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Investigating the role of network
former interactions on charge
carrier diffusivity in glasses

Tyler C. Salrin?, Caio B. Bragatto? and Collin J. Wilkinson*

!Department of Glass Science, New York State College of Ceramics at Alfred University, Alfred, NY,
United States, ?Physics Department, Coe College, Cedar Rapids, IA, United States

lonic transport is a critical property for the glass industry, since emerging
applications such as sensors, batteries, and electric melting are based on the
phenomenon. Short-range interactions (anion-charge carrier) have not been
able to explain the total activation barrier observed experimentally, and, as such,
it is critical to understand the larger role of all ions in a glass, not just the carrier
and the ‘site’ ions. This research focuses on the role of network formers and their
impact on diffusion in glasses, something that current models lack an explicit
explanation of. Atomistic simulations with randomly generated parameters for
the cation potentials and classical simulations were used to determine the
diffusion coefficients and activation energies for synthetic network formers.
Using this database, explainable machine learning algorithms were employed
to explore network former interactions and determine which parameters are
the most influential for ion diffusion. Results suggest that the bond length of
the cations changes the geometry of the structure contributing the greatest to
cation-modifier interactions.
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1 Introduction

Diffusion in glasses is a fundamental phenomenon that is critical to areas ranging
from batteries and glass manufacturing to ionic membranes and electrochemical sensors
(Bragatto, 2020; Du and Cormack, 2022). Tonic conductivity, was first investigated in glasses
by Emil Warburg in 1884 who confirmed Faraday’s law through the transportation of
sodium ions across a thin window glass (Warburg, 1884). One of the prominent advantages
of ionic conductive glasses compared to crystalline materials lies in their near unity ionic
transport number. This implies that they predominantly conduct electricity through the
movement of ions, significantly reducing the risk of potential short-circuits in applications
like batteries. Typically, highly ionic conductive oxide glasses consist of monovalent cations
such as alkali metals introduced to the glass as salts or oxides. The conductivity of these
glasses is heavily influenced by the type and concentration of the cations, as well as the
network former employed (Varshneya and Mauro, 2019; Bragatto, 2020).

Tonic conductivity can be related back to diffusion through Einstein’s relation for
Brownian motion with a electrical force due to the cations. Furthermore, diffusion in
glasses happens through a hopping mechanism that is not dependent on previous steps,
characteristic of Markovian processes (Geyer, 1992; Mauro, 2021). The hopping sites are
usually defined by non-bridging oxygens and the spatial variation thereof. Though these
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sites are spatially varied, the distance of the jump only linearly
affects the diffusivity, while macroscopically the diffusivity is
scaling exponentially with temperature as described by the
Arrhenius equation (Geyer, 1992; Mauro, 2021). The exponential
dependence on the activation energy makes this parameter critical
to understanding ion diffusion in complex glasses.

Some ionic conductivity models suggest that this exponential
nature arises due to the energy required to dissociate the ion
from the anion and move the ion to the next site (Charles, 1961;
Ravaine and Souquet, 1978; Martin, 1991; Bragatto, 2020). As a
result, these models suggest that the greatest effect on conductivity
comes from the interactions between anion-mobile species for a
glass consisting of a mobile species (modifiers), an anion (typically
oxygen), and formers of cation networks. Although qualitatively
the largest interactions come from the anion, it is not the only
effect. If only the anion-modifier interactions contributed, then the
activation barrier should not have a large variation, which is in direct
contrast to what is experimentally observed (Martin, 1991).

Cation-modifier interactions remain largely abstracted away
in modern ionic conductivity models through the inclusion of
macroscopic properties to describe microscopic activation barriers.
The lack of an analytically predictive activation barrier model and
the recent increase in solid-state battery research have created
a drive to understand the origin of ionic diffusion in glasses.
Recent molecular dynamics work has helped to elucidate the
origin of the barriers, but the explicit role of the cation on the
activation barrier has remained largely undiscovered (Welch et al.,
2019; Wilkinson et al., 2020). The anion-charge carrier interactions
dominate the diffusivity, but the role of the cations cannot be
ignored. This has been particularly emphasized in the battery
literature, where the charge carrier-anion is generally the same
(lithium-sulfur/lithium-oxygen), but the activation barrier changes
widely based on the network former chosen for the system
(Wild et al., 2015; Zhao M. et al., 2020).

