates, ln can be shown to depend only

on the number of Y ’s (denoted by nY ) and N’s (denoted by

nN ) in the observation history Hn. Specifically, ln =
(

1−p
p

)hn

where hn is the difference between the number of Y ’s weighted

by η and the number of N’s,

hn = ηnY − nN, (7)

η := log
(

a

1 − b

)
/log

(
p

1 − p

)
. (8)

Thus, agents that have not yet entered a cascade satisfy the

following property.

Property 2. Until a cascade occurs, each agent follows its

private signal. Moreover, hn defined in (7) is a sufficient

statistic of the information contained in the past observations.

Note that if ǫ = 0 (no fake agents) then a = b = p and

η = 1, in which case hn is the unweighted difference, ηY −ηN ,

which is also the case for the unbiased noise model in [17].

Whereas, if ǫ > 0 then η < 1. The expression for hn in (7)

shows that, due to the presence of fake agents, the dependence

of an agent’s decision on a Y in his observation history reduces

by a factor of η, whereas the dependence on a N remains

unaffected. This is to be expected because, unlike a N which
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surely comes from an honest agent, a Y incurs the possibility

that the agent could be fake. Further, this reduced dependence

on Y is exacerbated with an increase in the possibility of fake

agents, as η reduces with an increase in ǫ .

Using the expression for ln in Lemma 1, it follows that for

all times n until a cascade occurs, −1 ≤ hn ≤ 1 and the update

rule for hn is given by

hn =

{
hn−1 + η, if On = Y,

hn−1 − 1, if On = N .
(9)

Whereas, once hn > 1 (< −1), a Y (N) cascade begins and hn
stops updating (Property 1). Note that h0 = 0 since the first

agent has no observation history. Now, given the true value

V ∈ {G, B}, let the probability that a Y (N) cascade begins be

denoted by PV
Y-cas

(
PV
N-cas

)
. Here, PV

N-cas
= 1 − PV

Y-cas
as it can

be shown that the process {hn} exits the range [−1, 1] w.p. 1.

Further, let the nth agent’s welfare refer to its pay-off averaged

(in expectation) over V ∈ {G, B}. We show later in Section V

that this welfare as n → ∞ relates to the cascade probabilities

of the process {hn} as

Π := lim
n→∞
E[πn] =

1

4

[
PGY-cas − P

B
Y-cas

]
. (10)

IV. MARKOVIAN ANALYSIS OF CASCADES

In this section, we analyse the process {hn}, given V, to

determine the probability of cascades. It follows from the

previous section that conditioned on V , the process {hn} is

a discrete-time Markov chain taking values in [−1, 1] before

getting absorbed into the left absorption region (< −1) causing

a N cascade or the right absorption region (> 1) causing a Y

cascade. More specifically, equation (9) shows that, given V,

{hn} is a random walk (r.w.) that starts from state 0 and moves

to the right by η w.p. P(On = Y |V) or to the left by 1 w.p.

P(On = N |V) until a cascade occurs, where these probabilities

are defined in terms of a and b in (5). Figure 2 depicts this

random walk, where p f , P(On = Y |V) denotes the probability

of a Y being observed given V , when any agent n follows its

private signal Sn. We have from (5) that p f = a for V = G,

whereas p f = 1 − b for V = B.

Note that in the special case where η, given by (8),

satisfies 1/η = r for some r = 1, 2, . . ., the process

{hn} is equivalent to a Markov chain with finite state-space

A = {−r − 1,−r, . . . ,−1, 0, 1, . . . , r, r + 1}, and with −r − 1 and

r + 1 being absorption states corresponding to N and Y

cascades, respectively. More generally, it can be proved that

{hn} has a finite state-space for any rational-valued 1/η. In

such cases, absorption probabilities can be obtained directly

by solving a system of linear equations. In this paper, our

main focus is on the more generic case of irrational values

of 1/η resulting in {hn} taking countably infinite values in

[−1, 1],4 which does not readily allow for a direct solution

to the cascade probabilities. This is unlike the unbiased noise

model in [17] where the state-space of the Markov chain is

always finite.

4For example, if η was chosen uniformly at random, then almost surely
(w.p. 1) it would fall into this case.

0

p f

η

p f

2η

1 − p f

−1

1 − p f

−1 + η 1

Fig. 2: Partial transition diagram of random walk {hn} given V.

A. Error thresholds

In the absence of fake agents (ǫ = 0) as in [2], η = 1 and so

cascading to a Y (N) cascade requires at least two consecutive

Y’s (N’s). However, in the presence of fake agents, η < 1. In

this case, even a single N after a Y could trigger a N cascade.

On the other hand, as ǫ increases and reduces η, a greater

number of consecutive Y’s (≥ 2) are required to cause a Y

cascade. This is characterized in the following lemma.

Lemma 2. Let α = p/(1− p). For r ∈ N, define the increasing

sequence of thresholds {ǫr }
∞
r=1

, with the r th threshold given by

ǫr =
α − α

1
r

α
1
r
+1 − 1

. (11)

Define Ir , [ǫr, ǫr+1) as the r th ǫ–interval. Then for ǫ ∈ Ir ,

at least r + 1 consecutive Y’s are necessary for a Y cascade

to begin.

The proof follows by noting that, if a cascade has not begun

immediately after an N is observed, then the rightmost position

that the random walk can be in, is in state 0. Starting from state

0 therefore gives a lower bound on the number of consecutive

Y’s required to begin a Y cascade. From here, r+1 consecutive

Y’s would be needed to begin a Y cascade when 1
r+1
< η ≤ 1

r
.

This inequality implies that ǫ ∈ Ir = [ǫr, ǫr+1) where ǫr is the

r th threshold, defined in (11). Here, recall from (8) that η is a

function of ǫ and p.

Remark 1. For ǫ ∈ Ir , starting from state 0, r+1 consecutive

Y’s start a Y cascade. Further, the integer r satisfies r = ⌊1/η⌋.

Figure 3 shows the thresholds ǫr varying with p, for

different values of r. For a fixed ǫ , we see that as the signal

quality (p) improves, more consecutive Y ’s are required for

a Y cascade to begin. This is because, an increase in p

increases the information contained in a Y , but not as much

0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Fig. 3: Thresholds ǫr for the indicated values of r versus p.
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as the corresponding increase in the information contained in

a N . Further, note that as ǫ → 1, r → ∞ which implies

that infinitely many consecutive Y ’s are required for a Y

cascade to begin. Equivalently, the information contained in

a Y observation becomes negligible. We further investigate

learning in this asymptotic scenario in Section VI.

