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Abstract. The Type D asymmetric simple exclusion process (Type D

ASEP) with parameters (q, n, δ) is a two-species interacting particle sys-

tem exhibiting a drift, where two particles may occupy the same site only if

they belong to different species. In previous research by Kuan, Landry, Lin,

Park, and Zhou, the Type D ASEP was generated using the quantum Hamil-

tonian corresponding to central elements from the quantum groups Uq(so6)

and Uq(so8). We extend this construction to the case of Uq(so10). Addi-

tionally, we generalize a previously known duality function from Blyschak,

Burke, Kuan, Li, Ustilovsky, and Zhou for the Type D ASEP for all n.

1. Introduction

Originally introduced by Spitzer [17], the asymmetric simple exclusion process

(ASEP) has become “the default stochastic model for transport phenomena”[20],

having been applied to traffic flow problems [15], growth models [13], vortex

models [11], and other biological applications [18, 19]. The Type D asymmetric

simple exclusion process (Type D ASEP) introduced in [12] is a generalization

of the ASEP. The state space of the Type D ASEP consists of two species of

particles interacting on a one-dimensional lattice, where two particles may occupy

the same site as long as they are of different species. The Type D ASEP has three

parameters (q, n, δ), where q is the asymmetry parameter, the positive integer n

gives the speed of the drift, and δ specifies the interaction between the two particle

species. The generator matrix is given in Section 2.2.
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The procedure connecting quantum groups to a particle system and duality is

described in [4]; see also [5, 9, 16]. Previous research [1, 12] uses this procedure

to construct Type D ASEPs with parameters n = 3, 4 from the representation

theory of the Type D quantum groups Uq(so6) and Uq(so8), respectively. The

authors of [12] conjecture that this process can be generalized to Uq(so2n).

This paper verifies this claim in the case of Uq(so10). The first step toward

this is to compute a central element of this quantum group using methods from

[12]. Then, a generator of the Type D ASEP with parameter n = 5 is constructed

from this central element.

In addition, this paper expands on previous results concerning Markov self-

duality of the Type D ASEP. In [12], the authors produce a triangular duality

function. This paper instead focuses on orthogonal polynomial duality; see [2,

3, 6, 7, 8]. In particular, [1] presents a duality function for Type D ASEP with

parameters n = 3, 4 and δ = 0. This paper generalizes this result for all n.

The paper is outlined as follows: Section 2 describes the relevant background

and notation used. Section 3 states the results: a central element of Uq(so10), the

construction of the Type D ASEP generator for n = 5, and a self-duality function

of the Type D ASEP. Section 4 outlines the proofs of these results.
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2. Background

2.1. Algebraic Definitions.

Definition 1. The special orthogonal Lie algebra so2n is defined as

so2n =

{[
A B

C −AT

] ∣∣∣∣∣ A,B,C ∈ Mn×n(C), B = −BT , C = −CT

}
.

Let Ei,j denote the matrix with 1 in entry (i, j) and 0 elsewhere. Then define

matrices Ei, Fi, Hi, 1 ≤ i ≤ n as follows:

En = En−1,2n − En,2n−1

Fn = E2n−1,n − E2n,n−1
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Hn = En−1,n−1 + En,n − E2n−1,2n−1 − E2n,2n

and for all 1 ≤ i ≤ n− 1,

Ei = Ei,i+1 − En+i+1,n+i

Fi = Ei+1,i − En+i,n+i+1

Hi = Ei,i − Ei+1,i+1 − En+i,n+i + En+i+1,n+i+1.

These matrices generate the fundamental representation of so2n.

This Lie algebra has rank n and Dynkin diagram Dn, with Cartan matrix (aij)

given by

aij =


2 i = j

−1 {i, j} = {n− 2, n} or {k, k + 1}, 1 ≤ k ≤ n− 2

0 otherwise

.

Finally, let Li denote the linear operator taking a matrix to its i-th diagonal

entry. Then the positive roots of so2n are {Li + Lj}i<j ∪ {Li − Lj}i<j . The

simple roots are αi = Li − Li+1 for 1 ≤ i ≤ n − 1 and αn = Ln−1 + Ln. In

the fundamental representation of so2n, elements of the Lie algebra act as the

underlying matrix on C2n. The fundamental weights are then ±Li, 1 ≤ i ≤ n.

An ordering for the weights

L1 > L2 > . . . > Ln = −Ln > −Ln−1 > . . . > −L1

is given in [12].

Define vectors v1, . . . , v2n with vi having a 1 in the i-th coordinate if 1 ≤ i ≤ n,

a 1 in the (3n + 1 − i)-th coordinate if n + 1 ≤ i ≤ 2n, and zeroes elsewhere.

Observe that v1, . . . , v2n are in the weight spaces of L1, . . . , Ln,−Ln, . . . ,−L1,

respectively.

Definition 2. The quantum group Uq(so2n) is the algebra generated by

{Ei, Fi, q
Hi : 1 ≤ i ≤ n}

with q-deformed relations

[Ei, Fi] =
qHi−q−Hi

q−q−1 , qHiEj = q(αi,αj)Ejq
Hi , qHiFj = q−(αi,αj)Fjq

Hi ,

along with the Serre relation for every (i, j) with aij = −1 in the Cartan matrix

E2
i Ej + EjE

2
i = (1 + q)EiEjEi, F 2

i Fj + FjF
2
i = (1 + q)FiFjFi.
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Here, (αi, αj) is the usual dot product. All other pairs of elements commute.

Lastly, the coproducts of the generators are

∆(Ei) = Ei ⊗ 1+ qHi ⊗Ei, ∆(Fi) = 1⊗Fi +Fi ⊗ q−Hi , ∆(qHi) = qHi ⊗ qHi .

For convenience, in the remainder of the paper, let Ki denote qHi .

