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To meet the challenges of rapid population growth and envi-
ronmental change, plant scientists are facing enormous chal-
lenges to improve crops for higher yield, better quality and 

stronger stress resistance1. Genetic and genomic approaches have 
been used for the improvement of many crops2,3, including one of 
the most important staple cereals, rice (Oryza sativa L.). Results 
from extensive functional genomic studies have been transferred 
into practical rice breeding. Some studies using marker-assisted 
selection based on genes that underlie quantitative traits (QTGs) for 
rice disease resistance, submergence tolerance and eating quality, 
were shown to be effective4–8. Recently, a molecular design approach 
was proposed for rice breeding9, and validated by the development 
of new elite varieties through pyramiding multiple major QTGs 
underlying plant architecture, grain shape and starch synthesis10.

While substantial progress has been achieved in rice breed-
ing based on advances in genomics and genetics, further efforts 
are needed to close the gaps between genomic studies and prac-
tical breeding, so that breeding can be performed in a rapid, 
high-throughput and precise manner that takes full advantage of 
whole-genome information. To date, several hundred QTGs have 
been identified11,12 and several thousand rice accessions have been 
sequenced13–18. However, only a few QTGs are clearly mapped in 
genome sequences, with clear allelic states and phenotypic effects 
being available for each accession. This situation is caused partly by 
the lack of integration of available QTG data, which are spread out 
over thousands of publications. Furthermore, many of these QTGs 
have not been converted to precise genomic information. In the field 
of human medical research, comprehensive information on numer-
ous genetic disease-associated variants and oncogenesis-related 
driver mutations have been integrated and used successfully to 
interpret whole-genome sequencing results that were obtained 
for use in health risk assessments and clinical examinations14. In 
rice, in addition to many neutral trait-associated markers, further 
integration of the data of causal genetic variants underlying agro-
nomic traits will enable precise breeding design19. This integrated 
information can also provide important basic insights into mecha-
nisms of adaptation that occurred during rice domestication and 
improvement.

Hence, a universal, rapid and precise breeding system integrat-
ing the knowledge from genetic mapping and functional analyses 
of hundreds of QTGs is needed for the rice community. In the area 
of geoinformatics, the development of map navigation applications 
based on global positioning systems (GPS) has greatly facilitated the 
ability of car drivers to cope with complex road conditions. GPS 
map navigation involves locating the precise position of the driver, 
designing the optimum route to the destination and guiding the 
driver all the way to the destination. Analogously, we generated a 
rice gene encyclopedia containing all known trait-related causative 
variants, created a collection of rice varieties covering these variants 
and developed a genome navigation system for breeding. This bio-
informatics system allows the user to determine the exact allelic sta-
tus at hundreds of QTGs for any rice line, estimate the success rate 
of each given breeding route and select the best genotypes among 
the progeny in each breeding generation. We also tested the genome 
navigation system by successfully implementing a speedy and cus-
tomized improvement for a well-known high-yield indica variety.

Results
A comprehensive catalog of causative variants. Through a com-
prehensive literature search, the abstracts of a total of 29,994 articles 
related to rice genes and quantitative trait loci (QTL) were down-
loaded and curated manually (Extended Data Fig. 1). Genes iden-
tified from artificial mutants (for example, ethylmethanesulfonate 
(EMS), T-DNA and gamma-ray-induced mutants), reverse genetic 
approaches (for example, RNA interference (RNAi), overexpres-
sion and clustered regularly interspaced short palindromic repeats 
(CRISPR)) and genetic mapping but without functional validation 
were all removed from the collection, as well as those specific to 
Oryza glaberrima (African cultivated rice) or wild rice (Oryza rufi-
pogon). A total of 562 alleles in 225 QTGs were identified from 299 
papers published from 1995 to 2020 (Supplementary Dataset 1). The 
QTGs included genes involved in grain yield, grain quality, stress 
tolerance and many other traits (Fig. 1a and Extended Data Fig. 2). 
Further analysis using a method based on an integration of multiple 
genomics approaches revealed 348 causative variants (that is, QTNs) 
corresponding to these QTGs, including 207 single nucleotide poly-

A quantitative genomics map of rice provides 
genetic insights and guides breeding
Xin Wei   1,4, Jie Qiu   1,4, Kaicheng Yong1, Jiongjiong Fan1, Qi Zhang1, Hua Hua1, Jie Liu   1, Qin Wang1, 
Kenneth M. Olsen   2, Bin Han   3 and Xuehui Huang   1 ✉

Extensive allelic variation in agronomically important genes serves as the basis of rice breeding. Here, we present a comprehen-
sive map of rice quantitative trait nucleotides (QTNs) and inferred QTN effects based on eight genome-wide association study 
cohorts. Population genetic analyses revealed that domestication, local adaptation and heterosis are all associated with QTN 
allele frequency changes. A genome navigation system, RiceNavi, was developed for QTN pyramiding and breeding route opti-
mization, and implemented in the improvement of a widely cultivated indica variety. This work presents an efficient platform 
that bridges ever-increasing genomic knowledge and diverse improvement needs in rice.

Nature Genetics | VOL 53 | February 2021 | 243–253 | www.nature.com/naturegenetics 243

mailto:xhhuang@shnu.edu.cn
http://orcid.org/0000-0003-2294-3256
http://orcid.org/0000-0003-1799-1907
http://orcid.org/0000-0001-8976-2332
http://orcid.org/0000-0002-8338-3638
http://orcid.org/0000-0001-8695-0274
http://orcid.org/0000-0003-0529-1532
http://crossmark.crossref.org/dialog/?doi=10.1038/s41588-020-00769-9&domain=pdf
http://www.nature.com/naturegenetics


Articles NATuRE GEnETics

morphisms (SNPs), 90 small insertions and deletions (indels) and 
51 structural variants (SVs) (Fig. 1b). Here, SVs include large indels, 
presence and absence variation (PAV), and copy number variation 
in the rice genome. All of the causative variants were projected uni-
formly onto the rice reference genome (Nipponbare MSU 7.0). We 
examined the functional effects of these causative variants in the 
rice genome. Based on their locations and functional consequences, 
the 348 QTNs were classified into five types, of which the coding 
variant type was divided further into nine subtypes (Fig. 1b). Most 
causative variants (76.1%) are located within coding regions of the 

QTGs, including 48.5% with large effects on protein coding (for 
example, frameshift indel, stop codon gained). This distribution 
differs from maize, where the variation in nongenic regions makes 
a large contribution to quantitative traits20. This contrast may reflect 
differences in genetic architecture observed for many quantitative 
traits between rice and maize, where quantitative traits such as flow-
ering time are controlled by a few large-effect QTLs in rice21,22 but 
numerous small-effect QTLs in maize23.