B. Y cascade probability, PY-cas

In this subsection, we will compute the probability of

absorption of {hn} to a Y cascade (into the right absorption

region) given V , namely PV
Y-cas

. Any probability stated in

the remainder of this section is assumed to be conditional

under V through its dependence on p f ; we thereby drop V

from its superscript for notational convenience. Consider the

iterative method depicted in Figure 4 that describes all possible

sequences that can lead to a Y cascade. For this process, we

assume ǫ ∈ Irr{ǫ : 1/η ∈ Q} for some r = 1, 2, . . .. We do this

to avoid the case of rational values of 1/η which could result in

certain special sequences (having two consecutive N’s) with

non-zero probability, that are not enumerated in Figure 4.5

For the case of rational-valued 1/η, recall that the absorption

probabilities can be obtained directly as solutions to a system

of linear equations.

To begin the iterative method, we initialize Stage 1 with r1 =

r+1. Now, starting from state 0, consider the sequences shown

in Stage 1 of Figure 4. The first sequence of r1 consecutive

Y ’s, denoted by Yr1 , clearly enters the right absorption region

(Remark 1), and so r1η ∈ [1, 1+η]. The rest of the sequences,

each of length r1 + 1, are simply permutations of each other

that contain only a single N . This is because two N’s or more

are not possible without entering the left absorption region.

Now, each of these r1 distinct sequences results in the same

net right shift of r1η − 1, which ends in the region [0, η] as

we know that r1η ∈ [1, 1 + η]. This completes Stage 1. From

here, it would take either r or r + 1 consecutive Y’s to enter

the right absorption region. Let this value be denoted by r2.

The sequences in Stage 2 can then be enumerated exactly as

in the first stage, except that r2 now replaces r1. Now, unless

there are r2 consecutive Y ’s, the sequences of Stage 2 again

end in the region [0, η], and then the process continues to the

next stage. Here, rn denotes the number of consecutive Y ’s

required to enter the right absorption region in the nth stage.

In this manner, all sequences that lead to a Y cascade are

enumerated.

Let Pn denote the probability of entering the right absorp-

tion region given that the sequence has not terminated in a

Y cascade before the nth stage. The following recursion then

holds.

Pn = p
rn
f

[
1 + rn(1 − p f )Pn+1

]
, for n = 1, 2, . . . (12)

and the probability of a Y cascade, denoted by PY-cas is:

PY-cas(ǫ) = P1, for ǫ ∈ Ir r {ǫ : 1/η ∈ Q}. (13)

5These special sequences can be readily incorporated into the enumerations
in Figure 4, but would disrupt the recursive pattern. For simplicity, we avoid
such values of ǫ

Y cascade

Yr1

N Yr1

Y N Yr1−1

Y2 N Yr1−2

Yr1−1 N Y

Stage (1)

Y cascade

Yr2

N Yr2

Y N Yr2−1

Y2 N Yr2−2

Yr2−1 N Y

Stage (2)

. . .

Fig. 4: An enumeration of all possible sequences that would lead
to a Y cascade. The term Y t represents a sequence of t consecutive
Y’s. The sequence {rn} is defined as per (14).

Here, while r1 = r + 1, successive values of ri for i = 2, 3, . . .

can be obtained from r1 using the updates:

rn =

{
r, if

∑n−1
i=1 (riη − 1) + rη > 1,

r + 1, o.w.
(14)

Since (12) is an infinite recursion, to compute PY-cas in prac-

tice, we truncate the process to a finite number of iterations M.

To this end, we first assume that PM+1 = 1. Next, we use (12)

to successively compute Pk while k counts down from M to

1, performing a total of M iterations. We denote the obtained

value as PMY-cas. The following theorem shows that PMY-cas is in

fact a tight upper bound to PY-cas as M → ∞. Moreover, the

difference PM
Y-cas

− PY-cas decays to zero at least as fast as 0.5M ,

in the number of iterations M. Refer to Appendix A in [25]

for a detailed proof.

Theorem 1. Let ǫ ∈ Ir r {ǫ : 1/η ∈ Q} for some r = 1, 2, . . .,

with p f denoting the probability of a Y. Then, for any M =

1, 2, . . .,

0 ≤ PMY-cas(ǫ) − PY-cas(ǫ) ≤ kM,

where k , (r + 1)(1− p f )p
r
f
. Further, for any p ∈ (0.5, 1) and

ǫ ∈ [0, 1), k satisfies 0 < k ≤ 1/2.

0 0.2 0.4 0.6 0.8 1
0.1

0.2

0.3

0.4

Fig. 5: Probability of Y cascade as a function of ǫ for V = B and
p = 0.7.

Figure 5 shows a plot of PY-cas with respect to ǫ , for the

case V = B with p = 0.7. The plot uses M = 10 which

gives an error of less than 10−3. It can be seen that in the

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2025.3550459

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Northwestern University. Downloaded on April 29,2025 at 14:59:48 UTC from IEEE Xplore.  Restrictions apply. 



7

r th ǫ–interval Ir , PY-cas increases with ǫ , but with infinitely

many discontinuities (where PY-cas(ǫ) decreases). This is in

contrast with the unbiased noise model in [17], where it

increases continuously over a similar interval. This distinction

is a consequence of the state-space of {hn} being infinite,

unlike in [17]. Despite the discontinuities, PY-cas achieves the

minimum (marked by ◦) and maximum (marked by ×) values

at the edge points of Ir , i.e., ǫ+r and ǫ−
r+1

, respectively. Further,

note that the relatively larger drops in PY-cas observed in Figure

5 occur exactly at the threshold points {ǫr }
∞
r=1

. Here, counter

to expectation, a slight increase in ǫ beyond ǫr causes a

significant decrease in the probability of a Y cascade. The

same characteristic is exhibited when V = G, which is shown

in Figure 11, in Appendix B of [25]. In Section IV-C, we show

that closed-form expressions for PY-cas as ǫ → ǫ+r and ǫ → ǫ−r
can be obtained (refer to (15) and (16)); thereby quantifying

its drop at each threshold ǫr .

