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A novel technique for electronic control unit (ECU) identification is proposed in
this study to address security vulnerabilities of the controller area network (CAN)
protocol. The reliable ECU identification has the potential to prevent spoofing
attacks launched over the CAN due to the lack of message authentication.
In this regard, we model the ECU-specific random distortion caused by the
imperfections in the digital-to-analog converter and semiconductor impurities
in the transmitting ECU for fingerprinting. Afterward, a 4-layered artificial neural
network (ANN) is trained on the feature set to identify the transmitting ECU
and the corresponding ECU pin. The ECU-pin identification is also a novel
contribution of this study and can be used to prevent voltage-based attacks.
We have evaluated our method using ANNs over a dataset generated from
7 ECUs with 6 pins, each having 185 records, and 40 records for each pin.
The performance evaluation against state-of-the-art methods revealed that
the proposed method achieved 99.4% accuracy for ECU identification and
96.7% accuracy for pin identification, which signifies the reliability of the
proposed approach.
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intrusion detection system, electronic control unit (ECU), controller area network (CAN),
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1 Introduction

The modern vehicle functions as a cyber-physical system (CPS). It is equipped
with numerous wireless and wired communication interfaces, along with a multitude
of microcontrollers and electronic control units (ECUs). These components are
interconnected via various in-vehicle networks (IVNs) (Lorenz, 2010; Grzemba, 2012;
AUTOSAR, 2017; Hafeez, 2020; Hafeez et al., 2020b,c; Noori et al., 2023), such as the
controller area network (CAN) (Tindell et al., 1994), local interconnected network (LIN)
(AUTOSAR, 2017), media-oriented system transport (MOST) (Grzemba, 2012), and
FlexRay (Lorenz, 2010). These networks link critical vehicle systems such as brakes, airbags,
engine control, and safety features like electronic stability programs and adaptive cruise
control. However, integrating wireless interfaces like Bluetooth and Wi-Fi with IVNs,
alongside using the legacy CAN protocol for in-vehicle control, introduces significant
security risks to connected autonomous vehicles (AVs) (Arif et al., 2012; Upstream Security
Global Automotive Cybersecurity Report, 2019; Khalid et al., 2023).

Advances in vehicle technologies are unable to keep pace with the growing attack
surfaces and vectors, leaving millions of vehicles vulnerable to a wide range of attacks,
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e.g., man-in-the-middle and packet spoofing (Froschle and
Stithring, 2017; Liu et al, 2017; Marchetti and Stabili, 2018).
This is because the automotive industry still relies on the legacy
CAN protocol for in-vehicle communication among ECUs, which
lacks basic security features such as message authentication,
confidentiality, and integrity, making it vulnerable to attacks
(Studnia et al., 2013; Greenberg, 2015; Elkhail et al.,, 2021; Lee
et al., 2024; Pal et al., 2024). Researchers have proposed various
solutions to detect and prevent attacks on the CAN protocol
for in-vehicle control networks. These methods can be classified
into two categories: (i) message authentication code (MAC)-based
approaches (Wolf et al., 2004; Hazem and Fahmy, 2012; Wang
and Sawhney, 2014; Ueda et al., 2015; Gierlichs and Poschmann,
2016; Sugashima et al., 2016; Doan and Ganesan, 2017; Hafeez
etal, 2017; Agrawal and Maiti, 2024); and (ii) intrusion detection-
based approaches (Cho and Shin, 2016, 2017; Marchetti et al., 2016;
Avatefipour et al., 2017; Lee et al., 2017; Marchetti and Stabili, 2017;
Rieke et al., 2017; Stabili et al., 2017; Choi et al., 2018a,b; Groza and
Murvay, 2018; Hafeez et al., 2018, 2019, 2020a; Kneib and Huth,
2018; Sagong et al., 2018a; Wu et al.,, 2018; Bellaire et al., 2022;
Mohammadi and Malik, 2022; Refat et al., 2022; Baldini, 2023; Deng
etal., 2023; Gul et al., 2023; Ibrahim and Safa, 2023; Liu et al., 2023;
Ahmad et al., 2024; Aloraini et al., 2024; Cao et al., 2024; Elsayed
and Zincir-Heywood, 2024; Jeong et al., 2024; Saini and Islam, 2024;
Wang et al., 2024).

