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Abstract— Online markets can enable agents to learn from
the actions of others. Such social learning can lead agents to
eventually “follow the crowd” and ignore their own private
information. This type of behavior has been well studied for
agents faced with two possible actions - one “good” action and
one “bad” action. In this paper, we consider a scenario where
agents have more than two actions and only one of these is
good. We show that sequential learning in such settings has
substantially different properties compared to the binary action
case and further show that increasing the number of “bad”
choices from 1 to 2, improves the agents’ learning. Whereas, if
they are increased from 1 to more than 2, we find that learning
can be improved if the private signals are sufficiently strong.

I. INTRODUCTION

In this paper, we consider a sequential Bayesian social
learning problem similar to [1]–[3] and others (e.g. [4], [5]).
Namely, a sequence of agents must choose one from a set
of possible items, where only one item is “good” and the
remainder are “bad.” Each agent receives a noisy signal in-
dicating the identity of the “good” item and also observes the
choices of all preceding agents. Based on this information,
agent’s seek to make a Bayesian optimal decision. The goal
is to characterize the social learning dynamics that occur.
Prior works, such as [1]–[3] have studied such problems
when the agents are faced with only two alternatives: i.e.,
one “good” and one “bad.” We depart from this prior work
by considering agents that are faced with more than two
alternatives, where still only one is “good.” The objective
is to study the information dynamics generated by agents’
Bayes’ optimal action sequence and to compare and contrast
them with the dynamics of a binary model.

An important motivation of this paper is to understand
how learning is affected when more “bad” alternatives are
introduced compared to a binary model. For fairness of
comparison, we assume both the binary and non-binary
models maintain the same private signal quality, i.e., the
probability that the signal matches the good item is the
same. A key feature of the binary models in [1]–[3] is that
informational cascades or herding occur, which are cases
where it is optimal for an agent to ignore his own private
signal and follow the actions of the past agents. Moreover,
these herds may lead to sub-optimal outcomes in which
agents cascade to the “bad” item. Intuitively, having more
bad alternatives, would lessen the chance of herding towards
any one of these as signals indicating these alternatives would
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occur less frequently and the condition for a cascade to start
would now require that evidence for one action dominates
the evidence for all other actions. We will show that this
intuition is not trivial to apply as the learning dynamics with
more than two alternatives differ substantially from those in
the binary alternatives case.

In related work, [6] also considers more than two alter-
natives and provides conditions such as directionally un-
bounded private beliefs, that gaurantee learning. Our model
maintains the assumptions of [1]–[3], i.e., discrete bounded
private signals, which always leads to a positive probability
that learning fails. Another work with multiple alternatives
is [7], which considers non-Bayesian learning of the good
alternative under repeated interactions of agents over a social
network. Our work remains with the Bayesian model in [1]–
[3], where each agent sequentially takes a one-time action
and can observe all prior actions. Other variations of the basic
model include relaxing the assumptions of i.i.d. binary valued
signals [4], assuming agents do not observe all previous
agents’ actions [5], [8], allowing for imperfect observations
[9], [10], and others [11].

The paper is organized as follows. We describe our model
in Section II. We analyze this model and identify several
properties in Section III. In Sections IV and V, we compare
learning between two models, that differ in the number of
possible true states. We conclude in Section VI.

II. MODEL

Assume there is a countable sequence of agents, indexed
t = 1, 2, . . . where the index represents both the agent and
the order of actions. Each agent t takes an action At ∈ A =
{a1, a2, . . . , an} of choosing to buy one among n ≥ 2 items,
which are indexed by i = 1, 2, . . . , n. While it is common
knowledge that only one among the n items is “good” and
all the rest are “bad”, the identity (index) of the good item is
not known to the agents a priori. Let ω ∈ Ω = {1, 2, . . . , n}
denote the true identity of the good item. For simplicity, all
possibilities of ω are assumed to be equally likely.

The agents are Bayes-rational utility maximizers where the
pay-off received by each agent t, denoted by πt, depends on
the quality of the item he chooses to buy as follows. The
agent gains the amount x if the chosen item is good, i.e., if
At = aω , and −y if the chosen item is bad, where x > 0
and y ≥ 0. He also incurs a fixed cost C > 0 for buying the
item. The agent’s net pay-off is then the gain minus the cost
of buying the item, i.e.,

πt =

{
x− C, if At = aω,

−y − C, if At 6= aω.
(1)
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Note that since ω is equiprobable, the ex ante expected pay-
off for any agent is equal for all actions. Thus, to begin with,
an agent is indifferent to all the actions.