A general definition for the quantum group of a Lie algebra g is given in [10],

and in Chapter 6 the author introduces a bilinear pairing that will be used in

the later construction. Recall that the Borel subalgebras b± are the Lie subal-

gebras generated by {Ei, Hi} and {Fi, Hi}, respectively. Similarly, let Uq(b±)

denote the corresponding subalgebras of the quantum group generated by the

Borel subalgebras (replacing Hi with qHi). There is a bilinear pairing ⟨· , ·⟩:
Uq(b−)× Uq(b+) → Q(q) such that for any linear combinations α, β of the posi-

tive simple roots we have

⟨qHα , qHβ ⟩ = q−(α·β) and ⟨Fi, Ej⟩ =
−δij

(q − 1
q )

,

and all other pairings between generators are zero. The pairing can be computed

for products via

⟨y, xx′⟩ = ⟨∆(y), x′ ⊗ x⟩, ⟨yy′, x⟩ = ⟨y ⊗ y′,∆(x)⟩,

where ∆(xy) = ∆(x)∆(y), and ⟨x1 ⊗ x2, y1 ⊗ y2⟩ is defined to be ⟨x1, y1⟩⟨x2, y2⟩.

2.2. Probabilistic Definitions. Recall that the Type D ASEP consists of two

species of particles interacting on a one-dimensional lattice, where at most two

particles can occupy a single site, and if so must be of different species. The Type

D ASEP has three parameters (q, n, δ), where q ̸= 1 is a positive real number, and

n ≥ 2 and 0 ≤ δ ≤ n− 2 are integers. Intuitively, q is the asymmetry parameter,

n affects the speed of the drift, and δ affects the interaction between the two

species. If the lattice has L sites, then there are 4L states. A more complete

definition of the Type D ASEP is given in [12].1

First, consider the two-site model. The 16 states are (a, b), 0 ≤ a, b ≤ 3,

where each coordinate corresponds to a site, 0 denotes an empty site, 1 denotes

a species 1 particle, 2 denotes a species 2 particle, and 3 denotes both a species 1

and species 2 particle. The generator matrix is given by the direct sum of a 4× 4

1Dr. Kuan and Zhengye, two authors of [1, 12], acknowledged a typo in those papers where

so2n was associated with the parameters (q, n− 1, δ) rather than (q, n, δ).
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block

L1 =



∗
(1+q−2δ)

(
q2n−2−q2n−4+ 2

q2

)
q2δ+1

(−q1−n+qn−1)
2

q2

q2δ(1+q−2δ)
(
q2n−2−q2n−4+ 2

q2

)
q2δ+1

q−2δ
(
q2n − q2n−2 + 2

)
∗ q−2n − q2−2n + 2

(
−q1−n + qn−1

)2
q2

(
−q1−n + qn−1

)2
2q2 + q2−2n − q4−2n ∗ q2δ

(
2q2 + q2−2n − q4−2n

)
q2n − q2n−2 + 2

(
−q1−n + qn−1

)2
q2δ

(
q−2n − q2−2n + 2

)
∗


corresponding to the communicating class {(3, 0), (2, 1), (0, 3), (1, 2)}, four 2× 2

blocks

L2 =

 ∗ q1−2n+q2n−1

q

q(q1−2n + q2n−1) ∗


corresponding to the communicating classes

{(1, 0), (0, 1)}, {(2, 0), (0, 2)}, {(3, 1), (1, 3)}, {(3, 2), (2, 3)},

and four 1 × 1 blocks with entry 0 corresponding to the communicating classes

{(0, 0)}, {(1, 1)}, {(2, 2)}, {(3, 3)}. Here, the diagonal entries are chosen so that

the rows sum to 0. To summarize, the generator matrix is

(1) L = L1 ⊕
4⊕

i=1

L2 ⊕
4⊕

i=1

[0],

with respect to the ordered basis

{(3, 0), (2, 1), (0, 3), (1, 2), (1, 0), (0, 1), (2, 0), (0, 2),
(3, 1), (1, 3), (3, 2), (2, 3), (0, 0), (1, 1), (2, 2), (3, 3)}.

If there are L sites, then the generator matrix is given by

L1,2 + L2,3 + · · ·+ LL−1,L,

where Lx,x+1 denotes the matrix acting on lattice sites x and x+ 1.

We now introduce several notations and definitions that will appear in Theorem

3.3. If x ∈ {1, . . . , L} is a lattice site, i ∈ 1, 2, and η is a state, then let ηxi denote

the number of particles of class i at site x in state η (so ηxi is 0 or 1). Define

height functions

N−
x−1(ηi) =

x−1∑
i=1

ηxi , N+
x+1(ηi) =

L∑
i=x+1

ηxi

that count the number of particles to the left and right of a particular site.
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Define the q-Pochhammer symbol for a ∈ R, k ∈ N as

(a; q)k :=
k−1∏
i=0

(1− aqi),

define the q-hypergeometric function 2φ1 as

2φ1

a, b

c
; q, z

 :=
∞∑
k=0

(a; q)k(b; q)k
(c; q)k

zk

(q; q)k
,

and define the q-Krawtchouk polynomials as

Kn(q
−x; p, c; q) = 2φ1

q−x, q−n

q−c
; q, pqn+1

 .

3. Results

First, for ease of reading set some notational shortcuts following the convention

in [12]. Set r = q − 1
q , and let Ex1x2...xk

:= Ex1Ex2 · · ·Exk
, and similarly for F

and K. For example, r2F23E23 = (q − 1
q )

2F2F3E2E3.