The MAC-based methods achieve security and privacy by
encrypting the payload of the CAN packet before transmission
(Singh et al., 2024). For instance, Wang and Sawhney (2014)
demonstrated a MAC-based framework, VeCure, for CAN security.
In VeCure, a 64-bit MAC was transmitted for every 64-bit
message between the ECUs. Intuitively, this method exhibited high
computational cost, adds 50% additional transmission overhead,
and also requires a higher data rate. Ueda et al. (2015) designed
an authentication mechanism for the CAN protocol to protect
against spoofing attacks. The monitoring node provided the
authentication code for all ECUs and verified the code for all CAN
messages. Hazem and Fahmy (2012) proposed a lightweight CAN
authentication protocol (LCAP). The LCAP required appending a
“magic number” generated by a one-way hash function employed
on the TESLA prototype (Perrig et al., 2000). This protocol
still created a 25% overhead by requiring 16 bits of data field
to append the authentication. The MAC-based approaches have
intrinsic overhead that lowers the transmission performance,
making them unreliable for CAN security (Wang and Sawhney,
2014; Avatefipour et al., 2017; Hafeez et al., 2017).

To address the limitations of MAC-based solutions, researchers
have proposed intrusion detection-based approaches for CAN
network traffic analysis (Hazem and Fahmy, 2012; Ueda et al,
2015; Cho and Shin, 2016; Niirnberger and Rossow, 2016; Groza
and Murvay, 2018). These intrusion detection-based approaches
have lower data rate requirements because they do not add
additional bits during the message transmission, thus avoiding
additional network overhead. Cho and Shin (2016) demonstrated
a clock-based intrusion detection system (CIDS) that used ECU
fingerprinting. Each ECU contained a crystal oscillator known as
a clock, and the ECU fingerprinting measured the clock skewness
against the received packets and detected the attack. However,
Sagong et al. (2018a), and Tayyab et al. (2018) demonstrated that
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CIDS can be bypassed by estimating the clock parameters. In
Avatefipour et al. (2017), message authentication was performed
through ECU detection by applying higher-order moments of
the CAN signal in both time- and frequency domains. However,
this approach needs to be more tolerant against the transmitter
induction, and the performance of the system significantly
decreases with an increased number of transmitters. Therefore, we
need an IDS-based approach that can extract unique fingerprints
from the signal, works for a higher number of transmitters, and
exhibits low computational complexity.

This study presents a novel IDS-based message authentication
approach to address the aforementioned limitations of existing in-
vehicle security techniques. Our approach exploits the uniqueness
in device-specific distortions, such as semiconductor impurities,
DC offset, aliasing error, and mismatch between the nominal
and measured values of electric components in a digital-to-analog
converter (DAC), for message fingerprint generation. This study
hypothesizes that distortions due to digital-to-analog conversion
operation at the ECU output are device-dependent and can be used
to link the received packet to the transmitting ECU. Therefore, we
associate the received packet with a specific ECU and the ECU
pin responsible for message transmission using an artificial neural
network approach.

The main objective of this research is to investigate ECU-
level uniqueness for a given network and pin-level uniqueness
for a given ECU to authenticate the message. The proposed
method relies on the distinctive physical artifacts of the DAC
of the transmitting ECU for device-level fingerprinting. The
imperfections in the material, design, and fabrication of the
DAC contribute to distortion in the ECU signal. A statistical
modeling of this distortion is developed, and used as a feature
vector for transmitter identification (i.e., transmitting ECU and
ECU-Pin) through a neural network architecture. Thus, the main
contributions of the study are:

e A mathematical model of the distortion sources, including
imperfections in the material, design, and fabrication of the
DAC.

e A statistical model of the device ECU-level distortion for
transmitter identification.

e A proposal that different transmitting pins in a single
device have unique distortion and can be used for ECU-pin
identification.

The rest of the study is organized as follows: Section 2 describes
the system model and outlines sources of device-specific distortion
in the CAN signal. Experimental setup, dataset, performance
measures, results, and analysis are provided in Section 3. This
section also provides a comparison of our method with the current
state-of-the-art research. Concluding remarks and future directions
are discussed in Section 4.

2 System model

Figure 1A shows a subnet of a CAN bus that contains
y = {1,2,..
unit E that sniffs the CAN bus and acquires an analog signal

., n} ECUs represented as E(;), with a fingerprinting
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A
Eq E@ Ew) =0)
B
————————— Signal
ECU ® Acquisition
Distortion
Estimation
ECU & PIN Identification l l
Hearal ' Feature
e Extraction
Output
Train Neural
: Network
Learned Model
FIGURE 1
Generalized architecture of the CAN bus (A) and block diagram of the proposed device identification system (B). Green arrows — here represent the
learning phase, and red arrows — here represent the testing phase of device identification.

yEi“))(t) transmitted by the i" ECU, E(j), where i € y. The E(,). As
represented in Equation 1, the fingerprinting ECU, E(y), converts
the analog measurement at its input, ygf)) (1), to its digital equivalent,

yE:.‘))(n). The fingerprinting ECU, E(,), computes the distortion,
d(;(n), for E;y in the received signal, yE?))(n), by subtracting it from
the expected signal level, ygf))(n), ie.,

da(m) = y(5) () = (5 (m) (1)
Here, {d(;j(n) € ng | ng:[L — U]}, where L = —0.10

and U
respectively.