Current models for ionic conductivity in glasses generally fall
into either strong or weak electrolyte models. The first strong
electrolyte model, proposed by Anderson and Stuart in 1954
(Anderson and Stuart, 1954), defines two activation energies, one
accounting for the energy required for the charge carrier to break
free from its current site and another to account for the energy
needed to distort the network (Anderson and Stuart, 1954; Bragatto,
2020). Another strong electrolyte model developed by Charles in
1961 describes the charge carrier as an interstitial defect where
two cations (i.e., the former network and charge-carrier) share
a nonbridging oxygen (Charles, 1961). In each of these strong
electrolyte models, the cation effects are included in an effective
‘Madelung’ constant and the shear modulus of the material, but this
does not illustrate the local pathways (Anderson and Stuart, 1954;
Charles, 1961; Martin et al., 2019; Bragatto, 2020).

Conversely the weak electrolyte model proposed by Ravaine
and Souquet in 1977 is based on the similarities between aqueous
and glassy electrochemistry (Ravaine and Souquet, 1978; Ravaine,
1980; Bragatto, 2020). In this model the equilibrium constant of
dissolution can be used to determine an activation energy in
which the role of cations is generalized (Ravaine and Souquet,
1978; Ravaine, 1980; Martin, 1991; Bragatto, 2020). While each
of these models has strengths and weaknesses in describing ionic
conductivity in glasses, a major drawback in each of these models
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is that the role of the network former is abstracted. This limitation
hinders a detailed understanding of the network former’s role,
crucial for a wholistic understanding of diffusion processes.

Due to the heighted interest in the fundamental origins of
ionic conductivity, atomistic simulations of ion conductors are
becoming a routine part of the literature (Welchetal, 2019;
Wilkinson et al., 2020; Du and Cormack, 2022; Salrin et al., 2023).
Of these simulations, molecular dynamics is particularly powerful.
In molecular dynamics simulations, an interatomic potential
describes the energy of the system and is used to compute the forces
acting on each ion. The dynamics of the system can then be predicted
through temporal integration. This means that an ion is uniquely
defined through its potential and mass. There are many common
potential forms, however classical two-body potentials offer the
simplest description of the energies. These potentials are often
used for modeling oxide glasses because of their ability to retain
accuracy when cation-cation interactions are omitted. This leads
to a simplified model, where only the cation-oxygen and oxygen-
oxygen interactions must be defined. This approach has shown
great success in modeling the transport and mechanical properties
of oxide glasses (Welch et al., 2019; Atila et al., 2020; Zhao Y. et al,,
20205 Salrin et al., 2023).

Understanding the physical processes controlling diffusion
would enable new insights into the materials for emerging
electrochemical applications. It is the goal of this work to draw
conclusions about the influence of the interatomic potentials on
the diffusion of alkali ions using explainable machine learning
algorithms to gain a better understanding of the physical principles
governing diffusion in oxide materials. Herein the focus is on glasses
with fixed anion-charge carrier interaction while changing the
network former cation potentials. Exploring the role of the network
former potentials on the ionic diffusivity involves randomly creating
network former potentials and subsequent measurements of the
diffusivity. The results are used to train an interpretable machine
learning algorithm. From this interpretable machine learning,
conclusions are drawn on the role of network formers on ionic
diffusivity.

2 Materials and methods
2.1 Interatomic potential

The interatomic potentials defined by Pedone etal. provided
a starting point for the simulations presented here (Pedone et al.,
2006). This potential has become a staple of atomistic glass research,
as it provides a self-consistent force field for a wide selection of oxide
components with the goal of being able to reproduce the structure
and mechanical properties of these oxide glass systems (Welch et al.,
2022; Salrin et al., 2023; Welch et al., 2023). This force field takes the
form of Morse potential with an added Coulombic term,

U(ry)

C;;
. +Dl—j {1—exp(—AZ-j(rij—rO))}z—l]+rl—;. (1)
i i

- Zl-Zje2

Here, ri is the distance between the atoms i and j, Z; and Zj
are the effective partial charges of atom i and j, respectively, e is the
elementary charge, D;; describes the bond dissociation energy, 4;; is
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FIGURE 1
The interatomic potential for some common network former-oxygen

and the modifier-oxygen interaction used throughout this work, and
the defined modifier and network former regime. The randomly
generated network former potential has the criteria of falling into the
blue network former regime. The modifier regime (A Regime)
calculated from Pedone is shown in orange, and the orange dashed
line is the potential of the modifier used in this work.