To incorporate agents’ private beliefs about the new items,
every agent t receives a private signal St ∈ {s1, s2, . . . , sn}.
This signal, as shown in Figure 1 for n = 3, partially
reveals the information about the true identity of the good
item ω through a n-ary symmetric channel (n-ary SC) with
crossover probability 1− p. Hence, given the true value ω,

P(St = sk |ω) =

p, if k = ω,

(1−p)
n−1 , if k 6= ω.

(2)

Here, 1/n < p < 1, which implies that the signal is
informative but not revealing. Moreover, the sequence of
private signals {S1, S2, . . .} is assumed to be i.i.d. given
the true value ω. Each agent t takes a rational action At
that depends on his private signal St and the past actions
{A1, A2, . . . , At−1} that are observed. Note that the models
in [1]–[3] are special cases for this model when n = 2.

1 2 3

ω

s1 s2 s3

St

Fig. 1: Transition diagram of 3-ary SC through which agents
receive their private signals. Transitions with solid and dashed
arrows occur with probabilities p and (1− p)/2, respectively.

III. OPTIMAL DECISION, SUFFICIENT STATISTICS AND
CASCADES

The tth agent’s information set is given by
{St, Ht−1}, where St is its private signal and Ht−1 :=
{A1, A2, . . . , At−1} is the history of past actions. For each
agent t, the Bayes’ optimal action, At is chosen such that it
provides the greatest expected pay-off given the information
set {St, Ht−1}. For the first agent, H0 is the empty set
as he does not have any any observation history. Hence,
his optimal action is to follow his private signal, i.e., he
chooses item i if and only if the signal is si. For t ≥ 2,
let γit(St, Ht−1) , P(ω = i |St, Ht−1) denote the agent’s
posterior probability that item i is the good item. Further,
let γt := (γ1

t , γ
2
t , . . . , γ

n
t ) be the posterior distribution over

Ω. Now, it follows from (1) that the pay-off from any action
will be the same if it corresponds to the true state ω and if
it does not. This implies that ai is optimum over aj only if
γit > γjt . This is shown in Figure 2, which depicts regions
of optimality for each action within the (γi)i∈Ω simplex,
for Ω = {1, 2, 3}. Thus, a Bayes’ optimal decision rule is
given by

At =


ai, if Mt = {i},
follows St, if |Mt| > 1 and St ∈ {si}i∈Mt ,

aτ(Mt), if |Mt| > 1 and St /∈ {si}i∈Mt
.

(3)

Here, Mt := arg maxi∈Ω γ
i
t denotes the index set of the

optimal action(s). Note in (3) that when |Mt| > 1, a tie is said
to occur and the agent is indifferent to the actions {ai}i∈Mt .
Our decision rule in this case is to follow the private signal
St, when St ∈ {si}i∈Mt

, i.e., when following the private
signal is optimal. Otherwise, we select an action from the
optimal set {ai}i∈Mt

as per a determisitic tie-breaking rule
τ(·), and denote the tie-winning action by aτ(Mt).

Note that when n = 2, as in [1], [9], [10], there exists
only a single possibility of a tie, which is between actions
a1 and a2. As St ∈ {s1, s2}, following the private signal St
when in a tie, is never sub-optimal, unlike the third case in
(3), which exists as a possibility only when n > 2.

Remark 1: The third case in (3) exists as a possibility only
when n > 2. Thus, τ(·) is applicable only for n > 2.
An example of such a possibility is when n = 3, and an agent
sees a tie between actions a1 and a2, while he receives the
signal s3. Our decision rule in (3), which is to break ties by
following St, only if doing so is optimal, can be viewed as a
generalization of similar decision rules in [9], [10] to models
with n ≥ 2, where following St when in a tie may not always
be optimal. Another choice for breaking ties is to employ a
randomized tie-breaking rule, given by a distribution over
the optimal action set {ai}i∈Mt

, as done in [1].

A. Cascade conditions
Definition 1: An information cascade is said to occur

when an agent’s decision becomes a fixed action, regardless
of his private signal.

It follows from (3) that, agent t cascades to an action ai
if and only if γit > γjt for all j 6= i and for any St ∈
{s1, s2, . . . , sn}. The inequality is strict because, when an
agent cascades, there cannot be a tie between actions, as this
implies that there always exists a different private signal,
that if received, would alter the agents’ optimal action. A
more intuitive way to present the cascade condition is to
first express the information contained in the history Ht−1

observed by agent t in the form of a public likelihood ratio
of true state ω = i to ω = j, for every i, j ∈ Ω, i 6= j
defined as

li,jt−1(Ht−1) ,
P(Ht−1 |ω = i)

P(Ht−1 |ω = j)
. (4)

Similarly, we express the information contained in the private
signal St in the form of agent t’s private likelihood ratio of
true state ω = i to ω = j, for every i, j, defined as

