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Abstract—In online markets, agents often learn from other’s
actions in addition to their private information. Such observa-
tional learning can lead to herding or information cascades in
which agents eventually ignore their private information and
“follow the crowd”. Models for such cascades have been well
studied for Bayes-rational agents that arrive sequentially and
choose pay-off optimal actions. This paper additionally considers
the presence of fake agents that take a fixed action in order
to influence subsequent rational agents towards their preferred
action. We characterize how the fraction of such fake agents
impacts the behavior of rational agents given a fixed quality of
private information. Our model results in a Markov chain with
a countably infinite state space, for which we give an iterative
method to compute an agent’s chances of herding and its welfare
(expected pay-off). Our main result shows a counter-intuitive
phenomenon: there exist infinitely many scenarios where an
increase in the fraction of fake agents in fact reduces the chances
of their preferred outcome. Moreover, this increase causes a
significant improvement in the welfare of every rational agent.
Hence, this increase is not only counter-productive for the fake
agents but is also beneficial to the rational agents.

Index Terms—Information cascades, herding, Bayesian opti-
mality, Perfect Bayesian Equilibrium (PBE).

I. INTRODUCTION

ONSIDER a new item that is up for sale in a

recommendation-based market where agents arrive se-
quentially and decide whether to buy the item, with their
choice serving as a recommendation for later agents (eg.,
through a public database). This item has a common qual-
ity/utility (say “good” or “bad”) that is unknown to the agents.
Each agent then makes a pay-off optimal decision by using its
own prior knowledge of the item’s quality and by observing
the choices of its predecessors. Such models of “observational
learning” were first studied by [2], [3], [4] under a Bayesian
learning framework wherein each agent has some prior knowl-
edge in the form of a privately observed signal about a pay-
off-relevant state of the world generated from a commonly
known probability distribution. Agents arrive in an exogenous
order, and every agent chooses its action based on its own
private signal and observations of past agents’ actions. Agents
are assumed to be Bayes rational, i.e., their actions are optimal
with repsect to their posterior beliefs of the true state of the
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world given their observations'. A key result for such models
is the emergence of information cascades or herding, i.e., at
some point, it is optimal for an agent to ignore its own private
signal and follow the actions of the past agents. Subsequent
agents then follow suit due to their homogeneity. As a result,
from the onset of a cascade, the agents’ actions do not reveal
any information conveyed to them by their private signals;
hence learning stops.

The model described above has two possible outcomes.
First, the agents may end up in a correct cascade, that is
the information accumulated within the observation history
eventually forces all successive agents to take the optimal
action with respect to the underlying true state of the world.
In this case, learning or a socially optimal behaviour is said
to be achieved. Second, there is also the possibility that past
observations might get accumulated in a manner that forces all
successive agents to take the action that, although individually
optimal, is in fact socially sub-optimal, which we refer to as
a wrong cascade. Thus, herding to a wrong cascade would
prevent the agents from learning the socially optimal (correct)
choice. Moreover, a main result of work in [2], [3], [4]
(and others) that assumes homogeneous agents and discrete
bounded private signals is that a cascade (correct or wrong)
commences within the arrival of a finite number of agents
with probability one. This leads to a positive probability that
a wrong cascade occurs.

In this paper, we study a Bayesian learning model similar to
[2], [3], [4] where in addition to rational agents, we introduce
randomly arriving fake agents that always take (or fake) a fixed
action, regardless of their pay-off, in order to influence the
outcome of a cascade. For example, this could model a setting
where a poor quality item is posted for sale on a website that
records buyers’ decisions, and fake agents intentionally buy
(or appear to buy) this item to make it seem worth buying
to future buyers [5]. The model could also represent a setting
where rational actions are manipulated or where fake actions
are inserted into a recommendation system [6], [7], [8]. The
objective is to study the impact of varying the amount of these
fake agents on the probability of their preferred cascade and
on the resulting welfares (expected pay-offs) of the rational
agents. Our main result shows a counter-intuitive phenomenon:
the probability with which the cascade preferred by the fake
agents occurs is not monotonically increasing in the fraction
of fake agents, €. In fact, there exist infinitely many cases
where an increase in the fraction of fake agents reduces the
chances of their preferred cascade. We identify a sequence of
thresholds for € where this phenomenon is most pronounced.

'From a game theoretic point-of-view, this is a dynamic game with
assymmetric information where the agents’ optimal actions are a Perfect
Bayesian Equilibrium (PBE) of this game.
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Moreover, we show that exceeding any such € threshold causes
an abrupt improvement in the welfare of every rational agent.

In our model, we assume that the presence of fake agents is
common knowledge to the buyers and is accounted for in their
actions. This is motivated by several empirical results, such as
in [9] and [10], which suggest that over repeated interactions
with the buying platform and through word-of-mouth, buyers
tend to be conservative with their decisions by taking into
account that a certain fraction of positive reviews for an item
might be fake or that its sales statistics might be exaggerated.

A. Our Contributions

In this paper, we develop a Markov chain model to represent
the process of information accumulation driven by the actions
of sequentially arriving agents (either rational or fake), which
eventually results in a cascade. To obtain this Markov chain,
we identify a sufficient statistic of past observations that
determines whether an agent cascades or follows its private
signal.

Secondly, we analyse the Markov chain for the probability
of cascades as a function of the quality p of the prior knowl-
edge available to every rational agent (i.e., its private signal),
and the fraction of fake agents, €. The Markov chain typically
occupies a countably infinite state-space, and does not readily
allow for a closed-form solution to the cascade probabilities.
Instead, we develop recursive equations that can compute the
cascade probabilities with arbitrary precision. These equations
are motivated by the construction of an iterative method that
enumerates all possible action sequences that would lead to a
cascade. This iterative method also provides exact probabilities
for both correct and wrong cascades to begin within the
arrival of a finite number of agents. Computing these cascade
probabilities in turn yields the welfare for any arbitrary agent.

Thirdly, we study the effects of varying € on the cascade
probabilities and on agents’ welfares for a fixed private signal
quality, p. Our results highlight the following counter-intuitive
phenomenon: there exist an infinite sequence of thresholds
{&}2 | where increasing € slightly above €. causes an abrupt
decrease in the probability of the cascade preferred by the
fake agents. Thus, a marginal increase in the presence of fake
agents beyond any such threshold reduces the chances of their
preferred cascade instead of increasing it, which is what they
had intended. Further, we analytically show that increasing €
just beyond any such ¢, also causes an abrupt and significant
increase in the welfares of all agents. Therefore, marginally
exceeding €, is not only counter-productive for the fake agents
but is also beneficial to the rational agents.

Fourthly, we prove that an agent’s welfare improves if it
chooses to arrive later in the sequence of arrivals. This result
implies that the welfare reaches a limiting maximum value as
the agent’s arrival index tends to infinity. We refer to this value
as the long run or asymptotic welfare. The proof involves the
application of Blackwell’s theorem on comparing information
structures [11], [12], which more generally also shows that
an agent can never do any better by ignoring any of the past
observations or its own signal.

Fifthly, we quantify the cascade probabilities and social
welfare as a function of p in the interesting scenario where

the proportion of fake agents approaches unity. We analytically
show that even when fake agents have overwhelmed the ratio-
nal agents: (i) a better signal quality results in higher chances
of learning the socially optimal action (correct cascade) and
(i) rational agents continue to benefit from past observations.

Sixthly, we discuss the role of a Platform Co-ordinator in
improving learning through modifications to the observation
database. We analyse and compare the performances of three
approaches for improving the agents’ welfares, namely (a)
increasing the fraction of fake actions, (b) filtering out possibly
fake actions and (c¢) modifying the possibly fake actions. For a
wide range of values for p, we observe that for low values of €,
Scenario (c¢) outperforms all other scenarios, providing the best
improvement in welfare. As € — 0, it entirely mitigates the
reduction in welfare caused by the fake agents. Whereas, for
high values of €, Scenario (b) provides the best improvement.
There also exist several intervals with moderate e-values where
Scenario (a) performs the best.

