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ABSTRACT. The Type D asymmetric simple exclusion process (Type D
ASEP) with parameters (g,n,d) is a two-species interacting particle sys-
tem exhibiting a drift, where two particles may occupy the same site only if
they belong to different species. In previous research by Kuan, Landry, Lin,
Park, and Zhou, the Type D ASEP was generated using the quantum Hamil-
tonian corresponding to central elements from the quantum groups Uy (s06)
and Uq(sog). We extend this construction to the case of Uy (s010). Addi-
tionally, we generalize a previously known duality function from Blyschak,
Burke, Kuan, Li, Ustilovsky, and Zhou for the Type D ASEP for all n.

1. INTRODUCTION

Originally introduced by Spitzer [17], the asymmetric simple exclusion process
(ASEP) has become “the default stochastic model for transport phenomena” [20],
having been applied to traffic flow problems [15], growth models [13], vortex
models [11], and other biological applications [18, 19]. The Type D asymmetric
simple exclusion process (Type D ASEP) introduced in [12] is a generalization
of the ASEP. The state space of the Type D ASEP consists of two species of
particles interacting on a one-dimensional lattice, where two particles may occupy
the same site as long as they are of different species. The Type D ASEP has three
parameters (gq,n,0), where ¢ is the asymmetry parameter, the positive integer n
gives the speed of the drift, and ¢ specifies the interaction between the two particle
species. The generator matrix is given in Section 2.2.
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The procedure connecting quantum groups to a particle system and duality is
described in [4]; see also [5, 9, 16]. Previous research [1, 12] uses this procedure
to construct Type D ASEPs with parameters n = 3,4 from the representation
theory of the Type D quantum groups U,(sog) and U,(sog), respectively. The
authors of [12] conjecture that this process can be generalized to Uy (s02,,).

This paper verifies this claim in the case of U,(s019). The first step toward
this is to compute a central element of this quantum group using methods from
[12]. Then, a generator of the Type D ASEP with parameter n = 5 is constructed
from this central element.

In addition, this paper expands on previous results concerning Markov self-
duality of the Type D ASEP. In [12], the authors produce a triangular duality
function. This paper instead focuses on orthogonal polynomial duality; see [2,
3, 6, 7, 8]. In particular, [1] presents a duality function for Type D ASEP with
parameters n = 3,4 and d = 0. This paper generalizes this result for all n.

The paper is outlined as follows: Section 2 describes the relevant background
and notation used. Section 3 states the results: a central element of U, (s01¢), the
construction of the Type D ASEP generator for n = 5, and a self-duality function
of the Type D ASEP. Section 4 outlines the proofs of these results.
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2. BACKGROUND

2.1. Algebraic Definitions.

Definition 1. The special orthogonal Lie algebra sos, is defined as

f1a B
o=\l AT

Let E; ; denote the matrix with 1 in entry (¢,7) and 0 elsewhere. Then define
matrices F;, F;, H;, 1 < i < n as follows:

A,B,C € My,x,(C),B=—-B" C = —CT}.

En = Lpn—-12n — En,Qn—l
Fn = E2n71,n - E2n,n71
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Hn = Lnpn—-1,n-1 + Enm - E2n71,2n71 - E2n,2n
and forall 1 <i:<n-—1,

Ei=FEiiv1— Entitinti

Fi=FEit1:— Enyintit1

H,=E; —Eii111— Enyinti + Enyittintit1-
These matrices generate the fundamental representation of soy,,.

This Lie algebra has rank n and Dynkin diagram D,,, with Cartan matrix (a;;)
given by
2 i=j
ai; = -1 {i,57t={n—-2,ntor {k,k+1}1<k<n-—2.

0 otherwise

Finally, let L; denote the linear operator taking a matrix to its i-th diagonal
entry. Then the positive roots of sos, are {L; + L;j}ic; U{L; — L;}i<;. The
simple roots are a; = L; — L;yq for 1 <i<n-—-1and o, = L1+ L. In
the fundamental representation of sos,, elements of the Lie algebra act as the
underlying matrix on C?*. The fundamental weights are then +L;, 1 <i < n.

An ordering for the weights

Li>Ly>...>L,=—L,>—L,_1>...>—-14

is given in [12].

Define vectors vy, .. ., va, with v; having a 1 in the i-th coordinate if 1 < i < n,
a 1 in the (3n + 1 — 4)-th coordinate if n + 1 < i < 2n, and zeroes elsewhere.
Observe that vy,...,vs, are in the weight spaces of Ly,...,L,,—Ly,...,—L1,
respectively.

Definition 2. The quantum group U,(s02,,) is the algebra generated by
{Ei, F;,q" :1<i<n}

with g-deformed relations

Hy _o—H; . Ry ) . (s ous )
[Eia FZ] — %’ qH'LEJ — q(a“a])E‘qu17 qH'LF] =q (O‘17a])quH17
along with the Serre relation for every (7,j) with a;; = —1 in the Cartan matrix

E}E; + E;E} = (1+q)E;E;E;, F]F;+ F;F} = (1+ q)F;F,F;.
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Here, (o, a;) is the usual dot product. All other pairs of elements commute.
Lastly, the coproducts of the generators are

AE)=E®1+¢"®FE, AF)=10F+Foq ™, A@")=q¢""2q¢".
For convenience, in the remainder of the paper, let K; denote ¢i.