= 0.10 represent the lower and upper distortion values,
The d;(n) is then used for feature extraction to generate
the feature vector X = {x(l),x(z), . ,x("’)} for E(;, where m
represents the number of features, r € R, and R is the total
number of records. The extracted features are used in an artificial
neural network architecture for training data and evaluation of
test data. Shown in Figure 1B, is the generalized architecture of
the CAN bus (Figure 1A) and block diagram of the proposed
device identification system (Figure 1B). A brief description of each
processing block is provided in the following subsections.
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2.1 Signal acquisition

The E() acquires the analog signal yE?))(t) generated by E;

and converts it into a digital signal yg?))(n) as represented in
Equation 2.

a

)’E,‘))(") = }’E?))(f)h:nn, T, =50 x 1077 ()

The T
and a sampling rate of 20 MSa/sec for the signal. The reason to

50 x 1077 represents a sampling time of 50 ns

generate ygg)(n) is that the yE?))(t) occurs at infinite instants of time,
thus demanding large memory to get stored. However, the analog-
to-digital conversion is performed because the E(;) have limited
memory. The number of bits required to store each sample is n;

in our case, n 8 bits. To extract distortion, we compute the

expected signal ygf)) (n) from yg;l))(n) using Equation 3:
. (e)
() 35v 33 <y, () <37
S(n) = 3
Yo () 2.5v : Otherwise )

Equation 3 here represents the mapping of the received signal,
ygf))(n), onto the CAN high and CAN low voltage levels, e.g.,

frontiersin.org
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3.5V and 2.5V. Specifically, the received signal, yEf))(n), is mapped
to 3.5v if yg;l))(n) is between 3.3v and 3.7 v; otherwise it will be

2.5v. The signal yEf))(n) represents the expected signal from E;
however, it has been observed through extensive analysis of CAN
communication signals that the actual signal levels differ from the
expected signal levels. As shown in Figure 2A, the waveform of
the CAN signal captured using a DS1012A oscilloscope for the
yEia))(n) significantly differs from the expected signal ygf)) (n) due to
the distortion mainly attributed to semiconductor impurities, the
mismatch between nominal values and measured values of electric
components, the aliasing error of the finite impulse response (FIR)
filter, and the DC offset of the DAC. Moreover, these imperfections
are device-specific and can be used for ECU fingerprinting.

2.2 Distortion extraction

The imperfections observed in the signal acquisition stage are
used for fingerprinting the ECUs. The fingerprinting is quantified
in distortion modeling, which is acquired in the Density Estimation
stage. Before distortion modeling, we acquire distortion as shown
in Figure 2B, which is represented in Equation 4.

diy(n) = 35 (n) — ¥ (). (4)

There are four main reasons for distortions, which are discussed
as follows:

2.2.1 Mismatch of nominal and measured values
of electric components

Imperfections in the electric components are one of the sources
of d;(n). These imperfections can be described as deviations of
the measured values of electric components from their nominal
values. Let R, be the value of the feedback resistor of the E;, and
dRg, represents the deviation from the nominal value, commonly

known as the tolerance level. The actual resistance Rg, can then be
expressed as Equation 5, which is as follows:
Ragy = Royy + SRy )

Let dg;) (n) represent the distortion due to § RG> which is the first
cause of distortion at the DAC output. The purpose of a DAC in an
ECU is to convert bits into a physical signal in the form of voltage,
as shown in Figure 3. The reason for this conversion is that the
signal propagates through a channel in the form of a physical signal.

2.2.2 Semiconductor impurities

During semiconductor device manufacturing, the impurities
in the silicon used for manufacturing semiconductors cannot
be removed entirely (Pizzini et al., 1986; Pizzini, 2010; Roskill,
2011; Yoshida and Langouche, 2015). These impurities in the
semiconductor can cause flicker distortion (also known as 1/f
noise) at the DAC output (Godfrey et al,, 2015). We represent

the distortion due to semiconductor impurities as dg))(n), which
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is one of the sources of distortions at the DAC output. The
imperfections in the device material and fabrication process are the
other contributing factors to the observed distortion.

