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A novel technique for electronic control unit (ECU) identiûcation is proposed in

this study to address security vulnerabilities of the controller area network (CAN)

protocol. The reliable ECU identiûcation has the potential to prevent spooûng

attacks launched over the CAN due to the lack of message authentication.

In this regard, we model the ECU-speciûc random distortion caused by the

imperfections in the digital-to-analog converter and semiconductor impurities

in the transmitting ECU for ûngerprinting. Afterward, a 4-layered artiûcial neural

network (ANN) is trained on the feature set to identify the transmitting ECU

and the corresponding ECU pin. The ECU-pin identiûcation is also a novel

contribution of this study and can be used to prevent voltage-based attacks.

We have evaluated our method using ANNs over a dataset generated from

7 ECUs with 6 pins, each having 185 records, and 40 records for each pin.

The performance evaluation against state-of-the-art methods revealed that

the proposed method achieved 99.4% accuracy for ECU identiûcation and

96.7% accuracy for pin identiûcation, which signiûes the reliability of the

proposed approach.
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1 Introduction

The modern vehicle functions as a cyber-physical system (CPS). It is equipped

with numerous wireless and wired communication interfaces, along with a multitude

of microcontrollers and electronic control units (ECUs). These components are

interconnected via various in-vehicle networks (IVNs) (Lorenz, 2010; Grzemba, 2012;

AUTOSAR, 2017; Hafeez, 2020; Hafeez et al., 2020b,c; Noori et al., 2023), such as the

controller area network (CAN) (Tindell et al., 1994), local interconnected network (LIN)

(AUTOSAR, 2017), media-oriented system transport (MOST) (Grzemba, 2012), and

FlexRay (Lorenz, 2010). These networks link critical vehicle systems such as brakes, airbags,

engine control, and safety features like electronic stability programs and adaptive cruise

control. However, integrating wireless interfaces like Bluetooth and Wi-Fi with IVNs,

alongside using the legacy CAN protocol for in-vehicle control, introduces significant

security risks to connected autonomous vehicles (AVs) (Arif et al., 2012; Upstream Security

Global Automotive Cybersecurity Report, 2019; Khalid et al., 2023).

Advances in vehicle technologies are unable to keep pace with the growing attack

surfaces and vectors, leaving millions of vehicles vulnerable to a wide range of attacks,
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e.g., man-in-the-middle and packet spoofing (Fröschle and

Stühring, 2017; Liu et al., 2017; Marchetti and Stabili, 2018).

This is because the automotive industry still relies on the legacy

CAN protocol for in-vehicle communication among ECUs, which

lacks basic security features such as message authentication,

confidentiality, and integrity, making it vulnerable to attacks

(Studnia et al., 2013; Greenberg, 2015; Elkhail et al., 2021; Lee

et al., 2024; Pal et al., 2024). Researchers have proposed various

solutions to detect and prevent attacks on the CAN protocol

for in-vehicle control networks. These methods can be classified

into two categories: (i) message authentication code (MAC)-based

approaches (Wolf et al., 2004; Hazem and Fahmy, 2012; Wang

and Sawhney, 2014; Ueda et al., 2015; Gierlichs and Poschmann,

2016; Sugashima et al., 2016; Doan and Ganesan, 2017; Hafeez

et al., 2017; Agrawal and Maiti, 2024); and (ii) intrusion detection-

based approaches (Cho and Shin, 2016, 2017; Marchetti et al., 2016;

Avatefipour et al., 2017; Lee et al., 2017; Marchetti and Stabili, 2017;

Rieke et al., 2017; Stabili et al., 2017; Choi et al., 2018a,b; Groza and

Murvay, 2018; Hafeez et al., 2018, 2019, 2020a; Kneib and Huth,

2018; Sagong et al., 2018a; Wu et al., 2018; Bellaire et al., 2022;

Mohammadi andMalik, 2022; Refat et al., 2022; Baldini, 2023; Deng

et al., 2023; Gul et al., 2023; Ibrahim and Safa, 2023; Liu et al., 2023;

Ahmad et al., 2024; Aloraini et al., 2024; Cao et al., 2024; Elsayed

and Zincir-Heywood, 2024; Jeong et al., 2024; Saini and Islam, 2024;

Wang et al., 2024).

The MAC-based methods achieve security and privacy by

encrypting the payload of the CAN packet before transmission

(Singh et al., 2024). For instance, Wang and Sawhney (2014)

demonstrated aMAC-based framework, VeCure, for CAN security.