When several QTNs are located within the same gene, the 
QTG contains three or more allelic forms, which often results in 
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Fig. 1 | Genotype matrix of 225 QTGs for a collection of 404 rice accessions. a, A total of 348 causative variants for 225 QTGs (Supplementary Dataset 1) 
were genotyped for 404 collected rice samples (QTN library, Supplementary Dataset 2). The rice collection includes basmati, tropical japonica, temperate 
japonica, indica, aus and intermediate type (abbreviated as BAS, TRJ, TEJ, IND, AUS and INT, respectively) as shown in the phylogenetic tree. The genetic 
composition of BAS, TEJ, TRJ, IND and AUS are colored with purple, orange, red, blue, green and gray, respectively. The QTGs are classified into nine 
functional categories including Yield components, Heading date, Plant architecture, Seed morphology, Taste quality, Secondary metabolism, Biotic stress, 
Abiotic stress and Others. Numbers of QTNs and QTGs (in brackets) for each trait are shown on the left. Light blue, dark blue, light green, yellow and gray 
boxes represent the genotype for the Nipponbare reference (Ref.) allele, alternative (Alt.) allele, heterozygous, multiple alleles and deletion, respectively.  
b, The percentage summary for the genomic distributions of causative variants. CDS, coding sequence; indel, insertion-deletion; NonSYN, nonsynonymous; 
SYN, synonymous; PAV, presence and absence variation. The detailed percentage for effects of causative variants in the coding regions is listed below.  
c, The genomic location for the causative site of BPH29 and its allelic distribution in the QTN library. Chr., chromosome. d, Causative sites of Pi9 and their 
allele distributions in the QTN library.
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incremental differences in the target trait. A typical example of a 
multiple-allele gene is Waxy, which has multiple QTNs. There are, 
in total, eight Waxy alleles that affect amylose content, which ranges 
from <2% to 28% in rice grains24. Based on our comprehensive cata-
log of causative variants in the rice genome, we inspected the allelic 
forms of all QTGs. Of the 225 genes, 169 are bi-allelic (Fig. 1c) 
whereas 56 are represented by multiple alleles (Fig. 1d). Therefore, 
multiple-allele genes make up a substantial proportion of the avail-
able quantitative trait variation: 24.9% of the QTGs and 51.3% of 
the QTNs. As displayed in Extended Data Fig. 3a, many important 
genes related to stress resistance and heading date are represented 
by multiple alleles, and some of the alleles are of very low frequency 
in rice varieties (for example, the large deletion allele of Ghd7 that 
shortens flowering time and plant height25).

A collection of diverse rice accessions containing the majority 
of the QTG alleles was constructed by collecting landraces and cul-
tivars representing a wide geographic distribution and germplasm 
from a number of rice research groups, especially materials with rare 
alleles. From these collections, a QTN library consisting of a total of 
404 rice accessions was established (Supplementary Dataset 2). The 
QTN library was purified by self-pollination and then sequenced 
with an average genomic coverage of 24.3× for each accession. Our 
phylogenetic analysis indicated that the library contains 181 indica, 
88 temperate japonica, 77 tropical japonica, 33 aus and 8 basmati 
rice accessions. Because of the presence of SVs in the catalog and 
the difficulty of SV genotype calling, five variation calling methods 
were integrated to determine the QTN genotypes of the 404 acces-
sions (Methods and Extended Data Fig. 1). In total, 95.5% of the 
alleles in the catalog were detected in the QTN library, demonstrat-
ing the large allelic diversity of the accession collection. In particu-
lar, the QTN library contains a number of rare but valuable alleles, 
including 50 accessions with rare alleles for disease resistance, 5 for 
yield increase, 13 for taste quality and 9 for abiotic stress resistance 
(Extended Data Fig. 3b). For example, among the 404 accessions, 
only 10 contain the increased-yield allele of LAX1 (ref. 26), and only 
7 accessions contain the Pi9 resistance allele27. These accessions are 
important donors to introduce rare but valuable alleles into gene 
pools of modern cultivars for rice breeding. In addition, based on 
the causative variant catalog, genome data of 3,010 diverse rice 
accessions15 were used to examine QTN genotypes (Extended Data 
Fig. 4). Taking into consideration the QTNs of SNPs and indels, it 
was estimated that 90.1% alleles in the QTN catalog were included 
in the 3K collection15. The results indicate an enrichment of the 
reported QTNs despite the sample number (n = 404) of the library 
being relatively small.

Estimation of QTN effects. We collected these large genomic 
and phenomic datasets and performed genome-wide association 
studies (GWASs) uniformly in eight cohorts, including the QTN 
library and seven GWAS cohorts that have been reported previ-
ously15,17,21,28–31. A total of 470 associated loci corresponding to 69 
QTGs were identified (Fig. 2a and Supplementary Dataset 3). These 
QTGs underlie 50 agronomic traits that are associated mostly with 
yield components, heading date, plant architecture and taste qual-
ity. Although the phenotypes of the cohorts were analyzed in vari-
ous environments, the major QTGs were identified repeatedly in 
multiple cohorts. For example, GW5 and GS3 are associated with 
seed morphology32,33, Waxy with taste quality34 and Hd1 with head-
ing date35 (Fig. 2a). In contrast, QTGs with relatively minor effects 
and those with relatively low minor allele frequency tend to be 
identified in fewer cohorts. For example, HESO1, which is related 
to heading date, was identified only in the cohort of 176 Japanese 
rice accessions17.

We then estimated allelic effects of the QTGs using the QTN 
maps and the phenotypic data in the eight GWAS cohorts. With 
correction for population structure, allelic effects were calculated 

for each of the 69 QTGs (Fig. 2b–f and Supplementary Dataset 3). 
Based on the quantitative estimation, a few QTGs showed very large 
effects, such as sd1 and dep1 in reducing plant height36,37, hd3a in 
promoting heading date38 and ipa1 for increasing grain numbers39. 
In various environments, the estimated allelic effects of the same 
QTGs generally showed the same trends, but with different scales 
of effect (Extended Data Fig. 5). If we take plant height QTGs as 
an example, the trend of the allelic effects is taller or shorter but 
the difference in height determined by OsSPY (ref. 16) varies from 
3.70 cm to 18.56 cm depending on diverse cohort environments. For 
Hd1, the effect on heading date varies from −15.22 to 7.03 days in 
11 locations that span a latitudinal gradient. This type of variation 
is probably due to the influences of population composition (for 
example, indica or japonica subspecies) and phenotyping environ-
ments (for example, long- or short-day conditions).