A general definition for the quantum group of a Lie algebra g is given in [10],
and in Chapter 6 the author introduces a bilinear pairing that will be used in
the later construction. Recall that the Borel subalgebras b4 are the Lie subal-
gebras generated by {E;, H;} and {F;, H;}, respectively. Similarly, let U, (b+)
denote the corresponding subalgebras of the quantum group generated by the
Borel subalgebras (replacing H; with ¢¥¢). There is a bilinear pairing (-, -):
U, (b—) x Uy(b+) — Q(g) such that for any linear combinations a, 8 of the posi-
tive simple roots we have

(¢, q"") = ¢~ P and (F}, E;) =

and all other pairings between generators are zero. The pairing can be computed
for products via

(y,za’) = (A(y), 2’ @), (yy',z) = (yoy, Ax)),

where A(zy) = A(2)A(y), and (21 ® z2,y1 ® y2) is defined to be (z1,y1){x2,y2).

2.2. Probabilistic Definitions. Recall that the Type D ASEP consists of two
species of particles interacting on a one-dimensional lattice, where at most two
particles can occupy a single site, and if so must be of different species. The Type
D ASEP has three parameters (g, n, d), where ¢ # 1 is a positive real number, and
n>2and 0 <40 <n— 2 are integers. Intuitively, ¢ is the asymmetry parameter,
n affects the speed of the drift, and § affects the interaction between the two
species. If the lattice has L sites, then there are 4 states. A more complete
definition of the Type D ASEP is given in [12].!

First, consider the two-site model. The 16 states are (a,b), 0 < a,b < 3,
where each coordinate corresponds to a site, 0 denotes an empty site, 1 denotes
a species 1 particle, 2 denotes a species 2 particle, and 3 denotes both a species 1
and species 2 particle. The generator matrix is given by the direct sum of a 4 x 4

IDr. Kuan and Zhengye, two authors of [1, 12], acknowledged a typo in those papers where
509, was associated with the parameters (¢,n — 1,6) rather than (g, n, d).
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block
[ —25 2n—2_ 2n-4 2 1-m, n—1\2 26 —25 2n—2_ 2n—4 2 )
(144 )(tl q +;f) (=" "+a" ") 0 (1+g )(‘7 4 +q2)
* 25 +1 q? 5 +1
% (qZ'n —nt g 2) « G2 - 2 g2 (_ql—n + qn—l)z
£1:
. 2 5 N .
e (7(11771, + qn,fl) 2¢% + 22 — g2 % g% (2q2 L q472n)
(]2" _ q2n—2 +2 (*(]17" + qn—l)2 q25 (q—Zn o q2—2n + 2) %

corresponding to the communicating class {(3,0), (2,1),(0,3),(1,2)}, four 2 x 2
blocks

1—2n 2n—1
* q +q

L= ‘
q(q172n +q2n71) *

corresponding to the communicating classes

{(1,0),(0,1)},{(2,0),(0,2)},{(3,1), (1,3)},{(3,2),(2,3)},
and four 1 x 1 blocks with entry 0 corresponding to the communicating classes

{(0,0)},{(1,1)},{(2,2)},{(3,3)}. Here, the diagonal entries are chosen so that
the rows sum to 0. To summarize, the generator matrix is

4 4
(1) L=1rro@LePlo,
i=1 i=1
with respect to the ordered basis
{(3,0),(2,1),(0,3),(1,2),(1,0), (0,1),(2,0), (0,2),
(3,1),(1,3),(3,2),(2,3),(0,0),(1,1),(2,2),(3,3)}.
If there are L sites, then the generator matrix is given by
£1,2 +£2,3 4. _|_£L71,L

where £%%11 denotes the matrix acting on lattice sites « and x + 1.

We now introduce several notations and definitions that will appear in Theorem
3.3. If x € {1,..., L} is a lattice site, ¢ € 1,2, and 7 is a state, then let n¥ denote
the number of particles of class i at site z in state 7 (so n¥ is 0 or 1). Define
height functions

x—1 L
No(m) =Y nf Nia)= >
=1 1=x+1

that count the number of particles to the left and right of a particular site.
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Define the g-Pochhammer symbol for a € R, k € N as
k—1

(@; @) == [J (1 —ag"),

=0

define the ¢g-hypergeometric function s¢; as

a,b = (a;)k(b; @) 2"
; )Z :: b
2 c 1 kzzo (k. (GO

and define the ¢g-Krawtchouk polynomials as

—T —n

_ a".q
K, (q7"p,¢q) = 201 1q,pg" !

qfc
3. RESULTS

First, for ease of reading set some notational shortcuts following the convention
n [12]. Set r = ¢ — %, and let Ey 4, 2, = Eg Eqg, -+ - By, , and similarly for F'

and K. For example, 72 Fa3Ea3 = (q — %)2F2F3E2E3.