In Figure 12 of Appendix C in [25], we outline an iterative

method similar to that in Figure 4, to compute the proba-

bility of absorption of {hn} to a N cascade, namely PN-cas

with arbitrary precision. Having already computed PY-cas, this

alternate process may seem redundant due to the fact that

PN-cas = 1 − PY-cas. However, later in Subsection IV-E, we

will be using both the iterative methods depicted by Figures

4 and 12 to compute exact probabilities of a Y and N cascade

respectively, that may begin at or before a finite agent index n.

We denote the probability that a Y (N) cascade occurs by the

nth agent index by v
∗V
n (u∗Vn ). Note that agent n+1 always has

a non-zero probability 1 − v
∗V
n − u∗Vn of following its private

signal Sn+1, hence u∗Vn , 1 − v
∗V
n . As a result, u∗Vn cannot be

inferred by knowing v
∗V
n , and vice-versa. So, both the iterative

methods are required to obtain cascade probabilities for any

finite n.

C. Quantifying abrupt changes in PY-cas at error thresholds

We now quantify PY-cas as ǫ tends to each threshold point

ǫr . For this, we state the following lemma, with the proof

provided in Appendix D of [25].

Lemma 3. For all i ≥ 2, ri in (14) satisfies: ri → r as ǫ → ǫr .

It follows from Lemma 3 that as ǫ → ǫr , the recursion in

(12) results in the same infinite computation to obtain Pi as for

Pi+1, for all i ≥ 2. Thus, all Pi for i ≥ 2 have the same value

which satisfies: Pi = pr
f

[
1 + r(1 − p f )Pi

]
. Solving this equation

for i = 2 gives the value for P2 which when used in equation

(12) for n = 1 yields P1, i.e., PY-cas. However, note that while

solving equation (12), r1 = r +1 for ǫ = ǫ+r whereas r1 = r for

ǫ = ǫ−r . This corresponds to the following two different values

of PY-cas as ǫ → ǫr :

PY-cas(ǫ
+

r ) = pr+1
f

1 + (1 − p f )p
r
f

1 − r(1 − p f )p
r
f

, (15)

PY-cas(ǫ
−
r ) = prf

1

1 − r(1 − p f )p
r
f

. (16)

Hence, the fractional decrease in PY-cas that occurs abruptly at

ǫr , defined as δr =
[
PY-cas(ǫ

−
r ) − PY-cas(ǫ

+

r )
]
/PY-cas(ǫ

−
r ) is

δr = (1 − p f ) (1 − pr+1
f ). (17)

Property 3. If the possibility of fake agents equals the rth

ǫ-threshold, r = 2, 3, . . ., then for any V, a further marginal

increase in fake agents reduces the chances of their preferred

(Y) cascade by a factor of δr , rather than increasing it.

The above property implies that, increasing ǫ just above ǫr
is in fact counter-productive for the fake agents. The intuition

underlying Property 3 is as follows. Recall from Lemma 2

that an increase in ǫ from ǫ−r to ǫ+r increases the least number

of consecutive Y’s required to begin a Y cascade by one. This

implies that any observation sequence that ends in a Y cascade

for ǫ = ǫ+r gaurantees a Y cascade for ǫ = ǫ−r . However, the

opposite is not true. Therefore, increasing the noise value from

ǫ−r to ǫ+r results in a drop in the Y cascade probability.

Lastly, it can be verified from (17) that as r → ∞, δr → 0.

This is depicted in Figure 5 where the sequences {PY-cas(ǫ
−
r )}

and {PY-cas(ǫ
+

r )}, marked by × and ◦ respectively, converge

to a limiting value as r → ∞. Note that r → ∞ implies the

limiting scenario of ǫ → 1. We investigate this scenario further

in Section VI.

D. Effect of fake agents on PY -cas at low values of ǫ

Next, we consider the cascade behaviour for low values of

ǫ . In the absence of fake agents (ǫ = 0) as in [2], η = 1. It

then follows from Figure 2 that {hn} has a finite state-space

{−2,−1, 0, 1, 2}, and a Y (N) cascade starts when hn = 2 (−2).

Here, solving for PY-cas gives

PY-cas(0) =

{
p2/

[
p2
+ (1 − p)2

]
, for V = G,

(1 − p)2/
[
p2
+ (1 − p)2

]
, for V = B.

(18)

In Figure 5 and Figure 11 (Appendix B of [25]), this is

indicated as a baseline to compare it with PY-cas for any

ǫ ∈ (0, 1), when V = B and V = G, respectively. Observe that

for low values of ǫ , PY-cas is smaller than when fake agents

are absent. The next theorem formalizes this property for any

p and any V .

Theorem 2. Given the private signal quality p ∈ (0.5, 1),

and the item’s true value V ∈ {G, B}, there exists some ǫ =

f (V, p) > 0 such that

PY-cas(ǫ) < PY-cas(0), ∀ ǫ ∈ (0, ǫ). (19)

From the point-of-view of the fake agents, the above theorem

implies the following property.

Property 4. If fake agents occur with a probability of less

than ǫ , then the effect that their presence has on the honest

buyers is opposite to what they had intended. That is, they

reduce the chances of their preferred (Y) cascade instead of

increasing it.

Likewise, Theorem 2 implies that if V = B, then the honest

buyers benefit from the presence of fake agents when ǫ < ǫ .

Otherwise, if V = G, then they are harmed by such a presence

of fake agents.

Proof: Note that as ǫ → 0, the limiting value of PY-cas

can be obtained from (15) with r = 1 and p f → 1 − p for

V = B, whereas p f → p for V = G. This gives
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lim
ǫ→0
PY-cas(ǫ) =





(1 − p)2
1 + p(1 − p)

1 − p(1 − p)
, for V = B,

p2 1 + p(1 − p)

1 − p(1 − p)
, for V = G.

(20)

In Figure 5, this limiting value is marked by ◦ at ǫ = 0.

By comparing this expression with the one in (18) for the

corresponding values of V, we have

lim
ǫ→0
PY-cas(ǫ) < PY-cas(0), ∀ p ∈ (0.5, 1),V ∈ {G, B}.