TABLE 1 The bounds of the randomly generated potentials based on
values given by Pedone (Pedone et al., 2006).

Potential parameter Lower bound Upper bound
Z; 1.8¢e 3e
Di] 0eV 0.5eV
) 0A 5A
Ay 0A! 5A1

a function of the slope of the potential energy well, r,, represents the
equilibrium bond distance between atom i and j, and C;; corresponds
to Van der Waals interactions. Throughout this work, C; is set to
1 eV which is a reasonable approximation as this term only provides
the repulsive contribution of the potential at short distances, and
the value is constant for most of the cation-oxygen interactions in
the original work. The variance in the cation-oxygen interactions is
defined through the Coulombic and Morse terms.

For each potential, the parameters Z;, Dij, Aij, o, and the
percentage of modifiers (x) were randomly generated. This curve
was then compared with the bounds of the network former
regime, as depicted in Figure 1. These bounds are determined by
the absolute minimum and maximum values of known network-
forming potentials given by Pedone (Pedone et al., 2006). If the
energy of the generated potential remains between the bounds of
this network former regime, it was kept and used; otherwise, it was
discarded, and a new potential would be generated. Additionally,
when looking at the table of potential values defined by Pedone,
there are specific ranges over which network former parameters
exist (Pedone et al., 2006). This information was used to determine
bounds for the random generation of each parameter, which are
shown in Table 1.
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2.2 Molecular dynamics

The melts studied in this work were of the form xA,O-(1-
x) NF,O, where A represents a charge carrier (glass modifier)
that remained constant for all simulations, NF represents a former
generated network that was different for each simulation, and
the subscript g is the stoichiometric coefficient that varies with
the charge of the NE There were three types of atoms in each
simulation, oxygen, the charge carrier, and the network former,
where the network former-oxygen interaction was defined using the
bounded random method. The oxygen-oxygen and oxygen-charge
carriers had fixed interactions. The compositions ranged from 0.3
< x < 0.8 and were randomly selected for each simulation. Each
simulation was initialized with 4500-6000 atoms, depending on
charge balancing requirements, and placed randomly in a box with
a starting density of 2.5 g/cm®. The timestep used throughout was
1 femtosecond, and periodic boundary conditions were used. All
simulations were performed using the Large-Scale Atom/Molecular
Massively Parallel Simulator (LAMMPS) (Thompson et al., 2022).

After energy minimization, the simulation was allowed 100 ps to
equilibrate in a microcanonical ensemble (NVE). Subsequently, the
system was held at 3000 K for 100 ps before quenching to 300 K at
a rate of 1 K/ps and equilibrating again for 100 ps at 300 K in the
NPT ensemble. Next the simulation was heated to 1400 K over a
20 ps interval followed by an equilibration at 1400 K for 100 ps with
NPT conditions to ensure equilibrium and steady-state diffusion.
MSD data was then collected over the next 100 ps time interval
under NVT conditions, and this process was repeated at 2200,
2600, 3000, 3500, and 4000 K. In some simulations, the potential
failed at the highest temperatures, but sufficient data from the lower
temperatures was still used. Replicate tests were carried out on two of
the systems to confirm that the simulation results were reproducible.

To obtain values for the activation energy (E,), D is given by,
(Welch et al., 2019; Du and Cormack, 2022; Salrin et al., 2023),

m2

= 2
2'1’ld'At ()

with m? as the mean squared displacement in n,; dimensionality
over the time interval At. Values for m® were calculated every
picosecond and corrected for the motion of the center of mass.
Convergence in steady-state diffusion was ensured by sufficiently
high temperatures but excluding temperatures at which the
potentials failed on an individual basis. Additionally, an error
estimate is obtained by estimating the uncertainty in the slope
of the mean-square-displacement. E, calculated by assuming an
Arrhenius dependency of the diffusion coefficient with temperature:
(Varshneya and Mauro, 2019)

EA
D= Doexp<—ﬁ>.
B

D, is the pre-exponential factor, k;, is Boltzmann’s constant in eV,

(©)

and T is the absolute temperature. All scripts are accessible through
arequest to the corresponding author.