Meanwhile, phenotypic effects of the total 225 QTGs were exam-
ined according to the functional data from the 299 source papers 
(Supplementary Dataset 1) and recorded uniformly in a qualita-
tive way. For example, the ‘12 bp insertion’ allele in the QTN site of 
BPH29 (ref. 40) resulted in brown planthopper resistance (Fig. 1c) 
while the ‘T’ allele in the QTN site of Pi9 led to stronger blast resis-
tance (Fig. 1d). For 69 QTGs, the analyses of eight GWAS cohorts 
provided more precise effects. For example, the alternative alleles 
in Hd3a resulted in a decrease of 14.84 ± 1.60 days heading date in 
South China (~30° N), 7.69 ± 0.92 days in North China (~40° N) 
and 3.56 ± 0.49 days in Northeast China (~45° N). Through com-
parisons, the trend of the allelic effects of 94.1% QTGs estimated 
from GWAS is in the same direction as those from functional exper-
iments, suggesting the effect estimation from the large GWAS data-
sets is reliable. Taken together, the allelic effect for each of the 69 
QTGs was quantified whereas the effect of the remaining QTGs was 
described qualitatively, all of which were added into the QTG map 
annotations to facilitate breeding design.

Genetic drag in breeding. When plotting the QTGs onto rice chro-
mosomes, we found their genomic distribution to be quite uneven. 
Based on the genetic map41, many adjacent QTGs tended to co-occur 
within the same interval of 2 cM (Fig. 3a), which may lead to genetic 
drag. In other words, the introgression of superior alleles at some genes 
also introduced inferior alleles at linked loci during backcrossing due 
to high linkage but opposite phases. Hence, the potential genetic drag 
effects among the QTGs were investigated in a genome-wide manner 
based on the exact locations and the effect annotations in the QTN 
map. Any possible disadvantageous alleles located less than 2 Mb 
away from the advantageous allele were screened or examined in 
each line of the QTN library. On average, potential genetic drag was 
detected in about 25% of the genome in each line (Fig. 3b), with over 
20 hotspots (Extended Data Fig. 6 and Supplementary Table 1). These 
results suggest that genetic drag is a common obstacle in rice breed-
ing. Hence, special attention will be needed to break these linkages; 
this may be assisted by the use of molecular markers.

Furthermore, two major types of linkage drag were observed. 
One involves deleterious loci adjacent to QTGs with rare alleles 
but having opposite genetic phases. For instance, TAC3 in most 
rice accessions is present as a superior allele42, while the major 
alleles in LOX-3 and OsTB1 are typically inferior43,44 (Fig. 3c). Thus, 
potential inferior alleles that are tightly linked to rare and valuable 
alleles should be taken into consideration when these rare alleles 
are introduced. The other common type of linkage drag observed 
is the occurrence of adjacent QTGs that are divergent in indica and 
japonica. For example, Waxy24 and BPH29 (ref. 40) are represented 
by their superior alleles in japonica (93%) and indica (89%), respec-
tively (Fig. 3c). For the latter type, the allelic distribution of all QTG 
was investigated among rice groups. According to the QTN map, 
in total 83 QTNs (36.9%, see Extended Data Fig. 3c) are highly dif-
ferentiated between indica and japonica rice (for example, COLD1 
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with a major effect on chilling tolerance45 and NRT1.1B with a major 
effect on nitrogen use efficiency46). Therefore, when subspecies 
intercrossing is performed for QTG pyramiding of indica–japonica 
differentiation traits, high-density genotyping is needed to trace 
recombination events in breeding populations to exclude highly 
linked and subspecies-specific inferior QTGs.

Genetic findings based on the high resolution of QTNs. We 
further examined the roles that QTNs play in genome evolution, 
heterosis and local adaptation. Conservation of the QTN sites 
was analyzed by Cnspipeline47 and greenINSIGHT48, respectively. 
Conservation scores and ρ scores of the QTNs were compared 
with variants within the same QTGs, and we observed significantly 
higher scores for QTNs, especially for nonsynonymous SNPs (non-
SYN) and loss-of-function (LoF) variants in both methods (Fig. 4a), 
suggesting that NonSYN SNPs and LoF variations of QTNs tend 
to appear in the high conservation sites of the rice genome. SIFT 

(sorting intolerant from tolerant)49 values were further calculated to 
evaluate the conservation of nonsynonymous SNPs, and we consis-
tently found the same trend. For example, QTNs in Waxy and Ehd1 
had more conservative SIFT scores than other nonsynonymous 
SNPs (Fig. 4b). For the promoter QTNs, we found that the QTNs 
are likely to occur in regions that are close to the start site of the cod-
ing region (Extended Data Fig. 7a). In addition, 15 upstream region 
QTNs (including the promoter and 5′ untranslated region (UTR)) 
were detected in the open chromatin regions identified by ATAC- 
and FAIRE-seq (Extended Data Fig. 7b), indicating that QTNs are 
likely to reside in open chromatin regions. Therefore, the analysis 
suggests that plant conservation genomic maps47,48 could facilitate 
determination of causative sites after candidate genes have been 
identified by QTL fine-mapping or GWAS. In addition, our con-
structed rice QTNs could also be a useful machine-learning training 
source to detect causative sites responsible for important agronomic 
traits for rice and other crops in the future.
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Allele frequencies of all QTNs in two heterotic groups (the 
restorer lines and male sterile lines of three-line hybrid rice) were 
surveyed to determine heterosis-related QTGs (Fig. 4c). Nine QTGs 
with superior alleles in restorer lines and ten QTGs with superior 
alleles in male sterile lines were identified, respectively (Fig. 4d). 
Among the ten QTGs in male sterile lines, three (LAX1, TAC1 and 
Hd3a) have been identified previously through genetic mapping 
to be crucial for heterosis21. Besides these QTGs, D2, TGW6, Hd1, 
RFT1, OsNPF6.1, LOC_Os12g27220 and LOC_Os12g27254, which 
contribute to the erect tiller, larger grains, later heading date, higher 
nitrogen use efficiency and stronger abiotic stress tolerance, respec-
tively, were also identified in male sterile lines. Furthermore, QTNs 
that were related to higher seed setting rate, stronger blast resis-
tance, later heading date and higher nitrogen use efficiency were 
found in restorer lines such as PTB1, Pi5-2, Ghd7 and ARE1. All of 
these QTGs together result in higher yield of hybrid rice. The new 
findings will be important resources for rice heterosis research and 
provide strong support for further study in the near future.