Theorem 3.1. The following element is in the center of U,(so10):
q8K11223345 + q6K22334s + q4K3345 + q2K45 + K4K5_1 + KZle + qisz;E1 + q%Ki),is
+ qius_z%saz;s + q%Kﬁé23345 + §F4K5_1E4 + %(qFM — F13)K35' (¢Fas — Esa)
+ %FSK@EER) + §F1K13123345E1
+ %(q2F234 — qFou3 — qF324 + Fu32) K35 (¢ Easz — qFsa2 — qFa23 + Easa)
+ 2 (A1 DK bs (42 ))
+ ;;(QZFm:s —qFi32 — qFo13 + F321)K1_2§45(q2E321 — qF231 — qFE312 + E123)
+ 5 FaKoghas o + 22 (aF12 — Fot) Kidss (021 — Eio)

— ([ As ) Kuzsa (Aa ) + 55 (aFas — Fi2) Koglis (B2 — )
— qr°(q® Fs32 — qF350 — qFs23 4 Fass) Ko34(q® E2ss — qF2s3 — qFEsas + Essa)

— qr’(qFs3 — F35)K3a(qEss — Es3) — qr  Fs K4 Es — 1" F54Es4

- = (As DR (A ) - o (Ar DK (As )

(¢*Fis3 — qFa35 — qFs34 + F345) K3(¢° E3sa — qEa3s — qEs34 + Esas)

r?
q

r?
q

r?
q

FsK;'Es
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- %(—qF3435 — qFs3a3 + (q° + 1) Fs543) (—qF3as5 — qFsza3 + (¢° + 1) Essas)
— (Ao K (Aro)
- %(QQFSM — qFus5 — qFs34 + Fru3) K5 ' (q° Eass — qEass — qEs34 + Esas)
— 55 (aFss — Fsa)Kii' (4Bs3 — Bas) — 55 (Au D Kio (A2 ) — S (As ) (Awa )
— 5 (Aus Ko (Ase ) — 5 (Aur DKo’ (Aus )
- g(q2F235 — qFas3 — qFsa5 + Fs32) K334(q° Essa — qEsso — qEs2s + Faas)
— 2 (A1 DK (A=)
— 55 (Ao (422 ) — 22 (Azs Kz (A2a ) — 2 (A2s K ipha((Ass )
- %()Kle() - Z;()Kfl()q77“2F1K1223345E1
5

+4q r2(qF21 — Fi2)K123345(qF12 — E21) + ¢°r2FyKo3345F

+4¢°r® (42F321 — qFa31 — qF312 + Fi23)K12345 (q2E123 — qF132 — qF213 + E321)
+¢°r* (qF32 — F23) Ka345(qFas — Fs2) + ¢°r° F3K3a5 B3 + qr2(‘ Az ‘)K1235(‘ Aszz ‘)
+ qr’(q° Faso — qF342 — qF123 + Fa34) Ko35(q” Eosa — qFoa3 — qFs04 + Euza)

+ qTQ(qF43 — F34)K35(qE34 — Eu3) + qr’F4K5E.,

where

A = q3F1234 - q2F1243 — q2F1324 — q2F2134 4+ qF1432 + qF2143 + qF3214 — Fu321
Az = ¢*Euso1 — ¢*Esa21 — ¢* Eszs1 — ¢* Eas1z + qF2sa1 + qFsa12 + qFa123 — Biaaa
As = ¢ Fs301 — ¢* F3521 — ¢° Fsa31 — ¢° Fs312 + qF3s51 + qF3512 + ¢Fs123 — Fiass
A4 = ¢’ E1235 — ¢° Frass — ¢* E1s25 — ¢° Ba135 + qF1s32 + qF2153 + qEs215 — Eszo1
As = ¢* Fusso1 — ¢® Fusso1 — ¢° Fisos1 — ¢° Fassi2 — q° Fssaz1 + ¢ Faasor + ¢ Faoss
+ ¢*Fussi2 + ¢*Fasios + ¢° Fso3a1 + ¢* Fsza12 — qFasas1 — qF3a512 — qFa1235
— qF51234 + Fi23a5
As = ¢* Er2351 — ¢° Froass — ¢° B12ssa — ¢° E1s254 — ¢° E21354 + ¢° Brasas + ¢° E1asos
+ ¢’ E1s324 + ¢° B21a35 + ¢° B21534 + ¢° E32150 — qF15a32 — qB21513 — ¢Ea3215
— qFEs53214 + Fs4301
A7 = ¢ Fusa2 — ¢*Fiss2 — ¢° Fisas — ¢° Fsaa2 + qF3a52 + qF1235 + ¢Fs231 — Fazas
As = ¢°Eassa — *Eaass — q° Eassa — q° Es2sa + qE2543 + qEas2s + ¢Fs324 — Bsazo
Ag = ¢ Faasz2 — (¢° — @) Fs312 — (¢ — @) Fasssz + ¢° Faa235 + ¢° 35231 + ¢° Fassos
+ ¢ Fs3423 — qF32345 — qFi3235 — qFuss23 — qFs3234 + Fasass + (—q3 — q)F34523
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Ao = ¢" Fassas — q° Easass — ¢° Fassas + ¢° Esoass + ¢ Fs2s34 + ¢° Easass + ¢ Fss43
— qE34325 — qE53432 + E35432 + (—q3 — q)Es2543
A11 = ¢°Fasa301 — ¢ Fasa312 — (q4 - q2)F343521 - (q4 - q2)F534321 + ¢° Faa2351
+ ¢ Fas2341 + ¢° Fissos1 + ¢° Fssa231 — ¢ F23541 — ¢ F3a1235 — ¢° F351234
— ¢" Fazass1 — " Fussizs — ¢° Fsazsa1 — ¢° Fssai2s — q° Frasesn + qFessasn + qF312354
+ qF131235 + qF531230 4+ qF5a3123 + (¢° — @) Faass12 + (¢° — q) Fs3a312
+ (¢ + q) Fasa125 + (—¢* — ¢°) Fasa231 — Fi2ssas
A1z = ¢°E123543 — ¢* B1a3ass — " 125343 — ¢ E213543 + ¢° E132435 + ¢° E132534
+ ¢®Erasoss + ¢° E1ss24s + ¢° E213435 + ¢° E215343 — ¢° E13as2s — ¢ E153432
— ¢*Es21435 — ¢° Fs21534 — ¢° Easa153 — ¢° Esa2143 + qE135132 + q¢F3a3215
+ qFEs34321 + (q3 + q)E321543 + (—q4 — q2)E132543 — FEss4321
Az = ¢° Fassosa + ¢ Foassos — q° Faossas + ¢ Faoazso + ¢° Fssoase + (—¢° — q) Fazasse
+(—¢° — @) Fassasz + (—¢° — @) Faosasz + (¢" + ¢° + 1) Fassaso
Avra = ¢° E235234 + ¢° E2azs23 — ¢ Fozssas + q¢° Es2azs2 + ¢° Ess2azz + (—¢° — q) Eazasse
+ (—q3 — q)E253432 + (—q3 — q)E325432 + (q4 +¢+ 1) Fa35432
Ars = q' Fassas — ¢° Fasass — q° Fassas + ¢ Fsass + ¢ Fsos3a + ¢ Fasoss + ¢ Fssas
— qF34305 — qF53432 + F35432 + (—q3 — q)F32543
A1e = q* Fsassz — (¢° — q)Ess342 — (¢° — q)Easssz + ¢° Bsazss + ¢° Ess234 + ¢ Eassos
+ ¢* Es3403 — qFs2345 — qFa3235 — qFBas323 — qFs3234 + Fasass + (—q3 — q)Es4523
Av7 = ¢° Fassa — ¢ Faazs — ¢° Fassa — q° Fazsa + qFasa3 + qFazos + qFs324 — Fhaso
A1s = ¢°Fus32 — ¢° Fass2 — ¢° Eas2s — ¢ Essaz + qFsas2 + qFa2ss + qFs231 — Easas
Avg = ¢® Fassazor + q* Fasassio + ¢ Fosaazio + (¢* — ¢°) Fassosar + (¢* — ¢°) Foassos

