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ABSTRACT

Deep learning models have shown considerable vulnerabil-

ity to adversarial attacks, particularly as attacker strategies

become more sophisticated. While traditional adversarial

training (AT) techniques offer some resilience, they often

focus on defending against a single type of attack, e.g.,

the ℓ∞-norm attack, which can fail for other types. This

paper introduces a computationally efficient multilevel ℓp
defense, called the Efficient Robust Mode Connectivity

(EMRC) method, which aims to enhance a deep learning

model’s resilience against multiple ℓp-norm attacks. Simi-

lar to analytical continuation approaches used in continuous

optimization, the method blends two p-specific adversarially

optimal models, the ℓ1- and ℓ∞-norm AT solutions, to pro-

vide good adversarial robustness for a range of p. We present

experiments demonstrating that our approach performs better

on various attacks as compared to AT-ℓ∞, E-AT, and MSD,

for datasets/architectures including: CIFAR-10, CIFAR-100 /

PreResNet110, WideResNet, ViT-Base.

Index Terms— adversarial training, robustness, ℓp norm

perturbations, mode connectivity, model ensemble

1. INTRODUCTION

Deep learning models have revolutionized numerous fields,

offering innovative solutions to complex problems [1, 2].

However, their vulnerability to adversarial attacks remains a

significant concern [3, 4], undermining their practical utility

and reliability. Specifically, these models are sensitive to

slight, yet strategic, perturbations in their input data, which

can mislead them into making incorrect predictions. While

several methods aim to defend against such adversarial ma-

nipulations, most focus on enhancing the model’s resilience

against attacks based on a single type of perturbation met-

ric, often measured by a ℓp norm [5, 6, 7, 8] for specific

p ∈ [1,∞]. This focus creates a defensive blind spot, leaving

models vulnerable to other types of adversarial perturbations.

On the other hand, recent studies that aim to achieve universal

robustness across multiple ℓp norms either suffer from high
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computational costs or do not entirely solve the universal

robustness problem: maintaining robustness against different

types of perturbations concurrently [9, 10, 11, 12].

This paper addresses the shortcomings of current meth-

ods by proposing universally robust models capable of coun-

tering diverse types of ℓp-norm adversarial attacks. Previ-

ous studies have identified the mode connectivity property,

which suggests that a path of high accuracy and low loss ex-

ists between two well-trained models in the parameter space

[13, 14, 15]. Building on this concept and the theoretical ev-

idence that affine classifiers can withstand multiple types of

ℓp attacks if they are already resistant to ℓ1 and ℓ∞ perturba-

tions [9], our work presents a novel approach: Efficient Ro-

bust Mode Connectivity (ERMC) combined with Model En-

semble which waeves ℓ1 and ℓ∞ robustness into the fabric of

mode connectivity to derive a new training methodology. This

amalgamation enables the identification of parameter paths

that remain highly resistant to both ℓ1 and ℓ∞ perturbations,

and therefore, multiple types of ℓp norm perturbations. We

introduce an optimized fine-tuning technique with reduced

computational complexity. Lastly, we employ a model en-

semble strategy to select and aggregate models from this ro-

bust path, further improving robustness. Specifically, the al-

gorithm works as follows. We first train one endpoint model

optimized for ℓ∞-norm adversarial training then retrain the

model to be optimal relative to the ℓ1-norm. Using these two

endpoint models, and leveraging the mode connectivity prop-

erty of deep neural networks (DNN), we identify a low-loss,

high-robustness path connecting these endpoints. Finally, we

deploy ensemble model aggregation to select models along

this path that exhibit collective robustness against all types of

ℓp-norm attacks, 1 f p f ∞.

Contributions. We summarize our contributions below.

1. We improve upon traditional mode connectivity ap-

proaches to the design of DNN by integrating adver-

sarial robustness, thereby uncovering a path that links

an ℓ∞ and an ℓ1 adversarially trained model. This path

demonstrates high resistance to other ℓp-norm attacks

for p ∈ [1,∞].

2. We propose an Efficient Robust Mode Connectivity

(ERMC) method, supplemented with model ensem-

ble aggregation, that results in an efficient adversarial

training algorithm with enhanced robustness.
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3. Numerical experiments demonstrate that the proposed

ERMC with model ensemble has superior performance

in robustness against various ℓp attack modalities when

compared to baseline approaches.