We conclude by showing that the analysis, results and
discussions presented in this work readily extend to general
priors and agent pay-offs, as long as the ex-ante pay-off is zero.
Moreover, our analytic techniques can be easily modified to
include a non-zero ex-ante pay-off.

B. Related Work

Our work follows the basic model studied in [2], [3], [4],
except we introduce fake agents which arrive at random amidst
the sequence of rational agents. Many variations of this basic
model have been studied, some of which we review here
briefly. The work in [13] relaxed the assumptions of agents’
homegeneity and binary valued private signals made in [2],
[3], [4]. It showed in particular that allowing for a richer class
of signals, such that their likelihood ratio is unbounded, could
result in learning to occur with probability one. Our model
maintains the assumptions of [2], [3], [4], i.e., homegenous
agents and binary valued private signals.

Another change to the basic model is to consider different
structures for observing past actions. For example, [14] con-
siders that agents can observe only a subset of the past actions,
defined by an underlying network structure. This work finds
conditions on the network structure that guarantee asymptotic
learning. Whereas [15] makes the network formation endoge-
nous by allowing agents to select their observations at a cost.
Another variation, studied in [16], forces a fixed number of
initial agents to only observe their private signals. These agents
thereby act as "guinea pigs", used to explore the unknown
true value. This causes improved welfares of the subsequent
agents at the cost of the guinea pigs’ welfares. Our work here
stays with the original model [2], [3], [4] which assumes that
actions are recorded to a common database, thereby allowing
each agent to observe all prior actions (although in our case,
each action could be either rational or fake).

Closer to our work is the model in [17], which assumes that
the recording of actions for subsequent agents is subject to an
error that is unbiased towards each of the possible actions. In
our setting, an action being either fake or rational depending
on the agent-type could equivalently be perceived as an error
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while recording a rational action (as in [17]); except that in
our case, the error is biased only towards a preferred action.

There is also a body of work that considers agents similar
to our fake agents, who only take a single action regardless
of the true state. This includes the crazy agents considered in
[13], stubborn agents in [18] and zealots in [19]. While [13]
relaxes the assumption of binary signals, it does not consider
how changing the fraction of crazy agents affects the cascade
probability, which is the main focus of our work. The works
in [18] and [19] do not consider learning, instead they model
opinion/belief dynamics in the presence of their respective
types of abnormal agents. They consider non-Bayesian models
for updating agents’ beliefs, while our work remains with
the Bayesian model. Other types of agents considered in the
literature include the revealers in [20], experts and laymen in
[21] and non-myopic agents in [22].

The learning models considered in this line of work also
have ties to early work on sequential detection with finite
memory, e.g, [23] and [24]. There, the sequence of i.i.d. signals
has to be summarized by a test-statistic of finite cardinality,
which gets updated as per a rule designed by a planner with the
objective of maximizing the chance of asymptotically learning
the true state of the world. Our model does not assume any
memory constraints and all past actions are perfectly observed.
The more important distinction is that in [23], [24], agents
simply follow the rule prescribed by the planner, i.e., agents
are not strategic and thus their actions might not constitute an
equilibrium. Our work instead considers a setting where there
is no planner and agents are strategic and act in their best
interests. Thus, agents’ actions are in a PBE.

Our work is a substantial extension of [1], where we first
proposed the iterative method to compute cascade probabilities
and identified the infinite sequence of e-thresholds at which an
abrupt reduction in the preferred cascade probability occurs.
This paper makes several contributions beyond [1], such as
studying the cascade probability for finite agents, identifying
important properties exhibited by agents’ welfares, and explor-
ing the effects of a Platform Co-ordinator on learning, among
others as stated earlier.

C. Organisation

The remainder of the paper is organized as follows. We
describe our model in Section II. We analyze this model and
identify the resulting cascade properties in Section III. In
Section IV, we present our Markov chain formulation, identify
error thresholds and devise an iterative method to compute cas-
cade probabilties. Further, in Subsection IV-C, we quantify the
abrupt reduction in chances of a correct cascade at these error
thresholds. Subsection IV-D investigates the preferred cascade
probability for low values of € and contrasts it to the case
when fake agents are absent (¢ = 0). Section V characterizes
agents’ welfares and identifies important properties exhibited
by them. In Section VI, we investigate learning in the limiting
scenario where the proportion of fake agents approaches one.

2This change requires a different analysis approach than that in [17] as the
underlying Markov chain now typically has a countably infinite state-space,
while in [17] it was finite. We show that this change also yields substantially
different outcomes.

Section VII introduces a Platform Co-ordinator and presents
approaches for modifying the observations that could improve
learning. Section VIII extends this work to general priors and
agent pay-offs, while maintaining zero ex-ante pay-off. Lastly,
we present our conclusions in Section IX. Detailed proofs,
extended analyses and supporting plots are provided in the
Appendices of [25].

II. MODEL

We consider a model similar to [2] in which there is a
countable sequence of agents, indexed i = 1,2,... where the
index represents both the time and the order of actions. Each
agent i takes an action A; of either buying (Y) or not buying
(N) a new item that has a true value (V), which could either
be good (G) or bad (B). For simplicity, both possibilities of
V are assumed to be equally likely.

The agents are Bayes-rational utility maximizers where the
pay-off received by each agent i, denoted by x;, depends on
its action A; and the true value V as follows. If the agent
chooses N, his payoff is 0. Whereas, if the agent chooses Y,
he incurs a cost of C = 1/2 for buying the item and gains an
amount that reflects the item’s value/utility to its buyer. The
buyer loses an amount y = 0 if V = B and gains an amount
x =1 if V = G. The agent’s net pay-off is given by

x—C=1/2, ifA;=YandV =G,
mi={-y-C=-1/2, ifA;=YandV=B, (1)
0, if A; = N.

Given the values considered for x, y and C, observe that since
V is equiprobable, the ex ante expected pay-off for any agent
is 0 for either of the actions.? Thus, to begin with, an agent
is indifferent to the two actions.

G H Y ! Y
Vv =a Si A; 4 O;
B > L N - N

(2) (b)

Fig. 1: (a) The BSC through which agents receive private signals.
(b) The channel through which agents’ actions are corrupted.

To incorporate agents’ private beliefs about the new item,
every agent i receives a private signal S; € {H (high), L (low)}.
This signal, as shown in Figure la, partially reveals the
information about the true value of the item through a binary
symmetric channel (BSC) with crossover probability 1 — p,
where !/ < p < 1. This implies that the signal is informative
but not revealing. Moreover, the sequence of private signals
{81, 85,...} is assumed to be iid. given the true value V.
Each agent i takes a rational action A; that depends on his
private signal S; and the past observations {01, 0, ...,0;_1}
of actions {Ay, Ay, . .., A;_1}. Next, we modify the information
structure in [2] by assuming that at each time instant, an

3Section VIII generalizes the model to possibly non-uniform priors for V
and a general pay-off structure for agents, while still retaining the condition
of zero ex-ante pay-off.
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agent could either be fake with probability (w.p.) € € [0, 1) or
ordinary w.p. 1—€, where the value € is assumed to be common
knowledge, so that all agents know the probability that any
agent is fake but do not know which specific agents are fake.
An ordinary agent i honestly reports his action, i.e. O; = A;.
On the contrary, a fake agent always reports a Y, reflecting
his intention of influencing the successors into buying the new
item, regardless of its true value. This implies that at any time
i, if A; = N then with probability 1 — €, the reported action
O; = N and with probability €, O; = Y. Whereas, if A; =Y
then O; =Y with probability 1. Refer to Figure 1b.

An equivalent model is where action A; is rational only if
agent i is ordinary and is fixed to Y otherwise, while O; = A;
for all agents. This yields the same information structure as
the model above and so the same analysis applies to model the
behavior of the ordinary agents. We chose the former model
mainly to simplify our notation.