In VeCure, a 64-bit MAC was transmitted for every 64-bit

message between the ECUs. Intuitively, this method exhibited high

computational cost, adds 50% additional transmission overhead,

and also requires a higher data rate. Ueda et al. (2015) designed

an authentication mechanism for the CAN protocol to protect

against spoofing attacks. The monitoring node provided the

authentication code for all ECUs and verified the code for all CAN

messages. Hazem and Fahmy (2012) proposed a lightweight CAN

authentication protocol (LCAP). The LCAP required appending a

“magic number” generated by a one-way hash function employed

on the TESLA prototype (Perrig et al., 2000). This protocol

still created a 25% overhead by requiring 16 bits of data field

to append the authentication. The MAC-based approaches have

intrinsic overhead that lowers the transmission performance,

making them unreliable for CAN security (Wang and Sawhney,

2014; Avatefipour et al., 2017; Hafeez et al., 2017).

To address the limitations of MAC-based solutions, researchers

have proposed intrusion detection-based approaches for CAN

network traffic analysis (Hazem and Fahmy, 2012; Ueda et al.,

2015; Cho and Shin, 2016; Nürnberger and Rossow, 2016; Groza

and Murvay, 2018). These intrusion detection-based approaches

have lower data rate requirements because they do not add

additional bits during the message transmission, thus avoiding

additional network overhead. Cho and Shin (2016) demonstrated

a clock-based intrusion detection system (CIDS) that used ECU

fingerprinting. Each ECU contained a crystal oscillator known as

a clock, and the ECU fingerprinting measured the clock skewness

against the received packets and detected the attack. However,

Sagong et al. (2018a), and Tayyab et al. (2018) demonstrated that

CIDS can be bypassed by estimating the clock parameters. In

Avatefipour et al. (2017), message authentication was performed

through ECU detection by applying higher-order moments of

the CAN signal in both time- and frequency domains. However,

this approach needs to be more tolerant against the transmitter

induction, and the performance of the system significantly

decreases with an increased number of transmitters. Therefore, we

need an IDS-based approach that can extract unique fingerprints

from the signal, works for a higher number of transmitters, and

exhibits low computational complexity.

This study presents a novel IDS-based message authentication

approach to address the aforementioned limitations of existing in-

vehicle security techniques. Our approach exploits the uniqueness

in device-specific distortions, such as semiconductor impurities,

DC offset, aliasing error, and mismatch between the nominal

and measured values of electric components in a digital-to-analog

converter (DAC), for message fingerprint generation. This study

hypothesizes that distortions due to digital-to-analog conversion

operation at the ECU output are device-dependent and can be used

to link the received packet to the transmitting ECU. Therefore, we

associate the received packet with a specific ECU and the ECU

pin responsible for message transmission using an artificial neural

network approach.

The main objective of this research is to investigate ECU-

level uniqueness for a given network and pin-level uniqueness

for a given ECU to authenticate the message. The proposed

method relies on the distinctive physical artifacts of the DAC

of the transmitting ECU for device-level fingerprinting. The

imperfections in the material, design, and fabrication of the

DAC contribute to distortion in the ECU signal. A statistical

modeling of this distortion is developed, and used as a feature

vector for transmitter identification (i.e., transmitting ECU and

ECU-Pin) through a neural network architecture. Thus, the main

contributions of the study are:

" A mathematical model of the distortion sources, including

imperfections in the material, design, and fabrication of the

DAC.

" A statistical model of the device ECU-level distortion for

transmitter identification.

" A proposal that different transmitting pins in a single

device have unique distortion and can be used for ECU-pin

identification.

The rest of the study is organized as follows: Section 2 describes

the system model and outlines sources of device-specific distortion

in the CAN signal. Experimental setup, dataset, performance

measures, results, and analysis are provided in Section 3. This

section also provides a comparison of our method with the current

state-of-the-art research. Concluding remarks and future directions

are discussed in Section 4.

2 System model

Figure 1A shows a subnet of a CAN bus that contains

µ = {1, 2, . . . , n} ECUs represented as E(i), with a fingerprinting

unit E(s) that sniffs the CAN bus and acquires an analog signal
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FIGURE 1

Generalized architecture of the CAN bus (A) and block diagram of the proposed device identiûcation system (B). Green arrows ³ here represent the

learning phase, and red arrows ³ here represent the testing phase of device identiûcation.

y
(a)
(i)
(t) transmitted by the ith ECU, E(i), where i * µ . The E(s). As

represented in Equation 1, the fingerprinting ECU, E(s), converts

the analog measurement at its input, y
(a)
(i)
(t), to its digital equivalent,

y
(a)
(i)
(n). The fingerprinting ECU, E(s), computes the distortion,

d(i)(n), for E(i) in the received signal, y
(a)
(i)
(n), by subtracting it from

the expected signal level, y
(e)
(i)
(n), i.e.,

d(i)(n) = y
(a)
(i)
(n)2 y

(e)
(i)
(n) (1)

Here, {d(i)(n) * n(i) | n(i) :[L ³ U]}, where L = 20.10

and U = 0.10 represent the lower and upper distortion values,

respectively.