The ability of rice to adapt to local growing environments was 
critical to the crop’s expansion beyond its center of domestication 
(subtropical Asia) and into rice-farming regions worldwide. Based 
on the analysis of allele frequencies for QTNs in different areas of 
rice cultivation across Asia, we found that the allele frequency of 
75 QTNs related to environmental adaptation varied by regions 
between indica and japonica (Supplementary Datasets 4 and 5). 
For indica, accessions in East Asia have more early heading date 
alleles, more blast disease resistance alleles and stronger resistance 
to low-temperature germination, but fewer alleles for high min-
eral nutrition use efficiency (Fig. 4e), which is in line with the long 
day-length, serious disease stresses, low temperature and heavy 
use of fertilizer in this region. In parallel, higher cold tolerance 
and early heading date allele frequencies were found in japonica 
from Northeast Asia (Fig. 4f), and this pattern is consistent with 
the low temperature and long day-length in the planting season in 
Northeast Asia. These results indicate that evolution of QTGs have 
played a major role as targets of natural and artificial selection dur-
ing the course of rice domestication and subsequent spread of the 
crop, allowing adaptation to the various environmental conditions 
where rice is now cultivated.

Allele frequencies of QTNs in wild rice, landraces and mod-
ern cultivars were calculated and the neutrally evolved four-fold 
degenerate (4DTv) allele frequency change was used as background 
to control for genetic drift during domestication or improvement 
(details in Methods). In total, 99 QTGs were identified as targets 
of selection for domestication-related (including early improve-
ment traits) or modern improvement-related genes. The number 
of domestication-related QTGs identified in japonica exceeded 
those in indica in number (36 and 28, respectively, Extended Data 
Fig. 8a and Supplementary Dataset 6), while the number of QTGs 
involved in modern breeding of indica exceeded that of japonica 
(40 and 23, respectively). Furthermore, overlaps of domestication/
improvement-related QTGs between indica and japonica were 
observed (Extended Data Fig. 8b); this finding agrees with previous 
reports of shared targets of selection between the two rice subspe-
cies13,50–52. Typical domestication genes in both indica and japonica 
domestication include sh4, OsLG1, An-2 and Sdr4, while shared loci 
associated with later improvement include Waxy, ALK, OsC1 and 
GATA28.

By categorizing QTGs according to the phenotypes they control, 
we found that heading date, plant architecture, seed morphology 
and taste quality-related QTGs accounted for the largest propor-
tion of loci that were targets of selection during domestication or 
improvement (Extended Data Fig. 8c). For example, among seven 
major QTGs that underlie eating quality, six have been targets of 
selection. Similarly, two-thirds (14 of 21) of heading date-related 
QTGs had been selection targets and 78.6% (11 of 14) were selected 

to be early heading date alleles. These results revealed that QTGs 
responsible for early heading date and favorable eating quality have 
been continuous selection targets during the course of rice domes-
tication and improvement, with the improved phenotypes arising 
through progressive, cumulative genetic change involving multiple 
loci. The polygenic basis for these improvement traits differs from 
many traits selected earlier in the domestication process, which are 
often controlled by a relatively few genes of major effect53–55.

Notably, domestication and improvement did not always lead to 
accumulation of superior alleles of rice QTGs. Consistent with the 
genetic drag effects described above, we observed that inferior alleles 
constituted 46.4%, 30.6%, 22.5% and 16.7% of selectively favored 
alleles during indica domestication, japonica domestication, indica 
improvement and japonica improvement, respectively (Extended 
Data Fig. 8d). For example, brown-planthopper-susceptible alleles 
of BPH29 were selected during the improvement of Waxy in indica 
improvement. This suggests that genetic drag has been pervasive in 
rice domestication and improvement.

Development and implementation of the RiceNavi system. To 
determine the key factors related to breeding route optimization, we 
performed in silico breeding by simulation with various scenarios 
(Supplementary Note). Benchmarking experiments indicate that 
use of the incremental mode, more backcrossing, larger populations 
and choosing QTG in regions with high recombination rates would 
help to boost breeding efficiency (Fig. 5). Similar to the GPS map 
and route planning algorithms in vehicle navigation systems, our 
constructed QTN map and breeding route optimization paved the 
way for us to develop a rice genome navigation system: RiceNavi 
(Fig. 6). Three main modules, including RiceNavi-QTNpick, -Sim 
and -SampleSelect, were created and loaded into the RiceNavi sys-
tem (Supplementary Note).

RiceNavi was then applied to the genetic improvement of an elite 
indica variety Huanghuazhan (HHZ) for favorable rice fragrance, 
better adaptation to condensed planting and shorter growth period 
(Fig. 7a). Following RiceNavi guidance, we crossed the donor line 
(Basmati Surkh 89-15, QTG: Badh2 (ref. 56), TAC1 (ref. 57) and 
OsSOC1 (ref. 58)) to HHZ and genotyped the plants in each backcross 
generation through whole-genome low-coverage multiplex sequenc-
ing (Fig. 7b). The introgression lines selected by RiceNavi with  
target genotypes (Extended Data Fig. 9 and Supplementary Fig. 1)  
were planted in southern China (Sanya, short-day conditions) 
and mid-latitude China (Shanghai, long-day conditions) for phe-
notyping. As expected, the introgression lines showed tight plant 
type, basmati-specific fragrance, earlier flowering time (short-day 
conditions), more tillers (long-day conditions) and higher yield in 
condensed planting conditions (Fig. 7 and Supplementary Table 2). 
More importantly, owing largely to the development of RiceNavi, 
we spent only 2.5 years to complete the entire process without intro-
ducing any linkage drag, which was much quicker and more pre-
cise than conventional breeding (typically >5 years59). Furthermore, 
we quantitatively evaluated the performances of applying the 
QTN-based breeding scheme, and the results showed the major-
ity of predicted effects from QTNs are fully or partially realized 
(Supplementary Note, Extended Data Fig. 10 and Supplementary 
Dataset 7). Taken together, the RiceNavi system is able to guide 
breeding design in rice.

