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Oscillatory flows have become an indispensable tool in microfluidics, inducing inertial
effects for displacing and manipulating fluid-borne objects in a reliable, controllable
and label-free fashion. However, the quantitative description of such effects has been
confined to limit cases and specialized scenarios. Here we develop an analytical formalism
yielding the equation of motion of density-mismatched spherical particles in oscillatory
background flows, generalizing previous work. Inertial force terms are systematically
derived from the geometry of the flow field together with analytically known Stokes
number dependences. Supported by independent, first-principles direct numerical
simulations, we find that these forces are important even for nearly density-matched objects
such as cells or bacteria, enabling their fast displacement and separation. Our formalism
thus consistently incorporates particle inertia into the Maxey–Riley equation, and in doing
so provides a generalization of Auton’s modification to added mass, as well as recovering
the description of acoustic radiation forces on particles as a limiting case.
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1. Introduction

One of the most fundamental problems in fluid dynamics that has evaded a general solution
is describing the unsteady motion of particles immersed in a prescribed background flow.
Most analytical attempts work under the severe assumption of unsteady Stokes flows, for
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which symmetry-breaking inertial effects are neglected (see Michaelides (1997) for a brief
overview). Following the pioneering contributions of Basset (1888), Boussinesq (1885)
and Oseen (1927) for uniform background flows, resulting in what is now termed the
BBO equation, effects of flow non-uniformity were taken into account by Gatignol (1983)
and Maxey & Riley (1983) (MR). Because of its comprehensive, rigorous and systematic
character, MR has been widely used to describe hydrodynamic forces on particles over the
past 40 years, although it still operates strictly in the limit of vanishing inertial effects.
The Maxey–Riley equation for spherical particles (MR equation) assumes the validity

of the unsteady Stokes assumption, which implies that (i) the particle Reynolds number
based on a typical difference velocity between particle speed and background flow must
be small, and (ii) the background flow gradients must be small compared with viscous
momentum diffusion. These assumptions do constrain the applicability of MR in a number
of situations. One of the most glaring shortcomings was pointed out by Leal (1992),
and concerns the incompatibility of MR with the experimentally observed phenomenon
of lateral migration of particles due to lift forces caused by inertial effects. Subsequent
work aimed at the development of equations valid at finite particle Reynolds numbers has
yielded specialized results, for example for steady flow (Ho & Leal 1974; Martel & Toner
2014; Hood, Lee & Roper 2015) or for forces occurring in acoustic fields (Baudoin &
Thomas 2020; Rufo et al. 2022).
The advent of oscillatory microfluidics (Lutz, Chen & Schwartz 2003; Marmottant

& Hilgenfeldt 2003; Thameem, Rallabandi & Hilgenfeldt 2017; Mutlu, Edd & Toner
2018; Zhang et al. 2020, 2021a,b, 2023) has since introduced the use of much stronger
particle inertia effects, enabling fast and high-throughput particle manipulation. Yet
again, quantitative modelling and prediction of such effects has been largely lacking,
with experimental results often explained qualitatively, and/or by appealing to analogies
with theories that are not obviously applicable, such as particle forces in acoustofluidics
(Gor’kov 1962; Friend & Yeo 2011; Devendran, Gralinski & Neild 2014; Chen et al.
2016; Nadal & Lauga 2016; Collins et al. 2019; Wu et al. 2019). Given the versatility and
richness of microfluidic flows, what is needed is a fundamental understanding of inertial
hydrodynamic forces acting on particles immersed in a general unsteady background flow,
that is, a true generalization of MR.
In a first step towards such a generalization, Agarwal et al. (2021) rigorously described

inertial forces on density-matched particles. Whereas MR does not predict any net force on
neutrally buoyant particles immersed in unsteady fluid flows, Agarwal et al. (2021) showed
that such a force can be very significant and is often dominant in oscillatory microfluidics.
In the present paper, we augment that formalism to include finite density contrast between
particle and fluid (a relevant scenario in microfluidics), thus completing the consistent
generalization of MR. In our theory, density-contrast dependent contributions to inertial
forces specialize to the well-known Auton correction (Auton, Hunt & Prud’Homme 1988)
in the potential flow limit, but continue to play a significant role in the presence of unsteady
viscous effects. In a different specific limit our framework establishes a quantitative
connection with acoustofluidic formulae for radiation forces on particles, which, as has
been remarked above, have up to now been used in an unsystematic way in oscillatory
microfluidics.
The organization of this paper is as follows. In § 2 we describe the general theoretical

formalism for inertial forces and their evaluation for oscillatory flows. In § 3, we develop an
explicit time-averaged equation of motion for spherical particles, and in § 4 we rigorously
compare its predictions with direct numerical simulations (DNS) as well as with existing
theories in specialized limits. Section 5 discusses the validity and importance of the
present approach in practical situations, while § 6 draws conclusions.
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Inertial forces on particles in oscillatory flows

General unsteady background flow, U(r, t) =

ap

Up

Uniform Linear Quadratic

Particle Reynolds number

Stokes number

+ +

F = F(0) + F(1)

δ

Rep =
apU∗

ν

λ =
a2

pω
ν =

2a2
p

3δ2

(a) (b)

Figure 1. (a) Schematic of a spherical particle of radius ap moving with a velocity Up as a consequence
of the hydrodynamic force F exerted by the surrounding fluid. The undisturbed flow field far away from the
particle is denoted by U . The hydrodynamic force is generally decomposed into a force due to the undisturbed
flow F (0) and the disturbance flow F (1) due to the presence of the particle. (b) The unsteadiness of the flow
introduces the Stokes number λ, which, for oscillatory flows, is a function of the ratio of the particle size to the
oscillatory boundary layer thickness δ. The background flow is Taylor-expanded around the particle centre up
to the quadratic term.

2. Theoretical formalism

2.1. Problem set-up
In this paper we develop a unifying theory for the equation of motion of spherical particles
of radius ap and mass mp immersed in general unsteady incompressible Newtonian flows
of fluid density ρf (figure 1), placing particular emphasis on fast oscillatory flows, while
consistently accounting for particle inertia. The characteristic speed U∗ of the unsteady
background flow evaluated at the particle position and kinematic viscosity ν of the fluid
define the particle Reynolds number Rep = apU∗/ν. The particle reaction to the flow
importantly also depends on the Stokes number, which we define as λ = a2pω/(3ν).
The unsteady time scale of the flow is written as 1/ω, anticipating the oscillatory case,
where we can alternatively use the Stokes boundary layer scale δ = (2ν/ω)1/2 to write
λ = 2a2p/3δ

2.
We follow MR in decomposing the flow around the particle into the given background

flowU present without the particle, and the disturbance flow due to the particle’s presence.
Forces caused by the background flow will carry the superscript (0), while those stemming
from the disturbance flow will have the superscript (1). All forces will be computed for
arbitrary λ and to first order in Rep, using a regular perturbation expansion. In general
flows, such an approach is valid in an inner region, while an outer region (in which inertia
reasserts dominance) would have to be treated separately and the complete problem solved
by asymptotic matching. However, as shown by Lovalenti & Brady (1993), an outer region
is not present when the oscillatory inertia of the disturbance flow is much greater than its
advective inertia. We explain in detail below (see § 5.1) how this condition yields explicit
criteria for validity across the range of λ values. In oscillatory microfluidics, where we
typically have λ ∼ 1–10, the resulting criteria are comfortably fulfilled for practically
relevant flows, so that it is sufficient to demonstrate the solution by regular expansion.
Acoustofluidic devices generally operate at λ� 1, and we will show that particle motion
in those cases is also quantitatively covered by our formalism. The case λ� 1 is usually
not practically relevant, as the resulting inertial forces on particles become very small.
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2.2. Particle motion and fluid flow
Our task is thus to determine explicit expressions of terms in the following equation of
motion for the particle velocity Up:

mp
dUp

dt
= F (0) + F (1) = F (0)

0 + RepF
(0)
1 + F (1)

0 + RepF
(1)
1 + · · · , (2.1)

where subscripts denote orders of Rep. Note that the decomposition of F (0) is exact (there
are no terms of higher order in Rep; cf. MR), while we truncate the expansion of F (1) at
first order. Expressions for F (0)