The d(i)(n) is then used for feature extraction to generate

the feature vector x(r) = {x(1), x(2), . . . , x(m)} for E(i), where m

represents the number of features, r * R, and R is the total

number of records. The extracted features are used in an artificial

neural network architecture for training data and evaluation of

test data. Shown in Figure 1B, is the generalized architecture of

the CAN bus (Figure 1A) and block diagram of the proposed

device identification system (Figure 1B). A brief description of each

processing block is provided in the following subsections.

2.1 Signal acquisition

The E(s) acquires the analog signal y
(a)
(i)
(t) generated by E(i)

and converts it into a digital signal y
(a)
(i)
(n) as represented in

Equation 2.

y
(a)
(i)
(n) = y

(a)
(i)
(t)|t=nTs ,Ts = 50× 1029 (2)

The Ts = 50 × 1029 represents a sampling time of 50 ns

and a sampling rate of 20MSa/sec for the signal. The reason to

generate y
(a)
(i)
(n) is that the y

(a)
(i)
(t) occurs at infinite instants of time,

thus demanding large memory to get stored. However, the analog-

to-digital conversion is performed because the E(s) have limited

memory. The number of bits required to store each sample is n;

in our case, n = 8 bits. To extract distortion, we compute the

expected signal y
(e)
(i)
(n) from y

(a)
(i)
(n) using Equation 3:

y
(e)
(i)
(n) =

{

3.5v : 3.3 < y
(e)
(i)
(n) < 3.7

2.5v : Otherwise
(3)

Equation 3 here represents the mapping of the received signal,

y
(e)
(i)
(n), onto the CAN high and CAN low voltage levels, e.g.,
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3.5V and 2.5V. Specifically, the received signal, y
(e)
(i)
(n), is mapped

to 3.5 v if y
(a)
(i)
(n) is between 3.3 v and 3.7 v; otherwise it will be

2.5 v. The signal y
(e)
(i)
(n) represents the expected signal from E(i);

however, it has been observed through extensive analysis of CAN

communication signals that the actual signal levels differ from the

expected signal levels. As shown in Figure 2A, the waveform of

the CAN signal captured using a DS1012A oscilloscope for the

y
(a)
(i)
(n) significantly differs from the expected signal y

(e)
(i)
(n) due to

the distortion mainly attributed to semiconductor impurities, the

mismatch between nominal values and measured values of electric

components, the aliasing error of the finite impulse response (FIR)

filter, and the DC offset of the DAC. Moreover, these imperfections

are device-specific and can be used for ECU fingerprinting.

2.2 Distortion extraction

The imperfections observed in the signal acquisition stage are

used for fingerprinting the ECUs. The fingerprinting is quantified

in distortion modeling, which is acquired in the Density Estimation

stage. Before distortion modeling, we acquire distortion as shown

in Figure 2B, which is represented in Equation 4.

d(i)(n) = y
(a)
(i)
(n)2 y

(e)
(i)
(n). (4)

There are fourmain reasons for distortions, which are discussed

as follows:

2.2.1 Mismatch of nominal and measured values
of electric components

Imperfections in the electric components are one of the sources

of d(i)(n). These imperfections can be described as deviations of

the measured values of electric components from their nominal

values. Let Ro(i) be the value of the feedback resistor of the E(i), and

¶R(i) represents the deviation from the nominal value, commonly

known as the tolerance level. The actual resistance Ra(i) can then be

expressed as Equation 5, which is as follows:

Ra(i) = Ro(i) + ¶R(i) . (5)

Let d
(R)
(i)

(n) represent the distortion due to ¶R(i) , which is the first

cause of distortion at the DAC output. The purpose of a DAC in an

ECU is to convert bits into a physical signal in the form of voltage,

as shown in Figure 3. The reason for this conversion is that the

signal propagates through a channel in the form of a physical signal.