2.2.3 Non-ideal behavior of low-pass filter

Another contributing factor in distortion is an aliasing error
due to the non-ideal behavior of the low-pass filter used in
digital-to-analog conversion. The digital signal, acquired through
the continuous signal sampling operation, introduces periodic

repetition of its spectra. Let Y((ie))D (f) represent the Fourier transform
of yEf)) (n), which is input in DAC, and Y((f)) (f) represents the Fourier
transform in form of the continuous signal. Low-pass filtering is

(e) (o)
used to filter out Y;’(f) from Y -

which is commonly implemented using a FIR filter realization.

(f) to avoid unwanted copies,

Equation 6 represents the relationship between input and output
of the DAC,

oo
Y00 = 30 G —nf) ©
n=—00
Let H(f) represent the transfer function of the FIR filter; the
output of the FIR filter can be expressed through Equation 7.

Yoy () = Y((ie))D (H.H(f) (7)

Ideally, Y(j),,; (f) should be the same as Y((ie))(f), but due to
an aliasing error these values differ. The non-ideal behavior of
FIR realization introduces aliasing at the DAC output. Let dgf))(n)
denote distortion due to the non-ideal behavior of the low-pass
filter realization for the E(;). This is the third cause of distortion
in the output of the DAC.

2.2.4 DC offset error

The DC offset error in the DAC is another source of distortion
(Pavan et al., 2017). Ideally, the dominant bit level is 3.5 V and the
ideal recessive bit level is 2.5 V, as shown in Figure 3, but DC offset
dgia))(n) is added to the ideal voltage value due to grounding issues
in the DAC. The total distortion d(;)(n) due to DAC for the E(;y can
be expressed as Equation 8,

dy(n) = i) (m) + di) () + dig ) + (). (8)

Similarly, we can derive from Equation 4 that:

78 ) = y{5) () + dgy (). ©)

Therefore, Equation 9 validates our hypothesis that the
distortion added to the received signal is dynamic and can be an
effective measure for fingerprinting the ECUs.

Furthermore, the device-specific distortion is also unique for
each pin within the E;), represented as E(;j, where { [ € ¢ | { =
1,2,...,A } are the total number of pins within E(;. This also
elaborates that we need to determine the affected ECU and the
relevant pin for attack modeling. Additionally, pin-level artifacts
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A B
ECU-Specific Distortion Distortion of E;
88y Actual Signal (y(;) (1)) 01t ——d(y(t) for Actual Signal (3 (1))
361 - - —E'xpected Signal (?J((;)) ) 0081 ——d;(t) for Expected Signal (ygf)) )R
MY AR (o o8| *
34 y 1 w 004
w 327 § 0.02 |
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FIGURE 2

Screenshots of the actual and expected waveform vs. ECU signal. (A) Actual and expected waveform. (B) Distortion in the ECU signal.
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FIGURE 3

Ideal voltage levels for CAN.

effectively detect spoofing attacks launched from a different pin
of the same ECU. Recently, Sagong et al. (2018b) demonstrated a
voltage-based attack that permanently damages a target ECU pin.
A voltage-based attack is launched by an adversary, which sends
a high voltage through a pin (which has a maximum capacity of
5 V) to damage the pin permanently. However, these attacks can be
avoided by fingerprinting the E; ).

2.3 Density estimation

After the distortion modeling, we use d(;(n) for histogram
generation. These histograms will then be used as fingerprints for
E(;y and E(;j). In order to make a histogram, we need to group the
distortion values in m histogram bins with step size 8, which can be
computed as in Equation 10.

Frontiersin Computer Science

B= <E> (10)
m

Where U and L represent the lower and upper values for

distortion, and m represents the number of bins. In our case,

m = 200; thus, step size S becomes 1073, The histogram h;(k)

for N = 1500 samples of d(;)(n) is computed using Equation 11.

Here, k = {0,1,2,...,m}.

63))

NN
hok =Y [S(L + 100) + h(i)(k)]
n=1 ﬂ
Where §(.) denotes the Kronecker delta function (Adnan et al.,
2018), that can be computed through Equation 12.