4 q2)F2235431 + (q4 — q2)F3243521 + (q4 - q2)F5324321 — q3F2341235

—(q
3 3 3 3 3 3

— G F2351234 — q" Fba35123 — q” Fas534123 — ¢° F3243512 — ¢ F3253412 — ¢ Fu325312

— ¢ F30a312 + ¢* Fos2354 + ¢ Foazi23s + ¢° Fass1234 + ¢° Fosazios + ¢° Fa2a1235

+ q2F3251234 + q2F3432512 + q2F4325123 + q2F5324123 + q2F5343212 — qF>123543

— qF3212354 — qF3543212 — qF4321235 — qF5321234 — qF5432123 + (—q3 — q)F3254123

+ (q4 + q2)F2354123 + (q4 + qz)F3254312 + (—q5 — q) Fa354312 + (—q5 + q) F2343521

+ (*q5 + q) F2534321 + (*q5 + q) F3254321 + Fi235432

6 5 5 5 4 4
Az0 = ¢ F1235432 — ¢ F1234352 — ¢° E1253432 — ¢° F1325432 4+ @ E1235234 + ¢ 1243523
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+ ¢" E1324352 + ¢ E1532432 — (q4 — qz)E1223543 — ¢°E1235423 — q° F2134235
— ¢°E2135231 — ¢° E2143523 — ¢° B2153423 — ¢° Fazsaz1s — ¢° Fs214352
— ¢®Es215312 — ¢° Baz21532 — ¢° Bsa21a32 + ¢ Bass2134 + ¢ Foassa1s + ¢° Eszasson
+ ¢* Es324321 — qF2343591 — qFas34321 — qF3254321 + (q3 — q)E2123543
+ (q4 + qz)E2134352 + (q4 + q2)E2135423 + (q4 + QZ)E2153432 + (q4 + q2)E3215432
+ (—¢° — q)E2135432 + Fossasan
Aot = —¢° Fiasa1235 + ¢° Fiassasiz — ¢° Fizsaaizs + ¢° Fisa12354 — ¢° Fiazsaanz
+ ¢® Fissaza12 + ¢° Fuasoi2ss — ¢° Flasessiz + ¢° Fisazi2sa + ¢° Fisas2ios
+ ¢° Fa1235031 — ¢° Fo1ssa3a1 — ¢° Fa1ass231 — ¢° Faa143521
- Q3F53214321 — (q4 + q2)F12235431 — (q4 + q2)F11235432 + (q4 + q2)F12352341
+ (q4 + qz)F12354123 + (q4 + q2)F12435231 + (q4 + q2)F13243521 + (q4 + qz)F15324321
+ (q4 + q2)F21343521 + (q4 + q2)F21534321 + (q4 + qQ)F32154321
- q(q2 + 1)2F12343521 - q(q2 + 1)2F12534321 - Q(q2 + 1)2F13254321
- Q(q4 +¢ + 1) F21354321 + (q6 +q' +¢+ 1) F12354321
Azz = —¢° E123a1235 + ¢° E12354312 — ¢° E12534123 + ¢° F13212350 — ¢° F13253412
+ ¢® E1ssas212 + ¢° Fras21235 — ¢° Brasssiz + ¢° E1ssa1231 + ¢° E1saz2123
+ ¢® E21235431 — ¢° 21352301 — ¢° 21435231 — ¢ B32143521 — ¢° Es3214321
— (q4 + qz)E12235431 - (q4 + q2)E11235432 + (q4 + q2)E12352341 + (q4 + q2)E12354123
+ (q4 + qz)E12435231 + (q4 + q2)E13243521 + (q4 + q2)E15324321 + (q4 + q2)E21343521
+ (q4 + q2)E21534321 + (q4 + q2)E32154321 - q(q2 + 1)2E12343521
— q(q2 + 1)2E12534321 - q(q2 + 1)2E13254321 - q(q4 +¢% + 1) E21354321
+(¢° +q" + ¢° + 1) Erassa321
Az = ¢ Fiassa — ¢° Fi2ass — ¢° Fias34 — ¢° Fisosa — ¢° Farssa + ¢ Fiasas + ¢° Flasas
+ ¢ Fiss2a + ¢ Forass + ¢ Faisaa + ¢ Fao15a — qF15a32 — qF21513 — ¢Fu3215
— qF53214 + Fa321