Discussion
The new genomic approach developed in the present study and 
implemented in the RiceNavi system enabled optimum designs of 
new varieties with precision and high efficiency. This platform was 
established based on the collective data from the abundant publi-
cations on rice genetics, population genomics and GWAS cohorts, 
and can be integrated efficiently with rice genomic data updates 
in the future. To improve any trait in a particular rice genetic 
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line, it is important to know the corresponding genes and all the 
causative variant information related to the trait of interest. In the  
past 20 years, a large proportion of QTGs have been identified  
in rice, including those with major or modest effects, providing a 
basis for designed rice breeding. The reported QTGs explained a 
large proportion of phenotypic variation for yield-related traits21. 
The momentum of rice functional genomics studies remains  
strong, with >30 QTGs reported per year in the past 2 years. With 

continuous updates, the genome navigation system will be become 
an increasingly precise and powerful tool for rice breeding, includ-
ing hybrid rice breeding. The key genes and loci contributing to 
yield heterosis, hybrid sterility and fertility restoration21,29,60–65 have 
been identified and are already included in RiceNavi. Using the 
RiceNavi system, parental lines, including sterile, maintainer and 
restorer lines, can be improved by well-designed routes to keep a 
strong level of heterosis.
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Because of the limited information on potential genetic interac-
tions available at present, the outcome cannot be predicted precisely 
when pyramiding multiple QTNs underlying the same trait due to 
the complexities of epistasis/environmental interactions. Therefore, 
the proposed breeding strategy used in this study involves ‘slight 
modification’, that is, the creation of near-isogenic lines (NILs) 

with only a few QTNs introduced at a time (for example, typically, 
one QTN for grain yield and another QTN for disease resistance). 
Even so, in our quantitative evaluation, some NILs did not display 
expected performance, probably due to epistasis and environmental 
interactions or QTN effect errors. Hence, a better understanding of 
the genetic network in rice traits, including QTN–QTN interactions 
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publications from 1995 to 2020 are also listed in the matrix. b, In silico breeding simulation by RiceNavi. A backcrossing breeding process simulated 
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Users can pick 1–3 QTNs and select one individual with these superior alleles. After choosing the donor individual from our QTN library, RiceNavi-Sim can 
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and QTN–environment interactions, will improve the precision of 
phenotypic prediction. Once the genetic data of these interactions 
is available, the information will be added to the RiceNavi plat-
form for updating. We expect that advances in functional genom-
ics, including more investigation into epistatic interactions, will 
enhance further data integration and system updates, promoting a 
more powerful breeding guiding system for rice.
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Methods
QTG collections and QTN identification. Articles related to QTLs and genes in 
rice were surveyed by the advanced search function in Web of Science databases 
published during 1991–2020 with the query TI = (rice OR Oryza) AND TS = (QTL 
OR QTLs OR gene OR allele OR haplotype OR variation OR mapping OR GWAS). 
The papers used in RiceNavi (version 1) were updated until 29 February 2020. 
In total, 29,994 articles published in 2,779 journals were obtained. Subsequently, 
20,305 articles were selected from the Science Citation Index–Expanded journals 
that were related to Agriculture and Plant Sciences. We further read each article 
carefully to identify papers in which QTG functions were validated by transgenic 
experiments. We excluded QTGs identified from O. glaberrima and wild rice 
unless biotic- and abiotic-stress-related QTGs had been introduced into O. sativa 
cultivars. Finally, a total of 225 QTGs with 603 QTNs (with redundancies) were 
collected from 299 articles.

QTN identification was based mainly on the descriptions of the collected 
articles and checked by rice gene annotations. For multiple-allele QTGs, the 
position of each variant was recorded and linked with the corresponding alleles. 
The precise locations of QTNs were determined and anchored on the rice MSU 
v.7.0 reference genome (http://rice.plantbiology.msu.edu/) by BLAST alignment 
(v.2.7.1). For QTGs that were highly diverged from the Nipponbare reference 
allele and QTGs with presence and absence variation, coding sequences of the 
QTGs were downloaded and used as QTNs. The phenotypic effects on agronomic 
traits of QTG alleles were collected from these articles and recorded following the 
description in the articles.

QTN library planting and phenotyping. To ensure high-level genetic diversity, we 
first collected 84 accessions from Chinese minicore collections66, as well as 15 aus 
accessions, 27 tropical japonica accessions and 5 basmati accessions from South 
Asia. We further collected diverse accessions with wide geographic distributions 
and different phylogenetic types. In particular, for rare alleles, the classical disease 
resistance varieties and the specific varieties used in the published papers were 
obtained one-by-one from the original researchers. In total, we collected 404 
rice accessions from 26 countries worldwide. All samples were planted at the 
Experimental Station of Shanghai Normal University, Shanghai, China (121°26′ N, 
30°58′ E) during May to October in 2018 and 2020. The planting density was 20 × 
25 cm2. Normal agricultural practice and field management was used.

Heading date was recorded when the first inflorescences emerged above the 
flag leaf sheath. Plant height, panicle number, leaf length and panicle length were 
calculated from three plants for each accession. Because of the limited quantity of 
seeds collected, a near-infrared reflectance spectrophotometry (NIRS) scanning 
approach was used for protein and amylose content detection. Approximately 10 g 
mature and shelled seed was used for protein and amylose quantification using 
a FOSS Infratec 1241 Grain Analyser (Foss NIRSystems Inc.) according to the 
manufacturer’s instructions.

Genome sequencing and population genetics analysis. Paired-end sequence 
data in this study were generated using the Illumina HiSeq4000 platform. Reads 
of each rice accession were mapped to a reference genome (MSU v.7.0) using 
Bowtie2 v.2.3.2 (ref. 67) with default settings. Consecutive steps using Samtools 
v.1.9 (ref. 68) and genomic analysis toolkit (GATK) v.3.7 (ref. 69) were applied for 
detection of variants. Potential polymerase chain reaction (PCR) duplicates were 
removed using ‘Samtools rmdup’. Alignments around small indels were remapped 
with ‘IndelRealigner’, and raw variants were called based on the realigned BAM 
file. The resulting BAM files of each sample were used for the multisample variant 
genotyping. ‘UnifiedGenotyper’ in GATK was applied to generate the raw variant 
calls with parameters ‘-stand_call_conf 30, -stand_emit_conf 10’. To reduce the 
false discovery rate of the variants, the SNP calls were filtered according to the 
following threshold: QUAL < 30, QD < 2, MQ < 30, MQ0/DP > 0.1. Potential 
variant annotation and effect were predicted by SnpEff v.3.6 (ref. 70). For GWAS, 
genotype imputation was performed by BEAGLE v.4.0 (ref. 71) using the genotype 
likelihoods, and with ten iterations specified.