III. OPTIMAL DECISION, CASCADES AND WELFARE

For the n™ agent, let the history of past observations be
denoted by H,,_1 ={01,0,,...,0,_1}. As the first agent does
not have any observation history, he always follows his private
signal, i.e., he buys if and only if the signal is H. From the
second agent onwards, the Bayes’ optimal action for every
agent n, A, is chosen according to the hypothesis (V= G or B)
that has the higher posterior probability given the information
set I, = {Sy, Hu-1}. Let v, (Sp, Hu—1) = P(G|S,, H,—1) denote
the posterior probability for the item being good, V= G. Then
the Bayes’ optimal decision rule is

Y, if v, >1/2,
A, =1N, if v, <1/2, 2)
follows S, if y,=1/2.

Note that when vy, = 1/2, an agent is indifferent to the two
actions. Similar to [17], our decision rule in this case follows
the private signal S,,, unlike [2], which employs a randomized
tie-breaking rule. Another choice in this case is to follow the
history H,_1, i.e., to take the action that is most observed in
the past. Techniques in this paper can be readily adapted to
reflect this alternate choice of breaking ties [26].

Definition 1. An information cascade is said to occur when
an agent’s decision becomes independent of his private signal.

It follows from (2) that, agent n cascades to a Y (N) if and
only if vy, > 1/2 (< 1/2) for all S,, € {H, L}. The other case
being y, > 1/2 for S,, = H and y,, < 1/2 for S,, = L; in which
case, agent n follows S,,. A more intuitive way to present this
condition is to first express the information contained in the
history H,,_; observed by agent n in the form of its public
likelihood ratio,

ln—l(ﬂn—l) = w

_ , 3
B(H, 1 10) ©

and then state it as follows.

Lemma 1. Agent n cascades to a Y (N) if and only if I,—1 <

I_Tp (ln1 > %) and otherwise follows its private signal S,.

To prove this lemma, first define agent n’s private likelihood
ratio, B3,(S,) := P(S,|B)/P(S,|G). It follows from Figure la
that B,(H) = (1 — p)/p and B,(L) = p/(1 — p). Next, using
Bayes’ rule, express vy, in terms of /,_; and B, as y, = 1/(1+
Bnlu—1). As a result, the condition on vy, for a Y (N) cascade
translates to [,-1 < 1/8, (> 1/B,) for all S,; this simplifies
to give Lemma 1.

If agent n cascades, then the observation O, does not
provide any additional information about the true value V to
the successors over what is contained in #,,_;. As a result,
lyti = -1 for all i = 0,1,2,... and hence they remain in
the cascade, which leads us to the following property, also
exhibited by prior models, e.g. [2], [3], [4], [17].

Property 1. Once a cascade occurs, it lasts forever.

On the other hand, if agent n does not cascade, then Property
1 and Lemma 1 imply that all the agents until and including n
follow their own private signals ignoring the observations of
their predecessors. For every such observation O;, i < n, as S;
is conditionally independent of the history H;_; given V, the
likelihood ratio can be updated as

(Z2)ir. it 0=,
I = 4)
(&WH, if 0; =N,
a:=P0; =Y|V=G) and b:=P(O; =N|V=B). (5

Here, a and b denote the probabilities that an observation O;
follows V if agent i follows its private signal, given V = G
and B, respectively. It can be shown from Figures 1a and 1b
that in the above case, i.e., when A; follows §;,

a=p+(l-p)e and b=p(1l -e). 6)

As a result of the updates, I, can be shown to depend only
on the number of Y’s (denoted by ny) and N’s (denoted by
1-p

ny) in the observation history H,,. Specifically, , = ( >
where £, is the difference between the number of Y’s weighted
by n and the number of N’s,

hn

)
®)

hy = nny — ny,

n := log (ﬁ)/log (%)

Thus, agents that have not yet entered a cascade satisfy the
following property.

Property 2. Until a cascade occurs, each agent follows its
private signal. Moreover, h, defined in (7) is a sufficient
statistic of the information contained in the past observations.

Note that if € = 0 (no fake agents) then a = b = p and
n = 1, in which case h,, is the unweighted difference, ny —nn,
which is also the case for the unbiased noise model in [17].
Whereas, if € > 0 then n < 1. The expression for A, in (7)
shows that, due to the presence of fake agents, the dependence
of an agent’s decision on a Y in his observation history reduces
by a factor of 5, whereas the dependence on a N remains
unaffected. This is to be expected because, unlike a N which
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surely comes from an honest agent, a Y incurs the possibility
that the agent could be fake. Further, this reduced dependence
on Y is exacerbated with an increase in the possibility of fake
agents, as n reduces with an increase in e.

Using the expression for /, in Lemma 1, it follows that for
all times n until a cascade occurs, —1 < h,, < 1 and the update
rule for &, is given by

I, = hn-1 + 1, %f O, =Y, ©)

hp—1 — 1, if 0, =N.

Whereas, once h, > 1 (< —1), a Y (N) cascade begins and 4,
stops updating (Property 1). Note that iy = O since the first
agent has no observation history. Now, given the true value
V € {G, B}, let the probability that a Y (N) cascade begins be
denoted by Py (PY ) Here, PX, _ =1-Py  asitcan
be shown that the process {4,} exits the range [—1, 1] w.p. 1.
Further, let the n'™ agent’s welfare refer to its pay-off averaged
(in expectation) over V € {G, B}. We show later in Section V
that this welfare as n — oo relates to the cascade probabilities
of the process {h,} as

Il := limE[x,] =

n—oo

[chas - Pg-cas] . (10)

FNgI.

IV. MARKOVIAN ANALYSIS OF CASCADES

In this section, we analyse the process {h,}, given V, to
determine the probability of cascades. It follows from the
previous section that conditioned on V, the process {h,} is
a discrete-time Markov chain taking values in [-1, 1] before
getting absorbed into the left absorption region (< —1) causing
a N cascade or the right absorption region (> 1) causing a Y
cascade. More specifically, equation (9) shows that, given V,
{h,} is a random walk (r.w.) that starts from state 0 and moves
to the right by n w.p. P(O, = Y|V) or to the left by 1 w.p.
P(O,, = N|V) until a cascade occurs, where these probabilities
are defined in terms of a and b in (5). Figure 2 depicts this
random walk, where py = P(O, = Y|V) denotes the probability
of a Y being observed given V, when any agent n follows its
private signal S,,. We have from (5) that py = a for V = G,
whereas pr = 1—b for V = B.

Note that in the special case where 7, given by (8),

satisfies 1/ = r for some r = 1,2,..., the process
{h,} is equivalent to a Markov chain with finite state-space
A={-r-1,-r,...,-1,0,1,...,r,r +1}, and with —r — 1 and

r + 1 being absorption states corresponding to N and Y
cascades, respectively. More generally, it can be proved that
{h,} has a finite state-space for any rational-valued 1/n. In
such cases, absorption probabilities can be obtained directly
by solving a system of linear equations. In this paper, our
main focus is on the more generic case of irrational values
of 1/n resulting in {h,} taking countably infinite values in
[-1,1],* which does not readily allow for a direct solution
to the cascade probabilities. This is unlike the unbiased noise
model in [17] where the state-space of the Markov chain is
always finite.

4For example, if 77 was chosen uniformly at random, then almost surely
(w.p. 1) it would fall into this case.

Fig. 2: Partial transition diagram of random walk {h,} given V.

A. Error thresholds

In the absence of fake agents (¢ = 0) as in [2], 7 = 1 and so
cascading to a Y(N) cascade requires at least two consecutive
Y’s (N’s). However, in the presence of fake agents, n < 1. In
this case, even a single N after a Y could trigger a N cascade.
On the other hand, as e increases and reduces 7, a greater
number of consecutive Y’s (> 2) are required to cause a ¥
cascade. This is characterized in the following lemma.

Lemma 2. Let a = p/(1—=p). For r € N, define the increasing
sequence of thresholds {&.}% ., with the r'™ threshold given by

r=1’

1
a—ar

Y

6 = ———.
1
artl -1

Define I, % [, €41) as the r'" e—interval. Then for € € I,
at least r + 1 consecutive Y’s are necessary for a Y cascade
to begin.

The proof follows by noting that, if a cascade has not begun
immediately after an N is observed, then the rightmost position
that the random walk can be in, is in state 0. Starting from state
0 therefore gives a lower bound on the number of consecutive
Y’s required to begin a Y cascade. From here, r+1 consecutive
Y’s would be needed to begin a ¥ cascade when 15 <y < L.
This inequality implies that € € 7, = [¢, €-+1) Where €, is the
r threshold, defined in (11). Here, recall from (8) that nisa

function of € and p.