Asy = ¢*Fuss21 — ¢° Eassor — ¢ Fasas1 — ¢° Eassiz — ¢° Essao1 + ¢° Eaasor + ¢ Faoss
+ ¢*Fuss12 + ¢° Eas123 + ¢° Fs23a1 + ¢° Eszar2 — qFa3a51 — qF3a512 — qEa1235
— qE51234 + E12345
Ass = ¢°Fiass — ¢ Fi2s3 — ¢° Fisas — ¢ Fa1ss + qFis32 + ¢Fa1s3 + ¢Fs215 — Fraz1
Aze = ¢°Fs321 — ¢° 3521 — " Es231 — ¢ Ess12 + ¢Foss1 + qFss12 + qFs123 — Ei2ss
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Ag7 = ¢°Fiassas — ¢ Flasass — ¢  Flassas — q* Faissas + ¢° Fis2ass + ¢° Fisessa
+ ¢° Fuazass + ¢° Fisa2a3 + ¢° Fa1sass + ¢° Foissas — ¢° Fisaszs — ¢° Fis3a32
— ¢*F321a35 — ¢ Fs21534 — ¢° Fas2153 — ¢° Fss2143 + qF135132 + qF33215
+ qF534321 + (q3 + q)F321543 + (—q4 — q2)F132543 — F354321
Aog = q5E354321 — q4E354312 - (q4 - qz)E343521 - (q4 — qz)E534321 + q3E342351
+ ¢° Esso3a1 + ¢° Bassos1 + ¢° Essazs1 — ¢ Es2ssa1 — ¢ Faai2ss — ¢° Ess1234
— ¢*Eu30351 — ¢*Eass123 — ¢° Es30341 — ¢ Esza123 — ¢° Esazes1 + qF2ss431
+ qE312354 + qE431235 + qF531234 + qFE543123 + (q3 — q)Es43512 + (q3 — q)Es34312
+ (qs + q)Ess4123 + (—q4 - qz)E354231 — Ei23543
Azg = ¢° Fiassas2 — ¢° Fizsasse — ¢° Fizssase — q° Fisasase + ¢ Fizsssa + ¢* Fioassos
+ ¢" Fiz2a352 + ¢* Fis32432 — (q4 — q2)F1223543 — ¢® Fiaasa2s — ¢° Fo134235
— ¢°Fa135231 — q° Fa1ass2s — ¢° Fai53423 — ¢° Fassaz1s — q° Fa214352 — ¢° F3215342
— ¢ Fuzois30 — ¢ Fsaziaze + ¢ Fossoi3a + ¢ Foazsors + ¢ Faoassor + ¢ Frazazn
— qF5343521 — qF2534321 — qF3254321 + (q3 — q)F2123543 + (q4 + q2)F2134352
+ (q4 + q2)F2135423 + (q4 + q2)F2153432 + (q4 + q2)F3215432 + (—q5 — q)F2135432
+ Fass4321
Aso = ¢° Fassaz01 + q4E2343512 + q4E2534312 + (q4 - q2)E2352341 + (q4 - q2)E2435231
- (q4 - qz)E2235431 + (q4 — q2)E3243521 + (q4 — q2)E5324321 — ¢®Ea341235
— °Bass1234 — q° Baassi2s — q° Bassaizs — ¢° Eszassi2 — ¢° Esassa12 — ¢° Eusassie
— ¢®BEs32a312 + ¢° Bas12354 + ¢° Boazi23s + ¢ Fassiasa + ¢° Fosasios + ¢° Es2a1235
+ ¢*Es251231 + ¢° Esasasi2 + ¢° Eas2s123 + ¢° Bss2a123 + ¢° Bszas212 — qFa123543
— qF3212351 — qE3513212 — qEas21235 — qEs321234 — qF5432123 + (—¢° — q) Bazsa123
+ (q4 + q2)E2354123 + (q4 + q2)E3254312 + (*q5 — q)E2354312 + (*q5 + q) E2343521
—+ (—q5 + q) E2534321 + (—q5 + q)FE3254321 + F1235432
Az = q3F4321 - q2F3421 - q2F4231 - q2F4312 + qF2341 + qF3412 + qF4123 — Fi23a
Asz = ¢°Fra31 — ¢° Fr2a3 — ¢° F1324 — ¢° E2134 + qFuas2 + qFa143 + qE3214 — Eazor.
This element acts as ¢"°+¢® +¢* + > +2+ q% + q% + # + q% times the identity
in the fundamental representation of Uy(s01p).