0 , F (1)
0 and part of F (0)

1 are contained in the MR equation,
and we determine the remaining terms here.
Hydrodynamic force components are computed from the flow field stresses, as F (i) =

(FS/6π)
∮
S n · σ (i) dS with i = 0, 1, where we use the Stokes drag scale FS/6π =

νρf apU∗, and the integral is over the particle surface with its outward normal n. We
use lowercase letters for velocities non-dimensionalized by U∗ and it is advantageous
in intermediate results to evaluate these velocities in a coordinate system moving with
the particle centre, writing w(0) = u − up for the undisturbed background flow and w(1)

for the disturbance flow. The dimensionless fluid stress tensors are thus written σ (i) =
−p(i)I + ∇w(i) + (∇w(i))T.
The Navier–Stokes equations in the particle frame of reference can be decomposed into

background and disturbance components exactly (without approximations),

∇2w(0) − ∇p(0) = 3λ

(
∂w(0)

∂t
+ dup

dt

)
+ Rep

(
w(0) · ∇w(0)

)
, ∇ · w(0) = 0, (2.2a)

w(0) = u − up, as r → ∞, (2.2b)

∇2w(1) − ∇p(1) = 3λ
∂w(1)

∂t

+ Rep
[
w(0) · ∇w(1) + w(1) · ∇w(0) + w(1) · ∇w(1)

]
,

(2.2c)

∇ · w(1) = 0, (2.2d)

w(1) = up − U, on r = 1 and w(1) = 0, as r → ∞. (2.2e)

2.3. Forces from background flow
Both the O(1) and O(Rep) components of F (0) in (2.1) can be evaluated directly using the
divergence theorem and the above Navier–Stokes equations valid for the background flow
w(0). In laboratory coordinates (see MR; Rallabandi 2021) they read

F (0)
0 = FS

6π

∫
V

(3λ∂tu) dV, F (0)
1 = FS

6π

∫
V

(u · ∇u) dV. (2.3a,b)

To make further progress, we need to evaluate forces due to successive orders of w(1),
which are ultimately also derived from the given background field u. To render our solution
strategy analytically tractable, we expand u around the leading-order particle position rp0
985 A33-4
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into spatial moments of alternating symmetry,

u = u|rp0 + r · E + rr : G + · · · , (2.4)

where E = (ap/LΓ )∇u|rp0 and G = 1
2 (a

2
p/L

2
κ)∇∇u|rp0 are time-dependent, with gradient

LΓ and curvature Lκ length scales. Such an expansion is valid for ap/LΓ � 1 and
ap/Lκ � 1, conditions readily satisfied in microfluidic scenarios. Based on this, (2.3a,b)
was recently evaluated analytically by Agarwal et al. (2021) and Rallabandi (2021),
showing that an O(Rep) contribution from F (0)

1 had been missed in MR, while being,
in fact, of the same order as other terms in the original MR equation.

2.4. Disturbance flow: zeroth order
The Navier–Stokes equations for the disturbance flow at O(Re0p) read

∇2w(1)
0 − ∇p(1)

0 = 3λ
∂w(1)

0
∂t

, ∇ · w(1)
0 = 0, (2.5a)

w(1)
0 = up0 − u, on r = 1 and w(1)

0 = 0, as r → ∞. (2.5b)

Unlike MR, where the solution to this unsteady Stokes equation (2.5) was not explicitly
needed to compute the force resulting from it, our present approach does require
expressions for w(1)

0 to compute the fullO(Rep) force. This is accomplished by substituting
the expansion (2.4) into (2.5). Each spatial moment gives rise to a linear equation with
known solutions, the sum of which yields the general expression (see Landau & Lifshitz
1959; Pozrikidis et al. 1992)

w(1)
0 = MD · us − MQ · (r · E) − MO · (rr : G) + · · · , (2.6)

where us = up0 − u|rp0 is the slip velocity and MD,Q,O(r, λ) are mobility tensors with
known spatial dependence. For oscillatory flows, their dependence on the Stokes number
λ is known analytically. Explicit expressions for these tensors are given in Appendix A.

2.5. Disturbance flow: first order using a reciprocal theorem
Fast oscillatory particle motion can give rise to large disturbance flow gradients, so that
terms involving ∇w(1) on the right-hand side of (2.2d) are not necessarily negligible
compared with the viscous diffusion term on the left-hand side, and O(Rep) force terms in
F (1) become important.
With w(1)

0 explicitly known, the equations at O(Rep) read

∇2w(1)
1 − ∇p(1)

1 = ∇ · σ
(1)
1 = 3λ

∂w(1)
1

∂t
+ f 0, ∇ · w(1)

1 = 0, (2.7a)

w(1)
1 = −up1, on r = 1 and w(1)

1 = 0, as r → ∞, (2.7b)

with f 0 = w(0)
0 · ∇w(1)

0 + w(1)
0 · ∇w(0)

0 + w(1)
0 · ∇w(1)

0 as the leading-order nonlinear
forcing.
In order to compute the force F (1)

1 , we do not solve for the flow field w(1)
1 in (2.7) but

instead employ a reciprocal relation in the Laplace domain. The reciprocal theorem infers
the force from the known stress of a test flow u′, which is here chosen to be a dipolar
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unsteady Stokes flow around the particle with arbitrary directionality e; see Appendix B
for a detailed derivation. We obtain for the magnitude of the force along e,

e · F (1)
1 = FS

6π
L−1

{∫
Sp

ûp1
û′ · (σ̂ ′ · n) dS − Rep

∫
V

û′ · f̂ 0
û′ dV

}
, (2.8)

where the hat denotes the Laplace transform and L−1 is the inverse Laplace transform.
When applied at O(1), this reciprocal-theorem strategy similarly yields

e · F (1)
0 = F(1)

0 = FS

6π
L−1

{∫
Sp

ŵ(0)
0
û′ · (σ̂ ′ · n) dS} , (2.9)

which is precisely the force expression obtained by MR. Since the variable in the overall
equation of motion (2.1) is the unexpanded particle velocity up, we make the substitution
w(0)
0 = w(0) − Repup1 + O(Re2p). Adding (2.9) and (2.8), the O(Rep) term in (2.9) exactly

cancels the first term in (2.8) and produces a correction term that is O(Re2p). The net force
on the particle due to its disturbance flow then reads

e · F (1) = e ·
(
F (1)
0 + RepF

(1)
1

)
+ O(Re2p), (2.10a)

e · F (1)
0 = FS

6π
L−1

{∫
Sp

ŵ(0)

û′ · (σ̂ ′ · n) dS}, (2.10b)

e · F (1)
1 = FS

6π
L−1

{
−Rep

∫
V

û′ · f̂ 0
û′ dV

}
, (2.10c)

where we have also replaced w(0)
0 by w(0) in f 0, resulting in an error that is again O(Re2p).

Only certain products in f 0 are non-vanishing when the angular integration is performed
due to alternating symmetry of terms in the background flow field multipole expansion
(2.4). These non-zero terms are conveniently labelled by the multipole orders involved in
the product

Rep
FS

6π
L−1

{
−
∫
V

û′ · f̂ 0
û′ dV

}
= F(1)

σΓ + F(1)
Γ κ + · · · . (2.11)

Here, F(1)
σΓ , F

(1)
Γ κ are the inertial force contributions obtained by successive contractions of

adjacent tensors involving us (index σ ), E (index Γ ), G (index κ) and so on. The volume
integral is tedious but straightforward to compute since all the integrations resulting
from the leading-order velocity fields (2.4) and (2.6) are convergent. The evaluation
of the Laplace transforms can be performed analytically if the flow has harmonic
time dependence. This is not a severe restriction as arbitrary time dependences can
be decomposed into harmonic contributions. Rectified forces resulting from averaging
time-periodic processes can then be computed separately by frequency. Such cases of
oscillatory flow are the most relevant in practical applications and are focused on in § 3
below. To simplify notation, we therefore assume a single oscillatory frequency ω in the
following, without loss of generality.
When the particle is neutrally buoyant, the first term F(1)

σΓ vanishes so that the leading
term is F(1)

Γ κ , which was derived in Agarwal et al. (2021) as an unexpected inertial force
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Inertial forces on particles in oscillatory flows

for density-matched particles. This term (involving the product E : G) has no analogue
in the previous literature and for completeness, we reproduce it as follows for harmonic
oscillatory flows U :

F(1)
Γ κ = mf a2p [∇U : ∇ (∇U)] · eF (1)

1 . (2.12)

The λ-dependent dimensionless function F (1)
1 results from the volume integration, which

also yields mf , the mass of fluid displaced by the particle, via (4πa3p/3)RepFS/(6π) =
mf a2p(U

∗)2. In the next section, we follow a similar strategy for non-neutrally buoyant
particles.