Theorem 3.1. The following element is in the center of Uq(so10):

q8K11223345 + q6K223345 + q4K3345 + q2K45 +K4K
−1
5 +K−1

4 K5 +
1
q2
K−1

45 + 1
q4
K−1

3345

+ 1
q6
K−1

223345 +
1
q8
K−1

11223345 +
r2

q
F4K

−1
5 E4 +

r2

q3
(qF34 − F43)K

−1
35 (qE43 − E34)

+ r2

q3
F3K

−1
345E3 +

r2

q7
F1K

−1
1223345E1

+ r2

q5
(q2F234 − qF243 − qF324 + F432)K

−1
235(q

2E432 − qE342 − qE423 + E234)

+ r2

q7
( A1 )K−1

1235( A2 )

+ r2

q7
(q2F123 − qF132 − qF213 + F321)K

−1
12345(q

2E321 − qE231 − qE312 + E123)

+ r2

q5
F2K

−1
23345E2 +

r2

q7
(qF12 − F21)K

−1
123345(qE21 − E12)

− qr2( A3 )K1234( A4 ) + r2

q5
(qF23 − F32)K

−1
2345(qE32 − E23)

− qr2(q2F532 − qF352 − qF523 + F235)K234(q
2E235 − qE253 − qE325 + E532)

− qr2(qF53 − F35)K34(qE35 − E53)− qr2F5K4E5 − r4F54E54

− r2

q
( A5 )K123( A6 )− r2

q
( A7 )K23( A8 )

− r2

q
(q2F453 − qF435 − qF534 + F345)K3(q

2E354 − qE435 − qE534 + E543)

− r2

q
F5K

−1
4 E5
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− r4

q2
(−qF3435 − qF5343 + (q2 + 1)F3543)(−qE3435 − qE5343 + (q2 + 1)E3543)

− r2

q3
( A9 )K2( A10 )

− r2

q3
(q2F354 − qF435 − qF534 + F543)K

−1
3 (q2E453 − qE435 − qE534 + E345)

− r2

q3
(qF35 − F53)K

−1
34 (qE53 − E35)− r2

q3
( A11 )K12( A12 )− r4

q4
( A13 )( A14 )

− r2

q5
( A15 )K−1

2 ( A16 )− r2

q5
( A17 )K−1

23 ( A18 )

− r2

q5
(q2F235 − qF253 − qF325 + F532)K

−1
234(q

2E532 − qE352 − qE523 + E235)

− r2

q5
( A19 )K1( A20 )

− r4

q6
( A21 )( A22 )− r2

q7
( A23 )K−1

123( A24 )− r2

q7
( A25 )K−1

1234( A26 )

− r2

q7
( A27 )K−1

12 ( A28 )− r2

q7
( A29 )K−1

1 ( A30 )q7r2F1K1223345E1

+ q5r2(qF21 − F12)K123345(qE12 − E21) + q5r2F2K23345E2

+ q3r2(q2F321 − qF231 − qF312 + F123)K12345(q
2E123 − qE132 − qE213 + E321)

+ q3r2(qF32 − F23)K2345(qE23 − E32) + q3r2F3K345E3 + qr2( A31 )K1235( A32 )

+ qr2(q2F432 − qF342 − qF423 + F234)K235(q
2E234 − qE243 − qE324 + E432)

+ qr2(qF43 − F34)K35(qE34 − E43) + qr2F4K5E4,

where

A1 = q3F1234 − q2F1243 − q2F1324 − q2F2134 + qF1432 + qF2143 + qF3214 − F4321

A2 = q3E4321 − q2E3421 − q2E4231 − q2E4312 + qE2341 + qE3412 + qE4123 − E1234

A3 = q3F5321 − q2F3521 − q2F5231 − q2F5312 + qF2351 + qF3512 + qF5123 − F1235

A4 = q3E1235 − q2E1253 − q2E1325 − q2E2135 + qE1532 + qE2153 + qE3215 − E5321

A5 = q4F45321 − q3F43521 − q3F45231 − q3F45312 − q3F53421 + q2F34521 + q2F42351

+ q2F43512 + q2F45123 + q2F52341 + q2F53412 − qF23451 − qF34512 − qF41235

− qF51234 + F12345

A6 = q4E12354 − q3E12435 − q3E12534 − q3E13254 − q3E21354 + q2E12543 + q2E14325

+ q2E15324 + q2E21435 + q2E21534 + q2E32154 − qE15432 − qE21543 − qE43215

− qE53214 + E54321

A7 = q3F4532 − q2F4352 − q2F4523 − q2F5342 + qF3452 + qF4235 + qF5234 − F2345

A8 = q3E2354 − q2E2435 − q2E2534 − q2E3254 + qE2543 + qE4325 + qE5324 − E5432

A9 = q4F34532 − (q3 − q)F35342 − (q3 − q)F43532 + q2F34235 + q2F35234 + q2F43523

+ q2F53423 − qF32345 − qF43235 − qF45323 − qF53234 + F23453 + (−q3 − q)F34523
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A10 = q4E23543 − q3E23435 − q3E25343 + q2E32435 + q2E32534 + q2E43253 + q2E53243

− qE34325 − qE53432 + E35432 + (−q3 − q)E32543

A11 = q5F354321 − q4F354312 − (q4 − q2)F343521 − (q4 − q2)F534321 + q3F342351

+ q3F352341 + q3F435231 + q3F534231 − q2F323541 − q2F341235 − q2F351234

− q2F432351 − q2F435123 − q2F532341 − q2F534123 − q2F543231 + qF235431 + qF312354

+ qF431235 + qF531234 + qF543123 + (q3 − q)F343512 + (q3 − q)F534312

+ (q3 + q)F354123 + (−q4 − q2)F354231 − F123543

A12 = q5E123543 − q4E123435 − q4E125343 − q4E213543 + q3E132435 + q3E132534

+ q3E143253 + q3E153243 + q3E213435 + q3E215343 − q2E134325 − q2E153432

− q2E321435 − q2E321534 − q2E432153 − q2E532143 + qE135432 + qE343215

+ qE534321 + (q3 + q)E321543 + (−q4 − q2)E132543 − E354321

A13 = q2F235234 + q2F243523 − q2F223543 + q2F324352 + q2F532432 + (−q3 − q)F234352