1 : n=k

12
0 : Otherwise (12)

8(n-k) = {

Figure 4 shows the histogram h; (k) of E()-E(). Afterwards
hiy (k) is used as feature set X(;) = (D, 5@ xmy,

2.4 ANN-based model learning

An artificial neural network (ANN)-based model is

used to identify the source ECU and the corresponding

pin. For this the ANN gets X, = {Xq1),X2).-->X®)
as input-set and corresponding ECU- and pin-labels
Yie = Dwepyees - Ywrob Yop = Wapsyep---Yep)

respectively; and it predicts the ECU-labels and corresponding
pin—labels as ?(r,e) = {)’\/(1)6),)’\/(2)6), - ,}A/(R)e)} and ?(T,P) =
{j/(l)p),j/(z,p),...,j/(R)p)} respectively, where e € y, p € ¢, and
r € R. The classifier is trained on the dataset with three hidden
10), using the
“scaled conjugate gradient backpropagation” method for weight

layers, each with v neurons (in our case v =

optimization. For hyperparameter tuning, we used GridSearchCV

frontiersin.org



Hafeez et al. 10.3389/fcomp.2024.1392119
hy (k) h) (k) hs) (k) by (k)
, 600 ., 600 2 600 , 600
N} Q 1 Ny
Q Q 3 Q
< N Q <
Q ) N Q
S 400 S 400 L 400 S 400
Q 3 3 Q
S QO S S
Q Q QU Q
S 200 S 200 <. 200 S 200
: : : :
0 | = 0
0 100 200 0 100 200 0 100 200 0 100 200
Samples Samples Samples Samples
hs) (k) he) (k) hir) ()
, 600 ., 600 , 600
o8} 8] 8]
Q Q Q
Iy Iy I
8] \8} 8}
S 400 S 400 S 400
Q Q Q
O Q Q
Q Q Q
S 200 S 200 S 200
3 3 3
Z Z Z,
0 ouw
0 100 200 0 100 200 0 100 200
Samples Samples Samples
FIGURE 4
Histogram of dy;(n) for ECUs E)—E (7).

(a scikit-learn library) to search for the best parameter values
from the given set of parameters. Several hidden layers and
neurons were tested using this library. Empirically, we chose three
hidden layers and determined the number of neurons (Arif et al.,
2023). During the training phase, the model learns the weight
vector represented by: we = (W, w® Wiy for all Eg
and wp = (WD, W@ W) for all E(ij. The output of both
networks is then merged as the final output during the testing
phase (Figure 5). The ANN architecture for ECU recognition is
presented in Table 1, and the same architecture is also used for
ECU-pin recognition.

Table 1 summarizes the neural network structure used in this
study, including the input layer, middle (hidden) layers, output
layer, and error correction mechanism. The input layer, represented
as X(r), receives data with dimensions 1 x m. The middle layers
perform computations on the input vector b using a weight matrix
U, resulting in an output vector ¢ through an activation function
f. Similarly, the output layer processes the input vector d using a
weight matrix w, resulting in an output vector ¢ through another
activation function g. The error correction mechanism is described
by the calculation of the cost function E and the update equations
for the weight matrices w and U, denoted as AWj; and AUy,
respectively. These equations involve gradients of the error with
respect to the weights and are updated using learning rates o
and B for w and U, respectively. This comprehensive structure
outlines the flow of information and the mechanism for adjusting
weights to minimize errors during the training process of the
neural network.

Frontiersin Computer Science

06

3 Results and discussion

3.1 Experimental setup

The proposed approach evaluates inter-class (amongst
ECUs) and intra-class (amongst ECU pins) variability for
message authentication. For inter-class variability, seven ECUs
(transmitters) of the same make and model were used in this study,
and data was recorded through the CAN-High (CANH) pin. For
intra-class variability, six DAC pins of the same ECU were analyzed
to determine the pin-level characteristics.

The hardware comprised seven Arduino UNO-R2 micro-
controller kits; seven CAN-Bus shield boards with MCP 2515 CAN-
bus controllers and MPC 2551 CAN transceivers; and a DS O1012A
oscilloscope to record the voltage samples with a sampling rate of
20Msa/s, with 100 MHz bandwidth. Matlab R2018a software was
used for statistical data analysis of the sampled signals. A computer
simulation that continuously transmitted messages from different
ECUs and pins was written. Afterward, these messages were then

used as the dataset for model training and evaluation.

3.2 Dataset description

The ECU identification dataset comprised 1,295(7 x 185)
records with 1,500 samples in each record. Whereas, for pin-level
identification, a dataset was collected for six different pins of each
transmitting ECU with 40 records for each pin. The dataset used

frontiersin.org



Hafeez et al. 10.3389/fcomp.2024.1392119

Input Hidden Output
layer layer layer
Input #1 —
Input #2 -
Input m —
Decision —'E(i,l)
Input Hidden Output
layer layer layer
Input #1
Input #2 —
Input m
FIGURE 5
Merged neural network structure.