2.6. Disturbance flow: evaluation of F(1)
σΓ

Non-neutrally buoyant particles have a slip velocity and thus a non-zero F(1)
σΓ , involving

the product us · E. Appropriate to fast harmonic oscillatory flows, we approximate the
background flow as a potential flow with a given single frequency. The slip velocity as a
linear response can then be generally decomposed into an in-phase and an out-of-phase
component with respect to the background flow, i.e. us(rp, t) = uIs(rp, t) + uOs (rp, t). The
corresponding force is written as

F(1)
σΓ

RepFS/(6π)
= 4π

3
(uIs · E) · eG1(λ) + 4π

3
(uOs · E) · eG2(λ), (2.13)

where the G1 and G2 terms are explicit outcomes of the volume integration in (2.11) and
capture the λ-dependence of the in- and out-of-phase contributions, respectively. For fast
oscillatory background flows, we can replace the in-phase component with us · E and the
out-of-phase component with ∂tus · E (see Appendix C for details), resulting in

F(1)
σΓ = 4π

3
ρf a2pU

∗2 (us · E · eG1(λ) + ∂tus · E · eG2(λ))

= mf
[
(Up − U) · ∇U

] · eG1(λ) + mf
[
∂t(Up − U) · ∇U

] · eG2(λ)

ω
. (2.14)

While the exact, lengthy expressions for the universal functions G1,2 are given in
Appendix C, an excellent uniformly valid solution can be constructed by simply adding
the leading orders of the small and large λ expansions of G1 (analogous to the function F
in Agarwal et al. (2021)). Taylor expansion in both the viscously dominated limit (λ→ 0)
and the inviscid limit (λ→ ∞) obtains

Gv
1 = −63

80

√
3
2λ

+ O(1), Gi
1 = −1

2
+ O(1/

√
λ), (2.15a,b)

from which the following uniformly valid result is constructed:

Guv
1 (λ) ≈ −

(
1
2

+ 63
80

√
3
2λ

)
. (2.16)

Figure 2(a,b) illustrates that this simple two-term expression agrees very well with the full
result (C3) over the entire range of the parameter λ, with a maximum error of ∼6%.
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Figure 2. (a) Plot of the in-phase force function G1. The uniformly valid expression (purple dashed) closely
tracks the full solution (red). Also displayed are the viscous (green) and inviscid (blue) limit asymptotes. (b) The
magnitude of the percentage error between the uniformly valid and full solutions is small throughout the entire
range of λ, with a maximum error of ∼6%. (c) Plot of the out-of-phase force function G2 (red) together with
its viscous (green) and inviscid (blue) limit expressions.

A Taylor expansion of the out-of-phase term G2, in the viscous and inviscid limits,
respectively, results in

Gv
2 = 3

16

√
3
2λ

+ O(1), Gi
2 = −57

40

√
3
2λ

+ O(1/λ). (2.17a,b)

Both of the above expansions have a O(1/
√
λ) leading-order term and a simple, two-term

approximation fails. In the following, we use the full expression (C4), noting that the
contribution from this term is small in most practical situations, i.e. when λ � 1.

3. Equation of motion for a particle immersed in an oscillatory flow

We now collect all the force contributions from (2.3a,b), (2.10c), (2.12), (2.14), and
combine them with the results of MR and Agarwal et al. (2021). We use dimensional
variables for easier physical interpretation. The following is the equation of motion for the
velocity Up of a rigid spherical particle immersed in an oscillatory background flow field
U , taking into account all force terms up to O(Rep):

mp
dUp

dt
= F (0)

0 + F (1)
0 + Rep

(
F (0)
1 + F (1)

1

)
+ O(Re2p), (3.1a)

F (0)
0 = mf

∂U
∂t

, RepF
(0)
1 = mf (U · ∇U) + mf a2p∇U : ∇ (∇U)F (0)

1 , (3.1b)

F (1)
0 = −1

2
mf

d
dt

[
Up − U

]− 6πρf νap
[
Up(t) − U(rp(t), t)

]
− 6π1/2ν1/2a2pρf

∫ t

−∞
d/dτ

[
Up(t) − U(rp(t), t)

]
√
t − τ

dτ,
(3.1c)

RepF
(1)
1 = mf

[
(Up − U) · ∇U

]G1(λ) + mf
[
∂t(Up − U) · ∇U

] G2(λ)

ω

+ mf a2p∇U : ∇ (∇U)F (1)
1 .

(3.1d)
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Inertial forces on particles in oscillatory flows

Here, we have dropped the contraction with e in (2.12) and (2.14) to derive F (1)
0 , since the

direction e is arbitrary (cf. the equivalent argument in MR). Equation (3.1b) includes the
background flow force term missing from MR mentioned in § 2.3, proportional to F (0)

1 =
1/5. As we are modelling the oscillatory background flow as potential (cf. § 2.6), Faxén
terms proportional to ∇2U are absent. For the same reason of irrotational background
flow, particle rotation is neglected. Note that the scales of all the inviscid and inertial force
terms use mf , while the viscous force terms contain ν explicitly. In the following, we point
out that (3.1), while containing new physics, encompasses a number of earlier results as
special cases, clarifying connections between them.

3.1. Generalized Auton correction
We first comment on the limiting case of the well-known correction to MR due to Auton
(Auton et al. 1988). The equation of motion derived by MR deviated from previous
versions in the form of the convective term in (3.1b), using mf (U · ∇U) instead of
mf (Up · ∇U) – the values of these two derivatives can differ substantially when the
Reynolds number is not small. Similarly, Auton et al. (1988) showed that in the limit
of potential flows, the added mass term should read 1

2mf (dUp/dt − DU/Dt) instead of
1
2mf (dUp/dt − dU/dt). Again, these two expressions are identical in the zero Reynolds
number limit employed by MR, but in flows with substantial inertial effects, they can differ
significantly.
Our formalism naturally addresses these concerns through the rigorous treatment of

the disturbance flow around the particle. The first term on the right-hand side of (3.1d),
involving G1, modifies the added mass term in (3.1c) and reproduces the Auton correction
(Auton et al. 1988) in the inviscid, potential flow limit (λ→ ∞, Rep � 1), modifying
dU/dt to DU/Dt, or explicitly,

−1
2
mf

d
dt

[
Up − U

]+ mf
[
(Up − U) · ∇U

]G1(λ)

≈ −1
2
mf

[
d
dt
Up − D

Dt
U
]

− 63
80

√
3
2λ

mf
[
(Up − U) · ∇U

]
, (3.2)

where we use the simple two-term approximation (2.16) for G1. Thus, instead of
heuristically modifying the added mass term, our approach rigorously derives its
dependence on λ. Note that in most practically relevant oscillatory microfluidic flows, the
value of λ is O(1–10), so that the contribution from the second term of (3.2) – capturing
the effect of viscous streaming around the particle – results in the inertial force being quite
large due to the 1/

√
λ scaling.

We note that the second term in (3.1d), involving G2, arises due to the out-of-phase
component of the slip velocity and thus characterizes diffusion of vorticity from the
particle. This term is analogous to the Basset–Boussinesq history force and contributes
most prominently when λ ∼ O(1), while it is subdominant for both small and large λ.