For population genetics analysis, subgroup assignments of the 404 accessions 
in the QTN library were performed based on the phylogenetic tree, principal 
component analysis (PCA) and population structure analyses. The phylogenetic 
tree was constructed using FastTree72. PCA was performed by SNPRelate v.0.9.19 
(ref. 73). FastStructure v.1.0 (ref. 74) was applied to infer the ancestry of each rice 
accession. Using these approaches, the total 404 accessions were grouped into 
88 temperate japonica, 77 tropical japonica, 8 basmati, 33 aus, 181 indica and 17 
intermediate type rice.

QTN library genotyping. As there were multiple causative variation types, a 
hybrid variation genotyping strategy was adopted. For SNP and small indels, 
GATK4 HaplotypeCaller was used for genotyping in the first round, while some 
ungenotyped sites were then called by UnifiedGenotyper from GATK3 (ref. 69). 
For genotyping structure variation, we used three approaches: Manta v.1.6 (ref. 75) 
was first used to detect all potential SVs for each accession, and then the genotypes 
of the causative sites were extracted. For the QTGs whose sequences were present 
in the Nipponbare reference genome but absent for some accessions in the QTN 
library, we then determined the genotype of their presence or absence state by the 

average mapping depth of the QTG. If the average mapping depth of one accession 
for the QTG was less than 1×, the accession was determined as the absent 
genotype, otherwise as the present or Nipponbare genotype. Additionally, in some 
cases, the QTGs were identified in a few rare rice materials and the sequences were 
largely different from the Nipponbare reference. The sequences of these QTGs 
were collected from the literature and combined as another reference sequence 
(non-Nip-QTGs) for read mapping. The reads that could not be mapped to the 
Nipponbare genome were extracted, and then mapped to the ‘non-Nip-QTGs’ 
reference to determine the genotypes. In addition to the QTNs reported in 
previous studies, 21 QTNs with loss-of-function mutations in 16 QTG were newly 
identified in this work. Furthermore, redundant QTNs from the same allele (highly 
linked with each other) were excluded. In total, 348 QTNs were collected from the 
literature and this research. The whole pipeline of genotyping causative variants for 
the QTN library accessions is summarized in Extended Data Fig. 1.

GWAS in eight rice cohorts and QTG effect estimation. The genotype and 
phenotype data used were generated from this study and also collected from 
seven other cohorts, namely 529 rice accessions30, 1,275 Chinese rice accessions31, 
Hybrid rice F1 (ref. 29), Hybrid rice F2 (ref. 21), Rice diversity panel 1 (ref. 28), 
176 Japanese rice accessions17 and 3K rice accessions15. The eight rice cohorts 
included a total number of 17,376 accessions and 270 trait replicates. The raw 
sequencing data of three cohorts, including 529 rice accessions, 1,275 Chinese rice 
accessions and 176 Japanese rice accessions, were downloaded, and the mapping 
and genotyping pipeline was performed similarly as with our QTN library as 
described above. Genotypic datasets of the other four cohorts were collected from 
previous studies15,21,29,76. GWAS was performed separately for each cohort by GCTA 
v.7.93.2 (ref. 77) with the mixed linear model. The threshold for significant SNPs 
was 1 × 10−8 for the ‘Hybrid rice F2’ cohort and 1 × 10−4 for the ‘176 Japanese rice 
accessions’ cohort, and a P value threshold of 1 × 10−6 was set for the other six 
cohorts. The minor allele frequency (MAF) was set as 0.05 for all cohorts, except 
the ‘Hybrid rice F2’ cohort (MAF > 0.02). The genetic effect of each significant SNP 
was extracted from the summary statistics output. The QTGs that were involved in 
similar agronomic traits and located around the same regions (<1 Mb) with GWAS 
peaks selected as causative candidate genes. The QTGs that had been confirmed 
in the previous GWAS were collected directly from the cohorts. To confirm the 
newly identified GWAS–QTNs, the linkage disequilibrium pattern of the peak 
SNP and the QTNs in the cohort was investigated and the QTNs with correlation 
P < 0.05 were used in the genetic estimation. For QTNs of indels and SVs, the 
correlation coefficient was evaluated in the QTN library. The positive and negative 
genetic effects were defined by the value of the correlation coefficients. Broad sense 
heritability (h2) was calculated by h2 ¼ δ2a= δ2a þ δ2e=l

� �

I
, where a and l are number 

of accessions and locations, respectively; δ2a
I

 and δ2e
I

 are components of variance for 
accessions and error, respectively.

Genetic analysis of QTNs. A genetic map constructed from a cross of 9311 
and Nipponbare was used for the analysis41 (Supplementary Dataset 8). The 
nucleotide-based conservation scores across the whole rice genome were analyzed 
by CNSpipeline47. The rice fitcon scores (ρ) were downloaded from a fitness 
consequence map48. A total of 181 QTGs were used for the examination, in which the 
265 QTN sites (SNPs or small indels) in the QTGs could be genotyped by GATK. The 
conservation scores and ρ of the QTNs were compared with the same type of variants 
(for example, UTR, nonsynonymous SNP) annotated by SNPeff v.3.6 (ref. 70). In 
addition, we also used SIFT49 to measure the conservation level for nonsynonymous 
SNP sites for the rice QTGs. To investigate the extent to which QTNs reside in 
upstream regions of the translational start site and overlap the candidate open 
chromatin regions, we downloaded rice ATAC-seq data from previous studies78,79 
and FAIRE-seq data from another research project80 (Supplementary Table 3). The 
ATAC-seq and FAIRE-seq data were processed with Bowtie2 for reads mapping, 
and Samtools rmdup was used for removing PCR duplicates. In addition, reads that 
could map to the mitochondrion or chloroplast genomes were filtered. Finally, open 
chromatin regions were determined by MACS2 (ref. 81).