Thus, there exists some ǫ > 0 such that (19) holds true.

From the above proof, it follows that Theorem 2 is a

consequence of the discontinuity in PY-cas at ǫ = 0, for any

given V . This contrasts with the unbiased noise model in [17],

where there is no discontinuity in the cascade probabilities at

ǫ = 0 (no noise). Once again, this distinction results from the

state-space of {hn} being infinite, unlike in [17].

E. Probability of cascades for finite agent arrivals

In this subsection, we use the iterative methods depicted in

Figure 4 and Figure 12 (in Appendix C of [25]) to compute

exact probabilities for correct and wrong cascades to begin

within the arrival of a finite number of agents. For the random

walk {hn} in Figure 2, given the true value V ∈ {G, B}, let

v
∗V
n (u∗Vn ) be the probability of being absorbed by the right

(left) absorption region by the nth time-step. As the time-steps

of {hn} correspond to the agents’ indices, v∗Vn and u∗Vn are

respectively the probabilities that a correct and wrong cascade

occurs by the nth arrival, under V = G. Vice-versa holds when

V = B. Now, let vVn (uVn ) be the probability that {hn} enters

the right (left) absorption region exactly at the nth time-step.

v
∗V
n =

n∑

i=1

v
V
i and u∗Vn =

n∑

i=1

uVi . (21)

Figure 5 shows that all sequences that enter the right absorp-

tion region (i.e. end in a Y cascade) in Stage ( j) terminate

with a Yrj and have the same length: lj , rj +
∑j−1

i=1
(ri + 1),

for j = 1, 2, . . .. This yields the values for {vn} as follows:

vn =




p
rj

f

j−1∏

i=1

ri(1 − p f )p
ri
f
, if n = lj,

0, o.w.

(22)

In a similar manner, by observing Figure 12 in [25], we see

that among all sequences that end in a N cascade in Stage ( j),

the t sequences that terminate in any allowable permutation of

NY t−1N have the same length: t+1+
∑j−1

i=1
(ri+1) = lj−1+ t+2,

for t = 1, 2, . . . , rj and j = 1, 2, . . .. This yields the values for

{un} as follows:

un =




tpt−1
f (1 − p f )

2

j−1∏

i=1

ri(1 − p f )p
ri
f
, if n = lj−1+ t + 2,

0, o.w.

(23)

Now, as n → ∞, the asymptotic value of the quantity v
∗V
n−1

(u∗V
n−1

) refers to the probability that a Y (N) cascade occurs

eventually. Thus,

lim
n→∞

v
∗V
n = P

V
Y-cas and lim

n→∞
u∗Vn = P

V
N-cas

(a)
= 1 − PVY-cas, (24)

where equality (a) holds since it can be shown that {hn} is

absorbed into either of the cascades w.p. 1.

V. WELFARE FOR ORDINARY AGENTS

In this section, we analyze the expected pay-off or welfare

of agent n, πn if it is ordinary (rational), i.e., if it takes a

pay-off optimal action. Recall from Section II that πn = 0 if

An = N whereas πn = 1/2 or −1/2 if An = Y depending on

whether V = G or B, respectively. Now, Figure 2 shows that

it takes at least two steps to begin a cascade. This implies that

the first two agents always follow their private signals, and

hence have the same welfare given by

E[πn] = P(An = Y |V = G)
1

4
− P(An = Y |V = B)

1

4
, (25)

= (2p − 1)/4 , F, for n ∈ {1, 2}. (26)

In fact, F defined in (26) refers to the welfare for any agent n,

if An always follows Sn disregarding the optimal decision rule

in (2), i.e., E[πn |An always follows Sn] = F, for all n. However,

for agents n > 2, the unconditional welfare must also account

for the possibilities that the history Hn−1 could cause agent n

to cascade to a Y or a N , which can be expressed as follows.

E[πn] = F +
1

4

[
(1 − p)v∗Gn−1 − pv∗Bn−1 + (1 − p)u∗Bn−1 − pu∗Gn−1

]
. (27)

The above equation explicitly relates agent n’s welfare to the

probabilities of Y and N cascades resulting from its history

Hn−1 under both V = G and V = B.

Now, assuming that agent n can choose to observe

only a certain subset of the available observations In =

{O1, . . . ,On−1, Sn}, the next theorem shows that its welfare

cannot get worse if more elements are added to this subset.

This implies the non-redundancy of the observations in In as

agent n can never achieve a welfare higher than in (27) by

ignoring any of the observations in In.

Theorem 3. Let Jn be the collection of all subsets of the

observations {O1, . . . ,On−1, Sn} that are available to agent n.

Let E[πn |J] refer to the optimal welfare achieved by agent

n by only observing the set J ∈ Jn. Then, for any two sets

J,K ∈ Jn such that K ⊂ J, we have E[πn |J] ≥ E[πn |K].

Thereom 3 can be proved by applying the celebrated Black-

well’s Theorem [11] which implies that it is sufficient to show

that the signals from observing the smaller set K are obtained

as a stochastic mapping (garbling) of the signals from the

larger set J. Let J̄ and K̄ be the j and k-length random vectors

( j > k) corresponding to the observations sets J and K , re-

spectively, such that the two vectors share the first k elements.

Then, the desired mapping is given by K̄ = GJ̄, where G

is a k × j diagonal matrix. Then, Blackwell’s result for the

corresponding optimal welfares states that E[πn |J] ≥ E[πn |K].

As a corollary of Theorem 3, the next property shows

that the welfare under complete observation, i.e., E[πn] is

monotonic in the agents’ indices.

Property 5. The welfare of each agent is at least equal or

greater than the welfare of its predecessors. Thus, E[πn] ≥ F

and is non-decreasing in n.
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To see this property, consider two consecutive agents, n− 1

and n. Under the informational equivalance of their private

signals: Sn−1 and Sn, we have In−1, In ∈ Jn and In−1 ⊂ In. By

applying Theorem 3, this implies that E[πn] ≥ E[πn−1]; and

E[πn] ≥ F for all n follows from (26).