2.3 Machine learning algorithm

In this investigation, a variety of machine learning algorithms
were tested to determine the optimal model. The models tested
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TABLE 2 RMSE of all trained models.

10.3389/fmats.2024.1365747

Model First featurization RMSE Second featurization RMSE
Linear 0.060 0.062
GPR 0.078 0.57
RF 0.081 0.074
ANN 0.058 0.099
include linear regression (LR), Gaussian process regression
(GPR), random forest (RF), and artificial neural networks A 100K 000K
(ANN). The models are summarized in Figure 2. All predictive 1800K 3500K
models were constructed using scikit-learn and for ANNs, Keras. 6 F —— 2200K = 4000K

Hyperparameter optimization was performed for each of the models
through a grid search process, and the root mean square error
(RMSE) of each model served as the metric of comparison. 70%
of the initial data were used for training and validation through a
K-fold cross-validation process with five splits, and the remaining
30% was used for testing. The machine learning models described
here are summarized in Table 2.

For each of the models, the parameters from the network former
potential, Z;, D, a;;, and r, as well as the compositional parameter,
x, served as the model features. To simplify the system, the anion
is fixed to be oxygen, thus j in each of these parameters is oxygen
(i.e, D;y, a;,). A second parameterization was developed using the
parameters derived from the plotted curve. In the second set of
parameters, D, is the lowest energy of the potential well at the
radius, 7, and a, is the second derivative of the potential well at
radius .. This second set of features represents the critical values
of the potential rather than considering each of the potential terms
individually. Additionally, this allows us to test the role of the
equilibrium distance. In the second process, there is no charge
term (z,) because the Coulombic term is added into the rest of the
potential when determining the distance and depth of well.

Interpretations of model predictions were calculated using
Shapley Additive Explanations (SHAP), which were calculated using
the shap module in Python (Shapley etal., 1953; Lundberg and
Lee, 2017). This explainable machine learning technique has shown
success in interpreting Young’s Glass Moduli (Bishnoi et al., 2019).
SHAP values are calculated for each feature of the models and
have the same unit as the target predicted by the models (E,,
eV). Furthermore, these SHAP values are additive, meaning that
summing all the SHAP values for a given prediction plus a base value
(mean of the target value) returns the model prediction. This means
the SHAP values give the contribution of each feature to the final
prediction, allowing for a features importance to be determined for
any nonlinear model.

While there are many great uses for SHAP, there are some
inherent limitations to the technique as well. First, SHAP requires
a nonlinear model for interpretation and assumes additive
contributions of features which may not always be true. Since SHAP
looks at the contributions of every feature this also makes it difficult
when there are many features. This makes it difficult to use this
technique for potentials with more features. Furthermore, SHAP
does not provide results specific to any one network former, rather it
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FIGURE 2
(A) m? as a function of time at different temperatures after annealing

of the system and (B) the diffusion coefficient as a function of the
inverse of temperature. Both (A) and (B) are shown here to be
calculated from the same generated potential.

determines overarching trends in the data, indicating which feature
is the most influential across the data.

3 Results

After 124 simulations, the E, was calculated from the diffusion
coeflicients as shown in Figure 2. All tabulated data used for models
is given in Supplementary Table S1. The first analysis used a Kendall
correlation to compute the ordinal association between sets of
data; this is shown for the original parameter sets and the derived
parameter sets in Figure 3. The results do not show a significant
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FIGURE 3
Coorelation plot between all features and activation energy for the first (A) and second (B) parameterization. The error bars on the activation energy
represent a 95% confidence interval, and some error bars are smaller than the data points. Histograms are included along the diagonal. The numbers in
the lower left cells represent the Kendall correlation coefficient with the magnitude captured in the size of the circles, and the sign is represented by
color (yellow is positive and purple is negative correlation).
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SHAP plot revealing feature importance. Features are listed descending by importance, and each dot represents the feature contributions for that data
point. The color of each data point is determined by the relative magnitude of that data point.

0.05 0.10 Low

linear correlation, motivating the need for more complex machine
learning methods.