βi,jt (St) ,
P(St |ω = i)

P(St |ω = j)
=


c, if St = si,

1/c, if St = sj ,

1, o.w.
(5)

with c := (n − 1)p/(1 − p), which follows from Figure 1
or equivalently from (2). Next, using Bayes’ rule, γit can be
expressed in terms of the public and private likelihood ratios
as γit = 1/(1 +

∑
j 6=i l

j,i
t−1β

j,i
t ). Using this expression, it can

be shown that

γit
(<)
> γjt ⇔ li,jt−1β

i,j
t

(<)
> 1, for any i 6= j. (6)
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As a result, the condition on {γjt }j∈Ω for an ai cascade to
occur translates to li,jt−1 > 1/βi,jt for all j 6= i and for any St.
By using the values of βi,jt from (5), the cascade condition
simplifies to give the following lemma.

Lemma 1: Agent t cascades to an action ai if and only if
li,jt−1 > c for all j 6= i.

Figure 2 depicts the cascade regions (in darker shades)
described by Lemma 1 in the simplex of beliefs (γ1, γ2, γ3)
for state space Ω = {1, 2, 3}. Here, given any information
observed, it can be shown that the belief (γi)i∈Ω and the cor-
responding likelihood ratios for that information, {li,j}i,j∈Ω,
are related as γi/γj = li,j for all i, j ∈ Ω.

Now, if agent t cascades, then the action At does not
provide any additional information about the true value ω to
the successors over what is contained in Ht−1. As a result,
{li,jt+r} = {li,jt−1} for all r = 0, 1, 2, . . . and hence they remain
in the ai cascade, which leads us to the following property,
also exhibited by prior models, e.g. [1]–[3], [9], [10].

Property 1: Once a cascade occurs, it lasts forever.

ω = 1 ω = 2

ω = 3
a1 optimal
a2 optimal
a3 optimal

l1,3 = c

l1,3 = 1/c

l2,3 = c

l2,3 = 1/c

l1,2 = c l1,2 = 1/c

Fig. 2: Simplex of beliefs (γi)i∈Ω for state space Ω = {1, 2, 3},
which relate to the corresponding likelihood ratios {li,j}i,j∈Ω as
γi/γj = li,j . Each dashed line depicts a set of beliefs having
a constant likelihood ratio, as indicated. Shaded regions depict
optimal actions under uncertainty. Darker shades highlight the
cascade regions for the respective actions.

B. Information dynamics until a cascade
Recall that an agent is said to follow his private signal if

he takes action ai only when the signal is si. This implies
that his action At “fully” reveals the private signal St to
future agents. Assume, without loss of generality, that all
agents till some time t follow their private signals. This is
a valid assumption, as the first two agents are known to
always follow their private signals. Then, due to the mutual
independence of the signals {Sk}k≤t given ω, it follows
from (4) and the updates in (5) that the public likelihood
ratios {li,jt } can be expressed in terms of the number of si’s
(denoted by nit), for each i ∈ Ω, revealed by the observation
history Ht as follows.

li,jt = cn
i
t

(
1

c

)nj
t

for all i, j ∈ Ω, (7)

where the tuple {nrt}r∈Ω denotes the number of private
signals of each type revealed till time t. If agent t + 1 also

Ordering of {nr
t} At+1 {nr

t} updates

|I| ≥ 2,
K 6= ∅

ai∗ nrt+1 = nrt + δ(|K|), r ∈ {i∗} ∪K

any aj , j∈J ∪ I\{i∗} njt+1 = njt + 1

|I| = 1,
J,K 6= ∅

ai nrt+1 = nrt + δ(|K|), r ∈ {i} ∪K

any aj , j ∈ J njt+1 = njt + 1

|I| = 1, J = ∅ ai- cascade No further updates

Otherwise any aj , j ∈ Ω njt+1 = njt + 1

TABLE I: Public updates on {nr
t} given the observed action At+1

for varying orderings of {nr
t}. Only those nr

t ’s that get updated are
specified. Only updates of the form nj

t+1 = nj
t + 1 imply a fully

revealing action. Others, which are increments of δ(|K|) < 1, imply
only a partial revelation of multiple signals through the action.

follows its private signal, which happens to be any sj , then
it trivially follows that

nrt+1 =

{
nrt + 1, if r = j,

nrt , o.w.,
(8)

and the updated likelihood ratios, {li,jt+1} relate to {nrt+1}r∈Ω

as per (7). Further, given tuple {nrt}r∈Ω, if agent t + 1
receives a private signal si, then it can be shown from (6)
and (7) that an optimal action must satisfy the following
property.