Next, by taking the limit n → ∞ of (27) and using (24), the

asymptotic welfare lim
n→∞
E[πn(ǫ)] denoted by Π(ǫ) is given by

Π(ǫ) =
1

4

[
PGY-cas(ǫ) − P

B
Y-cas(ǫ)

] (a)
=

1

4

(
1 − 2Pwrong-cas(ǫ)

)
. (28)

In Step (a), Pwrong-cas :=
[
PG
N-cas

+ PB
Y-cas

]
/2 refers to the un-

conditional probability of a wrong cascade, i.e., the probability

that a N cascade occurs and V = G or a Y cascade occurs

and V = B. Equation (28) implies that an improved learning,

i.e., a lower probability of wrong cascade results in a higher

asymptotic welfare. The probability PV
Y-cas

(ǫ) for V ∈ {G, B}

can be computed using the recursive method described in

Section IV, which is outlined by equations (12), (13) and

(14). Then, substituting these obtained values in (28) yields

the value for Π(ǫ). Figure 6 shows a plot of Π(ǫ) with respect

to ǫ ∈ (0, 1), for p = 0.7 and compares it with the constant

level of Π(0) which refers to the asymptotic welfare in the

absence of fake agents. Substituting (18) in (10) gives

Π(0) = (1/4)(2p − 1)/
[

p2
+ (1 − p)2

]
. (29)

It can be observed in Figure 6 that for p = 0.7, Π(ǫ) < Π(0)

for all ǫ ∈ (0, 1). Further, note that the relatively larger

jumps in Π(ǫ) observed in Figure 6 (marked by × and ◦)

occur exactly at the threshold points {ǫr }
∞
r=2

. Here, counter to

expectation, a slight increase in ǫ beyond ǫr causes an abrupt

and significant increase in the asymptotic welfare. This abrupt

increase does not simply follow from Property 3 because a

drop in the Y cascade probability improves learning when

V = B, whereas it worsens learning when V = G. Thus, when

averaged across V , Property 3 is not sufficient to imply that

learning improves in turn causing the asymptotic welfare to

increase at each ǫr -threshold. This is unlike the unbiased noise

model in [17], where learning at noise thresholds improves for

both V’s, thereby implying an increase in asymptotic welfare.

We propose the following theorem, which shows that such an

abrupt increase in welfare at ǫr occurs not only as n → ∞ but

also occurs for every agent n. Refer to Appendix E in [25] for

a detailed proof.

Theorem 4. Given a fixed private signal quality p, for every

agent n ∈ {1, 2, . . .}, at any r th ǫ-threshold ǫr , r ≥ 2,

E[πn(ǫ
+

r )] − E[πn(ǫ
−
r )] > 0. (30)

It follows from Theorem 4 that for any p, there occurs an

abrupt increase of ∆r in the asymptotic welfare at each of the

threshold points {ǫr }
∞
r=2

, where

∆r := Π(ǫ+r ) − Π(ǫ
−
r ) > 0. (31)

Through the relation in (28), this improvement of ∆r in

the asymptotic welfare corresponds to an abrupt reduction of

(4∆r − 1)/2 in the wrong cascade probability, Pwrong-cas. The

expression for ∆r can be obtained by first using equations (15)

and (16) to compute the values: PV
Y-cas

(ǫ) for V ∈ {G, B} and

0 0.2 0.4 0.6 0.8 1
0.11
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0.14

0.15

0.16

0.17

0.18

Fig. 6: Asymptotic welfare as a function of ǫ for p = 0.7.

ǫ = ǫ+r and ǫ−r . Next, substituting these values in (28) to obtain

Π(ǫ+r ) and Π(ǫ−r ) and then using (17) yields

∆r =
1

4

[
δBr P

B
Y-cas(ǫ

−
r ) − δ

G
r P

G
Y-cas(ǫ

−
r )
]
. (32)

Property 6. If the possibility of fake agents in the history

equals the rth ǫ-threshold, r = 2, 3, . . ., then a further marginal

increase in fake agents improves the welfare at every agent

index n ∈ {1, 2, . . .}. Moreover, the asymptotic welfare of the

agents improves by ∆r .

Therefore, increasing ǫ over the r th ǫ-threshold is not only

counter-productive for the fake agents (due to Property 3), but

it also leads to a higher social welfare for every ordinary agent.

The intuition underlying Property 6 is that when ǫ increases

from ǫ−r to ǫ+r , the drop in the Y cascade probability for V = B

(better learning) is more pronounced than the corresponding

drop for V = G (worse learning). This is because this drop is

a decreasing function of p f , and that p f for V = G is greater

than p f for V = B (i.e., a > 1 − b). Therefore, this increase

in ǫ implies a net decrease in the wrong cascade probability

when averaged over V, which as per (28) leads to a higher

welfare for rational agents.

VI. LEARNING IN THE LIMIT

In this section, we evaluate the asymptotic welfare of agents

under two limiting regimes of ǫ , namely, ǫ → 0 and ǫ → 1.

In the first case, taking the limit ǫ → 0 in (10) and then

substituting the expressions obtained in (20) yields

lim
ǫ→0
Π =

1

4
(2p − 1)

1 + p(1 − p)

1 − p(1 − p)
. (33)

Comparing (33) with the asymptotic welfare at ǫ = 0 given

in (29), it can be shown that limǫ→0 Π(ǫ) < Π(0) for any p.

This implies that even an infinitesimal presence of fake agents

causes an abrupt deterioration in welfare. Figure 6 shows this

drop in welfare at ǫ = 0, where the value Π(0) drops to the

value limǫ→0 Π(ǫ), which is marked by ◦. Next, we define

the fractional reduction (f.r.) in welfare relative to Π(0), as

lim
ǫ→0

[Π(0)−Π(ǫ)]/Π(0). We then plot it against p in Figure 7a

in order to understand the effects of varying the signal quality

p. It can be shown analytically from the expressions in (29)

and (33) that the f.r. in welfare is monotonically decreasing
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with p. The greatest f.r. thus occurs as p → 0 and is found to

equal 1/6, whereas the f.r. is 0 in the limit p → 1.

0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

(a)

0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

(b)

Fig. 7: (a) Fractional reduction in welfare relative to Π(0) for
varying p, as ǫ → 0. (b) Fractional increase in welfare relative
to F for varying p, as ǫ → 1.

In the case of ǫ → 1, the information contained in a Y

observation becomes negligible. As a result, an agent would

need to observe infinitely many consecutive Y’s in his history

for him to be convinced of starting a Y cascade. Hence,

one would expect that if V = G, learning would never

occur, whereas if V = B, then learning would always occur.