Machine learning methods were trained on both the potential
parameters and the derived critical parameters. The ANN trained
in the potential parameters showed the best performance with an
RMSE score of 0.058 eV. The model consisted of one layer with
50 neurons, a batch size of five and a learning rate of 0.01; The
Adam optimizer was used. The SHAP analysis is shown in Figure 4
for the potential parameters and shows the relative impact of each
variable on the resulting prediction where a ‘high’ color means it
is larger compared to the mean and a ‘low’ value means smaller.
The placement of the data from left to right explains whether the
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value decreases or increases the prediction, respectively. Finally, the
variables are listed from the most impactful on the top to the least
impactful on the bottom.

4 Discussion

The results in Figure 3 reveal no correlation with the activation
energy for the parameters explored here. Interestingly, there is a

distinct correlation between r, and A;;, but this can be explained

ij)
given that both are in the exponential of the Morse term.

Additionally, there is a positive correlation between x and E, as

frontiersin.org



Salrin et al.

expected and this is also seen in Figure 4. Obtaining this result helps
support that these simulations are reproducing the effect of changing
composition correctly. The most striking result of this work is the
importance order in Figure 3.

The radius of the Morse term plays the most important role in
the potential, being greater than the charge and energy of interaction
combined. This is a unique result as it shows that the terms most
associated with the energy of interactions (the Coulombic and Morse
terms) do not govern the effect of the cation on the diffusion of ions.
Dy appears to play little to no role in the activation barrier. It is
important to note that the strength of the bond and the length of the
bond are decoupled. This is not physical due to the nature of electron
interactions but acts here as an informative experiment.

The bond
oxygen influencing the activation barrier is not immediately

length between the network former and
understandable, as the jump distance is part of the preexponential
factor for diffusivity in the Arrhenius equation, and the radius of
the network former is not directly present in any of the current
theories of activation energy. Although some may argue this is
considered in the binding factor, two additional possibilities for how
the radius propagates into the activation barrier can be identified,
both of which are agnostic to the strength of the bonding that
occurs. The first is an argument from the Madelung perspective.
The Anderson-Stuart model has an effective Madelung constant
present in the calculation; this is typically a fitting parameter as
the location of the ions in the glass cannot be known explicitly.
Despite this, it can be considered that for a typical glass, there is a
chain of alternating positive (network former) and negative charges
(anion) that terminate with a mobile species (modifier). The effective
‘Madelung’ constant then explains that if the network former and
anions come closer together, there is less of an effective charge action
on the modifier. The effective charge explanation also explains why
the charge plays a systematic role and why the activation energy is
minimized by minimizing the charge of the network former and
minimizing the bond length.

Alternatively, the effect can be explained through a free volume
perspective. The synthesized glass has a unique structure that is
controlled by the chemistry and former-anion interaction of the
network. With a low radius and a low charge there are more oxygens
but also less space for them to fit around the network former,
leading to a theoretical inefliciency in packing. This inefficiency
could lead to a significant effect on the activation barrier by leading
to a difference in the activation volume of ion diffusion. In either
case, it is important to note that the critical parameters of the
network former-anion interactions are the bond length and charge
of the cation, and that the specific energy of the interaction only
weakly affecting the activation energy. Additionally, this indicates
that the network former does not have a direct effect but instead the
network former decides the structure which in turn decides the ionic
conductivity.

Finally, the method used here is a generalizable and can enable
the bonding/property relationship in any glass. This is due to the
ability to directly link the potential parameters to the properties of
interest. There are limitations as the potential form used here was
‘simple’ and 100 simulations was enough to understand the effects
of the parameters on potentials other complex potentials may be too
complicated for this method to capture the dependence thereof.
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5 Conclusion

This work presents a novel approach to interpret the role
of potential energy curves on the overall dynamics of an ion-
conducting material. This approach is based on a multimodel
approach consisting of molecular dynamics, machine learning, and
SHAP and has enabled the elucidation of which cation-modifier
interactions are dominating the effects on ionic conductivity. It is
important to note again that these are the cation-oxygen effects and
not the charge-carrier—oxygen effects. The charge-carrier—oxygen
interactions remain fixed. It is determined that the radius of the
former oxygen network played the largest role in determining the
ionic conductivity, a result that aids in understanding the ion
conduction in complex glasses. This can be explained through either
a ‘Madelung’ perspective or through free volume. In either case,
the role of the network former is shown to be to determine the
structure, which in turn determines the ionic conductivity, and the
network former interactions do not directly influence the mobility
of a species.
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