Property 2: If agent t+1 receives a private signal si, then
action ai is optimal only if nit + 1 upper bounds the tuple
{nrt}r 6=i. Otherwise, any action ak where nkt is maximal in
{nrt}r 6=i is optimal.
Further, by applying (7) to Lemma 1, the condition on tuple
{nrt} for agent t+1 to cascade to an action ai is as follows.

Property 3: Agent t + 1 cascades to an action ai if and
only if nit > 1 + max{nrt}r 6=i. Once any cascade occurs,
{nrt} stops updating.

So far, the relation in (7) and Properties 2 and 3 rely on
the assumption that all agents till time t are fully revealing.
However, this may not be the case at all times as we show
in the next discussion that for certain orderings of {nrt}r∈Ω,
the action of agent t + 1 may not fully reveal its private
signal. Consider the following general ordering of the tuple
{nrt}r∈Ω for some I, J,K that are mutually exclusive and
exhaustive in Ω.

{nit}i∈I > {n
j
t}j∈J > {nkt }k∈K such that

ni1t = ni2t for any i1, i2 ∈ I, and 0 < (nit − n
j
t ) ≤ 1 (9)

and (nit − nkt ) > 1 for any i ∈ I, j ∈ J, k ∈ K.

Here, the cardinality of sets I, J,K determines the specific
ordering of {nrt} considered. Table I summarizes the public
updates on {nrt}, for all of their possible orderings that agent
t+ 1 may observe.

The first ordering of {nrt} that is shown in Table I is when
|I| ≥ 2, K 6= ∅ in (9). Here, if agent t+ 1 receives a signal
in {sk}k∈K , a tie between actions {ai}i∈I occurs, in which
case let i∗ := τ(I) denote the index of the tie-winning action.
Thus agent t + 1 follows St+1 only when it belongs to
{sj}j∈J∪I\{i∗}, in which case {nrt} updates as per (8).
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Otherwise, agent takes action ai∗ which reveals not just the
signal si∗ but also “equally” reveals the signals {sk}k∈K .
Thus, if action ai∗ is taken, the public likelihood ratios would
not update as per (5), but instead would update as

li
∗,j
t+1 =

l
i∗,j
t

(
c+|K|
|K|+1

)
, ∀ j ∈ J ∪ I \ {i∗},

li
∗,j
t , ∀ j ∈ K.

(10)

Observe in (10) that the ratio li
∗,j
t , for all j ∈ K, remain

unchanged as signals: si∗ and {sj}j∈K are equally revealed
by action ai∗ . Now, if the relation between li,jt and the pair
(nit, n

j
t ) given in (7) for all i, j has to be ensured for time

t+ 1, then the tuple {nrt}r∈Ω should be updated as

nrt+1 =

{
nrt + δ(|K|), if r ∈ {i∗} ∪K,
nrt , if r ∈ J ∪ I \ {i∗},

(11)

where δ(·) is function of |K|, which is the number of signals
other than si∗ that result in action ai∗ , and is given by

δ(|K|) := log
(
c+|K|
|K|+1

)
/ log c ∈

(
1

|K|+1 , 1
)
. (12)

Note the range of δ(|K|) in (12) for any c > 1 or equivalently
for any p ∈ (1/n, 1). As δ(|K|) < 1, this implies that action
ai∗ only “partially” reveals the signals: si∗ and {sj}j∈K .
Only in the special case when K = ∅, ai∗ fully reveals si∗ .
This can be verified by (12), where in this case, δ(|K|) = 1.

The second ordering of {nrt} that is shown in Table I is
when |I| = 1, J,K 6= ∅ in (9). In this case, as I is a singleton
set, say I = {i}, the only change with respect to the first
ordering is that if agent t+ 1 receives a signal in {sk}k∈K ,
there is no tie and ai is the sole optimal action. Thus, it
trivially follows that the index of the tie-winnning action
i∗ = i. Moreover, I \ {i∗} = ∅. Substituting these values
in (11) yields the updates for the tuple {nrt} on observing
action ai, as shown for the second ordering in Table I.

The third ordering of {nrt}, shown in Table I, where |I| =
1, J = ∅ in (9) essentially refers to the ordering in Property
3. Thus, agent t + 1 onwards, all agents cascade to action
ai and {nrt} stops updating. For all other orderings of the
tuple {nrt}, it can be shown that agent t + 1 follows any
private signal that it receives, and updates as per (8). Action
At+1 thereby fully reveals the agent’s private signal. With
the updates in Table I for the respective orderings of {nrt},
equation (7) and Properties 2 and 3 now hold for any agent
t, regardless of whether all agents k < t fully reveal their
private signals. The following property thereby follows.

Property 4: The tuple {nrt}r∈Ω, updated as per Table I,
is a sufficient statistic of the information contained in the
public history Ht.