3.2. Time scale separation and connection to acoustofluidics
Equation (3.1) describes unsteady particle dynamics as an integral equation containing
a history integral, which can be explicitly evaluated in special cases, particularly for
particles executing purely oscillatory motion. In more general settings, where there is a
superposition of slower rectified or transport fluid flows – with a clear separation of scales
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from the fast oscillatory motion – we can still find an explicit, analytical evaluation of the
memory integral by employing the method of multiple scales. This approach results in a
simple overdamped equation of motion for the particle that captures the slow dynamics
accurately, as outlined in the following (see Appendix D for details).
For flows induced by a localized oscillating source with curvature scale ab, amplitude

εab and angular frequency ω, we non-dimensionalize our equation with ab, εabω and 1/ω
as characteristic length, velocity and time scales, respectively. Equation (3.1) then reads

λ
(
κ̂ + 1

) d2rp
dt2

= ελ
∂u
∂t

+ 2λ
3

ε2u · ∇u − λ
3
ε2λUp · ∇u −

(
drp
dt

− εu
)

+
√
3λ
π

∫ t

−∞
d/dτ

[
drp(τ )/dτ − εu(rp(τ ), τ )

]
√
t − τ

dτ

+ 2λ
3

εG1

(
drp
dt

− εu
)

· ∇u + 2λ
3

ε G2∂t

(
drp
dt

− εu
)

· ∇u

+ 2λ
3

ε2α2F∇u : ∇∇u, (3.3)

where κ̂ = 2/3(ρp/ρf − 1) is a dimensionless measure of density difference, α = ap/ab
is the relative particle size and drp/dt = εup. As in Agarwal et al. (2021), we write F =
F (0)
1 + F (1)

1 .
We employ standard techniques of time scale separation (see Appendix D) to obtain

the leading-order overdamped equation of particle motion. Briefly, the fast oscillatory
dynamics in (3.3) are time-averaged over the oscillation period and the resulting equation
describes the dynamics of the leading-order mean particle position rp0 on the slow time
scale T = ε2t,

drp0
dT

= κ̂λ

(κ̂ + 1)
G(λ) 〈u · ∇u〉 + 2λ

3
α2F(λ) 〈∇u : ∇∇u〉 , (3.4)

with F(λ) ≈ 1
3 + 9

16
√
3/2λ derived in Agarwal et al. (2021) and

G(λ) = (κ̂ + 1)(2(1 − G1)(d + κ̂)λ2 + c (2λG2 − 3))
3(c2 + (d + κ̂)2λ2)

, (3.5)

where c = 1 + √
3λ/2 and d = 1 + √

3/(2λ) are expressions resulting from the
integration of the history force term (cf. Appendix D for details).
The first term on the right-hand side of (3.4) can be rewritten as FRG(λ), where

FR = (κ̂λ/(κ̂ + 1))〈u · ∇u〉 is a time-averaged force formally identical to the acoustic
radiation force induced by an incident sound field with velocity field u (Bruus 2012). In the
acoustofluidic context, this velocity field may be caused by an oscillating object (bubble)
excited by a primary acoustic wave. The resulting force from the bubble on a distant
particle is then often denoted as the secondary radiation force (Doinikov & Zavtrak 1996).
As the acoustic formalism is based on the assumption of inviscid flow, G(λ) generalizes
the far-field inviscid FR to include viscous effects that, as shown below, can change
the resulting particle motion quantitatively and qualitatively. Note that G(λ→ ∞) = 1,
recovering the inviscid case, while the viscous limit depends on the density contrast,
G(λ→ 0) = −(1 + κ̂).
In the next section, we specialize (3.4) to the simplest case of a background flow

induced by a volumetrically oscillating object – a situation commonly encountered in many
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Inertial forces on particles in oscillatory flows

practical microfluidic set-ups involving acoustically excited microbubbles – and compare
our results with DNS.

4. Validation with DNS

We have shown that the present analytical formalism generalizes previous attempts at
predicting the behaviour of particles in oscillatory flows. It is crucial to confirm the
quantitative accuracy of our model. To this end, we compare our analytical predictions
with independent, first-principles DNS of the full Navier–Stokes equations, previously
validated in a variety of streaming flow scenarios (see Gazzola et al. 2011; Parthasarathy,
Chan & Gazzola 2019; Bhosale, Parthasarathy & Gazzola 2020, 2022a; Bhosale et al.
2022b; Chan et al. 2022; Bhosale et al. 2023 for details) and capturing the full dynamics
of the fluid–particle system.
In order to make quantitative comparisons, we restrict the background flow field to a

spherical, oscillatory monopole. These flows are typically generated near volumetrically
excited bubbles and have been shown to actuate inertial forces on particles in oscillatory
microfluidics (Rogers & Neild 2011; Chen & Lee 2014; Zhang et al. 2021a), showcasing
their practical utility. This specialization offers an ideal framework for validating our
analytical formalism, as this radially symmetric flow by itself does not induce viscous
streaming, enabling us to neatly isolate the effect of inertial forces.
Accordingly, we insert u(r, t) = (1/r2)eiter into (3.4) to obtain the following

time-averaged equation of motion (we drop the subscript 0):

drp
dT

= − κ̂λ

r5p(κ̂ + 1)
G(λ) − 6

r7p
α2λF(λ), (4.1)

where −(κ̂λ/r5p(κ̂ + 1)) = FR and rp is in units of the radius of the oscillating source. This
simple ordinary differential equation (ODE) provides clear predictions for the particle fate
that can be compared with results from DNS. Two terms in (4.1) determine the direction
of particle motion: the second term involving F is always negative (Agarwal et al. 2021),
representing attraction towards the source while the sign of the first term changes with κ̂

and G. Therefore, the magnitude and sign of the net force depend on several parameters,
including λ, κ̂ , and also on rp, as the first term dominates the second at large distances.
Note that this set-up is specifically constructed such that all effects on the right-hand

side of (4.1) are due to inertia. Thus, the comparison between analytical predictions and
DNS solutions provides a direct and accurate test of particle-inertial effects in oscillatory
microfluidics. We will focus on the key quantities of practical interest: the particle
trajectories, velocities and forces.

4.1. Simulation approach and results
To computationally simulate the relevant flow scenarios, we employ an axisymmetric
formulation of the incompressible Navier–Stokes equations (see Appendix E). Figure 3(a)
presents the simulation set-up. A spherical particle of radius ap is initially released with
zero velocity at a distance rp0 from the oscillating monopole. It is thus exposed to
the model flow of frequency ω and velocity amplitude εω (the nominal source size ab
is normalized to 1). We choose ε = 0.01, ap = 0.05, ω = 16π throughout, and rp0 =
2 unless otherwise stated. The fluid viscosity is determined from the corresponding
values of λ in each simulation. The top half of the panel in figure 3(a) shows
representative streamlines of the instantaneous, near-radial flow, while the bottom half
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(b)

Figure 3. Direct numerical simulation of the prototypical problem: (a) a spherical particle of radius ap is
exposed to an oscillating monopole placed at a distance rp from the particle centre with primary flow velocity
U∗. Top half of the panel are instantaneous streamlines (the colourbar is flow speed in units of U∗); bottom
half of the panel are the time-averaged streamlines (the colourbar is steady flow speed in units of εU∗).
(b) Particle coordinate as a function of time. For three different density contrasts, we show the full oscillatory
dynamics (see inset for a close-up) as well as the steady particle motion (averaged once per oscillation cycle).
(c–e) Time-averaged flow fields around the particle for the three cases of (b).

shows time-averaged streamlines, highlighting the ensuing steady, rectified flow pattern.
Varying the ratio of particle density to fluid density in figure 3(c–e) while keeping all
other parameters constant shows that the direction of this rectified flow reverses, but not
for matching densities – rather, the flow pattern loses directionality around ρp/ρf ≈ 0.95.
Accordingly, the particle motion in the simulation (figure 3b) reverses direction:

particles lighter than ≈ 0.95ρf are repelled over time, while those of greater density are
attracted towards the monopole (which includes the density-matched case).