TABLE 1 Summary of neural network structure for every E(; used in this To ensure the proposed classification scheme was robust and

study.
not overfitting to the training data, we implemented several
Input validation techniques. The model was evaluated using various
put T = @, dm()=1xm (1) metr1c§: the dat.as‘et was .randomly split into trj{unmg 'de testing
sets with a training ratio of 70% and a testing ratio of 30%.
Middle (hidden) layers (1-3) In addition, regularization techniques such as L1 (Lasso) were
Input: b =UX dim(b)=1 x v (12) incorporated into the model. Moreover, early stopping criteria were
Output: 7 =f(b) dm(T)=1 x v (13) introduced during the training phase. In addition to accuracy, the
model was evaluated using precision, recall, F1-score, and AOC.
U: m X v weight matrix . . .
By implementing these techniques, we ensured that the proposed
f: e classification scheme was validated rigorously and could generalize
Output layer well to new, unseen data.
— N =
Input: d=w,¢ dim(d)=1 x v (L.4)
Output: = g(d) dim(¢)=1 x v (1.5)
e v x m weight matrix 3.3 Performance evaluation measures
g Tred
: = .
1+ We used precision, recall, F; score, accuracy, and error rate
Error correction as performance evaluation measures. To evaluate the effectiveness
Cost: E=- Y1 Wielogo)] (L6) of the proposed method, we determined how many ECUs were
AW, = QB[ Wiy = abic; 7 correctly identified in response to messages sniffed by E). Let TP
represent the true positive rate, FP represents the false positive
AUy =—BIE/dU, (1.8)

rate, TN represents the true negative rate, and FN represents the

false negative rate. Then precision can be defined as follows in
Equation 13.

here was collected in the same environment, i.e., under the same
temperature, and using an identical message to observe the unique TP
Precision = (13)

variations of the digital signals. TP + FP

Frontiersin Computer Science 07 frontiersin.org
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FIGURE 6

Density approximation of distortion and effectiveness of our feature set. (A) Density approximation of distortion. (B) Effectiveness of our feature set.
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Precision was used to measure the ratio of the true instances
against the retrieved instances for a particular class. To measure the
sensitivity, we used the recall rates that can be computed as follows

TP
AN (14)
TP + FN

in Equation 14.
Recall = (

Recall was computed to measure the total number of retrieved
relevant instances. In order to combine both measures, i.e.,
precision and recall, we used the F; Score that was computed as
below in Equation 15.

(15)

Precision x Recall
Fj score =2 x

Precision + Recall

The higher F) score signifies the robustness of the classification
approach. In order to evaluate the overall performance by
considering all the classes together, we computed the accuracy as
follows in Equation 16.

(16)

B TP + TN
ccuracy =
Y=\ TP INT FP 1 EN

Accuracy was computed to measure all instances that were
correctly classified, despite the fact, whatever class they belong
to. Moreover, by using the accuracy value, we also computed the
overall error rate as follows in Equation 17.

Error rate = 1 — Accuracy (17)

3.4 Feature stability analysis

This experiment aims to validate that different ECUs, even
of the same make and model, introduce different artifacts while
transmitting an identical message, and this uniqueness can be
exploited to counter spoofing attacks. To achieve this goal, all
ECUs transmitted the same messages over the same channel with
constant settings regarding temperature and environment. Data
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was recorded for each ECU with identical channel inputs and
transmission parameters to validate the claim of ECU-specific
distortion. To verify the uniqueness, we estimated the distortion
density function by applying the Spline function (Hirst and
Espesser, 1993) over the histogram h;)(k) to get f,;(n) as shown
in Figure 6A. The estimated distortion distribution represents the
physical characteristics of each ECU. In order to find the stability,
we generated the f,,(n) of each ECU 100 times and computed the
mean and standard deviation (STD). From Figure 6B, it can be
observed that the difference between the mean and mean + STD
is negligible, which shows that the feature set remains constant
over time for each ECU. Hence, it is proved that the proposed
feature extraction approach induces the unique attributes for ECU
representation that make it effective for ECU identification.

To further validate the uniqueness attribute of the proposed
method, we plotted f;,,(n) for seven ECUs as shown in Figure 7,
which clearly shows that each ECU has a unique representation.
The benefit of the uniqueness is that the attacker cannot replicate
an ECU’s profile, thus signifies that our approach is robust against
spoofing attacks.