+ (−q3 − q)F253432 + (−q3 − q)F325432 + (q4 + q2 + 1)F235432

A14 = q2E235234 + q2E243523 − q2E223543 + q2E324352 + q2E532432 + (−q3 − q)E234352

+ (−q3 − q)E253432 + (−q3 − q)E325432 + (q4 + q2 + 1)E235432

A15 = q4F23543 − q3F23435 − q3F25343 + q2F32435 + q2F32534 + q2F43253 + q2F53243

− qF34325 − qF53432 + F35432 + (−q3 − q)F32543

A16 = q4E34532 − (q3 − q)E35342 − (q3 − q)E43532 + q2E34235 + q2E35234 + q2E43523

+ q2E53423 − qE32345 − qE43235 − qE45323 − qE53234 + E23453 + (−q3 − q)E34523

A17 = q3F2354 − q2F2435 − q2F2534 − q2F3254 + qF2543 + qF4325 + qF5324 − F5432

A18 = q3E4532 − q2E4352 − q2E4523 − q2E5342 + qE3452 + qE4235 + qE5234 − E2345

A19 = q6F2354321 + q4F2343512 + q4F2534312 + (q4 − q2)F2352341 + (q4 − q2)F2435231

− (q4 − q2)F2235431 + (q4 − q2)F3243521 + (q4 − q2)F5324321 − q3F2341235

− q3F2351234 − q3F2435123 − q3F2534123 − q3F3243512 − q3F3253412 − q3F4325312

− q3F5324312 + q2F2312354 + q2F2431235 + q2F2531234 + q2F2543123 + q2F3241235

+ q2F3251234 + q2F3432512 + q2F4325123 + q2F5324123 + q2F5343212 − qF2123543

− qF3212354 − qF3543212 − qF4321235 − qF5321234 − qF5432123 + (−q3 − q)F3254123

+ (q4 + q2)F2354123 + (q4 + q2)F3254312 + (−q5 − q)F2354312 + (−q5 + q)F2343521

+ (−q5 + q)F2534321 + (−q5 + q)F3254321 + F1235432

A20 = q6E1235432 − q5E1234352 − q5E1253432 − q5E1325432 + q4E1235234 + q4E1243523
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+ q4E1324352 + q4E1532432 − (q4 − q2)E1223543 − q3E1235423 − q3E2134235

− q3E2135234 − q3E2143523 − q3E2153423 − q3E2354213 − q3E3214352

− q3E3215342 − q3E4321532 − q3E5321432 + q2E2352134 + q2E2435213 + q2E3243521

+ q2E5324321 − qE2343521 − qE2534321 − qE3254321 + (q3 − q)E2123543

+ (q4 + q2)E2134352 + (q4 + q2)E2135423 + (q4 + q2)E2153432 + (q4 + q2)E3215432

+ (−q5 − q)E2135432 + E2354321

A21 = −q3F12341235 + q3F12354312 − q3F12534123 + q3F13212354 − q3F13253412

+ q3F13543212 + q3F14321235 − q3F14325312 + q3F15321234 + q3F15432123

+ q3F21235431 − q3F21352341 − q3F21435231 − q3F32143521

− q3F53214321 − (q4 + q2)F12235431 − (q4 + q2)F11235432 + (q4 + q2)F12352341

+ (q4 + q2)F12354123 + (q4 + q2)F12435231 + (q4 + q2)F13243521 + (q4 + q2)F15324321

+ (q4 + q2)F21343521 + (q4 + q2)F21534321 + (q4 + q2)F32154321

− q(q2 + 1)2F12343521 − q(q2 + 1)2F12534321 − q(q2 + 1)2F13254321

− q(q4 + q2 + 1)F21354321 + (q6 + q4 + q2 + 1)F12354321

A22 = −q3E12341235 + q3E12354312 − q3E12534123 + q3E13212354 − q3E13253412

+ q3E13543212 + q3E14321235 − q3E14325312 + q3E15321234 + q3E15432123

+ q3E21235431 − q3E21352341 − q3E21435231 − q3E32143521 − q3E53214321

− (q4 + q2)E12235431 − (q4 + q2)E11235432 + (q4 + q2)E12352341 + (q4 + q2)E12354123

+ (q4 + q2)E12435231 + (q4 + q2)E13243521 + (q4 + q2)E15324321 + (q4 + q2)E21343521

+ (q4 + q2)E21534321 + (q4 + q2)E32154321 − q(q2 + 1)2E12343521

− q(q2 + 1)2E12534321 − q(q2 + 1)2E13254321 − q(q4 + q2 + 1)E21354321

+ (q6 + q4 + q2 + 1)E12354321

A23 = q4F12354 − q3F12435 − q3F12534 − q3F13254 − q3F21354 + q2F12543 + q2F14325

+ q2F15324 + q2F21435 + q2F21534 + q2F32154 − qF15432 − qF21543 − qF43215

− qF53214 + F54321

A24 = q4E45321 − q3E43521 − q3E45231 − q3E45312 − q3E53421 + q2E34521 + q2E42351

+ q2E43512 + q2E45123 + q2E52341 + q2E53412 − qE23451 − qE34512 − qE41235

− qE51234 + E12345

A25 = q3F1235 − q2F1253 − q2F1325 − q2F2135 + qF1532 + qF2153 + qF3215 − F5321

A26 = q3E5321 − q2E3521 − q2E5231 − q2E5312 + qE2351 + qE3512 + qE5123 − E1235
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A27 = q5F123543 − q4F123435 − q4F125343 − q4F213543 + q3F132435 + q3F132534