2.2.2 Semiconductor impurities
During semiconductor device manufacturing, the impurities

in the silicon used for manufacturing semiconductors cannot

be removed entirely (Pizzini et al., 1986; Pizzini, 2010; Roskill,

2011; Yoshida and Langouche, 2015). These impurities in the

semiconductor can cause flicker distortion (also known as 1/f

noise) at the DAC output (Godfrey et al., 2015). We represent

the distortion due to semiconductor impurities as d
(f )

(i)
(n), which

is one of the sources of distortions at the DAC output. The

imperfections in the device material and fabrication process are the

other contributing factors to the observed distortion.

2.2.3 Non-ideal behavior of low-pass ûlter
Another contributing factor in distortion is an aliasing error

due to the non-ideal behavior of the low-pass filter used in

digital-to-analog conversion. The digital signal, acquired through

the continuous signal sampling operation, introduces periodic

repetition of its spectra. Let Y
(e)
(i)D

(f ) represent the Fourier transform

of y
(e)
(i)
(n), which is input in DAC, and Y

(e)
(i)
(f ) represents the Fourier

transform in form of the continuous signal. Low-pass filtering is

used to filter out Y
(e)
(i)
(f ) from Y

(e)
(i)D

(f ) to avoid unwanted copies,

which is commonly implemented using a FIR filter realization.

Equation 6 represents the relationship between input and output

of the DAC,

Y
(e)
(i)D

(f ) =

>
∑

n=2>

Y
(e)
(i)
(f 2 nfs) (6)

Let H(f ) represent the transfer function of the FIR filter; the

output of the FIR filter can be expressed through Equation 7.

Y(i)FIR (f ) = Y
(e)
(i)D

(f ).H(f ) (7)

Ideally, Y(i)FIR (f ) should be the same as Y
(e)
(i)
(f ), but due to

an aliasing error these values differ. The non-ideal behavior of

FIR realization introduces aliasing at the DAC output. Let d
(a)
(i)
(n)

denote distortion due to the non-ideal behavior of the low-pass

filter realization for the E(i). This is the third cause of distortion

in the output of the DAC.

2.2.4 DC o�set error
The DC offset error in the DAC is another source of distortion

(Pavan et al., 2017). Ideally, the dominant bit level is 3.5V and the

ideal recessive bit level is 2.5V , as shown in Figure 3, but DC offset

d
(o)
(i)
(n) is added to the ideal voltage value due to grounding issues

in the DAC. The total distortion d(i)(n) due to DAC for the E(i) can

be expressed as Equation 8,

d(i)(n) = d
(R)
(i)

(n)+ d
(f )

(i)
(n)+ d

(a)
(i)
(n)+ d

(o)
(i)
(n). (8)

Similarly, we can derive from Equation 4 that:

y
(a)
(i)
(n) = y

(e)
(i)
(n)+ d(i)(n). (9)

Therefore, Equation 9 validates our hypothesis that the

distortion added to the received signal is dynamic and can be an

effective measure for fingerprinting the ECUs.

Furthermore, the device-specific distortion is also unique for

each pin within the E(i), represented as E(i,l), where { l * · | · =

1, 2, . . . , » } are the total number of pins within E(i). This also

elaborates that we need to determine the affected ECU and the

relevant pin for attack modeling. Additionally, pin-level artifacts
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A B

FIGURE 2

Screenshots of the actual and expected waveform vs. ECU signal. (A) Actual and expected waveform. (B) Distortion in the ECU signal.

FIGURE 3

Ideal voltage levels for CAN.

effectively detect spoofing attacks launched from a different pin

of the same ECU. Recently, Sagong et al. (2018b) demonstrated a

voltage-based attack that permanently damages a target ECU pin.

A voltage-based attack is launched by an adversary, which sends

a high voltage through a pin (which has a maximum capacity of

5V) to damage the pin permanently. However, these attacks can be

avoided by fingerprinting the E(i,l).

2.3 Density estimation

After the distortion modeling, we use d(i)(n) for histogram

generation. These histograms will then be used as fingerprints for

E(i) and E(i,l). In order to make a histogram, we need to group the

distortion values inm histogram bins with step size ´ , which can be

computed as in Equation 10.

´ =

(

U 2 L

m

)

(10)

Where U and L represent the lower and upper values for

distortion, and m represents the number of bins. In our case,

m = 200; thus, step size ´ becomes 1023. The histogram h(i)(k)

for N = 1500 samples of d(i)(n) is computed using Equation 11.

Here, k = {0, 1, 2, . . . ,m}.

h(i)(k) =

N
∑

n=1

[

¶

(

d(i)(n)

´
+ 100

)

+ h(i)(k)

]

(11)

Where ¶(.) denotes the Kronecker delta function (Adnan et al.,

2018), that can be computed through Equation 12.