However, recall that as ǫ → 1, the occurrence of Y’s becomes

increasingly frequent, i.e. p f → 1; for both V = B and G. This

motivates studying PY-cas in this limiting scenario. First, recall

that in the process of enumerating all sequences leading to a Y

cascade, for ǫ ∈ Ir , in each stage i ≥ 2, ri is either r or r + 1.

However, ǫ → 1 implies r → ∞, in which case r ≈ r + 1. As

a result, the expressions obtained in (15) and (16) yield the

same limiting value as r → ∞, which also equals PY-cas as

ǫ → 1. In particular,

lim
ǫ→1
PY-cas(ǫ) = lim

r→∞
PY-cas(ǫ

+

r )
(b)
= lim

r→∞
PY-cas(ǫ

−
r ), (34)

where Step (b) can also be proved by recalling that δr → 0

as r → ∞. By using (16) in (34), the limiting probability of

a Y cascade, in terms of α = p/(1 − p) can be obtained as:

lim
ǫ→1
PY-cas(ǫ) = lim

r→∞
prf

1

1 − r(1 − p f )pr
f

=

1

et − t
; (35)

where t = 1
α−1

logα for V = G, and t = α

α−1
logα for V = B. A

detailed proof of (35) is provided in Appendix F of [25].
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(b) V = G

Fig. 8: Probability of Y cascade versus private signal quality for the
indicated values of ǫ under (a) V = B and (b) V = G.

Figure 8 illustrates (35) and the corresponding probability

when ǫ = 0.9 as a function of the signal quality. For

both V = B and V = G, a better signal quality leads to

improved learning even when fake agents have overwhelmed

the ordinary agents. Also note that for V = B, for a weak

signal quality, the incorrect cascade is more likely than the

correct one (while for V = G, this is never true).

The asymptotic welfare in this scenario can be obtained by

taking the limit ǫ → 1 in (10), then substituting (35). In Figure

6, observe that the sequences {Π(ǫ−r )} and {Π(ǫ+r )}, marked by

× and ◦ respectively, converge to this limiting value as r → ∞.

Further, it can be proved that for any p, limǫ→1 Π(ǫ) > F ,

where we recall that F (defined in (26)) is the welfare when

an agent acts based on its private signal alone. Therefore, even

when fake agents have corrupted almost all the actions, it is

still better for any ordinary agent to observe its past in addition

to its private signal. Figure 7b plots the fractional improvement

in asymptotic welfare relative to F against varying values of

p and shows that it decays to 0 with increasing p.

VII. EFFECTS OF A PLATFORM CO-ORDINATOR

In this section, we introduce an additional entity called

the Platform Co-ordinator, which at each time i, randomly

modifies (manipulates or filters) the observation Oi before

presenting it to future agents. We assume that the Co-ordinator

has the same information about private signal quality p and

fraction of fake agents ǫ as the rational buyers, while the item’s

underlying true value (V) is unknown to both and assumed

to be equiprobable. Moreover, the type of modification and

the corresponding parameter(s) used by the Co-ordinator are

common knowledge. By modifying the observations, the Co-

ordinator who acts as a Bayesian persuader aims to improve

the asymptotic welfare. A related work is [27], where a similar

entity instead designs the information structure for the agents’

private signals so as to maximize its utility which depends

on the eventual learning outcome. We investigate the effects

on agents’ asymptotic welfare under three scenarios, namely

wherein the Co-ordinator (a) modifies a N to a Y w.p. κ

or (b) discards a Y w.p. e or (c) modifies a Y to a N w.p.

β. Otherwise, in all scenarios, observations that are neither

discarded nor modified are retained. Let (i)
Π refer to the

asymptotic welfare, where i ∈ {a, b, c} indicates the particular

scenario being considered. The superscript (i) is dropped when

referring to the asymptotic welfare without the Co-ordinator.

Scenario (a): Manipulating the N’s

Here, the Co-ordinator modifies only the N’s in the ob-

servations, i.e., at any time i, if Oi = N then the modified

observation O
′

i
= Y w.p. κ ∈ [0, 1) and O

′

i
= N w.p.

1 − κ. Whereas, if Oi = Y then O
′

i = Y w.p. 1. Here,

H
′

n−1
:= {O

′

1
, . . . ,O

′

n−1
} denotes the modified history observed

by agent n. This has the effect that agents now perceive

their history as having an effectively increased probability,

ǫeff := ǫ + (1 − ǫ)κ of past agents being fake. As a result,

the asymptotic welfare in this scenario denoted by (a)
Π(ǫ, κ)

is given by (a)
Π(ǫ, κ) = Π(ǫeff), where Π(·) is defined in (28).

Note that by varying κ, ǫeff can attain any desired value in

[ǫ, 1). Specifically, to get the best improvement in asymptotic

welfare, the Co-ordinator can set κ to the optimal value:

κ∗ = arg max
κ∈[0,1)

Π
(
ǫ + (1 − ǫ)κ

)
, (36)
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Fig. 9: (a) The channel through which observations are filtered by

the Co-ordinator at each time i. (b) Asymptotic welfare (b)
Π(ǫ, e) as

a function of the filtration parameter e, for p = 0.6 and ǫ = 0.9.
Maximal value obtained at e = e∗.

which yields the optimal asymptotic welfare,

(a)
Π(ǫ, κ∗) = Π

(
ǫ + (1 − ǫ)κ∗

)
. (37)

Scenario (b): Filtering out the Y’s

In this scenario, the Co-ordinator randomly filters out the

Y ’s from the observations instead of manipulating the observa-

tions as was done in Scenario (a). Specifically, at every time

n, it discards a Y observation w.p. e ∈ [0, 1) and retains it

otherwise. Whereas, a N observation is always retained. This

bias is due to the fact that, while a N observation always repre-

sents the action of a rational agent, a Y observation could also

represent the action of a fake agent. So, filtering out some of

the Y observations while retaining all the N observations seems

reasonable. The channel in Figure 9a depicts the filtering of

observation Oi at each time i, where O
′

i
∈ {Y, N,Discard}

denotes the channel output. Here, O
′

i
= Discard implies that a

Y at time i has been discarded by the Co-ordinator.