+ q3F143253 + q3F153243 + q3F213435 + q3F215343 − q2F134325 − q2F153432

− q2F321435 − q2F321534 − q2F432153 − q2F532143 + qF135432 + qF343215

+ qF534321 + (q3 + q)F321543 + (−q4 − q2)F132543 − F354321

A28 = q5E354321 − q4E354312 − (q4 − q2)E343521 − (q4 − q2)E534321 + q3E342351

+ q3E352341 + q3E435231 + q3E534231 − q2E323541 − q2E341235 − q2E351234

− q2E432351 − q2E435123 − q2E532341 − q2E534123 − q2E543231 + qE235431

+ qE312354 + qE431235 + qE531234 + qE543123 + (q3 − q)E343512 + (q3 − q)E534312

+ (q3 + q)E354123 + (−q4 − q2)E354231 − E123543

A29 = q6F1235432 − q5F1234352 − q5F1253432 − q5F1325432 + q4F1235234 + q4F1243523

+ q4F1324352 + q4F1532432 − (q4 − q2)F1223543 − q3F1235423 − q3F2134235

− q3F2135234 − q3F2143523 − q3F2153423 − q3F2354213 − q3F3214352 − q3F3215342

− q3F4321532 − q3F5321432 + q2F2352134 + q2F2435213 + q2F3243521 + q2F5324321

− qF2343521 − qF2534321 − qF3254321 + (q3 − q)F2123543 + (q4 + q2)F2134352

+ (q4 + q2)F2135423 + (q4 + q2)F2153432 + (q4 + q2)F3215432 + (−q5 − q)F2135432

+ F2354321

A30 = q6E2354321 + q4E2343512 + q4E2534312 + (q4 − q2)E2352341 + (q4 − q2)E2435231

− (q4 − q2)E2235431 + (q4 − q2)E3243521 + (q4 − q2)E5324321 − q3E2341235

− q3E2351234 − q3E2435123 − q3E2534123 − q3E3243512 − q3E3253412 − q3E4325312

− q3E5324312 + q2E2312354 + q2E2431235 + q2E2531234 + q2E2543123 + q2E3241235

+ q2E3251234 + q2E3432512 + q2E4325123 + q2E5324123 + q2E5343212 − qE2123543

− qE3212354 − qE3543212 − qE4321235 − qE5321234 − qE5432123 + (−q3 − q)E3254123

+ (q4 + q2)E2354123 + (q4 + q2)E3254312 + (−q5 − q)E2354312 + (−q5 + q)E2343521

+ (−q5 + q)E2534321 + (−q5 + q)E3254321 + E1235432

A31 = q3F4321 − q2F3421 − q2F4231 − q2F4312 + qF2341 + qF3412 + qF4123 − F1234

A32 = q3E1234 − q2E1243 − q2E1324 − q2E2134 + qE1432 + qE2143 + qE3214 − E4321.

This element acts as q10+ q6+ q4+ q2+2+ 1
q2 +

1
q4 +

1
q6 +

1
q10 times the identity

in the fundamental representation of Uq(so10).

Using this central element, the method in [4] can be applied to obtain a Markov

process. The following theorem states that the resulting process is indeed the

Type D ASEP with n = 5.
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Theorem 3.2. Let C denote the central element of Uq(so10) from Theorem 3.1.

Let H denote the action of ∆(C) on C10 ⊗C10, so that H is a 100× 100 matrix.

Define the quantum Hamiltonian Ĥ = H − Λ · Id, where

Λ = q12 + q6 + q4 + q2 + 2 +
1

q2
+

1

q4
+

1

q6
+

1

q12
.

There exist linearly independent eigenvectors g0, g1, g2, g3 of Ĥ with eigenvalue

0 such that if Gδ is the diagonal matrix with entries given by gδ, then removing

certain states from G−1
δ ĤGδ results in the generator of the two-site Type D ASEP

with parameters (q, 5, δ), for δ = 0, 1, 2, 3.

In addition, we prove the following generalization of Theorem 3.1 from [1]:

Theorem 3.3. The Type D ASEP with δ = 0 is self-dual with respect to the

self-duality function

DL
α1,α2

(η, ξ) = DL
α1
(η1, ξ1) ·DL

α2
(η2, ξ2)

where

DL
αi
(ξi, ηi) =

L∏
x=1

Kηx
i

(
q−2ξxi , pxi (ξi, ηi), 1, q

2
)

and

pxi (ξi, ηi) = α−1
i q−2(N−

x−1(ξi)−N+
x+1(ηi))+2x−2.

Note that here, α1 and α2 are not roots of so10; they are parameters that

depend on the reversible measures explained in [1].

4. Proofs

The proofs of the first two theorems were assisted by a computer. The code

used can be found at https://github.com/e-rohr/Type-D-ASEP

4.1. Proof of Theorem 3.1. We find the central element using [14, Lemma

3.1], as was done in [12] for Uq(so6) and Uq(so8). The lemma is restated here for

convenience:

Lemma 4.1. For each weight µ of the fundamental representation of a Lie algebra

g, let vµ be a vector in the weight space. Suppose q is not a root of unity, and 2µ

is always in the root lattice of g. Let eµλ and fλµ be products of Ei’s and Fi’s in

Uq(g), respectively, such that eµλ sends vλ to vµ and fλµ sends vµ to vλ. If e∗µλ
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and f∗
λµ are the corresponding dual elements under ⟨·, ·⟩, and ρ is half the sum of

the positive roots of g, then

(2)
∑
µ≥λ

q(µ−λ,µ)q−(2ρ,µ)e∗µλq
H−µ−λf∗

λµ

is a central element of Uq(g).

Several terms in (2) are straightforward to compute; the computations are

explained in [12, Section 2.1.1]. In particular:

q(µ−λ,µ) =


q2 λ = −µ

1 λ = µ

q otherwise,

q(−2ρ,µ) =

{
q2i−2n µ = Li

q2n−2i µ = −Li,

H−2Li
= Hn−1 −Hn − 2

n−1∑
j=i

Hj ,

and if i < j,

HLi−Lj
=

j−1∑
k=i

Hk.