The rest of this article is structured as follows: Section 2 in-

troduces related research on single-attack adversarial strate-

gies and countermeasures, as well as defenses against a va-

riety of ℓp norm perturbations. The subsequent Section 3 on

multilevel ℓp-defense delves into the specifics of adversarial

training and the optimization of robustness against multilevel

ℓp perturbations. It lays the theoretical groundwork for our

approach and addresses the question of achieving concurrent

high robustness against both ℓ1 and ℓ∞ perturbations. Sec-

tion 4 presents our novel ERMC approach in detail, describ-

ing how it incorporates robustness into mode connectivity and

the ensemble model strategy used to boost robustness. Sec-

tion 5 reports on the datasets, model architectures, evaluation

methods, and the comprehensive experimental results, show-

casing the effectiveness of ERMC. The Conclusion Section 6

summarizes our findings and contributions.

2. BACKGROUND AND RELATED WORK

2.1. Adversarial Attacks And Defenses

Recent studies have revealed that conventional machine learn-

ing models are susceptible to adversarially modified datasets.

For a model ¹ an adversary can target each feature x ∈ R
d

in a database D of feature-label pairs D = {x, y}, by solving

the following attacker’s optimization problem:

argmax
x′

L(¹;x′, y), s.t. dp(x
′,x) f ϵp. (1)

Here L represents the training loss, e.g., the cross-entropy

loss. ϵp is the attack-strength parameter of the type-p attacker,

and dp is a distance metric of type-p over the model param-

eter space. As in many other studies, we restrict attention to

the case that dp is the ℓp norm with p ∈ [1,∞]. The solu-

tion to (1) is commonly known as the ℓp adversarial attack

[5]. This problem is often iteratively solved using the fast

gradient sign method [3] or projected gradient descent (PGD)

[5], which computes the gradient ∇x′L(¹;x′, y) combined

with a projection that constrains the perturbation x
′ − x to

the ℓp-ball of radius ϵp. The projection for the ℓp adversarial

attack is denoted by Pϵp . These methods may result in sub-

optimal solutions to (1) due to incorrect hyper-parameter tun-

ing and gradient masking. To address these issues, methods

such as the Auto Attack (AA) [16] and Multi Steepest De-

scent (MSD) [11] were introduced. Adversarial attacks can

operate in a black-box manner, meaning the attacker does not

have access to the model’s parameters [17, 18]. However, this

paper focuses only on scenarios where the attacker is aware of

the model’s parameters. To counter the attackers strategy (1),

adversarial training (AT) methods are effective defense mech-

anisms [5, 6, 7, 8]. However, these methods often focus on a

single type of ℓp disturbance, leading to decreased robustness

against different types of perturbations [19].

2.2. Robustness Towards Multiple ℓp Norm Perturba-

tions

In [10] the authors propose training on ℓ∞-generated ad-

versarial examples while selectively discarding inputs having

low confidence scores, showing empirically that this results

in a degree of robustness to ℓp-attacks for p = 0, 1, 2,∞.

The authors of [19] propose calculating the worst case at-

tack by either picking the attack type that leads to the max-

imum loss or averaging the loss across all attack types. The

Multi Steepest Descent (MSD) Defense [11] integrates mul-

tiple perturbation schemes to yield a more comprehensive ℓp
robustness. The work in [9] offers a theoretically guaranteed

defense mechanism but it only applies to affine classifiers.

The Extreme Norm Adversarial Training (E-AT) method [20]

employs a form of fine-tuning to practically implement the

pathway from [9] and to reduce AT computational load. In

contrast, in this paper we exploit the mode connectivity prop-

erty of deep neural networks [13, 14, 15] to define the ERMC

method that improves on the performance reported in [20].

3. MULTILEVEL ℓP -DEFENSE

Adversarial training (AT). Complementing the attacker’s

optimization (1), the defender aims to solve the defender’s

optimization problem:

min
¹

E(x,y)∈D

[

max
x′:dp(x′,x)fϵp

L(¹;x′, y)

]

, (2)

using training data from D to empirically estimate the statis-

tical expectation in (2), resulting in a solution we call Ad-

versarial Training (AT)-ℓp. The main issue addressed in this

section is that the solution AT-ℓp for a given p does not en-

sure robustness to other values of p in [1,∞]. Furthermore,

while in principle one could compute a dense set of solutions

{AT-ℓp}p∈[1,∞], it is not clear how such solutions could be

computed and combined in a computationally tractable man-

ner to provide robustness over a range of p [19].