¶(n2k) =

{

1 : n = k

0 : Otherwise
(12)

Figure 4 shows the histogram h(i)(k) of E(1)–E(7). Afterwards

h(i)(k) is used as feature set X(i) = {x(1), x(2), . . . , x(m)}.

2.4 ANN-based model learning

An artificial neural network (ANN)-based model is

used to identify the source ECU and the corresponding

pin. For this the ANN gets X(r) = {x(1), x(2), . . . , x(R)}

as input-set and corresponding ECU- and pin-labels

Y(r,e) = {y(1,e), y(2,e), . . . , y(R,e)}, Y(r,p) = {y(1,p), y(2,p), . . . , y(R,p)}

respectively; and it predicts the ECU-labels and corresponding

pin-labels as ÆY(r,e) = {Æy(1,e), Æy(2,e), . . . , Æy(R,e)} and ÆY(r,p) =

{Æy(1,p), Æy(2,p), . . . , Æy(R,p)} respectively, where e * µ , p * · , and

r * R. The classifier is trained on the dataset with three hidden

layers, each with v neurons (in our case v = 10), using the

“scaled conjugate gradient backpropagation” method for weight

optimization. For hyperparameter tuning, we used GridSearchCV
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FIGURE 4

Histogram of d(i)(n) for ECUs E(1)3E(7).

(a scikit-learn library) to search for the best parameter values

from the given set of parameters. Several hidden layers and

neurons were tested using this library. Empirically, we chose three

hidden layers and determined the number of neurons (Arif et al.,

2023). During the training phase, the model learns the weight

vector represented by: Ëe = {w(1),w(2), . . . ,w(m)} for all E(i)
and Ëp = {w(1),w(2), . . . ,w(m)} for all E(i,l). The output of both

networks is then merged as the final output during the testing

phase (Figure 5). The ANN architecture for ECU recognition is

presented in Table 1, and the same architecture is also used for

ECU-pin recognition.

Table 1 summarizes the neural network structure used in this

study, including the input layer, middle (hidden) layers, output

layer, and error correctionmechanism. The input layer, represented

as Ex(r), receives data with dimensions 1 × m. The middle layers

perform computations on the input vector Eb using a weight matrix

U, resulting in an output vector Ec through an activation function

f . Similarly, the output layer processes the input vector Ed using a

weight matrix w, resulting in an output vector Ee through another

activation function g. The error correction mechanism is described

by the calculation of the cost function E and the update equations

for the weight matrices w and U, denoted as 1Wij and 1Umv,

respectively. These equations involve gradients of the error with

respect to the weights and are updated using learning rates ³

and ´ for w and U, respectively. This comprehensive structure

outlines the flow of information and the mechanism for adjusting

weights to minimize errors during the training process of the

neural network.

3 Results and discussion

3.1 Experimental setup

The proposed approach evaluates inter-class (amongst

ECUs) and intra-class (amongst ECU pins) variability for

message authentication. For inter-class variability, seven ECUs

(transmitters) of the same make and model were used in this study,

and data was recorded through the CAN-High (CANH) pin. For

intra-class variability, six DAC pins of the same ECUwere analyzed

to determine the pin-level characteristics.

The hardware comprised seven Arduino UNO-R2 micro-

controller kits; seven CAN-Bus shield boards withMCP 2515 CAN-

bus controllers andMPC 2551 CAN transceivers; and aDSO1012A

oscilloscope to record the voltage samples with a sampling rate of

20Msa/s, with 100MHz bandwidth. Matlab R 2018a software was

used for statistical data analysis of the sampled signals. A computer

simulation that continuously transmitted messages from different

ECUs and pins was written. Afterward, these messages were then

used as the dataset for model training and evaluation.

3.2 Dataset description

The ECU identification dataset comprised 1, 295 (7 × 185)

records with 1, 500 samples in each record. Whereas, for pin-level

identification, a dataset was collected for six different pins of each

transmitting ECU with 40 records for each pin. The dataset used
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FIGURE 5

Merged neural network structure.

TABLE 1 Summary of neural network structure for every E(i) used in this

study.