Using this central element, the method in [4] can be applied to obtain a Markov
process. The following theorem states that the resulting process is indeed the
Type D ASEP with n = 5.
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Theorem 3.2. Let C' denote the central element of Uy(s010) from Theorem 8.1.
Let H denote the action of A(C) on C1° @ C9, so that H is a 100 x 100 matriz.
Define the quantum Hamiltonian H = H — A - Id, where

1 1 1 1
A=q12+q6+q4+q2+2+q—2+q—4+q—6+q@.
There exist linearly independent eigenvectors go, g1, 92,93 of H with etgenvalue
0 such that if Gs is the diagonal matrix with entries given by gs, then removing
certain states from GngG(; results in the generator of the two-site Type D ASEP
with parameters (q,5,9), for § =0,1,2,3.

In addition, we prove the following generalization of Theorem 3.1 from [1]:

Theorem 3.3. The Type D ASEP with 6 = 0 is self-dual with respect to the
self-duality function

DY, o, (n,&) = DL (n1,&) - DX, (02, &)

where
L

D(Sz (5'“ Th) = H an (q72§l’pf(§h 771)7 17 q2)
r=1
and
PE(m) = oy tq 2 (Nem (€)= NE (1) 42072
Note that here, a; and as are not roots of s01¢; they are parameters that
depend on the reversible measures explained in [1].

4. PROOFS

The proofs of the first two theorems were assisted by a computer. The code
used can be found at https://github.com/e-rohr/Type-D-ASEP

4.1. Proof of Theorem 3.1. We find the central element using [14, Lemma
3.1], as was done in [12] for U,(sog) and U,(s0s). The lemma is restated here for
convenience:

Lemma 4.1. For each weight u of the fundamental representation of a Lie algebra
g, let v, be a vector in the weight space. Suppose q is not a root of unity, and 2u
is always in the root lattice of g. Let e,y and fy, be products of E;’s and F;’s in
Uy(g), respectively, such that e,y sends vy to v, and fx, sends v, to vy. If €n
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and f/’\ku are the corresponding dual elements under (-,-), and p is half the sum of
the positive roots of g, then
(2) Z q(u—/\w)q—(2p,u)ez>\qH—uﬂ f;u

n>A

is a central element of Uy(g).

Several terms in (2) are straightforward to compute; the computations are
explained in [12, Section 2.1.1]. In particular:

2

¢ A=-n 2i—2 -
g =1 A=up g 2w = 1 T op=L
¢ p=—Li,
q otherwise,

n—1
H o, =Hp, 1—H,— 2ZHj7
=i

and if i < 7,

j—1
Hp,_p, =Y H.
k=1

We can add or subtract these last two equations to find any Hip,+1,;-

Next, we find e, » and f,. The following diagram shows the actions of F; and
F; on {v1,...,v9,} for n = 5. Recall that the vectors vy, ..., v, belong to the
weight spaces of Lq,...,L,,—Ly,...,—L, respectively.

By Es Es
U1 | J V2 | 4 U3 |
Fy F F3

For example, for 4 = L3 and A = —Lg, we have e, = —E3E FsE3E, and
foap = FoF3F5FyF3. Note that there is no difference between taking the top and
bottom path because F4, F5 commute and Fy, F5 commute.

The procedure for obtaining the dual elements ey, and f3, is described in depth
in [12] and summarized here. Given e, of the form E,, ... E,, , create the set of
elements {Ey(,) ... Ey(z,)}o, Where o ranges through all possible permutations.
Some of these elements may be linearly dependent due to the relations in the
quantum group. Thus, take a basis e; = e,,€2,...,6, of the span of these
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elements, and create a corresponding basis f1,..., f,n, where each f; is the same
as e; but with F} replacing each F;. Form a matrix M of g-pairings such that
Mij = (e, fj). Then e, is the dot product of the first row of M~! with the
column vector (fi,..., fm). Obtaining fx, is similar.

The calculation for U,(s01¢) is done with the aid of a computer. The same
code could be used for calculating a central element of U, (s02,) for larger n.
For U, (s06) and U, (s0s), the matrices are small enough to perform computations
symbolically, but computing determinants and inverses of large symbolic matrices
is intractable. These difficulties are especially prevalent in the computation of the
dual elements e}, and f5,. As such, for U, (s010), the process of obtaining the
dual elements is done with a numerical value of ¢ = 10 to speed up computation.

4.2. Proof of Theorem 3.2. Under the appropriate basis, the quantum Hamil-
tonian H decomposes as a direct sum of one 10 x 10 block, forty 2 x 2 blocks, and
ten 1 x 1 blocks.

The 1 x 1 blocks all have entry zero, so taking four of these blocks corresponds
to the four 1 x 1 blocks from the generator matrix £ in (1).