Remark 1. For € € I, starting from state 0, r+ 1 consecutive
Y’s start a Y cascade. Further, the integer r satisfies r = | 1/n].

Figure 3 shows the thresholds e varying with p, for
different values of r. For a fixed €, we see that as the signal
quality (p) improves, more consecutive Y’s are required for
a Y cascade to begin. This is because, an increase in p
increases the information contained in a Y, but not as much

—--g—--1=100

0.5 0.6 0.7 0.8 0.9 1

Fig. 3: Thresholds - for the indicated values of r versus p.
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as the corresponding increase in the information contained in
a N. Further, note that as € — 1, r — co which implies
that infinitely many consecutive Y’s are required for a Y
cascade to begin. Equivalently, the information contained in
a Y observation becomes negligible. We further investigate
learning in this asymptotic scenario in Section VI.

B. Y cascade probability, Py.cqs

In this subsection, we will compute the probability of
absorption of {h,} to a Y cascade (into the right absorption
region) given V, namely P‘;_Cas. Any probability stated in
the remainder of this section is assumed to be conditional
under V through its dependence on py; we thereby drop V
from its superscript for notational convenience. Consider the
iterative method depicted in Figure 4 that describes all possible
sequences that can lead to a Y cascade. For this process, we
assume € € I,\{e: 1/n € Q} forsomer = 1,2, .... We do this
to avoid the case of rational values of 1/ which could result in
certain special sequences (having two consecutive N’s) with
non-zero probability, that are not enumerated in Figure 4.5
For the case of rational-valued 1/n, recall that the absorption
probabilities can be obtained directly as solutions to a system
of linear equations.

To begin the iterative method, we initialize Stage 1 with r| =
r+1. Now, starting from state 0, consider the sequences shown
in Stage 1 of Figure 4. The first sequence of r; consecutive
Y’s, denoted by Y, clearly enters the right absorption region
(Remark 1), and so rin € [1, 1 +7]. The rest of the sequences,
each of length r| + 1, are simply permutations of each other
that contain only a single N. This is because two N’s or more
are not possible without entering the left absorption region.
Now, each of these r| distinct sequences results in the same
net right shift of ;7 — 1, which ends in the region [0,n] as
we know that rip € [1,1 + n]. This completes Stage 1. From
here, it would take either r or r + 1 consecutive Y’s to enter
the right absorption region. Let this value be denoted by r;.
The sequences in Stage 2 can then be enumerated exactly as
in the first stage, except that r, now replaces r;. Now, unless
there are r, consecutive Y’s, the sequences of Stage 2 again
end in the region [0, 7], and then the process continues to the
next stage. Here, r,, denotes the number of consecutive Y’s
required to enter the right absorption region in the n™ stage.
In this manner, all sequences that lead to a Y cascade are
enumerated.

Let P,, denote the probability of entering the right absorp-
tion region given that the sequence has not terminated in a
Y cascade before the n' stage. The following recursion then
holds.

Py =p} [1+ra(1 = pp)Ppsr], forn=1,2,... (12)
and the probability of a Y cascade, denoted by Py_c,s is:
Py cas(€) = P, for e € I, \ {e: 1/n € Q}. (13)

SThese special sequences can be readily incorporated into the enumerations
in Figure 4, but would disrupt the recursive pattern. For simplicity, we avoid
such values of €

Y cascade

Y cascade

Stage (1) Stage (2)

Fig. 4: An enumeration of all possible sequences that would lead
to a Y cascade. The term Y' represents a sequence of t consecutive
Y’s. The sequence {ry} is defined as per (14).

Here, while r; = r + 1, successive values of r; fori = 2,3,...
can be obtained from r; using the updates:
= r, if Z;’z_ll(rin - +rp>1, (14)
r+1, 0.W.

Since (12) is an infinite recursion, to compute Py_c,s in prac-
tice, we truncate the process to a finite number of iterations M.
To this end, we first assume that Py, ; = 1. Next, we use (12)
to successively compute P, while k counts down from M to
1, performing a total of M iterations. We denote the obtained
value as PY_ . The following theorem shows that P¥_ is in
fact a tight upper bound to Py_,s as M — oco. Moreover, the
difference ]P’y_%lS — Py.cas decays to zero at least as fast as 0.5M
in the number of iterations M. Refer to Appendix A in [25]
for a detailed proof.

Theorem 1. Let € € 1. \ {€ : 1/n € Q} for some r = 1,2,...,
with py denoting the probability of a Y. Then, for any M =
L,2,...,

0 < Plly—cas(e) _PY-CGS(E) < kM,

where k = (r + 1)(1 —pf)p;. Further, for any p € (0.5,1) and
€ €[0,1), k satisfies 0 < k < 1/2.

0.4
03 r
.
a8
0.2
o PY—cas at 6:r
77777777777 x PY*C&S at 6;
- *nycas ate=0
0.1 : ‘ ‘ |
0 0.2 0.4 0.6 0.8 1

Fig. 5: Probability of Y cascade as a function of € for V.= B and
p=0.7.

Figure 5 shows a plot of Py_,s with respect to €, for the
case V = B with p = 0.7. The plot uses M = 10 which
gives an error of less than 1073, It can be seen that in the
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r e—interval 7, Py increases with e, but with infinitely

many discontinuities (where Py_,s(€) decreases). This is in
contrast with the unbiased noise model in [17], where it
increases continuously over a similar interval. This distinction
is a consequence of the state-space of {A,} being infinite,
unlike in [17]. Despite the discontinuities, Py.c,s achieves the
minimum (marked by o) and maximum (marked by X) values
at the edge points of 7, i.e., € and € 1> respectively. Further,
note that the relatively larger drops in Py_.,s observed in Figure
5 occur exactly at the threshold points {e, };7 . Here, counter
to expectation, a slight increase in € beyond € causes a
significant decrease in the probability of a Y cascade. The
same characteristic is exhibited when V = G, which is shown
in Figure 11, in Appendix B of [25]. In Section IV-C, we show
that closed-form expressions for Py_c,s as € — ¢ and € — €,
can be obtained (refer to (15) and (16)); thereby quantifying
its drop at each threshold e, .

In Figure 12 of Appendix C in [25], we outline an iterative
method similar to that in Figure 4, to compute the proba-
bility of absorption of {A,} to a N cascade, namely Pp _cys
with arbitrary precision. Having already computed Py _c,s, this
alternate process may seem redundant due to the fact that
Pn-cas = 1 — Py_cas. However, later in Subsection IV-E, we
will be using both the iterative methods depicted by Figures
4 and 12 to compute exact probabilities of a ¥ and N cascade
respectively, that may begin at or before a finite agent index #.
We denote the probability that a ¥ (N) cascade occurs by the
n™ agent index by vV (u2"). Note that agent n+ 1 always has
a non-zero probability 1 — vV — uV of following its private
signal S,+1, hence u;“lV #1-— vZV. As a result, u;“lV cannot be
inferred by knowing vV, and vice-versa. So, both the iterative
methods are required to obtain cascade probabilities for any
finite n.

C. Quantifying abrupt changes in Py..,s at error thresholds

We now quantify Py .5 as € tends to each threshold point
€-. For this, we state the following lemma, with the proof
provided in Appendix D of [25].

Lemma 3. Foralli > 2, r; in (14) satisfies: r; — r as € — €.

It follows from Lemma 3 that as € — ¢, the recursion in
(12) results in the same infinite computation to obtain P; as for
P;.1, for all i > 2. Thus, all P; for i > 2 have the same value
which satisfies: P; = p}[1 +r(1 - py)P;]. Solving this equation
for i = 2 gives the value for P, which when used in equation
(12) for n = 1 yields Py, i.e., Py_cas. However, note that while
solving equation (12), r; = r+ 1 for € = €' whereas r; = r for
€ = €, . This corresponds to the following two different values
of Py.cas as € — €-:

1+ (1 -ppp;
L=r(1=ppp}’
1
= pr _—
f1- r(1 —pf)p;
Hence, the fractional decrease in Py_.,s that occurs abruptly at
&, defined as 6, = [Py-cas(67) = Py-cas(€) | /Py-cas(€y) is

S, = (1=ps)(1=pj.