Input

Input: 2³x(r) = (x(1) , x(2) , . . . , x(m)) dim(2³x ) = 1×m (I.1)

Middle (hidden) layers (1–3)

Input:
2³
b = U

2³
X dim(

2³
b ) =1 × v (I.2)

Output: 2³c = f(b) dim(2³c ) =1 × v (I.3)

U: m × v weight matrix

f: 1
1+ e2b

Output layer

Input:
2³
d = we

2³c dim(
2³
d ) =1 × v (I.4)

Output: 2³e = g(d) dim(2³e ) =1 × v (I.5)

we : v × m weight matrix

g: 1
1+ e2d

Error correction

Cost: E = 2
∑n

i=1[y(r,e)log(c)] (I.6)

1Wij =2³"E/"Wvm = ³¶icj (I.7)

1Umv =2´"E/"Umv (I.8)

here was collected in the same environment, i.e., under the same

temperature, and using an identical message to observe the unique

variations of the digital signals.

To ensure the proposed classification scheme was robust and

not overfitting to the training data, we implemented several

validation techniques. The model was evaluated using various

metrics: the dataset was randomly split into training and testing

sets with a training ratio of 70% and a testing ratio of 30%.

In addition, regularization techniques such as L1 (Lasso) were

incorporated into the model. Moreover, early stopping criteria were

introduced during the training phase. In addition to accuracy, the

model was evaluated using precision, recall, F1-score, and AOC.

By implementing these techniques, we ensured that the proposed

classification scheme was validated rigorously and could generalize

well to new, unseen data.

3.3 Performance evaluation measures

We used precision, recall, F1 score, accuracy, and error rate

as performance evaluation measures. To evaluate the effectiveness

of the proposed method, we determined how many ECUs were

correctly identified in response to messages sniffed by E(s). Let TP

represent the true positive rate, FP represents the false positive

rate, TN represents the true negative rate, and FN represents the

false negative rate. Then precision can be defined as follows in

Equation 13.

Precision =

(

TP

TP + FP

)

(13)
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A B

FIGURE 6

Density approximation of distortion and e�ectiveness of our feature set. (A) Density approximation of distortion. (B) E�ectiveness of our feature set.

Precision was used to measure the ratio of the true instances

against the retrieved instances for a particular class. To measure the

sensitivity, we used the recall rates that can be computed as follows

in Equation 14.

Recall =

(

TP

TP + FN

)

(14)

Recall was computed to measure the total number of retrieved

relevant instances. In order to combine both measures, i.e.,

precision and recall, we used the F1 Score that was computed as

below in Equation 15.

F1 score = 2×

(

Precision × Recall

Precision + Recall

)

(15)

The higher F1 score signifies the robustness of the classification

approach. In order to evaluate the overall performance by

considering all the classes together, we computed the accuracy as

follows in Equation 16.

Accuracy =

(

TP + TN

TP + TN + FP + FN

)

(16)

Accuracy was computed to measure all instances that were

correctly classified, despite the fact, whatever class they belong

to. Moreover, by using the accuracy value, we also computed the

overall error rate as follows in Equation 17.

Error rate = 12 Accuracy (17)

3.4 Feature stability analysis

This experiment aims to validate that different ECUs, even

of the same make and model, introduce different artifacts while

transmitting an identical message, and this uniqueness can be

exploited to counter spoofing attacks. To achieve this goal, all

ECUs transmitted the same messages over the same channel with

constant settings regarding temperature and environment. Data

was recorded for each ECU with identical channel inputs and

transmission parameters to validate the claim of ECU-specific

distortion. To verify the uniqueness, we estimated the distortion

density function by applying the Spline function (Hirst and

Espesser, 1993) over the histogram h(i)(k) to get fni (n) as shown

in Figure 6A. The estimated distortion distribution represents the

physical characteristics of each ECU. In order to find the stability,

we generated the fni (n) of each ECU 100 times and computed the

mean and standard deviation (STD). From Figure 6B, it can be

observed that the difference between the mean and mean ± STD

is negligible, which shows that the feature set remains constant

over time for each ECU. Hence, it is proved that the proposed

feature extraction approach induces the unique attributes for ECU

representation that make it effective for ECU identification.

To further validate the uniqueness attribute of the proposed

method, we plotted fni (n) for seven ECUs as shown in Figure 7,

which clearly shows that each ECU has a unique representation.

The benefit of the uniqueness is that the attacker cannot replicate

an ECU’s profile, thus signifies that our approach is robust against

spoofing attacks.

3.5 ECU-level identiûcation

The purpose of this experiment is to validate that any two

ECUs exhibit different distortion profiles, i.e., any two ECUs, even

from the same make and model, introduce different artifacts into

the transmitted signal. To achieve this objective, seven ECUs were

used to transmit the same message over the same channel with

the same environmental settings, e.g., temperature, environment,

etc. A seven-class multilayered neural network classifier is trained

and tested on the data collected using data acquisition method

described in Section 3. Shown in Tables 2, 3, and Figure 8 are

the confusion matrix, performance evaluation in terms of selected

performance metric, and detector receiver operating characteristic

(ROC), respectively.
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FIGURE 7

Estimated distortion distributions for all seven ECUs.