Note that the arrival of an agent into the platform is recorded

for (and visible to) subsequent agents only if its corresponding

observation is retained by the Co-ordinator. If an agent’s

observation is discarded, future agents are unaware of its

arrival into the buying platform. Therefore, we define a new

index set {i1, i2, . . .} ⊆ {1, 2, . . .} which indexes the arrivals of

only those agents whose observations are retained. Here, in is

the index in the unfiltered arrival sequence of the agent whose

observation is the nth undiscarded observation.

Now, for the ith
n agent which observes a history Hin−1

:=

{Oi1, . . . ,Oin−1
}, the Bayes’ optimal decision rule is still

given by (2), except that the posterior probability for the

item being good, γin := P(G |Sin,Hin−1
). Further, with the

likelihood ratio for its history Hin−1
being redefined as lin−1

,

P(Hin−1
|B)/P(Hin−1

|G), it can be shown that both Lemma 1

and Property 1 remain true. Now, assuming the ith
n agent does

not cascade, Property 1 and Lemma 1 imply that for every

observation Oik , k ≤ n, Aik follows Sik . Then, for every such

observation Oik , the probability that it follows the true value

V is implicitly conditioned on the fact that it has not been

discarded, and hence is given by

a
′

= P(Oik = Y | G,Oik , Discard) =
a(1 − e)

a(1 − e) + (1 − a)
, (38)

b
′

= P(Oik = N | B,Oik , Discard) =
b

b + (1 − b)(1 − e)
. (39)

Further, for every such Oik , as Sik is conditionally independent

of the history Hik−1
given V, the likelihood ratio updates are

lik =
(

1−b
a

)
lik−1

if Oik = Y , and lik =
(

b
1−a

)
lik−1

if Oik = N .

These updates are identical to the likelihood updates in (4) for

the original model without the Co-ordinator. This is because,

such an observation Oik , which could be an undiscarded Y

or an N , still possesses the same information about V as in

the original model. Now, as a result of the updates, lin can be

expressed as lin =
( 1−p

p

)hin where hin is a sufficient statistic

of the information contained in history Hin , given that agent

in is not in a cascade. Similar to eq. (7) with η as per (8),

hin := ηnY − nN, (40)

which is the difference between the number of Y ’s (nY )

weighted by η and the number of N’s (nN ) present in Hin .

Now, Lemma 1 implies that until a cascade occurs, −1 ≤

hin ≤ 1 for all such times n, and (40) implies that the update

rule for hin is given by

hin =

{
hin−1

+ η if Oin = Y,

hin−1
− 1 if Oin = N .

(41)

Once hin > 1 (< −1), a Y (N) cascade begins and hin stops

updating (Property 1). Observe that the updates of {hin } stated

in (41) are identical to the updates of {hn} in (7). However,

{hin } has two notable differences. Firstly, {hin } is indexed

by the new set {i1, i2, . . .} and secondly, conditioned on V ,

{hin } moves to the right by η w.p. P(Oin = Y |V) or to the left

by 1 w.p. P(Oin = N |V) until a cascade occurs, where these

probabilities are defined in terms of a
′

and b
′

in (38) and (39).

This is unlike in the case of {hn} where a and b in (6) define

the transition probabilities.

Next, let the Y cascade probability for the process {hin }

be denoted by (b)PV
Y-cas

(ǫ, e) to highlight that it is a function

of the fraction of fake agents ǫ and the filtration parameter

e set by the Co-ordinator. Similarly, let (b)
Π(ǫ, e) denote the

asymptotic welfare associated with this scenario, which relates

to the cascade probablities as per (10) as

(b)
Π(ǫ, e) = (1/4)

[
(b)PGY-cas(ǫ, e) −

(b) PBY-cas(ǫ, e)
]
. (42)

Now, as both processes:{hin } and {hn} share the same update

rule, (b)PV
Y-cas

(ǫ, e) can be computed using the recursive method

described in Section IV by equations (12) and (13), except

that p f = a
′

if V = G, else p f = 1 − b
′

if V = B.

Then, applying these probabilities to (42) yields (b)
Π(ǫ, e). For

the best improvement in asymptotic welfare, the Co-ordinator

needs to set e to the optimal value:

e∗ = arg max
e∈[0,1)

(b)
Π(ǫ, e), (43)

which yields the best welfare, (b)
Π(ǫ, e∗). As an example,

Figure 9b plots this welfare against e for p = 0.6 and ǫ = 0.9,

where the best welfare is obtained at e∗ = 0.188.

Scenario (c): Manipulating the Y’s

Here, as opposed to Scenario (a), the Co-ordinator modifies

only the Y’s in the observations, i.e., at any time i, if Oi = Y

then the modified observation O
′

i
= N w.p. β ∈ (0, 1) and
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O
′

i
= Y w.p. 1 − β. Whereas, if Oi = N then O

′

i
= N w.p. 1.

The net effect of these random modifications is that, at any

time i, the channel between action Ai and O
′

i
becomes a binary

asymmetric channel with cross-over probabilites:

ǫY := P(O
′

i = Y |Ai = N) = ǫ(1 − β)

and ǫN := P(O
′

i = N |Ai = Y ) = β. (44)

For this scenario, let the Y-cascade probability be denoted by
(c)PV

Y-cas
(ǫ, β) to highlight that it is a function of the fraction of

fake agents ǫ and the modification parameter β. Similarly, let
(c)
Π (ǫ, β) denote the asymptotic welfare associated with this

scenario. It is difficult to compute the Y cascade probabilites

for general values of channel parameters: ǫY ∈ (0, ǫ) and ǫN =

(0, 1), except when ǫY = ǫN . This occurs if the Co-ordinator

sets β = βsym := ǫ

1+ǫ
at which the channel between Ai and O

′

i

effectively becomes a BSC with cross-over probability βsym.

In Appendix G of [25], we show that for this special case, a

sufficient statistic of history H
′

n, at each time n is a random

walk {sn} that occupies a finite state-space (unlike {hn} in

(7) that typically has a countably infinite state-space). Thus,

closed-form expressions for cascade probabilities exist and are

derived in Appendix G. The resultant asymptotic welfare is

(c)
Π(ǫ, βsym) = (1/4)

ak
sym − (1 − asym)

k

ak
sym + (1 − asym)k

. (45)

where asym := p(1 − βsym) + (1 − p)βsym and k :=⌊
log(1 − asym)/asym

(
1−p
p

) ⌋
+ 1.