4.2. Comparison of particle trajectories
A comparison between unsteady DNS dynamics and predictions from the unsteady
theory equation (3.3) is possible, although it entails evaluating the non-local Basset
memory integral, which is computationally expensive and typically not of relevance in
applications. For a clearer and more practical validation, in figure 4 we focus on comparing
time-averaged DNS dynamics and predictions from the analytically derived equation (4.1)
for the rectified steady dynamics, which is easily integrated in time.
Figure 4(a–d) depict examples of such averaged radial dynamics for different density

ratios and different Stokes numbers λ, all with rp0 = 2. Across a wide range of parameters,
DNS dynamics (magenta) and analytical results (red) from the uniformly valid asymptotic
expressions of G(λ) are found to be in very good agreement. Predictions from the classical
MR equation (green) instead deviate significantly in all cases and, for some parameter
combinations (see figure 4a), even misidentify the direction of the particle motion. The
theory of Agarwal et al. (2018) (light blue), which relies on inviscid flow throughout,
also misses important force contributions and shows deviations similar in nature to
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Figure 4. Comparison of theoretical particle motion with DNS. (a–d) Time-averaged dynamics from the
theory using (4.1) with the full analytical expressions for G and F agree with DNS (magenta) for the entire
range of λ and density contrast values (all results are for rp0 = 2). Two exemplary density contrast and
λ combinations are displayed, ρp/ρf = 1.1 (κ̂ = 0.067) and ρp/ρf = 0.9 (κ̂ = −0.067). The classical MR
equation solutions (green) fail to even qualitatively capture the particle repulsion in (a), and (b–d) otherwise
strongly underestimate the force. The inviscid formalism of Agarwal, Rallabandi & Hilgenfeldt (2018) (light
blue) has similar, though quantitatively less severe, shortcomings. (e) Best-fits of G(λ) to (4.1) are extracted
from DNS and show excellent agreement with the full theory (3.5), for both heavier (ρp/ρf = 1.1, red) and
lighter (ρp/ρf = 0.9, teal) particles.

those of MR, though quantitatively smaller. Only properly accounting for particle inertia
successfully reproduces the range of numerically observed behaviours.
To illustrate the success of (4.1) over the entire range of practically relevant λ values,

figure 4(e) condenses all results by extracting a G(λ) value from best-fitting (4.1) to
the numerically simulated particle trajectories (see Appendix F for details), given the
previously established accuracy of the F(λ) function (Agarwal et al. 2021). Both for
heavier (ρp/ρf = 1.1, red) and lighter particles (ρp/ρf = 0.9, teal), the analytical equation
yields excellent agreement with the simulated rectified drift of the particle, indicating
that it captures the key physical mechanisms at play. We note here that even for λ = 20,
there are significant deviations of G(λ) from its inviscid asymptotic value of 1, showing
that viscous effects remain important in quantitative device design even at large Stokes
numbers.
This validation demonstrates the utility of our theoretical framework in predicting the

dynamics of solid particles in oscillatory flows, as each individual DNS simulation incurs
a large computational cost up to ∼24–48 core hours on a single node on the Expanse
supercomputer (see Appendix E), while the theory ODE is trivial to solve.

4.3. Particles at large distances: connection to acoustofluidics
Acoustofluidics has been a fruitful field of study aiming to manipulate fluid and particles
using acoustic waves (Bruus 2012; Friend & Yeo 2011). As mentioned above, our
framework specializes to the far-field acoustofluidic secondary radiation force when the
distance between the particle and the oscillating source is large, rp0 � 1. In this case,
the force on the particle is the first term of (3.4), i.e. the nominal inviscid acoustic
radiation force FR multiplied by the Stokes-number-dependent factor G(λ). That such a
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Figure 5. (a) Stokes number dependence of the overall dimensionless inertial force magnitude G, representing
the ratio between acoustofluidic forces (limit of large distance between source and particle) to the radiation
force FR. Lines are results from different theories, symbols from DNS, all for ρp/ρf = 1.1 (κ̂ = 0.067),
ε = 0.01. The DNS values are best fits of G given the full expression for F in (4.1). The present work (red
line) is in excellent agreement with all DNS data, while both the Agarwal et al. (2018) (light blue) and MR
formalisms (green) significantly underestimate the forces. (b) Contour plots for steady particle velocity at
rp = 2 with varying λ and ρp/ρf . The solid red line marks the transition from attraction to repulsion.
Solid circles indicate simulation outcomes with blue and red circles representing attraction and repulsion,
respectively.

λ-dependence exists has been known in acoustofluidics, and several approaches have been
used to quantify it. We compile these predictions in figure 5(a) for reference.
Predictions using the MR equation fail to correctly reproduce the inviscid limit (λ→

∞) due to the incorrect form of the fluid acceleration in the added mass term (see the
discussion of the Auton correction in § 3.1). The formalism of Settnes & Bruus (2012)
instead misses the opposite viscous limit (λ→ 0), as it ignores viscosity completely.
In previous work (Agarwal et al. 2018), the present authors heuristically combined the
leading-order inviscid and viscous effects. This simplified formalism agrees exactly with
the much more elaborate theory of Doinikov (1994) in both the viscously dominated
(λ→ 0) and the inviscid limits (λ→ ∞), while quantitative discrepancies remain in the
intermediate λ regime, where the G(λ) of Doinikov (1994) is larger than that of Agarwal
et al. (2018).
The theory of the present work agrees with the previously established viscous and

inviscid limits, and makes new predictions in the intermediate λ range, with values
between those of Doinikov (1994) and Agarwal et al. (2018). The DNS data in figure 5(a)
demonstrate that our theory is in excellent agreement with the forces observed in a full
Navier–Stokes simulation, significantly improving on all previous approaches. The relative
error between our analytical predictions and the DNS is ≈5%–10% across the simulation
range 1 ≤ λ ≤ 20. This range is restricted by computational cost on both ends, as the
boundary layer scale becomes large for λ� 1 and the size of the computational domain
must be increased, while for λ� 1 the extremely thin boundary layer requires ever greater
mesh refinement. The diverging computational cost underscores again the advantage of
using analytical theory to predict particle behaviour at high Stokes numbers and into the
regime of acoustofluidic applications.
Our results reaffirm that viscous effects can significantly affect the behaviour of particles

in acoustofluidic systems, and have important implications for the design and optimization
of microfluidic devices that utilize acoustic waves for particle manipulation.
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4.4. Transition from attraction to repulsion
Equation (4.1) predicts that particles in monopolar oscillatory flows can exhibit
equilibrium positions (at finite r) where the net force acting on the particle is zero. Setting
drp/dT = 0 in (4.1) obtains the critical radial position (in units of the particle radius ap)
as

rpc =
√

−(κ̂ + 1)F(λ)

κ̂G(λ)
. (4.2)

In most practically relevant situations, λ � O(1), and thus G > 0 (cf. figure 5a). A real
rpc then exists if the particle is lighter than the surrounding medium (κ̂ < 0). Such an
equilibrium position is necessarily unstable, as the repulsive term in (4.1) decays more
slowly. Thus, for light particles and λ � O(1) this model predicts a critical radial distance
below which the particle is always attracted towards the oscillating source. In a practical
set-up, a particle can be transported into this attractive range by streaming flows or other
appropriately designed flow fields. Thus, rpc is an important quantity to consider in the
design of microfluidic devices that make use of acoustically excited microbubbles to
selectively trap particles (cf. Chen et al. 2016; Zhang et al. 2021a,b).
Conversely, given a certain distance from the oscillating object, attraction or repulsion

of a particle can be designed by adjusting density contrast or Stokes number (oscillation
frequency). Figure 5(b) plots the isolines of the right-hand side of (4.1) as a function of
the parameters λ and κ̂ , for a fixed rp = 2. The red line is the zero contour separating
attractive from repulsive dynamics. Particles of density equal or higher than fluid density
are always attracted towards the source, while light particles (ρp/ρf < 1) are repelled
above a threshold Stokes number. Comparison with DNS data (circles in figure 5b)
confirms these predictions. The sign change of G(λ) at λ� 1 complicates this picture (in
principle, repulsion can be achieved even for heavier particles), although force magnitudes
in this regime are typically too small to be practically relevant.