3.5 ECU-level identification

The purpose of this experiment is to validate that any two
ECUs exhibit different distortion profiles, i.e., any two ECUs, even
from the same make and model, introduce different artifacts into
the transmitted signal. To achieve this objective, seven ECUs were
used to transmit the same message over the same channel with
the same environmental settings, e.g., temperature, environment,
etc. A seven-class multilayered neural network classifier is trained
and tested on the data collected using data acquisition method
described in Section 3. Shown in Tables 2, 3, and Figure 8 are
the confusion matrix, performance evaluation in terms of selected
performance metric, and detector receiver operating characteristic
(ROCQ), respectively.
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TABLE 2 Confusion matrix for ECU-level classifier.

Target class

Eqy) Ep Es Ew Eis Ee Eg Total%
Eqp | 185 | 0 0 0 0 0 0 100
Ep) 0 184 2 0 0 0 0 98.9
E@ 0 1 183 0 0 0 0 99.5
,
% | By 0 0 0 185 0 0 0 100
3?; Es 0 0 0 0 183 3 0 98.4
E’ E) 0 0 0 0 2 182 0 98.9
E¢ 0 0 0 0 0 0 185 100
Total | 100 99.5 98.9 100 98.9 98.4 100 99.4
%

From Table 2, it can be observed that the proposed method
achieves very high accuracy for ECU classification. The high
accuracy signifies that the distortion introduced in each ECU due to
DAC imperfections and semiconductor impurities is unique, thus
resulting in high accuracy for ECU identification. Moreover, it also
validates our hypothesis that the distortion due to DAC and semi-
conductor impurities has the potential for ECU fingerprinting for
attack detection. It can also be observed from Table 2 that Eqy,
E), and E() have 100% detection rates, which is mainly associated
with the high distortion values appearing in the form of high
peaks as shown in Figure 4. Moreover, by analyzing Table 2 from
the perspective of Figure 4, it can also be observed from T that
if distortion is concentrated in a certain region, it increases the
inter-class variability, which is one of the targets of this research.

Similarly, Table 3 shows that E), Eq) and E) have 100%
precision, recall, accuracy and Fj Score rates. Furthermore, E)
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has a 99.5% recall, which means it has only one false negative
record; the other performance evaluation rate slightly drops. On the
other hand, E(3) has 99.5% precision; it has only one false positive,
therefore slightly affects the precision.

Figure 8A shows the graphical representation of the ECU
identification results. A high correlation among the performance
evaluation measures for all ECUs signifies the reliability of the
proposed method. Furthermore, the area under the curve analysis
of the ROC plots, as shown in Figure 8B, confirms our claim
that unique distortions in the output of electronic devices can
be used for fingerprinting and identification. This has many
applications, ranging from hardware authentication to attack
detection and localization.

3.6 Pin-level identification

The purpose of this experiment is to validate that different
ECUs exhibit different distribution profiles, meaning that is,
different pins of the same transmitting ECU introduce different
artifacts into the transmitted signal. Pin-level fingerprinting can
be utilized for reliable attack profile generation. To achieve this
objective, six pins of the same transmitting ECU were used to
transmit the same message over the same channel with the same
environmental settings, such as temperature and environment. A
six-class multilayered neural network classifier was trained and
tested on the data collected using the data acquisition method
described in Section 3. Shown in Table 4 is the performance of the
proposed method in the confusion matrix (in terms of the number
of samples per class).

Shown in Table 5 is the performance of the proposed method
in terms of selected performance evaluation measures, including
precision, recall, Fjscore, accuracy, and error rate. It can be
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TABLE 3 Performance matrix of the ECU-level classifier.

10.3389/fcomp.2024.1392119

- Precision (%) Recall (%) Accuracy (%) F, score (%) ERR (%)
Eq 100 100 100 100 0
Ep) 98.9 99.5 99.8 99.2 0.2
E@) 99.5 98.9 99.8 99.2 0.2
Ew 100 100 100 100 0
Es) 98.4 98.9 99.6 98.6 0.4
Ee) 98.9 98.4 99.6 98.6 0.4
Eo) 100 100 100 100 0
A , B ROC
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FIGURE 8
Bar graph and ROC of E; for the ECU classifier. (A) Bar graph of PM for ECU Classifier. (B) ROC of Ej;.

TABLE 4 Confusion matrix for pin-level classification.

Target class

Pin(l) Pin(z) Pin(3) Pin(4) Total %
Ping;) 38 2 0 0 0 1 92.7
Piny) 2 37 0 0 0 0 94.9
2 Pings) 0 0 40 0 0 0 100
.;: Piny) 0 0 0 40 0 0 100
% Pin(s) 0 0 0 0 39 1 97.5
I
= Ping) 0 1 0 0 1 38 95
Total % 95 92.5 100 100 97.5 95 96.7

observed from Tables 4, 5 that pins # 3 and 4 achieved perfect
detection, with 100% precision, recall rate, accuracy, and F; score.

pins, e.g., pins 1, 2, 5, and 6, are expected to generate more
interesting results.