IP)Y—cas(f;r) = P}H (15)

Py cas(€) (16)

a7)

Property 3. If the possibility of fake agents equals the r'"
€-threshold, r = 2,3, ..., then for any V, a further marginal
increase in fake agents reduces the chances of their preferred
(Y) cascade by a factor of 6y, rather than increasing it.

The above property implies that, increasing € just above ¢,
is in fact counter-productive for the fake agents. The intuition
underlying Property 3 is as follows. Recall from Lemma 2
that an increase in € from €, to €' increases the least number
of consecutive Y’s required to begin a Y cascade by one. This
implies that any observation sequence that ends in a Y cascade
for € = ¢ gaurantees a Y cascade for € = €. However, the
opposite is not true. Therefore, increasing the noise value from
€. to €' results in a drop in the ¥ cascade probability.

Lastly, it can be verified from (17) that as r — oo, 6, — 0.
This is depicted in Figure 5 where the sequences {Py.cas(€7)}
and {Py.,s(¢')}, marked by X and o respectively, converge
to a limiting value as r — oo. Note that r — oo implies the
limiting scenario of € — 1. We investigate this scenario further
in Section VI.

D. Effect of fake agents on Py...s at low values of €

Next, we consider the cascade behaviour for low values of
€. In the absence of fake agents (¢ = 0) as in [2], p = 1. It
then follows from Figure 2 that {h,} has a finite state-space
{-2,-1,0,1,2}, and a Y (N) cascade starts when A, = 2 (=2).
Here, solving for Py.c,s gives

p*/p* + (1 -p)],
(1-p)*/[p*+ (1 -p)?].

In Figure 5 and Figure 11 (Appendix B of [25]), this is
indicated as a baseline to compare it with Py, for any
€ €(0,1), when V = B and V = G, respectively. Observe that
for low values of €, Py.cys is smaller than when fake agents
are absent. The next theorem formalizes this property for any
p and any V.

for V = G,

18
for V = B. (18)

Py_cas(0) = {

Theorem 2. Given the private signal quality p € (0.5,1),
and the item’s true value V € {G, B}, there exists some € =
f(V,p) > 0 such that

Py_cas(€) < Py.cas(0), V €€ (0, E) (19)
From the point-of-view of the fake agents, the above theorem

implies the following property.

Property 4. If fake agents occur with a probability of less
than €, then the effect that their presence has on the honest
buyers is opposite to what they had intended. That is, they
reduce the chances of their preferred (Y) cascade instead of
increasing it.

Likewise, Theorem 2 implies that if V = B, then the honest
buyers benefit from the presence of fake agents when € < e.
Otherwise, if V = G, then they are harmed by such a presence
of fake agents.

Proof: Note that as € — 0, the limiting value of Py_c,s
can be obtained from (15) with » = 1 and pf — 1 — p for
V = B, whereas py — p for V = G. This gives
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a- )271?)8 p; for V =B,
lim Pycas(€) =y (20)
e plre=p) for V = G.
1-p(1-p)

In Figure 5, this limiting value is marked by o at € = 0.
By comparing this expression with the one in (18) for the
corresponding values of V, we have

liII(l) Py.cas(€) < Pycas(0), V pe(0.51),V e {G,B}.
€—

Thus, there exists some € > 0 such that (19) holds true. |

From the above proof, it follows that Theorem 2 is a
consequence of the discontinuity in Py s at € = 0, for any
given V. This contrasts with the unbiased noise model in [17],
where there is no discontinuity in the cascade probabilities at
€ = 0 (no noise). Once again, this distinction results from the
state-space of {h,} being infinite, unlike in [17].

E. Probability of cascades for finite agent arrivals

In this subsection, we use the iterative methods depicted in
Figure 4 and Figure 12 (in Appendix C of [25]) to compute
exact probabilities for correct and wrong cascades to begin
within the arrival of a finite number of agents. For the random
walk {h,} in Figure 2, given the true value V € {G, B}, let
viV (uzV) be the probability of being absorbed by the right
(left) absorption region by the n™ time-step. As the time-steps
of {h,} correspond to the agents’ indices, v;" and u}’ are
respectively the probabilities that a correct and wrong cascade
occurs by the n' arrival under V = G. Vice-versa holds when
V = B. Now, let v/ (u)) be the probability that {A,} enters
the right (left) absorptlon region exactly at the n'" time-step.

n n
v _ 14 sV _ 14
= E v/, and u, = E u;
i=1 i=1

Figure 5 shows that all sequences that enter the right absorp-
tion region (i.e. end in a Y cascade) in Stage () termmate
with a Y7 and have the same length: [; = r; + Z] l(rl + 1),

21

for j = 1,2,.... This yields the values for {vn} as follows:
J-1
pi | | =ppp},  ifn=1,
o= {70 L] =00 ’ (22)
0, 0.W.

In a similar manner, by observing Figure 12 in [25], we see
that among all sequences that end in a N cascade in Stage (j),
the ¢ sequences that terminate in any allowable permutatlon of
NY'~IN have the same length: t+1+2’_1(r,+ 1) =l +1+2,
fort=1,2,...,r; and j = 1,2,.... This yields the values for
{u,} as follows:
j-1
_ tp}_l(l —pf)2 l_[ ri(L=pep, iftn=>0[_1+1+2

n- i=1

0, 0.W.

(23)

Now, as n — oo, the asymptotic value of the quantity v;‘l‘_/l
(ufl‘_/l) refers to the probability that a Y (N) cascade occurs
eventually. Thus,

@ _pY

; v
and lim u =P Y -cass

. \%
lim v =P Jim N-cas

N—s00 Y-cas

(24)

where equality (a) holds since it can be shown that {A,} is
absorbed into either of the cascades w.p. 1.

V. WELFARE FOR ORDINARY AGENTS

In this section, we analyze the expected pay-off or welfare
of agent n, m, if it is ordinary (rational), i.e., if it takes a
pay-off optimal action. Recall from Section II that x,, = 0 if
A, = N whereas nr, = 1/2 or —1/2 if A, =Y depending on
whether V = G or B, respectively. Now, Figure 2 shows that
it takes at least two steps to begin a cascade. This implies that
the first two agents always follow their private signals, and
hence have the same welfare given by

1 1
E[rn] =P(An = Y|V = G)Z -P(A, =Y|V = B)Z7

=@Qp-1)/42F, forne{l,2}.

(25)
(26)

In fact, F defined in (26) refers to the welfare for any agent n,
if A,, always follows S, disregarding the optimal decision rule
in (2), i.e., E[n,|A, always follows S, ] = F, for all n. However,
for agents n > 2, the unconditional welfare must also account
for the possibilities that the history H,—; could cause agent n
to cascade to a Y or a N, which can be expressed as follows.

1 * * * *
E[r,] = F + Z [(1 - p)VnE;l —Pvrfl +(1- p)unl_?l - Pun(_;l] . (27)

The above equation explicitly relates agent n’s welfare to the
probabilities of ¥ and N cascades resulting from its history
H,—1 under both V =G and V = B.

Now, assuming that agent n can choose to observe
only a certain subset of the available observations I, =
{0y,...,0,-1,S,}, the next theorem shows that its welfare
cannot get worse if more elements are added to this subset.
This implies the non-redundancy of the observations in I, as
agent n can never achieve a welfare higher than in (27) by
ignoring any of the observations in /,,.

Theorem 3. Let J, be the collection of all subsets of the
observations {0y, . ..,0n-1,S,} that are available to agent n.
Let E[n,|J] refer to the optimal welfare achieved by agent
n by only observing the set J € J,. Then, for any two sets
J,K € Jy, such that K C J, we have E[n,|J] > E[n,|K].