To identify the candidate QTNs responsible for heterosis in the three-line 
hybrid rice system, genome resequencing data from 23 restorer lines and 40 
male sterile lines were used in previous research29. QTN sites were genotyped 
for all individuals of the two populations, and the alternative allele frequency 
differentiation (AFD) between the two populations was calculated. QTNs with 
AFD > 0.4 (P < 0.05, chi-squared test) were taken as candidate QTNs related to 
heterosis. QTGs that had multiple QTNs were checked and nonconforming QTGs 
were removed.

In our QTN library accessions, we classified indica rice into East, South and 
Southeast Asian groups, which included 59, 61 and 52 accessions, respectively. 
For japonica, the accession number for Southeast, Northeast and East Asian 
groups is 32, 44 and 30, respectively. The alternative allele frequency of each QTN 
was calculated for each different geographical population for comparison. The 
alternative allele frequencies of QTGs that have multiple QTNs were combined 
with the alternative allele frequency of several QTNs. The alternative allele 
frequencies of QTGs were further transferred to functional allele frequency 
according to the direction of genetic effect for the QTNs. Functional alleles of all 
QTGs are shown in Supplementary Datasets 4 and 5.
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To investigate QTNs involved in rice domestication and improvement, genomic 
data from a total of 1,645 Asian rice samples were used. The samples included 169 
wild rice, 134 indica landraces, 137 japonica landraces, 423 indica varieties and 
775 japonica varieties (Supplementary Dataset 9). The allele frequency of each 
QTN was calculated for each group, and AFD for the processes of domestication 
(AFDlandrace – AFDwild) and improvement (AFDvariety – AFDlandrace) was measured for 
indica and japonica, respectively. To minimize the influence of genetic drift during 
domestication or improvement, we used 4DTv sites as background. The allele 
frequency changes of each 4DTv site were also calculated, and the 2.5th and 97.5th 
percentiles of 4DTv allele frequency changes were used as thresholds.

RiceNavi development and benchmarking experiments. The RiceNavi software 
includes three packages, namely RiceNavi-QTNpick, -Sim and -SampleSelect 
(Fig. 6). The RiceNavi-QTNpick package can take a gvcf file of the rice sample 
generated from GATK4 as input or it may pick one accession in the QTN library 
as the receptor line, and call the genotype of the sample at the causative sites. The 
genotype of the sample is compared with those of the QTN samples. This further 
provides allele information of the user’s sample and the samples harboring the 
alterative allele for each QTN, including the function of the alleles and potential 
allelic effects. The user can pick the beneficial QTN(s). After choosing the QTN(s), 
the donor sample list will be provided.

The Rice-SampleSelect package can select suitable genotypes to facilitate the 
breeding process. The input file for this package is a genotyping matrix, where each 
column represents samples, while each row is the binned genotype (for example, 
0.3 Mb per bin). The genotyping matrix is generated by our constructed genotyping 
pipeline SEG-map for skim genome sequencing82. The Rice-SampleSelect package 
can output the summarized genotype characteristics for each individual of that 
population, such as the number of recombination breakpoints, heterozygosity 
across the whole genome, the number of heterozygous genomic blocks, the 
size of the heterozygous regions covering the targeted genes, etc. Samples with 
heterozygous genotypes on target genes are further ranked according to the whole 
genome heterozygosity level for ease of selection.

The RiceNavi-Sim package is implemented taking advantage of the 
PedigreeSim software83. The PedigreeSim software can simulate the genotype of the 
offspring if the genotypes of the parents and the genetic map are given. With the 
constructed rice genetic map, the genotype matrix of different generations (F1 to 
BCnF1) for a breeding population can be simulated by RiceNavi-Sim. During each 
generation, RiceNavi-Sim adopted Rice-SampleSelect to select the best candidates 
as parental lines for the next generation. The simulation time can be set by the 
user. After all simulations are performed, the likelihood can be estimated. In each 
generation, the likelihood was calculated based on the percentage of simulations 
that have the ‘ideal’ individuals with only heterozygous genotypes in the regions 
covering selected gene(s) with 2 Mb as the default size.

Genetic improvement of HHZ using RiceNavi. The QTN library was planted 
on 25 May 2017 at Shanghai, and six groups of HHZ were grown in the next 
6 weeks to facilitate cross pollination. HHZ was crossed successfully with 
Basmati in September 2017 and 19 hybrid seeds were obtained. F1 individuals 
were backcrossed with HHZ in March 2018 at Lingshui, China and 1,080 hybrid 
seeds were obtained. In total, 461 BC1F1 individuals were resequenced and 138 
individuals with ≤ 50% heterozygosity were crossed successfully with HHZ. 
Furthermore, 908 BC2F1 individuals were resequenced and ten individuals 
containing desired alleles of OsSOC1, Badh2 and TAC1 from Basmati were 
selected. A total of 1,190 BC3F1 individuals were resequenced and three individuals 
with the lowest heterozygosity were selected. Eight thousand BC3F2 individuals 
planted on 20 November 2019 at Sanya were screened by PCR-based markers. 
Of 23 individuals resequenced, 21 were confirmed to have homozygous target 
QTGs while no other chromosome segments were found. To validate the causative 
variation in OsSOC1, Badh2 and TAC1 in the improved HHZ, DNA of both HHZ 
and improved HHZ lines was extracted from fresh leaves using a Hi-DNAsecure 
Plant Kit (Tiangen, China) and PCR amplifications were performed with 0.5 U 
Tks Gflex DNA Polymerase (TaKaRa, Japan) using a ProFlex PCR System 
(Applied Biosystems, USA). The cycling conditions were 94 °C for 1 min followed 
by 35 cycles of 98 °C (10 s), 60 °C (15 s) and 68 °C (30 s). PCR products were 
electrophoresed in 1.5% agarose gels, and DNA fragments were purified using an 
AxyPrep DNA Gel Extraction Kit (Axygen, Germany). Sequencing reactions were 
performed using an ABI 3730XL automated sequencer (Applied Biosystems). The 
primers used for PCR amplification and Sanger sequencing were the same and are 
listed in Supplementary Table 4.