The 2 x 2 blocks are

(2-1)*(a"" 1)

1 2 1
_q10 + 2(]8 - q62— £ T T e pIss
2 18 b
q¢"—1)" (¢ +1 1 2 1
( )ql(l ) 220 P L2

which have eigenvector [ {], and conjugating by the corresponding diagonal matrix
[g (1)] results in one of the 2 x 2 blocks £5 in the generator (1) multiplied by a
constant factor of r2.

Let

Bi=—¢"+3¢ -3¢+, - %+ 57— &
By=—2¢" +4g— 2+ & — 2+ % — g,
By=q"=2¢° +¢° =24 +4 - Z + 5 — F + tv.
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Then the 10 x 10 block has form UT + D + U, where

(0 B, 4B ¢*Bi ¢*Bi Bs ¢°Bi ¢°Bi ¢'Bi ¢*B
0 0 ¢*B1 ¢*B1 ¢*Bi B By  ¢°Bi ¢’B1 ¢*B
0 0 0 ¢'Bi ¢B1 ¢By By Bs (B ¢B
0 0 0 0 ¢"By ¢°B3 ¢By By Bs ¢°B
00 00 0 @B @B B B B
00 0 0 0 0 ¢"B ¢By ¢'Bs ¢*By
00 0 0 0 0 0 ¢'B ¢*By ¢*Bs
0 0 0 0 0 0 0 0 ¢*Bs  ¢Bs
0 0 0 0 0 0 0 0 0 B
_0 0 0 0 0 0 0 0 0 0

and D is the diagonal matrix with entries

{q10+2q8q6q4+3q23+(112q26 q%*q%,
—q10-|-2£18—2q6-|-3q4—?)qQ-i-l—q%—i—%—qi8 q%_q%’
—2q1°+5q8—4q6+q4—2+%—q%—qig+q%—q%7
7q12+2q107q872q2+47q327qi8+q%07q%’
—q12+3q8—2q6+q2—3+q%—q%—q%-l—q%—q%,
—q12+2q10—3q8+4q6—2q4+1—q%-i—q% q% %_%7
_q12+2q10_q8_2q6+4q4_2q2+qi2_qi4 q% qis_q%7
_q12+2q10_q8_2q4+4q2_2+qi4_,;16+q38_q%’

2 1 2 1
12 10 8 2
—q¢ +2¢ —q —2q +4_qQ—qS+qu—q12}-
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The 10 x 10 block has rank 6 and has four linearly independent eigenvectors

0 0 0 —q?
0 0 —¢ q
0 —q? q 0
—q? q 0 0
q 0 0 0
go = 91 = 92 = y 93 =
0 0 0 -1
0 0 -1 q
0 -1 q 0
-1 q 0 0
L | 0 | 0 | 0

These are the four choices of ground state vector corresponding to the Type D
ASEPs with parameters (g, 5,0), (¢,5,1), (¢,5,2), and (g, 5, 3), respectively.

For each 6 =0,1,2,3, set Ly = GngGa. Then,

[ * By qB1 00 o0 By ¢B; ¢®B; oo o0 ]
By * ¢’ B, 00 00 By By ¢°B; o~ 00
gB1  ¢*B; * 00 %) qB> By B 00 o0
0 0 0 * —¢°B; 0 0 0 % B
Lo 0 0 0 —¢B * 0 0 0 —% Bs
Bs By qB> 00 o0 * ¢®Bs ¢°By oo %)
¢®B, Bs B, 00 00 ¢°B, ¥ ¢'By o0 00
¢®B1 ¢°By Bs 00 o0 ¢®By ¢*Bs * 00 %)
0 0 0 ¢*By  —qBs 0 0 0 * —qBs
|0 0 0 —¢'Bi Bs 0 0 0 f% *
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0
Q4Bl

¢*B;
—q"B;

—qBs
Bs

QZBl

QGBl
¢*Bs

Bs
¢ By

qul
q4Bl

q332
¢*Bo
0

Bs

q331

¢°By

¢*Bs

Bs
By

¢*Bo

¢°Bs

q332

Bs

¢*Bs
q332

Q4Bz
¢*Bs

q631
Bs

¢*Bs
QGBQ

51232

w W8

N

8 8 8

—¢* By

00 00
00 00
% —¢°By

,% Bs
00 00
00 00
00 00
* *CISB2

—qB> *
00 00

o0 q4Bl
—¢°B; 0
B3 0
00 B3
00 Bs

00 ¢* By
—¢° By 0
* 0
00 *
00 B
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and
o« -0 0 0 B @B 0 0 0]
—¢B; * 0 0 0 —L Bs 0 0 0
00 00 * ¢*B1 ¢*°B; 00 00 Bs ¢"B1 ¢°B;
00 oo ¢*B;  x  ¢B; 00 0o B, By ¢5B
Ly — 00 00 ¢®B1 ¢°B; * 00 00 qB> B Bsg 7
¢*Bs;  —qBs 0 0 0 * —q" By 0 0 0
—q7Bl Bs 0 0 0 —q532 * 0 0 0
00 00 B3 By ¢Bs %) 00 x  ¢°By  qDBs
00 oo ¢°B; Bs By 00 00 ¢*Bs * B,
| 00 ¢®B1 ¢*B, Bs 00 00 qB> B * ]

where the diagonal entries * are just the entries of D. Remove any rows containing
oo and any columns containing 0 from Lj, and divide all entries by r2 to obtain
a 4 x 4 matrix Ls. These are