We can add or subtract these last two equations to find any H±Li±Lj
.

Next, we find eµλ and fλµ. The following diagram shows the actions of Ei and

Fi on {v1, . . . , v2n} for n = 5. Recall that the vectors v1, . . . , v2n belong to the

weight spaces of L1, . . . , Ln,−Ln, . . . ,−L1, respectively.

v1 v2 v3 v4

v5

v6

v7 v8 v9 v10
E1 E2 E3

E4

E5

−E5

−E4

−E3 −E2 −E1

F1 F2 F3

F4

−F5

F5

−F4 −F3 −F2 −F1

For example, for µ = L3 and λ = −L2, we have eµλ = −E3E4E5E3E2 and

fλµ = F2F3F5F4F3. Note that there is no difference between taking the top and

bottom path because E4, E5 commute and F4, F5 commute.

The procedure for obtaining the dual elements e∗µλ and f∗
λµ is described in depth

in [12] and summarized here. Given eµλ of the form Ex1 . . . Exk
, create the set of

elements {Eσ(x1) . . . Eσ(xk)}σ, where σ ranges through all possible permutations.

Some of these elements may be linearly dependent due to the relations in the

quantum group. Thus, take a basis e1 = eµλ, e2, . . . , em of the span of these
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elements, and create a corresponding basis f1, . . . , fm, where each fi is the same

as ei but with Fj replacing each Ej . Form a matrix M of q-pairings such that

Mij = ⟨ei, fj⟩. Then e∗µλ is the dot product of the first row of M−1 with the

column vector (f1, . . . , fm). Obtaining f∗
λµ is similar.

The calculation for Uq(so10) is done with the aid of a computer. The same

code could be used for calculating a central element of Uq(so2n) for larger n.

For Uq(so6) and Uq(so8), the matrices are small enough to perform computations

symbolically, but computing determinants and inverses of large symbolic matrices

is intractable. These difficulties are especially prevalent in the computation of the

dual elements e∗µλ and f∗
λµ. As such, for Uq(so10), the process of obtaining the

dual elements is done with a numerical value of q = 10 to speed up computation.

4.2. Proof of Theorem 3.2. Under the appropriate basis, the quantum Hamil-

tonian Ĥ decomposes as a direct sum of one 10×10 block, forty 2×2 blocks, and

ten 1× 1 blocks.

The 1× 1 blocks all have entry zero, so taking four of these blocks corresponds

to the four 1× 1 blocks from the generator matrix L in (1).

The 2× 2 blocks are

−q10 + 2q8 − q6 − 1
q8 + 2

q10 − 1
q12

(q2−1)
2
(q18+1)

q11

(q2−1)
2
(q18+1)

q11 −q12 + 2q10 − q8 − 1
q6 + 2

q8 − 1
q10

 ,

which have eigenvector [ q1 ], and conjugating by the corresponding diagonal matrix[
q 0
0 1

]
results in one of the 2 × 2 blocks L2 in the generator (1) multiplied by a

constant factor of r2.

Let

B1 = −q5 + 3q3 − 3q + 1
q − 2

q5 + 4
q7 − 2

q9 ,

B2 = −2q3 + 4q − 2
q + 1

q5 − 3
q7 + 3

q9 − 1
q11 ,

B3 = q10 − 2q8 + q6 − 2q2 + 4− 2
q2 + 1

q6 − 2
q8 + 1

q10 .
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Then the 10× 10 block has form UT +D + U , where

U =



0 B1 qB1 q2B1 q3B1 B3 q6B1 q5B1 q4B1 q3B1

0 0 q2B1 q3B1 q4B1 B2 B3 q6B1 q5B1 q4B1

0 0 0 q4B1 q5B1 qB2 B2 B3 q6B1 q5B1

0 0 0 0 q6B1 q2B3 qB2 B2 B3 q6B1

0 0 0 0 0 q3B3 q2B2 qB2 B2 B3

0 0 0 0 0 0 q6B2 q5B2 q4B2 q3B2

0 0 0 0 0 0 0 q4B2 q3B2 q2B2

0 0 0 0 0 0 0 0 q2B2 qB2

0 0 0 0 0 0 0 0 0 B2

0 0 0 0 0 0 0 0 0 0



,

and D is the diagonal matrix with entries

{
− q10 + 2q8 − q6 − q4 + 3q2 − 3 +

1

q2
−

2

q6
+

3

q8
−

1

q12
,

− q10 + 2q8 − 2q6 + 3q4 − 3q2 + 1−
2

q4
+

4

q6
−

3

q8
+

2

q10
−

1

q12
,

− q10 + q8 + 2q6 − 3q4 + q2 −
2

q2
+

4

q4
−

2

q6
−

1

q8
+

2

q10
−

1

q12
,

− 2q10 + 5q8 − 4q6 + q4 − 2 +
4

q2
−

2

q4
−

1

q8
+

2

q10
−

1

q12
,

− q12 + 2q10 − q8 − 2q2 + 4−
2

q2
−

1

q8
+

2

q10
−

1

q12
,

− q12 + 3q8 − 2q6 + q2 − 3 +
3

q2
−

1

q4
−

1

q6
+

2

q8
−

1

q10
,

− q12 + 2q10 − 3q8 + 4q6 − 2q4 + 1−
3

q2
+

3

q4
−

2

q6
+

2

q8
−

1

q10
,

− q12 + 2q10 − q8 − 2q6 + 4q4 − 2q2 +
1

q2
−

3

q4
+

2

q6
+

1

q8
−

1

q10
,

− q12 + 2q10 − q8 − 2q4 + 4q2 − 2 +
1

q4
−

4

q6
+

5

q8
−

2

q10
,

− q12 + 2q10 − q8 − 2q2 + 4−
2

q2
−

1

q8
+

2

q10
−

1

q12

}
.
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The 10× 10 block has rank 6 and has four linearly independent eigenvectors

g0 =



0

0

0

−q2

q

0

0

0

−1

q



, g1 =



0

0

−q2

q

0

0

0

−1

q

0



, g2 =



0

−q2

q

0

0

0

−1

q

0

0



, g3 =



−q2

q

0

0

0

−1

q

0

0

0



.