The improved HHZ was phenotyped for ten traits in Sanya in the winter  
of 2019 and Shanghai in the summer of 2020. Tiller angles of HHZ and the 
improved HHZ were measured at the beginning of heading date, and this was 
repeated three times by investigating three tillers. Grain length and grain width 
were measured by manual measuring of ten seeds. To test the fragrance of 
improved HHZ, the harvested grains were dried in an oven at 37 °C for 2 days 
and were evaluated by four experienced rice breeders. A double-blind test was 
performed, in which each sample was smelled and replicated two times. The 
fragrance level was recorded as 1 (non-basmati fragrance) and 2 (basmati-specific 
fragrance), respectively.

Statistical tests used. Details of the statistics applied are provided in the figure 
legends. Specifically, the two-tailed Student’s t-test was performed to compare the 
phenotypic differences (heading date and fragrance level) between HHZ and the 
improved line. One-sided Wilcoxon test was used to compare the conservation 
score and ρ score of QTNs and variants of the QTGs. Statistical analyses were 
performed using R software (v.3.6.0, https://www.r-project.org/). GWAS in this 
work was performed with the mixed linear model using the GCTA software 
v.7.93.2 (ref. 77).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The raw DNA sequencing data of the QTN library are deposited with GenBank 
under the bioproject accession no. PRJNA623686. A web-based version of RiceNavi 
is available from the website http://www.xhhuanglab.cn/tool/RiceNavi.html 
(supporting most browsers including Chrome, Firefox and Safari, but not Internet 
Explorer). In this web-based application, all functions in RiceNavi (QTNmap, 
QTNpick, Simulation and SampleSelect) can be accessed with user-friendly 
graphical interfaces.

Code availability
The source code of RiceNavi is available from both our laboratory website (http://
www.xhhuanglab.cn/tool/RiceNavi.html) and the GitHub repository (https://
github.com/xhhuanglab/RiceNavi). The other codes for the QTN-related analyses 
are also provided in the GitHub repository (https://github.com/xhhuanglab/
QTN_scripts).
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Extended Data Fig. 1 | The pipeline for 348 QTN site discovery and population genotyping. The procedure includes determination of QTNs according to 
research papers and QTN genotyping from whole-genome sequence data of rice accessions.
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Extended Data Fig. 2 | Genotype matrix of 225 QTGs for QTN library colored by effect direction. The figure is another display mode of Fig. 1a (colored by 
effect direction, rather than alternative/reference in Fig. 1a). Here, dark green, dark blue and light green, yellow and gray boxes represent the genotype for 
the reduced allele, increased allele, heterozygous, NA and deletion, respectively.
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Extended Data Fig. 3 | The matrix of QTN of different types for a collection of 404 rice accessions. a, QTGs with multiple (≥3) QTNs. QTNs related to 
heading date, biotic stress and abiotic stress are highlighted with blue, purple and pink bars, respectively. b, Rare allele QTNs. QTNs with low percentage of 
samples (≤2%) with alternative or heterozygous alleles are illustrated. c, QTNs differentiated between japonica (including tropical and temperate japonica) 
and indica. QTNs with allele frequency differentiated (AF > 0.4) between japonica and indica are shown. Light blue, dark blue and light green, yellow and 
gray boxes represent the genotype for the reference (MSUv7.0), alternative, heterozygous, multiple alleles and deletion, respectively.
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Extended Data Fig. 4 | The matrix of QTN for 3023 rice accessions. Light blue, dark blue and light green, yellow and gray boxes represent the genotype 
for the reference (MSUv7.0), alternative, heterozygous, and deletion, respectively.
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Extended Data Fig. 5 | Estimated phenotypic effects for QTGs controlling four agronomic traits. a, Geographical locations for 9 different environments 
in China. Longitude (° E) and latitude (° N) of the locations are shown. b–d, The estimated phenotypic effects of homozygous alternative alleles relative 
to homozygous Nipponbare are jointly shown for each QTG. The phenotypes displayed include heading date (b), plant height (c), grain length (d) and 
grain width (e). Colors represent different environments. The bars indicate standard errors estimated by GCTA package. The QTG effects from CNmix 
population in Beijing and from NE population in Lingshui are not showed. For QTNs in Lingshui, the QTNs with the peak p-value are selected.
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Extended Data Fig. 6 | Genomic distribution of linkage drag in the rice genome for QTN library. The candidate linkage drag (superior and inferior alleles 
located physically less than 2 Mb in distance) are labeled across the rice genome. The blue dots indicate the percentage of drag for the 404 QTN library 
accessions.
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Extended Data Fig. 7 | Genomic characteristics for the QTNs in the UTR and promoter regions. a, Percentage of upstream QTNs of different distances to 
translational start site (ATG). b, Upstream QTN sites which resides in the open chromatin regions identified by ATAC- and FAIRE-seq.
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Extended Data Fig. 8 | The QTNs involved in the domestication and improvement. a, QTNs allele frequency change during the domestication & early 
variety improvement and modern variety improvement. QTNs with greatest allele changes are shown. Threshold is determined by the 4DTv sites and is 
indicated by dotted line. b, Groups of the domestication and improvement-related QTNs. QTNs shared by two kinds of domestication or improvement are 
shown. The color of the QTN names represents traits and is in line with Fig. 1a. c, Percentage of domesticated and improved QTGs in different agronomic 
traits. d, Number of QTGs with superior and inferior alleles.
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Extended Data Fig. 9 | The genotypes for the selected individuals of each generation during improvement of HHZ. The superior alleles of three QTGs 
(OsSOC1, Badh2 and TAC1) are targeted during the breeding process for improvement of HHZ. The locations of the three QTGs are indicated by the red 
arrows. From BC1F1 to BC3F1, the numbers of selected individuals are 138, 10 and 3, respectively. The genotypes for the HHZ background, donor Basmati, 
and heterozygous are color coded as dark green, red, and yellow respectively.
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Extended Data Fig. 10 | An examination for the extent to which introgressed segments from donor parents could match expected phenotypes. a, The 
genotypes of the 217 BC3F1 CSSLs that constructed by HHZ and Basmati. The genotypes for the HHZ background, donor Basmati, and heterozygous are 
color coded as dark green, red, and yellow respectively. Positon of the introduced QTNs is shown on the top. Number of QTNs that introduced into HHZ 
is shown on the right. b–d, Genotypes of three individuals of the CSSLs. QTNs are indicated by solid circles. The color represents the group of agronomic 
traits and is line with Fig. 1a. The change direction of the phenotype value is indicated by arrows. Red and blow arrows indicate increase and decrease of 
the traits, respectively.
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