Optimizing robustness against multilevel ℓp perturba-

tions. As argued in [9], affine and piecewise affine classifiers

(like CNN with ReLU) can resist multiple ℓp norm attacks if

they are already robust to ℓ1 and ℓ∞ perturbations. Specif-

ically, Theorem 3.1 in [9] states that the convex hull of the

union ball of the ℓ1 and ℓ∞ provides satisfactory robustness

to ℓp perturbations, 1 f p f ∞:

Theorem 1 [9] Suppose that the classifier is piecewise affine.

Let C be the convex hull of the union ball of the ℓ1 and ℓ∞. If

d g 2 and ϵ1 ∈ (ϵ∞, dϵ∞), then

min
Rd\C

∥x′ − x∥p =
ϵ1

(ϵ1/ϵ∞ − ´ + ´q)1/q
(3)
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where ´ = ϵ1

ϵ∞
− + ϵ1

ϵ∞
, and 1

p + 1
q = 1.

The salient question arising is: how can one concurrently

achieve high robustness against both ℓ1 and ℓ∞ perturbations?

To address this question a cutting-edge study, E-AT [20], pro-

posed using a method called fine-tuning to efficiently update

the model from AT-ℓ∞ to AT-ℓ1, asserting that this results in

robustness to a range of ℓp disturbances. Yet, two notable

issues persist: w while the fine-tuned model may exhibit ro-

bustness against ℓ1-norm attacks, it may have lost some ro-

bustness against the original ℓ∞-norm attack; and x Achiev-

ing both high ℓ∞ robustness and high ℓ1 robustness is inher-

ently challenging for a single model, given its limited capac-

ity. To address these dual challenges, this paper introduces a

mode-connectivity-based approach that simultaneously iden-

tifies a large number of models having both high ℓ∞ robust-

ness and high ℓ1 robustness. This results in a larger union ball,

thereby enhancing the model’s resilience against a broader

range of perturbations.

4. PROPOSED METHODS

We aim to improve the joint robustness to both ℓ∞ and ℓ1
perturbations by leveraging two adversarially trained models.

4.1. Incorporating robustness into mode connectivity

For neural networks, mode connectivity is the property that

pairs of local minima (modes) discovered by gradient-based

optimization techniques are connected through simple paths

over which the model’s loss does not change appreciably

[13, 14]. In [14] mode connectivity is established for a wide

range of DNNs and datasets. The path between a pair of

modes ¹1,¹2 is constructed over the parameter space of the

neural network by minimizing the averaged loss function,

L, over all possible simple paths. The path is represented

as ϕ¹ = {ϕ¹(t), t ∈ [0, 1]}, where ¹ is a free parameter,

which satisfies the endpoint conditions ϕ¹(0) = ¹1 and

ϕ¹(1) = ¹2. Specifically, to find a desired low-loss path

between the modes ¹1 and ¹2, one minimizes the following

statistical expectation

min
¹

Et∼U(0,1)E(x,y)∼DL(ϕ¹(t); (x, y)), (4)

where U(0, 1) represents the uniform distribution over the

interval [0, 1]. The curve ϕ¹ is fixed as a Quadratic Bezier

Curve (QBC) [21] across this paper:

ϕ¹(t) = (1− t)2¹1 + 2t(1− t)¹ + t2¹2. (5)

The main assumption behind this paper is that the notion

of mode connectivity can be extended to adversarial loss func-

tions associated with different ℓp-types, resulting in paths that

maintain a high level of robustness against ℓ∞ and ℓ1 attacks,

in addition to improving robustness to other ℓp attacks. The

proposed extension consists of two additional steps: (Step 1)

The endpoint parameters ¹1 and ¹2 are trained via AT-ℓ∞ and

AT-ℓ1; (Step 2) We solve the following modification of (4) to

preserve adversarial robustness for p ∈ {1,∞}:

min
¹

Et∼U(0,1)E(x,y)∼D

∑

p∈{1,∞}

max
dp(x′,x)fϵp

L(ϕ¹(t); (x
′, y)),

(6)

where ϕ¹(0) and ϕ¹(1) are the two AT models, AT-ℓ∞ and

AT-ℓ1, respectively. In the inner optimization loop dp corre-

sponds to the ℓ∞ and ℓ1 distances for p = 0 and p = 1. We

use a Multi Steepest Descent (MSD) technique to solve the

maximization in the inner loop that encompasses both ℓ∞ and

ℓ1 perturbations within each step of PGD, similarly to [11]. In

each epoch, for every data batch, we randomly choose a value

for t. The subsequent training closely resembles Adversar-

ial Training (AT), with the key difference being that we pick

the worst-case perturbation from two types of perturbations

in each inner loop iteration. Consequently, the algorithmic

complexity remains similar to that of standard AT.