5. Relevance and limitations of the inertial equation of motion

5.1. Avoiding effects of outer-flow inertia
The results obtained in this study show that particle motion can be described quantitatively
by inertial forcing terms. Often, such computations are complicated by a transition between
a viscous-dominated inner flow volume (near the particle) and an inertia-dominated outer
volume, necessitating an asymptotic matching of the two limits, such as for the Oseen
(Oseen 1910) and Saffman (Saffman 1965) problems. Our formalism, however, only
employs an inner-solution expansion and still obtains accurate predictions. This can be
rationalized by invoking the analysis of Lovalenti & Brady (1993), who showed that an
outer region is not present when the magnitude of oscillatory inertia in the disturbance
flow ∂w(1)/∂t is much larger than that of the advective term f , i.e. the characteristic
unsteady time scale ω−1 is shorter than the convective inertial time scale ν/(U∗w(0))2,
where w(0) is the dimensionless velocity scale of the fluid in the particle reference frame.
This ensures that vorticity cannot diffuse to the distance of the Oseen wake during
the time scale of unsteadiness. For neutrally buoyant particles, w(0) = O(α), while for
non-neutrally buoyant particles, w(0) = O(κ̂). With our definition of Rep, this translates
into λ� max(α2, κ2)Re2p, interpreting λ ∝ ω as a measure of unsteadiness. However, in
the scenarios of oscillatory microfluidics most relevant to our analysis, Rep itself scales
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with ω as well as with the oscillation amplitude ε, so that the criterion becomes

ε2λ� min(α2/κ̂2, 1). (5.1)

As long as the density contrast between the particle and fluid is small, or |κ̂| � 1, (5.1) is
easily satisfied in most experimental situations, and it reverts to the criterion ε2λ� 1
established for neutrally buoyant particles (Agarwal et al. 2021). An interesting point
to note is that the density-dependent condition ε2λ� α2/κ̂2 can be rewritten in the
ap-independent form ε � δS/(abκ̂). This is because the leading term of the background
flow field expansion at the particle position contains no information about the particle
length scale.

5.2. Magnitude and practical relevance of inertial effects
In figure 5(a), we illustrated how our formalism, in agreement with DNS, predicts
much stronger inertial forces than either MR (which emphasizes viscous effects) or
Agarwal et al. (2018), which treats the background flow as inviscid. For particles typically
encountered in microfluidic applications involving biological cells, the density difference
tends to be around 5%, while the size parameter is α � 0.2 and λ � 1. A practically
useful metric to quantify the effect of the inertial force acting on the particle by a localized
oscillating source is the time needed for radial displacement of a particle diameter. In
most particle manipulation strategies, rp � ab and, upon solving (4.1) with these nominal
parameter values, we find that our formalism predicts a time scale of ∼10 ms compared
with ∼50 ms predicted by the inviscid formalism. This translates to much more efficient
design strategies for sorting particles based on size or density. The MR formalism predicts
a time scale of ∼500 ms, which is off by more than one order of magnitude and severely
underestimates the performance of oscillatory microfluidic set-ups.
For these prototypical cases where particles are close to the interface of the oscillating

object (rp � ab), the major contribution to inertial forces is due to FΓ κ , as discussed in
Agarwal et al. (2021), However, since FΓ κ decays more strongly with the distance from
the source than FσΓ , the density contrast dependent force can easily become comparable
in magnitude, resulting in the rich behaviour of attraction and repulsion separated by the
critical (and tunable) distance rpc as described in § 4.4. Thus, the present work suggests
new avenues for particle trapping/sorting relying on density contrast; some of these ideas
will be explored in future publications.
In a microfluidic set-up, the oscillatory flow is induced around an obstacle, e.g. a

cylinder or bubble of radius ab, and as mentioned above, particles in typical applications
will approach quite closely to the interface of this obstacle. We have not accounted for
effects due to such a nearby boundary in this analysis. In Agarwal et al. (2018), we
demonstrated the existence of a stable fixed-point position when the particle is in very
close proximity to the boundary. This stable equilibrium is a consequence of the repulsive
lubrication force near the interface balancing the attractive force discussed here. As long
as |κ̂| � 1, which is the case in an overwhelming majority of practical applications, the
conclusions of Agarwal et al. (2018) are not affected by the present findings, i.e. a particle
attracted to an oscillating obstacle is expected to come to rest at a stable equilibrium
distance that is extremely small compared with the interface scale, and typically even
compared with the particle scale.

985 A33-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

30
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.303


Inertial forces on particles in oscillatory flows

6. Conclusions

We have developed a rigorous formalism to accurately describe the motion of particles
in general, fast oscillatory flows. The present work systematically accounts for finite
inertial forces in viscous flows that result from the interaction between the density-contrast
dependent slip velocity and flow gradients. Confirmed by DNS, these forces are found to
be important and often far larger than the density-contrast dependent effects present in
the original formalism of MR. Our theory allows for quantitative predictions of the sign
and magnitude of forces exerted on particles in many customary microfluidic settings,
in particular for nearly density matched cell-sized particles – the most relevant case in
medicine and health contexts. The theory encompasses special cases such as Auton’s
correction and acoustic radiation forces in the inviscid limit, and provides their quantitative
generalization in the presence of viscous effects.
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Appendix A. Leading-order disturbance flow and mobility tensors

The leading-order equations for (w(1)
0 , p(1)

0 ) are unsteady Stokes and read

∇2w(1)
0 − ∇p(1)

0 = 3λ
∂w(1)

0
∂t

, (A1a)

∇ · w(1)
0 = 0, (A1b)

w(1)
0 = up0 − u, on r = 1, (A1c)

w(1)
0 = 0, as r → ∞. (A1d)

As a consequence of (2.4), the boundary condition (A1c) is also expanded around rp0 , so
that in the particle-fixed coordinate system

w(1)
0 = up0 − u = up0 − u|rp0 − r · E − rr : G + · · · , on r = 1, (A2)

where we have retained the first three terms in the background flow velocity expansion.
Owing to the linearity of the leading-order unsteady Stokes equation, the solution can
generally be expressed as (Landau & Lifshitz 1959; Pozrikidis et al. 1992)

w(1)
0 = MD · us − MQ · (r · E) − MO · (rr : G) + · · · , (A3)

where MD,Q,O(r, λ) are spatially dependent mobility tensors.
For harmonically oscillating, axisymmetric background flows (i.e. u(r, t) = {ūr, ūθ , 0}eit

in the spherical particle coordinate system), general explicit expressions can be derived
for the mobility tensors MD,Q,O, ensuring no-slip boundary conditions on the sphere
order-by-order. A procedure obtaining MD is described in Landau & Lifshitz (1959); the
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other tensors are determined analogously. Using components in spherical coordinates, they
read

MD =

⎡⎢⎢⎢⎣
2a(r)
r2

0 0

0
a′(r)
r

0
0 0 0

⎤⎥⎥⎥⎦ , MQ =

⎡⎢⎢⎢⎣
b(r)
r3

0 0

0
b′(r)
3r2

0

0 0 0

⎤⎥⎥⎥⎦ ,

MO =

⎡⎢⎢⎢⎣
−32c(r)

3r4
0 0

0
8c′(r)
3r3

0

0 0 0

⎤⎥⎥⎥⎦ , (A4a–c)

where

a(r) = 1
2β2r

[
β2 − 3iβ + 3 − 3e−iβ(r−1) (1 + iβr)

]
, (A5a)

b(r) = 1
β2(β − i)r2

[
β(−15 + β(β − 6i)) + 15i + 5e−iβ(r−1)(βr(3 + iβr) − 3i)

]
,

(A5b)

c(r) = −3(105 + β(β(−45 + β(β − 10i)) + 105i))
32β2(−3 + β(β − 3i))r3

+ 21e−iβ(r−1)(15 + βr(−βr(6 + iβr) + 15i))
32β2(−3 + β(β − 3i))r3

, (A5c)

and β =
√

−ia2p/(ν/ω) = √−3iλ is the complex oscillatory boundary layer thickness.
We emphasize that these expressions are the same for arbitrary axisymmetric oscillatory
u. Accordingly, only the expansion coefficients us, E and G contain information about the
particular flow.
It is understood everywhere that physical quantities are obtained by taking real parts of

these complex functions.