Now, if the ordering of {nrt} in (9) is such that |K| 6= ∅,
then the following are implied. First, action ak for any k ∈ K
can never be optimal at t+ 1 since nkt < max{nrt}r∈Ω − 1.
Second, as per Table I, if nkt increments by δ(|K|) at time
t+ 1, then so does nit for some i ∈ I , where I is the index
set of signals with the maximum count. This ensures that
even at time t+ 1, nkt+1 < max{nrt+1}r∈Ω− 1, which leads

to the following remark.
Remark 2: At any given time t, if nkt < max{nrt}r∈Ω−1

for some k ∈ Ω, then action ak will never be taken by any
of the subsequent agents.

Note that for n = 2, the first two orderings in Table I
cannot occur and so all agents until a cascade fully reveal
their private signals.

Remark 3: For n = 2, until a cascade occurs, each agent
follows its private signal, thus fully revealing it.
The works in [9], [10], study the n = 2 model with the
agents publicly observing a noisy version of the past actions.
These models also satisfy Remark 3. However, due to noise,
the observations until a cascade only partially reveal the
agents’ private signals. Interestingly, this feature of partially
revealing observations occurs in our model for n > 2,
without considering any observation noise.

C. Cascade Probabilities and Welfare

An ai-cascade is correct if ai = aω , that is, if the cascade
action is optimal for the realized value of ω. Otherwise, it is
wrong. A correct cascade implies that the agents eventually
learn the true value ω. Now, given the true value ω ∈ Ω,
let the probability that an ai cascade begins be denoted by
(n)Pωai-cas. Here, the superscript (n) refers to the cardinality
of Ω. Then, the probability of a wrong cascade conditioned
on ω, denoted by (n)Pωwrong-cas, can be expressed as

(n)Pωwrong-cas :=
∑
i6=ω

(n)Pωai-cas, (13)

and the unconditional probability of a wrong cascade is

(n)Pwrong-cas :=
1

n

∑
ω

(n)Pωwrong-cas. (14)

Further, let the tth agent’s welfare refer to its pay-off averaged
(in expectation) over ω ∈ Ω. It can be shown that this welfare
as t→∞ relates to the wrong cascade probability as

lim
t→∞

E[πt] = (x− C)− (x+ y)
[

(n)Pwrong-cas

]
. (15)

Eq. (15) implies that better learning, i.e., a lower probability
of wrong cascade, results in a higher asymptotic welfare.

For n = 2, recall from Remark 1 that the tie-breaker τ(·)
is not involved. For this reason, any agent t’s decision rule
in (3) is commutative with respect to the ordering of the
posteriors (γ1

t , γ
2
t ). Due to this symmetry, we have for n = 2:

(2)P1
a2-cas = (2)P2

a1-cas = (2)Pwrong-cas (16)

Whereas, for n > 2, as τ(·) is involved, which is a
deterministic tie-breaking rule, (3) is non-commutative with
respect to the ordering of the posteriors (γ1

t , . . . , γ
n
t ). Hence,

the conditional wrong cascade probability (n)Pωwrong-cas given
in (13) may or may not be equal for any distinct ω1, ω2 ∈ Ω.

Remark 4: For models with n > 2, the conditional wrong
cascade probability given by (13) may not necessarily be
equal among all ω’s in Ω. Whereas, for n = 2, (13) is always
equal for any ω.
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IV. COMPARISON BETWEEN n = 2 & n = 3

In this section, we compare the probability of learning
the true value ω ∈ Ω = {1, . . . , n} between a model with
n = 2 and one with n = 3, both having the same private
signal quality p. Let M2 and M3 denote the respective
models. Here, we assume p ∈ (1/2, 1) to ensure that the
private signal is informative in both models. To differentiate
between models M2 and M3, let {s′1, s

′

2} and {s1, s2, s3}
denote their respective sets of private signals. Further, recall
from Remark 1 that a complete description of model M3

additionally requires defining the tie-breaking rule τ(·). In
this model, τ(·) is used to resolve a tie when there are
two optimal actions and neither corresponds to following the
private signal. We now state the following proposition.

Proposition 1: For any private signal quality p ∈ (1/2, 1)
and tie-breaking rule τ(·),

(3)Pwrong-cas <
(2)Pwrong-cas. (17)

We prove (17) using a sequence of claims that follow.
First, for the sake of discussion, consider the realization ω =
1 under both models. For this ω, we construct a coupling,
depicted in Fig. 3a, through which signals in {s′1, s

′

2} can be
generated from the signals in {s1, s2, s3} of the M3-model.

Claim 1: Given ω = 1 and the coupling in Figure 3a,
regardless of the tie-breaking rule τ(·), any a2 or a3 (wrong)
cascade in the M3-model is sufficient for an a2 (wrong)
cascade to occur in the M2-model.