2" 4q"0_2g%_1 0— 42 q'5—245+1 g0~ g*42
q10 q2 ql(] q2
20 10 10 2 16 8
10 8 —q° —2q "—1 2¢g " —q°+1 g °—2q¢"+1
5 T —q¢ +2 710 410 P
Lo = )
G245 +1 210241 —¢'8—2¢044%—2 2¢'0—g2+1
q¢ q® q8 q8
16 8 10 2 20 10
10 8 q°—=2¢"+1 29" —q°+1 —q” —2q " —1
qg° —q°+2 P 710 710
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g1 g6 g1 _0gb_1 0B 42 q*—2q5+1 0B 42
ql(] q4 ql() q2
q10738+2 72q18+q1i72q871 2q107132+1 q16728q8+1
= q q q q
L, = )
g0 245 +1 2¢10 g2 +1 —qt® 221 gt g1 2¢10 _ g2 41
q° q® q® q°
16 8 10 2 18 10 2
10 8 —2¢°+1 297" —q°+1 — —2q " +q°—2
0 — g8 +2 4°=2q 4 —q q q_+q
L q q q ]
g8 gt g12 2441 q107q8+2 24541 0842
ql() qb ql[J q2
qloigsJr2 7q187q16+1%1472q671 2qm:gz+1 (116728(18+1
= q q q q
Ly =
b
124541 2¢1° _ g2 41 T LR S | 2¢10 _ g2 41
q° q® q® q*
16 8 10 2 18 12 4 2
10 3 —2¢%+1 2¢'°—¢%+1 —q®—2¢"%4¢*—¢>—1
gO—¢+2 g =2q+1 ¢ —g q e
L q q q ]
and
g1 g2 4102421 042 g —2¢8+1 0B 42
q10 q8 qlo q2
0342 B N L S | 2¢10 g2 41 245 +1
-,[: q6 q10 qIO q8
3 =
q167298+1 2¢10 241 gt _2g10 1 g® b1 2¢10_ 241
q° q5 q3 q>
16 8 10 2 18 14 6 4
10 8 —2¢%+1 2¢'°—¢%+1 —q'®—2¢"4¢%—¢'—1
g0 — ¢+ 2 % q q4q q q — ®—q

These matrices are written with respect to the ordered bases (v4 ®vg, v5Rv109, Vg ®
V4,010 ®U5), (V3 @ s, V4 ®Vg, Vg ®V3, Vg DVy), (V2 @7, V3R Vg, V2 D V7, V8 ®V3), (V1 ®
vg, Vg ® U7,V ® U1,V ® v7), respectively.

Observe that Ls is exactly the 4x4 block £; in the generator (1) with parameter
(¢,5,9), as desired.

4.3. Proof of Theorem 3.3. This theorem generalizes Theorem 3.1 from [1] for
all n. The inductive step remains the same as from that paper, so it remains to
verify the base case of L = 2 for general n.

Let £ be the 16 x 16 generator matrix for the two-site model with parameters
(¢,n,0) from (1). Let D be the 16 x 16 matrix whose rows and columns are
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indexed by the states of Type D ASEP (in the same order as for £) and whose

(n,€) entry is D£17a2(77,§). Setting Dzj =1- Z—Z, we have
_Dng D} 1 D} D? 1 D3 1 D3iD3 D} D3D3 D} 1 D} D} D3D3 |
D} DiD; Df 1 1 Df D3 1 D3iD3 D} D} DiD3 1 D} D} D}D3
1 Dpf DiDY Df 1 DI 1 Di D} D}D} D} DiD3 1 D} D} DiD3
D} 1 D) DiDiD? 1 1 Dy D3 D}Di  DiD3 D 1 D} D} D3D?
D} 1 1 D} D} 1 1 1 D3} D? D? 1 1 D} 1 D?
1 D} D} 1 1 Df1 1 D} D} 1 D 1 D} 1 D?
D3 Di 1 1 1 1 D31 D3 1 D3 D 1 1 D3 D3
D 1 1 Dy D 1 1 1 Dj 1 D3 D3 D 1 1 D3 D3
B DiD3 DiD? D{ D} D{ D{ D} 1 D}DiD3 D}D{ DiD3 DiD3 1D?D{ D3 D?D{D}
D} D{ DiDi DiD} D{ D} 1 D) D?D{ D}DiDi DiD3 DiD} 1 D3D{ D3 D3}DiD}
D}D4 DS D) DiDi D} 1 Di Di D3Di D3}Di DiD3Di D3Di 1 D} D3Di D3}D3Di
Dy DiDj DiDi Di 1 D{ Dj Dy D?D§ D}Dj DiD; DiD}Dj1 D} D3Di DiD3D}
1 1 1 1 1 1 1 1 1 1 1 1 11 1 1
p{ p{ Dp{ D} DI D{ 1 1 DiD{ DD} D} D} 1DiD} 1 D3D}
Dy DY DY DI 1 1 DiDi Di D} D3DY D3Di 1 1 D3Di D3D}
DiD} DiDi DiD§ D{D} Di D} Di Di D}D{D} DiD{D}{ Di{D3Di D{D}D} 1 D}D{ D3D} DiD}{D3Dj

One can verify the duality relation LD = DLT for the base case of L = 2,
completing the proof.
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