Appendix B. Reciprocal theorem and test flow

In order to compute the force F (1)
1 , we do not solve for the flow field w(1)

1 but
instead employ a reciprocal relation in the Laplace domain to directly obtain the force.
A key simplification due to oscillatory flows is that the Laplace transforms are explicitly
computed. The symmetry relation employs a known test flow (denoted by primed
quantities such as u′) in a chosen direction e, around an oscillating sphere such that it
satisfies the following unsteady Stokes equation:

∇2u′ − ∇p′ = ∇ · σ ′ = 3λ
∂u′

∂t
, (B1a)

∇ · u′ = 0, (B1b)

u′ = u′(t) e, on r = 1, (B1c)

u′ = 0, as r → ∞, (B1d)

where the unit vector e is chosen to coincide with the direction in which the force on the
particle is desired. The solution to this problem is of the same form as (2.6), but with only
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the first term, i.e.
u′ = u′(t)MD · e. (B2)

Denoting Laplace-transformed quantities by hats (e.g. û), the following symmetry relation
is obtained using the divergence theorem (cf. MR; Lovalenti & Brady 1993; Hood et al.
2015):∮

S
(ŵ(1)

1 · σ̂ ′ − û′ · σ̂
(1)
1 ) · m dS =

∫
V

[
∇ · (ŵ(1)

1 · σ̂ ′) − ∇ · (û′ · σ̂
(1)
1 )
]
dV, (B3)

wherem is the outward unit normal vector to the surface (pointing inward over the sphere
surface), and σ̂ = ∇û + (∇û)T − p̂I . Substituting boundary conditions from (2.7) and
(B1), and setting the volume equal to the fluid-filled domain, we obtain

û(1)
p1 ·

∫
Sp

(
σ̂ ′ · m) dS − û′e ·

∫
Sp

(σ̂
(1)
1 · m)dS +

∫
S∞

(ŵ(1)
1 · σ̂ ′) · m dS

−
∫
S∞

(
û′ · σ̂

(1)
1

)
· m dS

=
∫
V

[
ŵ(1)
1 · (∇ · σ̂ ′)− û′ ·

(
∇ · σ̂

(1)
1

)
+ ∇ŵ(1)

1 : σ̂ ′ − ∇û′ : σ̂
(1)
1

]
dV. (B4)

The third term on the left-hand side is zero since the viscous test flow stress tensor decays
to zero at infinity. Similarly, the integral in the fourth term vanishes in the far field if
viscous stresses dominate inertial terms, and also in the case of inviscid irrotational flows
(see Lovalenti & Brady 1993; Stone, Brady & Lovalenti, unpublished preprint 2001). The
third and fourth terms on the right-hand side also go to zero, owing to incompressibility
and symmetry of the stress tensor:

∇ŵ(1)
1 : σ̂ ′ − ∇û′ : σ̂

(1)
1 = ∇ŵ(1)

1 :
(
∇û′ + (∇û′)T)− p̂′∇ · ŵ(1)

1

−∇û′ :
(
∇ŵ(1)

1 + (∇ŵ(1)
1 )T

)
− p̂(1)∇ · û′ = 0. (B5)

The divergence of the hatted stress tensors in the remaining two terms of the right-hand
side of (B4) can be obtained by taking the Laplace transforms of (2.7) and (B1) and using
the property f̂ ′(t) = sf̂ (t) − f (0), so that

∇ · σ̂ ′ = 3λsû′ − u′(0), (B6a)

∇ · σ̂
(1)
1 = 3λsŵ(1)

1 − w(1)
1 (0) + f̂ 0. (B6b)

Now, the force on the sphere at this order is given by F (1)
1 = ∫Sp(σ (1)

1 · n) dS =
− ∫Sp(σ (1)

1 · m) dS, since m points inwards while n points outwards on the surface of the

sphere. Assuming both w(1)
1 and u′ start from rest, (B4) simplifies to (cf. Lovalenti & Brady

1993)

û′e · F̂ (1)
1

FS/(6π)
= ûp1 ·

∫
Sp

(σ̂ ′ · n) dS −
∫
V
û′ · f̂ 0 dV. (B7)

Taking the inverse Laplace transform, we obtain the expression for e · F (1) given in the
main text.
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Appendix C. Evaluation of G1 and G2

In order to get explicit results for the non-trivial integration factors G1 and G2, we insert f̂ 0
(with explicitly known mobility tensorsMD,Q,O) into (2.12). Since F

(1)
σΓ involves products

of oscillatory terms, there are higher-order force harmonics with zero net effect on the
particle dynamics which we will average out in the following to simplify the integration
evaluations.
We first decompose the slip velocity into its in-phase and out-of-phase components, i.e.

us(rp, t) = uIs(rp, t) + uOs (rp, t), as noted in the main text, and time-average (2.12) over a
period of oscillation to remove higher-order harmonic terms. We then perform the volume
integration to obtain an explicit but rather lengthy expression that can be symbolically
written as

〈F(1)
σΓ 〉

RepFS/(6π)
= 4π

3
〈uIs · E〉 · eG1(λ) + 4π

3
〈uOs · E〉 · eG2(λ), (C1)

where G1 and G2 are explicit outcomes of the volume integration. Exploiting the
orthogonality of trigonometric functions and the fact that, for fast oscillatory background
flows, E is purely in-phase, we rewrite the in-phase component as 〈us · E〉 and the
out-of-phase component as 〈∂tus · E〉, where angled brackets denote time-averaging, so
that

〈F(1)
σΓ 〉

RepFS/(6π)
= 4π

3
〈us · E〉 · eG1(λ) + 4π

3
〈∂tus · E〉 · eG2(λ). (C2)

Finally, we drop the time-averaging operation, producing an error in the higher-frequency
force harmonics that has zero effect on net particle motion, resulting in (2.14) in the main
text.
The explicit expression for the in-phase inertial force component for oscillatory flows

reads

G1 = e−i
√
λ̄
[
225e3

√
λ̄λ̄3/2

(
e2i

√
λ̄
(
(3 + 2i)

√
λ̄+ 2i

) (
Ei
(
(−3 − i)

√
λ̄
)

+ iπ
)

−
(
2 + (2 + 3i)

√
λ̄
) (

π + i Ei
(
(−3 + i)

√
λ̄
)))

+ 48e(2+i)
√
λ̄
(
2λ̄+ 12

√
λ̄+ 11

)
λ̄5/2Ei

(
−2
√
λ̄
)

− e
√
λ̄
(
2
√
λ̄+ 3

)
λ̄2
(
e2i

√
λ̄
(
2
(√
λ̄+ (2 + i)

)
√
λ̄
(
2λ̄+ (3 + 3i)

√
λ̄+ (3 + 6i)

)
+ 15i

) (
π − iEi

(
(−1 − i)

√
λ̄
))

+
(
2
(√
λ̄+ (2 − i)

)√
λ̄
(
2λ̄+ (3 − 3i)

√
λ̄+ (3 − 6i)

)
− 15i

)
(
π + iEi

(
(−1 + i)

√
λ̄
)))

+ ei
√
λ̄
(
302λ̄3/2 + 144λ̄5/2 + 12λ̄7/2 + 8λ̄4 − 8λ̄3 + 36λ̄2 − 598λ̄− 512

√
λ̄

−189)
]/(

160
(
2λ̄3/2 + 2λ̄+

√
λ̄
))

, (C3)
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where λ̄ = 3λ/2 and Ei is the exponential integral function. The following expression for
the out-of-phase component G2 is similarly explicit and lengthy:

G2 = e−i
√
λ̄
√
λ̄
[
−240e(2+i)

√
λ̄
(
2λ̄3/2 + 6λ̄+ 6

√
λ̄+ 3

)
λ̄3/2Ei

(
−2
√
λ̄
)

+ 225e3
√
λ̄λ̄3/2

((
3 + (3 + 2i)

√
λ̄
) (

Ei
(
(−3 + i)

√
λ̄
)

− iπ
)

+e2i
√
λ̄
(
(2 + 3i)

√
λ̄+ 3i

) (
π − iEi

(
(−3 − i)

√
λ̄
)))

+ e
√
λ̄
(
2
√
λ̄+ 3

)
λ̄2
((

(10 + 14i)λ̄3/2 + 4iλ̄2 + (30 + 12i)λ̄+ 30
√
λ̄+ 15

)
(
π + iEi

(
(−1 + i)

√
λ̄
))

+ e2i
√
λ̄
(
15 − 2i

(√
λ̄+ (2 + i)

)√
λ̄
(
2λ̄+ (3 + 3i)

√
λ̄+ (3 + 6i)

))
(
π − iEi

(
(−1 − i)

√
λ̄
)))

− ei
√
λ̄
(
42λ̄3/2 + 340λ̄5/2 + 60λ̄7/2 + 8λ̄4 + 128λ̄3 + 666λ̄2 − 288λ̄+ 54

√
λ̄

+45)
]/(

240
(
2λ̄3/2 + 2λ̄+

√
λ̄
))

. (C4)

Appendix D. Evaluation of the memory integral and time scale separation

We first comment on the contribution due to the history term. It is well known that the
Basset history integral poses a special challenge (cf. Michaelides 1992; Van Hinsberg, ten
Thije Boonkkamp & Clercx 2011; Prasath, Vasan & Govindarajan 2019): its evaluation is
often computationally intensive since one has to numerical solve an integro–differential
equation. However, for oscillatory flows it can be evaluated explicitly – reducing to a
simple ODE – and results in subdominant corrections to the Stokes drag and added mass
forces (cf. Landau & Lifshitz 1959; Danilov & Mironov 2000), i.e.