Overall, the proposed method achieved an overall 96.7% detection
rate for pin-level identification. Although detection rates for pin-
level identification are slightly lower than ECU-level detection.
The same results are graphically presented in Figure 9A. The area 3.7 Comparison against state-of-the-art
under the curve results, as presented in Figure 9B, show that the
pin-level detection of the proposed approach is still satisfactory. In this section, the proposed method is compared against state-
of-the-art methods that are also doing the ECU identification. The

performance is compared against ECU detection using Viden (Cho

It is important to highlight that the notion of pin-level detection
is a novel concept; research efforts focused on finding why edge
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TABLE 5 Performance matrix of pin-level classification.

10.3389/fcomp.2024.1392119

- Precision (%) Recall (%) Accuracy (%) F, score (%) ERR (%)
Pingy) 92.7 95 97.9 93.8 2.1
Pin,) 94.9 925 97.9 93.7 21
Ping) 100 100 100 100 0
Pingy) 100 100 100 100 0
Pings) 97.5 97.5 99.1 97.5 0.9
Ping) 95 95 98.3 95 1.7
A B ROC
1
Per formance Matriz
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FIGURE 9
Bar graph of PM and ROC of pin classifier. (A) Bar graph of PM for pin classifier. (B) ROC of pin classifier.

and Shin, 2017), Inimitable characteristics of CAN signal (Choi
etal., 2018a), and VoltageIDS (Choi et al., 2018b).

3.7.1 Comparative studies

Cho and Shin (2017) proposed a method called Viden that
utilized the voltage profile of acknowledgment (ACK) bits for
transmitter identification. In the first phase, the ACK bit was used to
determine if the message originated from the genuine transmitter.
Afterward, voltage measurements were used to generate ECU
fingerprints. Based on these fingerprints, the attacker ECU was
identified. In Choi et al. (2018a), a monitoring unit was installed
in the vehicle that analyzes the electrical CAN signals and computes
the statistical features. These features were then classified to identify
the ECU. In Choi et al. (2018b), ECU detection based on inimitable
voltage characteristics technique was proposed. The feature vectors
proposed by Choi et al. (2018a) were extended both in time- and
frequency domains and were classified for ECU identification by
Choi et al. (2018b).

3.7.2 Performance comparison
Table 6 shows the performance comparison of our method
against (Cho and Shin, 2017; Choi et al., 2018a,b). The results show
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that our method is giving higher accuracy compared to Choi et al.
(2018a,b), whereas it is giving almost the same performance as Cho
and Shin (2017). However, the main advantage of our method is
that feature extraction and message authentication can be done in
any part of the signal without latency. Whereas, in the case of Viden,
the voltage profile is estimated for message authentication during
reception of the ACK bit, but it also introduces latency. Hence, from
the aspect of latency, our method is more robust than the Viden.

4 Conclusion

In this research study, a novel approach for electronic control
unit (ECU) identification in a vehicular network is presented.
The main motivation behind ECU identification is that the
CAN protocol lacks sender ECU information, which makes it
prone to spoofing attacks. Our proposed device identification
framework allows cybersecurity professionals to detect and localize
transmitting devices even without transmitter information.

This study utilizes electronic device-specific distortion for
device identification. The proposed approach utilizes unique
but physically unclonable distortions in electronic device output
stemming from the material’s intrinsic imperfections and the
manufacturing process. We have demonstrated that device-specific
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TABLE 6 Comparison with other methods.

Research study Method Accuracy

Cho and Shin (2017) Viden 99.57%

Choi et al. (2018a) Inimitable Char. of 96.48%
CAN Signal

Choi et al. (2018b) VoltageIDS 95.54%

Our method Distortion based 99.4%
IDS

distortions are unique for all ECUs, even from the same make,
model, and manufacturer. We have shown that device-specific
distortions can be used to detect and localize devices on the
network. We realized the proposed device identification framework
using a 4-layered artificial neural network architecture. We have
also demonstrated that the proposed framework can be used for
device output-pin identification (e.g., device pin being used for
message transmission).

For future study, we will investigate the robustness
and reliability of the proposed framework under different
humidity,
electromagnetic interference, sampling rate, etc. We also plan

environmental  conditions, ie., temperature,

to evaluate its performance of the proposed system in real-
time applications. In this regard, fuzzy logic-based decision
modeling will be considered for the proposed ECU and pin

identification framework under various environmental and data
acquisition conditions.
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