TABLE 2 Confusion matrix for ECU-level classiûer.

Target class

- - E(1) E(2) E(3) E(4) E(5) E(6) E(7) Total%

P
re
d
ic
te
d

cl
as
s

E(1) 185 0 0 0 0 0 0 100

E(2) 0 184 2 0 0 0 0 98.9

E(3) 0 1 183 0 0 0 0 99.5

E(4) 0 0 0 185 0 0 0 100

E(5) 0 0 0 0 183 3 0 98.4

E(6) 0 0 0 0 2 182 0 98.9

E(7) 0 0 0 0 0 0 185 100

Total

%

100 99.5 98.9 100 98.9 98.4 100 99.4

From Table 2, it can be observed that the proposed method

achieves very high accuracy for ECU classification. The high

accuracy signifies that the distortion introduced in each ECU due to

DAC imperfections and semiconductor impurities is unique, thus

resulting in high accuracy for ECU identification. Moreover, it also

validates our hypothesis that the distortion due to DAC and semi-

conductor impurities has the potential for ECU fingerprinting for

attack detection. It can also be observed from Table 2 that E(1),

E(4), and E(7) have 100% detection rates, which is mainly associated

with the high distortion values appearing in the form of high

peaks as shown in Figure 4. Moreover, by analyzing Table 2 from

the perspective of Figure 4, it can also be observed from T that

if distortion is concentrated in a certain region, it increases the

inter-class variability, which is one of the targets of this research.

Similarly, Table 3 shows that E(1), E(4) and E(7) have 100%

precision, recall, accuracy and F1 Score rates. Furthermore, E(2)

has a 99.5% recall, which means it has only one false negative

record; the other performance evaluation rate slightly drops. On the

other hand, E(3) has 99.5% precision; it has only one false positive,

therefore slightly affects the precision.

Figure 8A shows the graphical representation of the ECU

identification results. A high correlation among the performance

evaluation measures for all ECUs signifies the reliability of the

proposed method. Furthermore, the area under the curve analysis

of the ROC plots, as shown in Figure 8B, confirms our claim

that unique distortions in the output of electronic devices can

be used for fingerprinting and identification. This has many

applications, ranging from hardware authentication to attack

detection and localization.

3.6 Pin-level identiûcation

The purpose of this experiment is to validate that different

ECUs exhibit different distribution profiles, meaning that is,

different pins of the same transmitting ECU introduce different

artifacts into the transmitted signal. Pin-level fingerprinting can

be utilized for reliable attack profile generation. To achieve this

objective, six pins of the same transmitting ECU were used to

transmit the same message over the same channel with the same

environmental settings, such as temperature and environment. A

six-class multilayered neural network classifier was trained and

tested on the data collected using the data acquisition method

described in Section 3. Shown in Table 4 is the performance of the

proposed method in the confusion matrix (in terms of the number

of samples per class).

Shown in Table 5 is the performance of the proposed method

in terms of selected performance evaluation measures, including

precision, recall, F1 score, accuracy, and error rate. It can be
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TABLE 3 Performance matrix of the ECU-level classiûer.

- Precision (%) Recall (%) Accuracy (%) F1 score (%) ERR (%)

E(1) 100 100 100 100 0

E(2) 98.9 99.5 99.8 99.2 0.2

E(3) 99.5 98.9 99.8 99.2 0.2

E(4) 100 100 100 100 0

E(5) 98.4 98.9 99.6 98.6 0.4

E(6) 98.9 98.4 99.6 98.6 0.4

E(7) 100 100 100 100 0

A B

FIGURE 8

Bar graph and ROC of E(i) for the ECU classiûer. (A) Bar graph of PM for ECU Classiûer. (B) ROC of E(i).

TABLE 4 Confusion matrix for pin-level classiûcation.

Target class

- - Pin(1) Pin(2) Pin(3) Pin(4) Pin(5) Pin(6) Total %

P
re
d
ic
te
d

cl
as
s

Pin(1) 38 2 0 0 0 1 92.7

Pin(2) 2 37 0 0 0 0 94.9

Pin(3) 0 0 40 0 0 0 100

Pin(4) 0 0 0 40 0 0 100

Pin(5) 0 0 0 0 39 1 97.5

Pin(6) 0 1 0 0 1 38 95

Total % 95 92.5 100 100 97.5 95 96.7

observed from Tables 4, 5 that pins # 3 and 4 achieved perfect

detection, with 100% precision, recall rate, accuracy, and F1 score.