Thereom 3 can be proved by applying the celebrated Black-
well’s Theorem [11] which implies that it is sufficient to show
that the signals from observing the smaller set K are obtained
as a stochastic mapping (garbling) of the signals from the
larger set J. Let J and K be the j and k-length random vectors
(j > k) corresponding to the observations sets J and K, re-
spectively, such that the two vectors share the first k elements.
Then, the desired mapping is given by K = GJ, where G
is a k x j diagonal matrix. Then, Blackwell’s result for the
corresponding optimal welfares states that E[n,|J] > E[x,|K].

As a corollary of Theorem 3, the next property shows
that the welfare under complete observation, i.e., E[x,] is
monotonic in the agents’ indices.

Property 5. The welfare of each agent is at least equal or
greater than the welfare of its predecessors. Thus, E[n,] > F
and is non-decreasing in n.
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To see this property, consider two consecutive agents, n — 1
and n. Under the informational equivalance of their private
signals: S,—; and S,, we have I,,_1, I, € J, and I,,_; C I,,. By
applying Theorem 3, this implies that E[nr,] > E[n,-;]; and
E[n,] = F for all n follows from (26).

Next, by taking the limit n — oo of (27) and using (24), the
asymptotic welfare nh_r)rgo E[r,(€)] denoted by Tl(e) is given by

H(E) = % [P)(/;—cas(e) - P}B;»cas(e)] (i) %(1 - 2Pwrong-cas(€))' (28)

In Step (a), Purong-cas 1= [P§ . + P .. ] /2 refers to the un-
conditional probability of a wrong cascade, i.e., the probability
that a N cascade occurs and V = G or a Y cascade occurs
and V = B. Equation (28) implies that an improved learning,
i.e., a lower probability of wrong cascade results in a higher
asymptotic welfare. The probability Pg_cas(e) for V € {G, B}
can be computed using the recursive method described in
Section IV, which is outlined by equations (12), (13) and
(14). Then, substituting these obtained values in (28) yields
the value for T1(e). Figure 6 shows a plot of I1(e) with respect
to € € (0,1), for p = 0.7 and compares it with the constant
level of TI(0) which refers to the asymptotic welfare in the

absence of fake agents. Substituting (18) in (10) gives
T1(0) = (1/4)2p = D/ [p* + (1 = p)*]. (29)

It can be observed in Figure 6 that for p = 0.7, TI(e) < T1(0)
for all € € (0,1). Further, note that the relatively larger
jumps in TI(e) observed in Figure 6 (marked by X and o)
occur exactly at the threshold points {e} ,. Here, counter to
expectation, a slight increase in € beyond ¢, causes an abrupt
and significant increase in the asymptotic welfare. This abrupt
increase does not simply follow from Property 3 because a
drop in the Y cascade probability improves learning when
V = B, whereas it worsens learning when V = G. Thus, when
averaged across V, Property 3 is not sufficient to imply that
learning improves in turn causing the asymptotic welfare to
increase at each ¢,-threshold. This is unlike the unbiased noise
model in [17], where learning at noise thresholds improves for
both V’s, thereby implying an increase in asymptotic welfare.
We propose the following theorem, which shows that such an
abrupt increase in welfare at €. occurs not only as n — oo but
also occurs for every agent n. Refer to Appendix E in [25] for
a detailed proof.

Theorem 4. Given a fixed private signal quality p, for every
agent n € {1,2,...}, at any r'" e-threshold €, r > 2,

E[ﬂn(f:)] - E[nn(er_)] > 0. (30)

It follows from Theorem 4 that for any p, there occurs an
abrupt increase of A, in the asymptotic welfare at each of the
threshold points {€-}77 ,, where

A, :=TI(g") — (e, ) > 0. 31

Through the relation in (28), this improvement of A, in
the asymptotic welfare corresponds to an abrupt reduction of
(4A, — 1)/2 in the wrong cascade probability, Pyrong-cas- The
expression for A, can be obtained by first using equations (15)
and (16) to compute the values: PY, _ (¢€) for V € {G, B} and

Y-cas

0.18
o7 f
=
¢ 0.16 —TI(e)
& o ()
2 015 < ()
2 —— 1K
£ 0.14 ©)
=
£.0.13
wn
<
012 f
0.11 : : : :
0 0.2 0.4 0.6 0.8 1

€
Fig. 6: Asymptotic welfare as a function of € for p = 0.7.

€ = € and €, . Next, substituting these values in (28) to obtain
(&) and (€. ) and then using (17) yields
(&) =67 Py (&) -

A = [sPBE (32)

4 Y-cas
Property 6. If the possibility of fake agents in the history
equals the rth e_threshold, r = 2,3,. .., thena further marginal
increase in fake agents improves the welfare at every agent
index n € {1,2,...}. Moreover, the asymptotic welfare of the
agents improves by A,.

Therefore, increasing € over the " e-threshold is not only
counter-productive for the fake agents (due to Property 3), but
it also leads to a higher social welfare for every ordinary agent.
The intuition underlying Property 6 is that when € increases
from €, to €', the drop in the ¥ cascade probability for V = B
(better learning) is more pronounced than the corresponding
drop for V = G (worse learning). This is because this drop is
a decreasing function of py, and that py for V = G is greater
than py for V = B (i.e., a > 1 — b). Therefore, this increase
in € implies a net decrease in the wrong cascade probability
when averaged over V, which as per (28) leads to a higher
welfare for rational agents.

VI. LEARNING IN THE LIMIT

In this section, we evaluate the asymptotic welfare of agents
under two limiting regimes of €, namely, € — 0 and € — 1.
In the first case, taking the limit € — O in (10) and then
substituting the expressions obtained in (20) yields

1+p(1-p)
1-p(1-p)
Comparing (33) with the asymptotic welfare at € = 0 given
in (29), it can be shown that lime_, I1(e) < I1(0) for any p.
This implies that even an infinitesimal presence of fake agents
causes an abrupt deterioration in welfare. Figure 6 shows this
drop in welfare at € = 0, where the value I1(0) drops to the
value lime_, I1(€), which is marked by o. Next, we define
the fractional reduction (f.r.) in welfare relative to I1(0), as
lin}) [T1(0)—TI(e)]/I1(0). We then plot it against p in Figure 7a
in order to understand the effects of varying the signal quality
p. It can be shown analytically from the expressions in (29)
and (33) that the fir. in welfare is monotonically decreasing

im I = ~(2p —
lim IT= 2(2p - 1) (33)
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with p. The greatest f.r. thus occurs as p — 0 and is found to
equal 1/6, whereas the f.r. is O in the limit p — 1.
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= 0.15 = 015
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= |
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ge =
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p p
(@ (b)
Fig. 7: (a) Fractional reduction in welfare relative to T1(0) for

varying p, as € — 0. (b) Fractional increase in welfare relative
to F for varying p, as € — 1.

In the case of ¢ — 1, the information contained in a Y
observation becomes negligible. As a result, an agent would
need to observe infinitely many consecutive Y’s in his history
for him to be convinced of starting a Y cascade. Hence,
one would expect that if V = G, learning would never
occur, whereas if V = B, then learning would always occur.
However, recall that as € — 1, the occurrence of Y’s becomes
increasingly frequent, i.e. py — 1; for both V = B and G. This
motivates studying Py_c,s in this limiting scenario. First, recall
that in the process of enumerating all sequences leading to a Y
cascade, for € € 7., in each stage i > 2, r; is either r or r + 1.
However, € — 1 implies r — oo, in which case r ~ r + 1. As
a result, the expressions obtained in (15) and (16) yield the
same limiting value as r — oo, which also equals Py_c,s as
€ — 1. In particular,

il_)n} Py_cas(€) = rh_)n‘;lo PY—cas(E:) (g) rh_l};lo PY—cas(er_)’ (34)
where Step (b) can also be proved by recalling that §, — 0
as r — oco. By using (16) in (34), the limiting probability of
a Y cascade, in terms of @ = p/(1 — p) can be obtained as:

1 1
lim Py _c,5(€) = lim p’, =
e—l YCdb( ) r—>oopf 1-r(1 —pf)p; el —t

; (€R)

where t = s loge for V=G, and t = %5 loga for V=B. A
detailed proof of (35) is provided in Appendix F of [25].
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Fig. 8: Probability of Y cascade versus private signal quality for the
indicated values of € under (a) V = B and (b) V = G.