Asymptotic welfare comparisons

We now compare the three asymptotic welfares, namely
(a)
Π(ǫ, κ∗) , (b)Π(ǫ, e∗) and (c)

Π(ǫ, βsym) for fixed values of the

private signal quality p. We also contrast these welfares with

the default welfare in the absence of the Co-ordinator, Π(ǫ)

and the baseline welfare Π(0) (given by (28) and (29) resp.).

Figure 10 plots the different welfares against ǫ for p = 0.7. It

can be seen that for low values of ǫ , Scenario (c) provides the

best improvement in welfare. We also observe that as ǫ → 0,

Scenario (c) entirely mitigates the reduction in welfare caused

by the presence of fake agents. For high values of ǫ , Scenario

(b) provides the best improvement in welfare. Here, Scenario

(c) in fact significantly worsens the welfare as compared to

Π(ǫ). There also exist several intervals in [0, 1) with moderate

values of ǫ where Scenario (a) performs the best. We find the

above characteristics of the three scenarios to be consistent for

all values of p. We demonstrate this in Appendix H of [25]

with plots for two more values, p = 0.55 and p = 0.9.

VIII. GENERAL CASE OF ZERO EX ANTE PAY-OFF

In this section, we extend our model to consider a general

(possibly non-uniform) prior for the true value V of the item

and a general pay-off structure for the agents, while still

retaining the condition of zero ex-ante pay-off. Recall that

this condition implies agents’ indifference to the two actions

a priori. We begin by assuming a non-revealing general prior

for the true value, P(V = G) = q ∈ (0, 1). Recall from Section

II that in general, the amount a buyer gains (loses) is x (y)
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Fig. 10: Asymptotic welfare for the indicated scenarios versus the
fraction of fake agents for p = 0.7.

if V = G (V = B), where x, y ≥ 0 and C denotes the cost of

buying the item. Restricting the ex-ante pay-off to 0 implies

that C = qx−(1−q)y. Then, the general pay-off for any agent

i is given by

πi =





x − C = (1 − q)(x + y), if Ai = Y and V = G,

−y − C = −q(x + y), if Ai = Y and V = B,

0, if Ai = N .

(46)

In all previous sections, we have considered agents’ pay-offs

under the specific case of x = 1, y = 0 and C = 1/2.

In this more general scenario, the decision rule is similar

to (2) except γn = q is the new threshold at which agent n

is indifferent to the two actions (and thus follows Sn). Next,

using Bayes’ rule, we express γn in terms of ln−1 and βn
as γn = 1/(1 + βnln−1

1−q

q
). Then, the condition on γn for a

Y (N) cascade is γn > q (< q) for all Sn, which translates to

βnln−1 < 1 (> 1) for all Sn. This cascade condition is the same

as before (see proof of Lemma 1) and hence is still defined

in terms of ln−1 as per Lemma 1. As a result, the sequence of

agents’ actions once again satisfies Properties 1 and 2 where it

is governed by {hn} which starts in the state h0 = 0,6 evolves

as per the update rule in (9), and is depicted in Figure 2.

Now, conditioned on the true value V, {hn} does not change

with the prior q. Thus, all conditional probabilities derived

in this paper remain unaltered in the general scenario. On the

contrary, agents’ welfares being their pay-offs averaged over V

with a general prior q will now change as follows. Evaluating

(25) given that agent follows its private signal yields a new

F := q(1 − q)(x + y)(2p − 1). Next, the constant term 1/4 is

replaced by the term q(1−q)(x+ y) in all equations pertaining

to agents’ welfares, namely, equations (27), (28), (29), (32),

(33), (42), (45). However, in Eq. (28), Step (a) is no longer true

and Pwrong-cas := qPG
N-cas
+(1−q)PB

Y-cas
.With the above changes

in place, all results and discussions presented in this paper

extend to any case with zero ex ante pay-off. Our analytic

techniques can also be readily modified for non-zero ex-ante

pay-off, as done in [26].

6If the ex-ante pay-off is not restricted to 0, then for an arbitrary cost
C ∈ [−y, x], the resulting r.w. {hn } still updates as per (9), except that the

starting state h0 = log
(

q(x−C)
(1−q)(y+C)

)
/log

(
p

1−p

)
.
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IX. CONCLUSIONS AND FUTURE WORK

We studied the effect of randomly arriving fake agents, who

by taking a fixed action seek to influence the outcome of an

information cascade. We focussed on the impact of varying

the fraction of fake agents on the probability of their preferred

cascade. To study this impact, we developed a Markov chain

model which typically has a countably infinite state-space and

does not readily allow for a closed-from solution to the cascade

probabilities. Instead, we presented an iterative method that

can compute the cascade probabilities with arbitrary precision.

This process also yields exact values for any given agent’s

chances of herding and its welfare, which is the expected pay-

off it receives.

Our main result identified scenarios where surprisingly, an

increase in the fraction of fake agents not only reduces the

chances of their preferred cascade but also effects a significant

improvement in the welfare of every rational agent. Further, we

analysed three approaches to modify the observation database

such that learning (asymptotic welfare) can be improved,

namely, (1) increasing, (2) filtering out and (3) modifying

the possibly fake actions. Interestingly, we observed that the

third approach provides the best improvement in learning when

the original fraction of fake agents is low, with a complete

mitigation of their welfare-reducing effects as their fraction

tends to zero. Whereas, the second approach performs the

best for high values of this fraction. Lastly, we showed that

our analysis, results and discussions readily extend to general

priors and agent pay-offs, as long as the ex-ante pay-off is

zero. For non-zero ex-ante pay-off, our analytic techniques

can also be easily modified to study the platform’s behaviour.

Potential future directions for this work include studying the

effects of time-varying fractions and/or multiple types of fake

agents, non-Bayesian rationality, random and asymmetric tie-

breaking rules, and imperfect observations such as allowing

each agent to only observe the total number for each action-

type in its history, instead of perfectly observing the sequence

of past actions. Moreover, as our results rely on the probability

of fake agents being common knowledge, a natural extension

would be to relax this assumption.
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