6π1/2ν1/2a2pρf

∫ t

−∞
d/dτ

[
Up(τ ) − U(rp(τ ), τ )

]
√
t − τ

dτ

= 1
2
mf

d
dt

[
Up(t) − U(rp(t), t)

] (
3

√
3
2λ

)

+ 6πρf νap
[
Up(t) − U(rp(t), t)

] (√3λ
2

)
. (D1)

We note that these corrections apply only if the velocity difference between the particle and
the fluid is oscillatory, i.e. (Up(t) − U(X p(t), t)) ∝ eit. Therefore, (3.1) cannot be easily
used to describe the unsteady particle dynamics with rectified motion due to the difficulty
in evaluating the memory term.
This apparent difficulty can be resolved by exploiting the clear separation of time scales

inherent to most fast oscillatory flow set-ups. Assuming all parameters areO(1) and ε � 1,
we introduce a ‘slow time’ T = ε2t, in addition to the ‘fast time’ t. Using the following
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transformations:

rp(t) �→ rp(t, T), (D2a)

d
dt

�→ ∂

∂t
+ ε2

∂

∂T
, (D2b)

d2

dt2
�→ ∂2

∂t2
+ 2ε2

∂2

∂t∂T
+ ε4

∂2

∂T2 , (D2c)

we seek a perturbation solution in the general form: rp(t, T) = rp0(t, T) + εrp1(t, T) +
ε2rp2(t, T) + · · · . On separating slow and fast time scales and separating orders of ε, the
memory term becomes∫ t

−∞
d/dτ

[
drp(τ )/dτ − εu(rp(τ ), τ )

]
√
t − τ

dτ

=
∫ t

−∞

∂2

∂τ 2

(
rp0(T) + εrp1(τ, T)

)− ε∂τ (uosc + εrp1 · ∇uosc)
√
t − τ

dτ

= ε

∫ t

−∞
∂2τ rp1(τ ) − ∂τ (uosc)√

t − τ
dτ. (D3)

The contribution due to the O(ε2) nonlinear forcing term ∂τ (rp1 · ∇uosc) is identically
zero for oscillatory flows, after time-averaging. Additionally, the effect on the steady flow
component is higher-order in ε and is, therefore, neglected. Thus, the main contributions
due to the history integral appear as subdominant corrections to the Stokes drag and added
mass terms, given by (D1), at O(ε).
We now proceed with the formal separation of time scales of (3.3). At O(1),

λ
(
κ̂ + 1

) ∂2rp0
∂t2

+ ∂rp0
∂t

= 0. (D4)

This equation is trivially satisfied if rp0 = rp0(T); thus, the leading-order particle position
rp0 depends only on the slow-time T . At O(ε), we obtain the following after explicitly
evaluating the history integral:

λ
(
κ̂ + d

) ∂2rp1
∂t2

+ c
∂rp1
∂t

=
{
λd

∂uosc
∂t

+ cuosc

}
rp0

, (D5)

where c = (1 + √
3λ/2) and d = (1 + √

3/2λ) encode the Basset force contributions to
the Stokes drag and added mass forces, respectively. Assuming fast oscillatory inviscid
flow dynamics, uosc = u0(r)eit and ignoring transients, the solution at O(ε) is given by

rp1 =
∫

(uosc + wosc) dt, (D6a)

wosc = − iλκ̂
c + iλ(κ̂ + d)

uosc, (D6b)
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where we make use of complex phasors. With the O(ε) oscillatory particle dynamics
explicitly known, we obtain at O(ε2), after time averaging:

drp0
dT

= λ
〈
rp1 · ∂∇uosc

∂t

〉
+ 〈rp1 · ∇uosc

〉+ 2λ
3

〈uosc · ∇uosc〉

+ λ
3

〈
∂rp1
∂t

· ∇uosc

〉
+ 2λ

3
G1

〈(
∂rp1
∂t

− uosc

)
· ∇uosc

〉
+ 2λ

3
G2

〈
∂t

(
∂rp1
∂t

− uosc

)
· ∇uosc

〉
+ 2λ

3
α2 〈∇u : ∇∇u〉F

=
〈(∫

wosc dt
)

· ∇uosc

〉
− 2λ

3
〈wosc · ∇uosc〉

+ 2λ
3
G1 〈wosc · ∇uosc〉 + 2λ

3
G2 〈∂twosc · ∇uosc〉 + 2λ

3
α2 〈∇u : ∇∇u〉F . (D7)

Inserting (D6), and evaluating the time averages results in (3.4) in the main text.

Appendix E. Direct numerical simulation details

Here, we present the governing equations and the numerical solution strategy employed
in this work. Briefly, we consider incompressible viscous fluid in an unbounded domain,
Σ , with an imposed monopolar flow field. The particle is modelled as an immersed solid,
which moves under the influence of the oscillatory flow field. The particle is defined with
support Ω and boundary ∂Ω , respectively. Under the aforementioned conditions, the flow
in the domain can be described using the incompressible Navier–Stokes equations,

∇ · u = 0; ∂u
∂t

+ (u · ∇)u = −∇P
ρ

+ ν∇2u, x ∈ Σ\Ω, (E1)

where ρ, P, u and ν are the fluid density, pressure, velocity and kinematic viscosity,
respectively. The dynamics of the fluid–solid system is coupled via the no-slip boundary
condition u = us on ∂Ω , where us is the solid body velocity. The system of equations
is solved using a velocity–vorticity formulation with a combination of remeshed vortex
methods and Brinkmann penalization implemented in an axisymmetric solver (Bhosale
et al. 2023). The monopole and particle are placed on the axis of symmetry, separated by
a centre-to-centre distance rp(0). The hydrodynamic forcing contributions arising from
the density mismatch between the fluid and solid are accounted for via the unsteady
term proposed in Engels et al. (2015). The chosen computational methodology has been
validated across a range of flow–structure interaction problems, from flow past bluff bodies
to biological swimming, as well as for two- and three-dimensional streaming flows (see
Gazzola et al. 2011; Parthasarathy et al. 2019; Bhosale et al. 2020, 2022a,b; Chan et al.
2022; Bhosale et al. 2023 for details). The DNS code and example cases can be accessed
online, see Bhosale et al. (2023).

Appendix F. Fitting procedure to obtain G from DNS

The DNS produces (unsteady) particle trajectories as a function of time. As depicted in
figure 3(b) of the main text, these oscillatory trajectories were time-averaged over one
period to obtain the steady particle dynamics rp(T), which is a function of the slow time
T = ε2t. We fit these trajectories to (4.1) in the main text with G as the fitting parameter
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in order to obtain the simulation points of figure 4(e) of the main text. The fitting process
involves the following steps. (i) We first validate the DNS technique for density-matched
particles using the function F established in Agarwal et al. (2021) for all considered λ
values, obtaining an accuracy within 5% using the current DNS methodology. (ii) Next,
slow-time particle trajectories are obtained by numerically integrating (4.1) in the main
text, with the full analytical expression F from Agarwal et al. (2021). These are fitted
to the time-averaged trajectories obtained from DNS using the method of least squares,
resulting in the direct determination of G. The error bars of the fit are computed for each
G value, assuming an error of 5% in the values of F , consistent with the maximum error
observed in the density-matched validation case.
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