Figure 8 illustrates (35) and the corresponding probability
when € = 0.9 as a function of the signal quality. For
both V = B and V = G, a better signal quality leads to
improved learning even when fake agents have overwhelmed
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the ordinary agents. Also note that for V = B, for a weak
signal quality, the incorrect cascade is more likely than the
correct one (while for V = G, this is never true).

The asymptotic welfare in this scenario can be obtained by
taking the limit € — 1 in (10), then substituting (35). In Figure
6, observe that the sequences {I1(e. )} and {Il(¢')}, marked by
x and o respectively, converge to this limiting value as » — co.
Further, it can be proved that for any p, lim_,; I1(e) > F,
where we recall that F' (defined in (26)) is the welfare when
an agent acts based on its private signal alone. Therefore, even
when fake agents have corrupted almost all the actions, it is
still better for any ordinary agent to observe its past in addition
to its private signal. Figure 7b plots the fractional improvement
in asymptotic welfare relative to F' against varying values of
p and shows that it decays to O with increasing p.

VII. EFFECTS OF A PLATFORM CO-ORDINATOR

In this section, we introduce an additional entity called
the Platform Co-ordinator, which at each time i, randomly
modifies (manipulates or filters) the observation O; before
presenting it to future agents. We assume that the Co-ordinator
has the same information about private signal quality p and
fraction of fake agents € as the rational buyers, while the item’s
underlying true value (V) is unknown to both and assumed
to be equiprobable. Moreover, the type of modification and
the corresponding parameter(s) used by the Co-ordinator are
common knowledge. By modifying the observations, the Co-
ordinator who acts as a Bayesian persuader aims to improve
the asymptotic welfare. A related work is [27], where a similar
entity instead designs the information structure for the agents’
private signals so as to maximize its utility which depends
on the eventual learning outcome. We investigate the effects
on agents’ asymptotic welfare under three scenarios, namely
wherein the Co-ordinator (¢) modifies a N to a ¥ w.p.
or (b) discards a Y w.p. e or (c) modifies a Y to a N w.p.
B. Otherwise, in all scenarios, observations that are neither
discarded nor modified are retained. Let “II refer to the
asymptotic welfare, where i € {a, b, c} indicates the particular
scenario being considered. The superscript (i) is dropped when
referring to the asymptotic welfare without the Co-ordinator.

Scenario (a): Manipulating the N'’s

Here, the Co-ordinator modifies only the N’s in the ob-
servations, i.e., at any time i, if O; = N then the modified
observation 0;. =Y wp. « € [0, 1/) and 0;. = N wp.
1 — «x. Whereas, if O; = Y then O, = Y w.p. 1. Here,
7—(;1_1 = {0’1, e, 0;1_1} denotes the modified history observed
by agent n. This has the effect that agents now perceive
their history as having an effectively increased probability,
&t = € + (1 — €)x of past agents being fake. As a result,
the asymptotic welfare in this scenario denoted by (“TI(e, k)
is given by (WTI(e, k) = (), where I1(-) is defined in (28).
Note that by varying «, eg can attain any desired value in
[€, 1). Specifically, to get the best improvement in asymptotic
welfare, the Co-ordinator can set « to the optimal value:

k" = argmax I (e + (1 — €)x), (36)

k€[0,1)
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Fig. 9: (a) The channel through which observations are filtered by
the Co-ordinator at each time i. (b) Asymptotic welfare P)T1(e, e) as
a function of the filtration parameter e, for p = 0.6 and € = 0.9.
Maximal value obtained at e = e*.

which yields the optimal asymptotic welfare,

@II(e, k) = T (e + (1 — )x*). (37)

Scenario (b): Filtering out the Y’s

In this scenario, the Co-ordinator randomly filters out the
Y’s from the observations instead of manipulating the observa-
tions as was done in Scenario (a). Specifically, at every time
n, it discards a Y observation w.p. e € [0,1) and retains it
otherwise. Whereas, a N observation is always retained. This
bias is due to the fact that, while a N observation always repre-
sents the action of a rational agent, a Y observation could also
represent the action of a fake agent. So, filtering out some of
the Y observations while retaining all the NV observations seems
reasonable. The channel in Figure 9a depicts the filtering of
observation O; at each time i, where 0;. € {Y, N, Discard}
denotes the channel output. Here, 0;. = Discard implies that a
Y at time i has been discarded by the Co-ordinator.

Note that the arrival of an agent into the platform is recorded
for (and visible to) subsequent agents only if its corresponding
observation is retained by the Co-ordinator. If an agent’s
observation is discarded, future agents are unaware of its
arrival into the buying platform. Therefore, we define a new
index set {i1,iz,...} € {1,2,...} which indexes the arrivals of
only those agents whose observations are retained. Here, i, is
the index in the unfiltered arrival sequence of the agent whose
observation is the n'" undiscarded observation.

Now, for the i agent which observes a history H;, , :=
{0i,,..., 0, ,}, the Bayes’ optimal decision rule is still
given by (2), except that the posterior probability for the
item being good, y;, := P(G|S;,, H;,_,). Further, with the
likelihood ratio for its history #;,_, being redefined as [;, | =
P(H;, ,|B)/P(H;, ,|G), it can be shown that both Lemma 1
and Property 1 remain true. Now, assuming the i agent does
not cascade, Property 1 and Lemma 1 imply that for every
observation O;,, k < n, A;, follows S;, . Then, for every such
observation O;, , the probability that it follows the true value
V is implicitly conditioned on the fact that it has not been
discarded, and hence is given by

a(l—e)
al-e)+(1-a)
b
b+(1-b)(1-¢)

d =P(0;, =Y|G,0;, #Discard) = (38)

b =P(0;, = N|B,0;, # Discard) = (39)
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Further, for every such O;,, as S;, is conditionally independent
of the history H;, , given V, the likelihood ratio updates are
b =(52 ), if Oy = ¥, and f, =(:2 )l if Oy = N.
These updates are identical to the likelihood updates in (4) for
the original model without the Co-ordinator. This is because,
such an observation O;,, which could be an undiscarded Y
or an N, still possesses the same information about V as in
the original model. Now, as a result of the updates, /;, can be
expressed as [;, = (I_Tp)hi" where h;, is a sufficient statistic
of the information contained in history %;, , given that agent
in is not in a cascade. Similar to eq. (7) with n as per (8),

h;i, = nny — ny, (40)

which is the difference between the number of Y’s (ny)
weighted by 1 and the number of N’s (ny) present in H;, .

Now, Lemma 1 implies that until a cascade occurs, —1 <
h;, <1 for all such times n, and (40) implies that the update
rule for h;, is given by

hi,_, + if 0;, =Y,
hin - In-1 n 1 ln (41)
hi;:—l -1 if Oin =N.
Once h;, > 1 (< —1), a Y (N) cascade begins and h;, stops

updating (Property 1). Observe that the updates of {A;, } stated
in (41) are identical to the updates of {A,} in (7). However,
{h;,} has two notable differences. Firstly, {A;,} is indexed
by the new set {ij,i,...} and secondly, conditioned on V,
{h;, } moves to the right by n w.p. P(O;, = Y|V) or to the left
by 1 w.p. P(O;, = N|V) until a cascade occurs, where these
probabilities are defined in terms of d and b in (38) and (39).
This is unlike in the case of {h,} where a and b in (6) define
the transition probabilities.

Next, let the Y cascade probability for the process {;,}
be denoted by <”)P¥_Cas(e, e) to highlight that it is a function
of the fraction of fake agents € and the filtration parameter
e set by the Co-ordinator. Similarly, let ®)TI(e, ) denote the
asymptotic welfare associated with this scenario, which relates
to the cascade probablities as per (10) as

(e, e) = (1/4)[ PP (e, €) =7 PE (6 €)].