Algorithm 1 Efficient Robust Mode Connectivity

Require: A model ϕ¹(0) trained with AT-ℓ∞; initial model

¹
0; the corresponding projections P¶1

and P¶∞
; training

set D; iteration number J ; batch size B; initial perturba-

tion ¶
(0) = 0.

1: Create a copy of ϕ¹(0) and retrain it with AT-ℓ1 for 10

epochs to obtain a model ϕ¹(1).
2: ¹ = ¹

0

3: for each data batch Db ∈ D in each epoch e ∈ E do

4: Uniformly select t ∼ U(0, 1)
5: for ∀x ∈ Db do

6: for j = 1, · · · , J do

7: ¶
(j)
1 ← Pϵ1

(

¶
(j−1)−∇¶L(ϕ¹(t);x+ ¶

(j−1), y)
)

8: ¶
(j)
∞ ← Pϵ∞

(

¶
(j−1) −

∇¶L(ϕ¹(t);x+ ¶
(j−1), y)

)

9: end for

10: ¶
(j) ← argmax

¶
(j)
i

,i∈{1,∞}
L(ϕ¹(t);x+ ¶

(j)
i , y)

11: end for

12: ¹ ← ¹ −∇¹

∑

x∈Db
L(ϕ(t;¹);x+ ¶

(j), y)
13: end for

14: return ¹, ϕ¹(t), ∀t ∈ [0, 1]

We conclude this sub-section by noting that the concept of

expansion of the set of high adversarially robust models be-

yond two models AT-ℓ1 and AT-ℓ∞ is similar to the concept

of analytic continuation in complex analysis, more specifi-

cally the converse analytic continuation method called blend-

ing, which seeks to extend two analytic functions defined over

disjoint domains to a single C∞ function over a path connect-

ing the domains [22].
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(a) CIFAR-10 (b) CIFAR-100 (c) WideResNet-28-10 (d) ViT-base

Fig. 1: ERMC can find paths with high robustness against ℓ∞/ℓ2/ℓ1 attacks by connecting a ℓ∞ model and a ℓ1 model. The effectiveness of

ERMC is validated on different datasets and model architectures. Upper panels: the accuracy of the clean test and the robust accuracies under

ℓ∞/ℓ2/ℓ1-PGD attacks. Lower panels: the associated loss values of clean test data and perturbed test data. (a) and (b): results obtained from

the CIFAR-10 and CIFAR-100 datasets, using the PreResNet110 model architecture. (c) and (d): results from the CIFAR-10 dataset, utilizing

the WideResNet-28-10 and ViT-base model architectures.

4.2. ERMC with model ensemble

We reduce the computation burden of solving two indepen-

dent AT-ℓp problems, for p = ∞ and p = 1, by introducing

a more efficient approach: the efficient robust model connec-

tivity algorithm. In ERMC, initially a model with high ro-

bustness to either ℓ∞ or ℓ1 perturbation is trained, after which

a copy is created and retrained for another few epochs under

the other perturbation type using the same training set. Sim-

ilarly to its use in E-AT [20], the fine-tuning step provides

more efficient computation of the AT-ℓ∞ and AT-ℓ1 adversar-

ial models in ERMC. In the experiments described below, the

number of fine-tuning epochs is set to 10 yielding a compu-

tationally less burdensome determination of the second end-

point, while retaining the first one, facilitating the identifica-

tion of a high-robustness path as provided by (6). The full

algorithm of ERMC is presented in Algorithm 1. The second

endpoint ϕ¹(1) is trained from the first endpoint ϕ¹(0) using

a different perturbation type. In each epoch, we sample a t
uniformly from the uniform distribution. Then, in each iter-

ation of generating perturbations, we consider two types: ℓ∞
and ℓ1. Subsequently, we select the perturbations that cause

the highest losses and use them to update the model parame-

ters. The number of iterations, denoted by J , is set at 10.