Proof: We begin by enumerating all possible action
sequences in M3, that lead to an a2 or a3 cascade, which
are wrong cascades given ω = 1. We aim to show that these
sequences, under the coupling in Fig. 3a, result in an a2

cascade in M2. The shortest such sequences are a2, a2 and
a3, a3; both trivially lead to an a2 cascade in M2, considering
that the first two actions in any sequence are always fully
revealing. The next possibility is a sequence that starts with
two dissimilar actions, say ai, aj with i 6= j. If the third
action is ak, with k 6= i, j, then as each private signal
in {s1, s2, s3} is revealed once, the public belief on ω is
reset to being uniform over Ω. The same argument applies
to any number of successive permutations of (a1, a2, a3).
We consider sequences in M3 that begin in this manner
separately in Subsection IV-A, and for the sake of this proof
consider that the first three actions are not all dissimilar.
Thereby, we are left with sequences that begin with ai, aj , aj

s1 s2 s3

s
′

1 s
′

2

ω = 1

(a) ω = 1

s2 s1 s3

s
′

2 s
′

1

ω = 2

(b) ω = 2

s3 s2 s1

s
′

3 s
′

1

ω = 3

(c) ω = 3

Fig. 3: Coupling between the private signals in models M3 and
M2 for different values of ω, such that signals in M2 are generated
through signals in M3. For ω = 3, we assume M2 has state space
Ω = {1, 3}.
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Fig. 4: An enumeration of all possible (a1, a3)-sequences that lead
to an a3-cascade in M3 and the corresponding sequence of actions,
generated in M2 as a result of the coupling between private signals
of the two models, given in Fig. 3a. In M3, we assume τ(1, 3) = 1.
Refer to Appendix I for the case τ(1, 3) = 3.

or ai, aj , ai, where again i 6= j and for which the following
lemma applies.

Lemma 2: Any action sequence in M3 that starts with
ai, aj , aj or ai, aj , ai will subsequently comprise only of
actions ai and aj , and will almost surely end in either an ai
or aj cascade.

The above lemma follows from Remark 2. Now, let
(ai, aj)-sequences refer to all such sequences, i.e., which
comprise only of actions ai and aj , where i 6= j. These
sequences in M3 are instances where agents sequentially
attempt to learn which among the states {i, j} is the true
state ω. There are three classes of such sequences, namely,
(a1, a3), (a1, a2) and (a2, a3)-sequences. To prove Claim
1 for these sequences, let us for the sake of discussion,
enumerate all possible (a1, a3)-sequences in the M3-model,
that would result in a wrong cascade, i.e., an a3-cascade.
Here, we choose the tie-breaking rule τ(1, 3) = 1 and defer
the alternate choice, τ(1, 3) = 3 to Appendix I. Figure
4 depicts these enumerations and shows the corresponding
sequence of actions, that are generated in the M2-model as a
result of the coupling between the private signals of the two
models, defined as per Fig. 3a. The arguments that follow
similarly hold for (a1, a2)-sequences that result in an a2-
cascade in M3 due to the associated symmetry of signals s2

and s3 in Fig. 3a and by noting that both a3 and a2 cascades
are wrong, given that ω = 1. Lastly, any (a2, a3)-sequence
in M3 trivially results in an a2-cascade in M2 at time t = 3,
hence need not be considered further.

In the sequences in Figure 4, the function P (·) denotes
any permutation of its arguments, which are a set of actions.
The notation (ai, aj)

m depicts the sub-sequence (ai, aj),
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successively repeated m ≥ 0 number of times. In M3,
actions that only partially reveal multiple private signals are
highlighted by indicating these signals above them. Such
actions only occur for the first two orderings in Table I,
where for the M3 model, the only possible value that |K|
can take is 1. Thus, a partially revealed signal sr results in
the update: nrt+1 = nrt + δ(1), where δ(1) ∈ (0.5, 1). All
other actions in M3 until a cascade are fully revealing, i.e.,
any such action ai fully reveals signal si. In M2, as per
Remark 3, all actions until a cascade are fully revealing.

Remark 5: In M3, if a private signal sr is “partially”
revealed at time t+ 1 (indicated above action), then nrt+1 =
nrt + δ(1), where δ(1) ∈ (0.5, 1) as per (12). Whereas, in
any model, if sr is “fully” revealed, then nrt+1 = nrt + 1.