Y-cas

(42)

Now, as both processes:{%;, } and {h,} share the same update
rule, ®'PY (€ e) can be computed using the recursive method
described in Section IV by equations (12) and (13), except
that py = d if V = G, else py = 1 -b if V = B.
Then, applying these probabilities to (42) yields ?)TI(e, e). For
the best improvement in asymptotic welfare, the Co-ordinator
needs to set e to the optimal value:

¢* = argmax P1I(e, e),
e€[0,1)

(43)

which yields the best welfare, ")TI(e, e*). As an example,
Figure 9b plots this welfare against e for p = 0.6 and € = 0.9,
where the best welfare is obtained at ¢* = 0.188.

Scenario (c): Manipulating the Y’s

Here, as opposed to Scenario (a), the Co-ordinator modifies
only the Y’s in the observations, i.e., at any time i, if O; =Y
then the modified observation 0;. =N wp. 8 € (0,1) and
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O; =Y w.p. 1 — . Whereas, if O; = N then O; = N w.p. L.
The net effect of these random modifications is that, at any
time 7, the channel between action A; and 0;. becomes a binary
asymmetric channel with cross-over probabilites:

& =P(0; =Y|A; = N) = e(1 - j)

and ey :=P(O;, =N|A; =Y) = 8.

4

(44)

For this scenario, let the Y-cascade probability be denoted by
(C)Pg_cas(e, B) to highlight that it is a function of the fraction of
fake agents € and the modification parameter S. Similarly, let
(11 (¢, B) denote the asymptotic welfare associated with this
scenario. It is difficult to compute the Y cascade probabilites
for general values of channel parameters: ey € (0, €) and ey =
(0,1), except when ey = en. This occurs if the Co-ordinator
sets B = Bsym := ﬁ at which the channel between A; and 0;.
effectively becomes a BSC with cross-over probability Ssym.
In Appendix G of [25], we show that for this special case, a
sufficient statistic of history 7{,’1, at each time n is a random
walk {s,} that occupies a finite state-space (unlike {%,} in
(7) that typically has a countably infinite state-space). Thus,
closed-form expressions for cascade probabilities exist and are
derived in Appendix G. The resultant asymptotic welfare is

k k

_(1_asm)
OTI(e, Boym) = (1/4) 20 " 45
(@hom) =) B )

where agym = p(l = Bsym) + (I — p)Bsym and k =

llog(l_asym)/asym (I"T”) +1.

Asymptotic welfare comparisons

We now compare the three asymptotic welfares, namely
(@TI(e, k*) , PTI(e, e*) and TI(e, Bsym) for fixed values of the
private signal quality p. We also contrast these welfares with
the default welfare in the absence of the Co-ordinator, Il(¢)
and the baseline welfare I1(0) (given by (28) and (29) resp.).
Figure 10 plots the different welfares against € for p = 0.7. It
can be seen that for low values of €, Scenario (c¢) provides the
best improvement in welfare. We also observe that as € — 0,
Scenario (c) entirely mitigates the reduction in welfare caused
by the presence of fake agents. For high values of €, Scenario
(b) provides the best improvement in welfare. Here, Scenario
(c) in fact significantly worsens the welfare as compared to
I1(€). There also exist several intervals in [0, 1) with moderate
values of € where Scenario (a) performs the best. We find the
above characteristics of the three scenarios to be consistent for
all values of p. We demonstrate this in Appendix H of [25]
with plots for two more values, p = 0.55 and p = 0.9.

VIII. GENERAL CASE OF ZERO EX ANTE PAY-OFF

In this section, we extend our model to consider a general
(possibly non-uniform) prior for the true value V of the item
and a general pay-off structure for the agents, while still
retaining the condition of zero ex-ante pay-off. Recall that
this condition implies agents’ indifference to the two actions
a priori. We begin by assuming a non-revealing general prior
for the true value, P(V = G) = ¢ € (0, 1). Recall from Section
IT that in general, the amount a buyer gains (loses) is x (y)
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Fig. 10: Asymprtotic welfare for the indicated scenarios versus the
fraction of fake agents for p = 0.7.

if V=G (V = B), where x,y > 0 and C denotes the cost of
buying the item. Restricting the ex-ante pay-off to 0 implies
that C = gx —(1—¢q)y. Then, the general pay-off for any agent
i is given by

x—-C=(1-¢g)x+y), ifA;=YandV =G,
-y —C=—q(x+Yy), if A; =Y and V = B,
0, if A; =N.

(46)

T =

In all previous sections, we have considered agents’ pay-offs
under the specific case of x =1, y =0 and C = 1/2.

In this more general scenario, the decision rule is similar
to (2) except v, = g is the new threshold at which agent n
is indifferent to the two actions (and thus follows S,). Next,
using Bayes’ rule, we express Y, in terms of ,_; and S,
as y, = 1/(1 + ,Bnln_ll_Tq). Then, the condition on 7, for a
Y (N) cascade is vy, > g (< g) for all S,,, which translates to
Bulyn—1 < 1 (> 1) for all S,,. This cascade condition is the same
as before (see proof of Lemma 1) and hence is still defined
in terms of /,_; as per Lemma 1. As a result, the sequence of
agents’ actions once again satisfies Properties 1 and 2 where it
is governed by {h,} which starts in the state 9 = 0,® evolves
as per the update rule in (9), and is depicted in Figure 2.
Now, conditioned on the true value V, {h,} does not change
with the prior g. Thus, all conditional probabilities derived
in this paper remain unaltered in the general scenario. On the
contrary, agents’ welfares being their pay-offs averaged over V
with a general prior g will now change as follows. Evaluating
(25) given that agent follows its private signal yields a new
F := g(1 — g¢)(x + y)(2p — 1). Next, the constant term 1/4 is
replaced by the term ¢(1 — g)(x+ y) in all equations pertaining
to agents’ welfares, namely, equations (27), (28), (29), (32),
(33), (42), (45). However, in Eq. (28), Step (a) is no longer true
and Pyrong-cas 1= ng_cas+(1 —q)Pg_cas. With the above changes
in place, all results and discussions presented in this paper
extend to any case with zero ex ante pay-off. Our analytic
techniques can also be readily modified for non-zero ex-ante
pay-off, as done in [26].

OIf the ex-ante pay-off is not restricted to 0, then for an arbitrary cost
C € [-y, x], the resulting r.w. {hy, } still updates as per (9), except that the

. -C
starting state g = log (%) /log (% .
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IX. CONCLUSIONS AND FUTURE WORK

We studied the effect of randomly arriving fake agents, who
by taking a fixed action seek to influence the outcome of an
information cascade. We focussed on the impact of varying
the fraction of fake agents on the probability of their preferred
cascade. To study this impact, we developed a Markov chain
model which typically has a countably infinite state-space and
does not readily allow for a closed-from solution to the cascade
probabilities. Instead, we presented an iterative method that
can compute the cascade probabilities with arbitrary precision.
This process also yields exact values for any given agent’s
chances of herding and its welfare, which is the expected pay-
off it receives.

Our main result identified scenarios where surprisingly, an
increase in the fraction of fake agents not only reduces the
chances of their preferred cascade but also effects a significant
improvement in the welfare of every rational agent. Further, we
analysed three approaches to modify the observation database
such that learning (asymptotic welfare) can be improved,
namely, (1) increasing, (2) filtering out and (3) modifying
the possibly fake actions. Interestingly, we observed that the
third approach provides the best improvement in learning when
the original fraction of fake agents is low, with a complete
mitigation of their welfare-reducing effects as their fraction
tends to zero. Whereas, the second approach performs the
best for high values of this fraction. Lastly, we showed that
our analysis, results and discussions readily extend to general
priors and agent pay-offs, as long as the ex-ante pay-off is
zero. For non-zero ex-ante pay-off, our analytic techniques
can also be easily modified to study the platform’s behaviour.

Potential future directions for this work include studying the
effects of time-varying fractions and/or multiple types of fake
agents, non-Bayesian rationality, random and asymmetric tie-
breaking rules, and imperfect observations such as allowing
each agent to only observe the total number for each action-
type in its history, instead of perfectly observing the sequence
of past actions. Moreover, as our results rely on the probability
of fake agents being common knowledge, a natural extension
would be to relax this assumption.
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