These are the four choices of ground state vector corresponding to the Type D

ASEPs with parameters (q, 5, 0), (q, 5, 1), (q, 5, 2), and (q, 5, 3), respectively.

For each δ = 0, 1, 2, 3, set Lδ = G−1
δ ĤGδ. Then,

L0 =



∗ B1 qB1 ∞ ∞ B3 q6B1 q5B1 ∞ ∞

B1 ∗ q2B1 ∞ ∞ B2 B3 q6B1 ∞ ∞

qB1 q2B1 ∗ ∞ ∞ qB2 B2 B3 ∞ ∞

0 0 0 ∗ −q5B1 0 0 0 B3

q2 −q5B1

0 0 0 −q7B1 ∗ 0 0 0 −B2

q B3

B3 B2 qB2 ∞ ∞ ∗ q6B2 q5B2 ∞ ∞

q6B1 B3 B2 ∞ ∞ q6B2 ∗ q4B2 ∞ ∞

q5B1 q6B1 B3 ∞ ∞ q5B2 q4B2 ∗ ∞ ∞

0 0 0 q2B3 −qB2 0 0 0 ∗ −qB2

0 0 0 −q7B1 B3 0 0 0 −B2

q ∗



,
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L1 =



∗ B1 ∞ ∞ q3B1 B3 q6B1 ∞ ∞ q3B1

B1 ∗ ∞ ∞ q4B1 B2 B3 ∞ ∞ q4B1

0 0 ∗ −q3B1 0 0 0 B3

q2 −q5B1 0

0 0 −q5B1 ∗ 0 0 0 −B2

q B3 0

q3B1 q4B1 ∞ ∞ ∗ q3B2 q2B2 ∞ ∞ B3

B3 B2 ∞ ∞ q3B2 ∗ q6B2 ∞ ∞ q3B2

q6B1 B3 ∞ ∞ q2B2 q6B2 ∗ ∞ ∞ q2B2

0 0 q2B3 −qB2 0 0 0 ∗ −q3B2 0

0 0 −q7B1 B3 0 0 0 −qB2 ∗ 0

q3B1 q4B1 ∞ ∞ B3 q3B2 q2B2 ∞ ∞ ∗



,

L2 =



∗ ∞ ∞ q2B1 q3B1 B3 ∞ ∞ q4B1 q3B1

0 ∗ −qB1 0 0 0 B3

q2 −q5B1 0 0

0 −q3B1 ∗ 0 0 0 −B2

q B3 0 0

q2B1 ∞ ∞ ∗ q6B1 q2B2 ∞ ∞ B3 q6B1

q3B1 ∞ ∞ q6B1 ∗ q3B2 ∞ ∞ B2 B3

B3 ∞ ∞ q2B2 q3B2 ∗ ∞ ∞ q4B2 q3B2

0 q2B3 −qB2 0 0 0 ∗ −q5B2 0 0

0 −q7B1 B3 0 0 0 −q3B2 ∗ 0 0

q4B1 ∞ ∞ B3 B2 q4B2 ∞ ∞ ∗ B2

q3B1 ∞ ∞ q6B1 B3 q3B2 ∞ ∞ B2 ∗



,
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and

L3 =



∗ −B1

q 0 0 0 B3

q2 −q5B1 0 0 0

−qB1 ∗ 0 0 0 −B2

q B3 0 0 0

∞ ∞ ∗ q4B1 q5B1 ∞ ∞ B3 q6B1 q5B1

∞ ∞ q4B1 ∗ q6B1 ∞ ∞ B2 B3 q6B1

∞ ∞ q5B1 q6B1 ∗ ∞ ∞ qB2 B2 B3

q2B3 −qB2 0 0 0 ∗ −q7B2 0 0 0

−q7B1 B3 0 0 0 −q5B2 ∗ 0 0 0

∞ ∞ B3 B2 qB2 ∞ ∞ ∗ q2B2 qB2

∞ ∞ q6B1 B3 B2 ∞ ∞ q2B2 ∗ B2

∞ ∞ q5B1 q6B1 B3 ∞ ∞ qB2 B2 ∗



,

where the diagonal entries * are just the entries of D. Remove any rows containing