Stage (1) of the sequence in M3 could start with a3, a3,
which would directly result in a3 cascade. Else, it begins
with P (a1, a3) and then either terminates in an a3 cascade
through a3, a3 or continues further with another P (a1, a3).
At this point, an a3 would be fully revealing. Hence, a fully
revealing pattern (a3, a1)m is possible, until we observe an
a1, which begins Stage (2). Here, an a1 results not only from
receiving s1 but also from s2. This is because receiving an
s2 would cause a tie between actions a1 and a3, which a1

would win as τ(1, 3) = 1. Next, if again an a1 occurs, it
would begin an a1 cascade, i.e., a correct casacde, which
we do not intend to enumerate. So, the viable choice is that
a3 occurs. Let {n1, n2, n3} refer to the private signal counts
of each type revealed till time t, where we abuse notation
by dropping t from the subscript as it can be inferred from
the context of the discussion. At this point, n3 > n1 >
(n2 +1) with n3−n1 < 1, i.e., the second ordering in Table
I applies. Thus, an a1 is fully revealing whereas an a3 is
not. So, a fully revealing pattern (a1, a3)m is possible, until
we observe an a3, which partially reveals s3 and s2. At this
point, n3 = n1 + 1 and so an a1 then equalizes n1 with n3

such that n3 = n1 > (n2 + 1), which ties back to a point in
Stage (1) as shown in Fig. 4. Otherwise, an a3 starts an a3

cascade. In this way, all sequences that lead to a a3 cascade
are enumerated.

Observe that an a3 cascade in M3 gaurantees an a2

cascade in M2, thus proving Claim 1. This is depsite our
choice of tie-breaking rule τ(1, 3) = 1, which by partially
revealing signal s1 when in a tie, favours an a1 (correct)
cascade to occur in M2. Whereas, the other choice, τ(1, 3) =
3, for which Claim 1 is similarly proved by the enumerations
in Fig. 6 in Appendix I does not reveal s1 when in a tie, and
hence does not favour a correct cascade in M2. This makes
τ(1, 3) = 1 more challenging among the two choices of
tie-breaking rules for proving Claim 1. Similar arguments
hold for (a1, a2)-sequences, that result in an a2-cascade in
M3 due to the symmetry of signals s2 and s3 in Fig. 3a,
whereas the arguments for (a2, a3)-sequences are trivial. In
this manner, all action sequences in M3 that end in a wrong
cascade are accounted, thus proving Claim 1.

For the realization ω = 2, we consider a different coupling,
shown in Figure 3b. Then, by using similar arguments as

done for ω = 1, the following claim can be proven.
Claim 2: Given ω = 2 and the coupling in Figure 3b,

regardless of τ(·), an a1 or a3 (wrong) cascade in M3 is
sufficient for an a1 (wrong) cascade to occur in M2.

Lastly, for the realization ω = 3, we assume that model
M2 has a state space Ω = {1, 3}. This is required to make
ω = 3 a common possibility under both models. It also
follows that we should consider the coupling in Figure 3c,
which unlike the couplings for other ω’s, maps {s1, s2, s3}
to {s′1, s

′

3}. Then, by using similar arguments as done for
ω = 1, the following claim can be proven.

Claim 3: For ω = 3 and the coupling in Figure 3c,
regardless of τ(·), an a1 or a2 (wrong) cascade in M3 is
sufficient for an a1 (wrong) cascade in M2, that has a state
space Ω = {1, 3}.

Note that when ω = 3, the chances of an a1 cascade in
M2 with state space {1, 3} is equal to the chances of an a1

cascade in M2 with state space {1, 2} when ω = 2. This
is due to the fact that for n = 2, there are no state index-
dependent changes in agent’s decision making. Thus, Claim 3
also implies that (3)P 3

wrong-cas <
(2)P 2

wrong-cas. This inequality
along with Claims 1 and 2 being valid yield the following
relation, in which the equality holds due to Remark 4.

(3)Pωwrong-cas <
(2)P1

wrong-cas = (2)P2
wrong-cas, ∀ω ∈ {1, 2, 3}. (18)

It then follows from the inequality in (18), that the uncon-
ditional wrong cascade probabilites for n = 3 and n = 2,
defined by (14), are related as per the Proposition in (17).
Thus, despite M3 having partially revealing actions, while
no such possibility exists in M2 (Remark 3), we show that
learning in M3 is strictly better than in M2.