We have observed in experiments that certain regions

along the path contain models that exhibit high levels of ro-

bustness for both types of perturbations. The optimal model

along the path can be identified by assessing the trajectory

with lower robust accuracy under ℓ∞ and ℓ1 attacks, and

then selecting the point that performs best in this worst-case

scenario. This single-model approach offers the advantage

of circumventing the limitations inherent to E-AT [20] while

capitalizing on robustness against both types of perturbations.

However, given the existence of many models along the path

that exhibit high degrees of robustness to ℓ∞ and ℓ1 attacks,

it’s natural to consider a model ensemble strategy to further

bolster performance. This leads to a model that is collectively

more robust to both ℓ∞ and ℓ1 perturbations. The ensemble

selection proceeds as follows. We find a segment [a, b] along

the path ϕ¹ satisfying the criterion: each point on the segment

has robust accuracies surpassing two prefixed model selec-

tion thresholds ³∞, ³1 under ℓ∞ and ℓ1 attacks, respectively.

We then choose n > 1 models at path locations given by

t = a + b−a
n−1 i, where i ranges from 0 to n − 1. If multi-

ple non-continuous intervals meet the above criterion, the n
points can be distributed among them proportionately to their

respective lengths. We denote ERMC with n selected models

as ERMC-n and average the outputs of these n models’ final

layers to form our class probability prediction.

5. EXPERIMENTS

Dataset selection and model architectures. We test our

proposed techniques on CIFAR-10 (as the default dataset)

and CIFAR-100 [23] datasets, utilizing PreResNet110 (as

the default architecture), WideResNet-28-10, and Vision

Transformer-base (ViT-base).

Evaluation methods and metrics. We set the attack strength

parameters constraining the ℓ∞, ℓ2, and ℓ1 norms to the com-

monly used values ϵ = 8/255, 1, and 12, respectively. In

our evaluation, we implemented basic PGD adversarial at-

tacks as well as Auto-Attack (AA) [16] under ℓ∞, ℓ2, ℓ1 norm

perturbations, in addition to implementing the MSD attack.

Metrics for assessment include: d Standard accuracy (SA)

on clean test data; e Robust accuracies under various per-

turbation types including ℓ∞/ℓ2/ℓ1-PGD, MSD attack, and

ℓ∞/ℓ2/ℓ1 AA; and f Sample-wise worst-case scenario accu-
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racy (Union) calculated from all three basic PGD adversarial

methods. A sample is considered correct only if it is accu-

rately predicted under each of the three basic PGD adversar-

ial attacks. These experiments were run on two NVIDIA RTX

A100 GPUs.

Table 1: Our Method Achieves State-Of-The-art Robustness Levels

Under Various Perturbations on CIFAR-10. ERMC surpasses base-

line performance without the use of an ensemble. The best results

are in bold.

SA
PGD

(ℓ∞/ℓ2/ℓ1)
Union

AA [16]

(ℓ∞/ℓ2/ℓ1)
MSD

AT-ℓ∞ [5] 85.00% 49.03%/29.66%/{16.61%} 21.85% 46.02%/20.86%/{10.45%} 15.27%

MSD [11]

Defense
81.35% {40.14%}/48.58%/47.50% 38.35% {37.87%}/45.9%/45.27% 38.20%

E-AT [20] 79.3% {44.07%}/49.12%/49.82% 41.08% {41.41%}/46.5%/47.82% 42.67%

ERMC-1

(ours n = 1)
82.66% {46.54%}/48.76%/47.06% 41.94% 44.88%/45.88%/{43.97%} 44.88%

ERMC-3

(ours n = 3)
79.61% 49.29%/51.32%/{48.49%} 45.27% {42.88%}/44.57%/47.37% 43.31%

ERMC-5

(ours n = 5)
79.41% 55.46%/57.28%/{53.97%} 51.41% {49.33%}/50.55%/52.41% 49.78%

Experimental results. As a baseline, endpoint models are

trained for 150 epochs, with paths derived through an ex-

tra 50 epochs. The models at the left (right) endpoints are

trained with AT-ℓ∞ (AT-ℓ∞ and fine-tuned with AT-ℓ1). The

results are displayed in Fig. 1. The upper panels show the

clean test accuracy and accuracies under ℓ∞/ℓ2/ℓ1-PGD at-

tacks. The lower panels show the corresponding loss values.