∞ and any columns containing 0 from Lδ, and divide all entries by r2 to obtain

a 4× 4 matrix L̃δ. These are

L̃0 =



−2q18+q16−2q8−1
q10

q10−q8+2
q2

q16−2q8+1
q10

q10−q8+2
q2

q10 − q8 + 2 −q20−2q10−1
q10

2q10−q2+1
q10

q16−2q8+1
q8

q16−2q8+1
q6

2q10−q2+1
q8

−q18−2q10+q2−2
q8

2q10−q2+1
q8

q10 − q8 + 2 q16−2q8+1
q8

2q10−q2+1
q10

−q20−2q10−1
q10


,
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L̃1 =



−q18−q16+q14−2q6−1
q10

q10−q8+2
q4

q16−2q8+1
q10

q10−q8+2
q2

q10−q8+2
q2

−2q18+q16−2q8−1
q10

2q10−q2+1
q10

q16−2q8+1
q8

q16−2q8+1
q6

2q10−q2+1
q8

−q18−2q12+q4−q2−1
q8

2q10−q2+1
q6

q10 − q8 + 2 q16−2q8+1
q8

2q10−q2+1
q8

−q18−2q10+q2−2
q8


,

L̃2 =



−q18−q14+q12−2q4−1
q10

q10−q8+2
q6

q16−2q8+1
q10

q10−q8+2
q2

q10−q8+2
q4

−q18−q16+q14−2q6−1
q10

2q10−q2+1
q10

q16−2q8+1
q8

q16−2q8+1
q6

2q10−q2+1
q8

−q18−2q14+q6−q4−1
q8

2q10−q2+1
q4

q10 − q8 + 2 q16−2q8+1
q8

2q10−q2+1
q6

−q18−2q12+q4−q2−1
q8


,

and

L̃3 =



−q18−q12+q10−2q2−1
q10

q10−q8+2
q8

q16−2q8+1
q10

q10−q8+2
q2

q10−q8+2
q6

−q18−q14+q12−2q4−1
q10

2q10−q2+1
q10

q16−2q8+1
q8

q16−2q8+1
q6

2q10−q2+1
q8

−q18−2q16+q8−q6−1
q8

2q10−q2+1
q2

q10 − q8 + 2 q16−2q8+1
q8

2q10−q2+1
q4

−q18−2q14+q6−q4−1
q8


.

These matrices are written with respect to the ordered bases (v4⊗v9, v5⊗v10, v9⊗
v4, v10⊗v5), (v3⊗v8, v4⊗v9, v8⊗v3, v9⊗v4), (v2⊗v7, v3⊗v8, v2⊗v7, v8⊗v3), (v1⊗
v6, v2 ⊗ v7, v6 ⊗ v1, v2 ⊗ v7), respectively.

Observe that L̃δ is exactly the 4×4 block L1 in the generator (1) with parameter

(q, 5, δ), as desired.

4.3. Proof of Theorem 3.3. This theorem generalizes Theorem 3.1 from [1] for

all n. The inductive step remains the same as from that paper, so it remains to

verify the base case of L = 2 for general n.

Let L be the 16× 16 generator matrix for the two-site model with parameters

(q, n, 0) from (1). Let D be the 16 × 16 matrix whose rows and columns are
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indexed by the states of Type D ASEP (in the same order as for L) and whose

(η, ξ) entry is DL
α1,α2

(η, ξ). Setting Dj
i = 1− qj

αi
, we have

D =



D2
1D

2
2 D2

2 1 D2
1 D2

1 1 D2
2 1 D2

1D
2
2 D2

1 D2
1D

2
2 D2

2 1 D2
1 D2

2 D2
1D

2
2

D2
2 D4

1D
2
2 D4

1 1 1 D4
1 D2

2 1 D2
1D

2
2 D2

1 D2
2 D4

1D
2
2 1 D2

1 D2
2 D2

1D
2
2

1 D4
1 D4

1D
4
2 D4

2 1 D4
1 1 D4

2 D2
1 D2

1D
4
2 D2

2 D4
1D

2
2 1 D2

1 D2
2 D2

1D
2
2

D2
1 1 D4

2 D2
1D

4
2 D2

1 1 1 D4
2 D2

1 D2
1D

4
2 D2

1D
2
2 D2

2 1 D2
1 D2

2 D2
1D

2
2

D2
1 1 1 D2

1 D2
1 1 1 1 D2

1 D2
1 D2

1 1 1 D2
1 1 D2

1

1 D4
1 D4

1 1 1 D4
1 1 1 D2

1 D2
1 1 D4

1 1 D2
1 1 D2

1

D2
2 D2

2 1 1 1 1 D2
2 1 D2

2 1 D2
2 D2

2 1 1 D2
2 D2

2

1 1 D4
2 D4

2 1 1 1 D4
2 1 D4

2 D2
2 D2

2 1 1 D2
2 D2

2

D4
1D

2
2 D4

1D
2
2 D4

1 D4
1 D4

1 D4
1 D2

2 1 D2
1D

4
1D

2
2 D2

1D
4
1 D4

1D
2
2 D4

1D
2
2 1 D2

1D
4
1 D2

2 D2
1D

4
1D

2
2

D4
1 D4

1 D4
1D

4
2 D4

1D
4
2 D4

1 D4
1 1 D4

2 D2
1D

4
1 D2

1D
4
1D

4
2 D4

1D
2
2 D4

1D
2
2 1 D2

1D
4
1 D2

2 D2
1D

4
1D

2
2

D2
1D

4
2 D4

2 D4
2 D2

1D
4
2 D2

1 1 D4
2 D4

2 D2
1D

4
2 D2

1D
4
2 D2

1D
2
2D

4
2 D2

2D
4
2 1 D2

1 D2
2D

4
2 D2

1D
2
2D

4
2

D4
2 D4

1D
4
2 D4

1D
4
2 D4

2 1 D4
1 D4

2 D4
2 D2

1D
4
2 D2

1D
4
2 D2

2D
4
2 D4

1D
2
2D

4
2 1 D2

1 D2
2D

4
2 D2

1D
2
2D

4
2

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

D4
1 D4

1 D4
1 D4

1 D4
1 D4

1 1 1 D2
1D

4
1 D2

1D
4
1 D4

1 D4
1 1 D2

1D
4
1 1 D2

1D
4
1

D4
2 D4

2 D4
2 D4

2 1 1 D4
2 D4

2 D4
2 D4

2 D2
2D

4
2 D2

2D
4
2 1 1 D2

2D
4
2 D2

2D
4
2

D4
1D

4
2 D4

1D
4
2 D4

1D
4
2 D4

1D
4
2 D4

1 D4
1 D4

2 D4
2 D2

1D
4
1D

4
2 D2

1D
4
1D

4
2 D4

1D
2
2D

4
2 D4

1D
2
2D

4
2 1 D2

1D
4
1 D2

2D
4
2 D2

1D
4
1D

2
2D

4
2



.

One can verify the duality relation LD = DLT for the base case of L = 2,

completing the proof.
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