A. Proof of Claim 1 for action sequences in M3 that begin
with any number of successive permutations, P (a1, a2, a3).

If any sequence in M3 begins with P (a1, a2, a3), then
since it reveals the private signals P (s1, s2, s3), the only
possible permutations in M3 which do not result in an a2

cascade in M2 are P (a1, a2), a3 and P (a1, a3), a2, both of
which yield the sequence P (a1, a2), a2 in M2, through the
coupling of Fig. 3a. Note that so far, these sequences (in
both models) have fully revealed their private signals. It
can be observed that while the number of private signals
of each type revealed are equal in M3 (no information bias),
the number of s

′

2 in M2 is one greater than the number
of s

′

1, which indicates an information bias in M2 towards
the wrong state, i.e., ω = 2. Due to this information bias
in M2, it can be shown that any (a1, a3)-sequence in M3

illustrated in Figure 4 for τ(1, 3) = 1 and in Figure 6
for τ(1, 3) = 3, when prefixed with P (a1, a2, a3), results
in the corresponding sequence in M2 to always end in an
a2-cascade. Similar arguments follow for (a1, a2)-sequences
that end in an a2-cascade in M3, when they are prefixed
with P (a1, a2, a3), again due to the symmetry of signals
s2 and s3 in Fig. 3a. Whereas, if any (a2, a3)-sequence
in M3 is prefixed with P (a1, a2, a3), an a2-cascade in M2

surely occurs by t = 4. We have thereby accounted for each
(ai, aj)-sequence class being prefixed with a P (a1, a2, a3).
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START P (a1, a3) P (a1, a3) a1

{sk}k 6=3

a1

{sk}k 6=3 ≈

a3 cascade

Mn Model, (n > 3)

START P (a1, a2) P (a1, a2) a1

(s
′

1)
a1

(s
′

1)

a1 cascade

M2 Model

Fig. 5: An example that counters Claim 1 when comparing Mn for
n > 3, with M2. Given ω = 1, an (a1, a3)-sequence in Mn that
leads to an a3 (wrong) cascade, can result in the corresponding
sequence generated in M2 to end in an a2 (correct) cascade.

Lastly, if a sequence in M3 begins with more than one
successive P (a1, a2, a3), then the information bias created in
M2 by the first P (a1, a2, a3) gaurantees an a2 cascade in M2

by the second P (a1, a2, a3) in M3. Thus, Claim 1 is proved
for all (ai, aj)-sequences in M3 ending in a wrong cascade,
that are prefixed with one or more successive P (a1, a2, a3).

V. COMPARISON BETWEEN n = 2 & n > 3

We briefly discuss whether learning in models: M2 and
Mn, for any n > 3, can be compared using arguments similar
to those in Section IV. For sake of discussion, consider
the realization ω = 1 for both models. Assume a coupling
similar to Fig. 3a, but for n > 3 such that signals {s′1, s

′

2} of
M2 can be generated from {s1, . . . , sn} of Mn. Fig. 5 shows
an (a1, a3)-sequence in Mn, assuming the tie-breaking rule
τ(1, 3) = 1, and a possible corresponding sequence in M2.
Here, when any signal is partially revealed, we assume that
the increment, δ(|K|), which is monotonic and increasing in
signal quality, p, satisfies δ(|K|) ≤ 0.5. This holds only if p
is less than a threshold, say κ. Now, observe in Mn that after
starting with two consecutive P (a1, a3)’s, there could be an
a1, a1. But, since δ(|K|) ≤ 0.5, this does not result in an a1

cascade. Let this sequence eventually lead to an a3 (wrong)
cascade. However, the corresponding sequence in M2 ends
in an a1 (correct) cascade if the the two successive a1’s in
Mn were caused by two s1’s. This contradicts Claim 1. This
can be avoided if δ(|K|) > 0.5, in which case we expect the
arguments in Section IV to hold true. Therefore, learning in
Mn, for any n > 3 can arguably be better that in M2 if the
private signal quality p is higher than threshold κ.

VI. CONCLUSIONS AND FUTURE WORK

We studied the impact of increasing the number of ac-
tions in a Bayesian social learning setting and showed that
compared to a setting with only two actions, very different
learning behavior can emerge. In this setting, until a cascade,
an action may partially reveal more than one private signals,
while only one among them would be the actual underlying
signal. This contrasts the setting with two possible actions,
where each action until a cascade always fully reveals its
underlying signal. Further, depsite these differences, we
showed by applying a coupling method that increasing the
number of actions from two to three results in strictly

improved learning. Increasing actions from two to more than
three improves learning if signals are sufficiently strong. One
avenue of future study would be to allow this signal strength
to decrease as the number of actions grows. Extending our
analysis to other tie-breaking rules is another direction of
interest.
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APPENDIX I
ILLUSTRATION TO PROVE CLAIM 1 FOR (a1, a3)-

SEQUENCES IN MODEL M3 AND RULE, τ(1, 3) = 3.
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M3 Model

Coupling
as per Fig. 3a

START
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′
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Fig. 6: An enumeration of all possible (a1, a3)-sequences that lead
to an a3-cascade in M3 for τ(1, 3) = 3, and the corresponding
sequence of actions, generated in M2.
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