t varies from 0 to 1. Moving from left to right in Fig. 1,

panels (a) and (b) depict results obtained from the CIFAR-

10 and CIFAR-100 datasets, respectively, using the PreRes-

Net110 model architecture. Conversely, panels (c) and (d)

present results from the CIFAR-10 dataset, but utilizing the

WideResNet-28-10 and ViT-base model architectures. No-

tably, we find: � The existence of robust paths, which shows

that the ERMC application enhances resilience to multiple

attack types, although they don’t form straight lines like in

mode connectivity; � ERMC performs well on all considered

datasets and architectures; � The robust paths also function as

effective mode connectivity paths, where both the clean accu-

racy and loss (indicated by red lines) maintain consistent lev-

els between the two endpoints t = 0 and t = 1; and � Fine-

tuning influences original robustness levels, where endpoint

models show strong resilience against corresponding pertur-

bation types but are weaker against others. For example, the

left (right) endpoint has a high resilience to ℓ∞ (ℓ1) pertur-

bations but suffers from attacks using ℓ1 (ℓ∞) perturbations.

Additionally, ERMC reduces the required computation time

by approximately 36% on a single GPU relative to the brute

force approach of solving AT-ℓ∞ and AT-ℓ1 independently.

Comparative analyses with different baselines are sum-

marized in Table 1. We evaluate them using all aforemen-

tioned metrics, and the lowest accuracy under the three ba-

sic ℓp-PGD attacks (and three ℓp AA) are indicated within

braces. These baselines - comprising AT-ℓ∞ [5], E-AT [20],

and MSD Defense [11] - are trained over 200 epochs. The

model selection thresholds are set at ³∞ = 37% for ℓ∞
robustness and ³1 = 43% for ℓ1 robustness. As per Ta-

ble 1, observe that ERMC-1 outperforms MSD Defense (and

E-AT) in terms of accuracy improvements under various met-

rics, indicated by percentages 6.4%, 3.59%, 6.1%, and 6.68%
(2.47%, 0.86%, 2.56%, and 2.21%) under ℓ∞/ℓ2/ℓ1-PGD,

Union, ℓ∞/ℓ2/ℓ1 AA, and MSD Attack, respectively. It is

also observable that as the number of models n increases, the

performance of ERMC correspondingly improves. When n
reaches to 5, ERMC-5 outperforms MSD Defense (and E-

AT) in terms of accuracy improvements under various met-

rics, indicated by percentages 13.85%, 13.06%, 11.46%, and

11.58% (9.9%, 10.33%, 7.92%, and 7.11%) under ℓ∞/ℓ2/ℓ1-

PGD, Union, ℓ∞/ℓ2/ℓ1 AA, and MSD Attack, respectively.

It’s crucial to highlight that our method surpasses baseline

performance without the use of an ensemble. The further

enhancement observed with an ensemble simply underscores

the value added by ensemble boosting of ERMC’s baseline

performance from the single model context. Unlike baselines

that require multiple runs to generate a similar number of

models, our approach naturally produces a model population

in a single run, offering an attractive time-efficient alternative.

The ERMC approach demonstrates a trade-off between clean

accuracy and robustness. Nonetheless, the decrease in clean

accuracy, quantified at 2.34% when measured against AT-ℓ∞,

is more modest compared to the degradation suffered by other

defensive strategies like MSD Defense and E-AT.

6. CONCLUSION

This paper introduces the Efficient Robust Mode Connectiv-

ity (ERMC) method, a novel approach for enhancing the re-

silience of deep learning models against various adversarial

ℓp-norm attacks. By combining the robustness benefits of

ℓ1 and ℓ∞ adversarial training within a single framework,

ERMC transcends the limitations of traditional methods that

focus on single-type perturbations. Leveraging mode connec-

tivity theory with efficient tuning and ensemble strategies, the

method achieves a robust defense. Experimental results show

that ERMC outperforms established defenses like AT-ℓ∞, E-

AT, and MSD Defense, particularly against ℓ∞ and ℓ1 pertur-

bations and other ℓp-norm attacks. Its integration of multiple

adversarial training types enhances defense capabilities while

preserving efficiency, marking a significant step forward in

adversarial robustness and suggesting new directions for fur-

ther research in the security of deep learning.
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