Overall, the proposed method achieved an overall 96.7% detection

rate for pin-level identification. Although detection rates for pin-

level identification are slightly lower than ECU-level detection.

The same results are graphically presented in Figure 9A. The area

under the curve results, as presented in Figure 9B, show that the

pin-level detection of the proposed approach is still satisfactory.

It is important to highlight that the notion of pin-level detection

is a novel concept; research efforts focused on finding why edge

pins, e.g., pins 1, 2, 5, and 6, are expected to generate more

interesting results.

3.7 Comparison against state-of-the-art

In this section, the proposed method is compared against state-

of-the-art methods that are also doing the ECU identification. The

performance is compared against ECU detection using Viden (Cho
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TABLE 5 Performance matrix of pin-level classiûcation.

- Precision (%) Recall (%) Accuracy (%) F1 score (%) ERR (%)

Pin(1) 92.7 95 97.9 93.8 2.1

Pin(2) 94.9 92.5 97.9 93.7 2.1

Pin(3) 100 100 100 100 0

Pin(4) 100 100 100 100 0

Pin(5) 97.5 97.5 99.1 97.5 0.9

Pin(6) 95 95 98.3 95 1.7

A B

FIGURE 9

Bar graph of PM and ROC of pin classiûer. (A) Bar graph of PM for pin classiûer. (B) ROC of pin classiûer.

and Shin, 2017), Inimitable characteristics of CAN signal (Choi

et al., 2018a), and VoltageIDS (Choi et al., 2018b).

3.7.1 Comparative studies
Cho and Shin (2017) proposed a method called Viden that

utilized the voltage profile of acknowledgment (ACK) bits for

transmitter identification. In the first phase, the ACK bit was used to

determine if the message originated from the genuine transmitter.

Afterward, voltage measurements were used to generate ECU

fingerprints. Based on these fingerprints, the attacker ECU was

identified. In Choi et al. (2018a), a monitoring unit was installed

in the vehicle that analyzes the electrical CAN signals and computes

the statistical features. These features were then classified to identify

the ECU. In Choi et al. (2018b), ECU detection based on inimitable

voltage characteristics technique was proposed. The feature vectors

proposed by Choi et al. (2018a) were extended both in time- and

frequency domains and were classified for ECU identification by

Choi et al. (2018b).

3.7.2 Performance comparison
Table 6 shows the performance comparison of our method

against (Cho and Shin, 2017; Choi et al., 2018a,b). The results show

that our method is giving higher accuracy compared to Choi et al.

(2018a,b), whereas it is giving almost the same performance as Cho

and Shin (2017). However, the main advantage of our method is

that feature extraction and message authentication can be done in

any part of the signal without latency.Whereas, in the case of Viden,

the voltage profile is estimated for message authentication during

reception of the ACK bit, but it also introduces latency. Hence, from

the aspect of latency, our method is more robust than the Viden.

4 Conclusion

In this research study, a novel approach for electronic control

unit (ECU) identification in a vehicular network is presented.

The main motivation behind ECU identification is that the

CAN protocol lacks sender ECU information, which makes it

prone to spoofing attacks. Our proposed device identification

framework allows cybersecurity professionals to detect and localize

transmitting devices even without transmitter information.

This study utilizes electronic device-specific distortion for

device identification. The proposed approach utilizes unique

but physically unclonable distortions in electronic device output

stemming from the material’s intrinsic imperfections and the

manufacturing process. We have demonstrated that device-specific
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TABLE 6 Comparison with other methods.

Research study Method Accuracy

Cho and Shin (2017) Viden 99.57%

Choi et al. (2018a) Inimitable Char. of

CAN Signal

96.48%

Choi et al. (2018b) VoltageIDS 95.54%

Our method Distortion based

IDS

99.4%

distortions are unique for all ECUs, even from the same make,

model, and manufacturer. We have shown that device-specific

distortions can be used to detect and localize devices on the

network.We realized the proposed device identification framework

using a 4-layered artificial neural network architecture. We have

also demonstrated that the proposed framework can be used for

device output-pin identification (e.g., device pin being used for

message transmission).

For future study, we will investigate the robustness

and reliability of the proposed framework under different

environmental conditions, i.e., temperature, humidity,

electromagnetic interference, sampling rate, etc. We also plan

to evaluate its performance of the proposed system in real-

time applications. In this regard, fuzzy logic-based decision

modeling will be considered for the proposed ECU and pin

identification framework under various environmental and data

acquisition conditions.
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