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Viscous streaming is an efficient rectification mechanism to exploit flow inertia at small
scales for fluid and particle manipulation. It typically entails a fluid vibrating around
an immersed solid feature that, by concentrating stresses, modulates the emergence of
steady flows of useful topology. Motivated by its relevance in biological and artificial
settings characterized by soft materials, recent studies have theoretically elucidated, in
two dimensions, the impact of body elasticity on streaming flows. Here, we generalize
those findings to three dimensions, via the minimal case of an immersed soft sphere.
We first improve existing solutions for the rigid-sphere limit, by considering previously
unaccounted terms. We then enable body compliance, exposing a three-dimensional,
elastic streaming process available even in Stokes flows. Such effect, consistent with
two-dimensional analyses but analytically distinct, is validated against direct numerical
simulations and shown to translate to bodies of complex geometry and topology, paving
the way for advanced forms of flow control.

Key words: microfluidics, general fluid mechanics

1. Introduction

This study investigates the effects of body elasticity on three-dimensional viscous
streaming. Viscous streaming, an inertial phenomenon, refers to the steady, rectified flows
that emerge when a fluid oscillates around a localized microfeature. Given its ability
to remodel surrounding flows over short time and length scales, streaming has found
application in multiple aspects of microfluidics, from particle manipulation (Lutz, Chen
& Schwartz 2003, 2005; Marmottant & Hilgenfeldt 2004; Lutz, Chen & Schwartz 2006;
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Wang, Jalikop & Hilgenfeldt 2011; Chong et al. 2013; Chen & Lee 2014; Klotsa et al. 2015;
Thameem, Rallabandi & Hilgenfeldt 2017) and chemical mixing (Liu et al. 2002; Lutz
et al. 2003, 2005; Ahmed et al. 2009) to vesicle transport and lysis (Marmottant &
Hilgenfeldt 2003, 2004). Recently, the use of multi-curvature streaming bodies has
expanded the ability to manipulate flows, leading to compact, robust and tunable devices
for filtering and separating both synthetic and biological particles (Parthasarathy, Chan
& Gazzola 2019; Bhosale, Parthasarathy & Gazzola 2020; Chan et al. 2022; Bhosale
et al. 2022b). More recently yet, motivated by medical and biological applications and
building upon past theoretical studies (Wang 1965; Riley 1966, 1998, 2001; Rednikov
et al. 2006; Rednikov & Sadhal 2011; Sadhal 2012; Sadhal, Laurell & Lenshof 2014),
the effect of body compliance has been considered (Anand & Christov 2020), with one of
the studies yielding a first two-dimensional streaming theory for soft cylinders (Bhosale,
Parthasarathy & Gazzola 2022a). Its major outcome is encapsulated in the relation

〈ψ1〉 = sin 2θ [Θ(r) + Λ(r)] , (1.1)

where 〈ψ1〉 is the time-averaged Stokes streamfunction and r and θ are the radial and polar
coordinates in the cylindrical system. This relation reveals an additional streaming process
Λ(r), purely induced by body elasticity, that is available even in Stokes flows where
rigid-body streaming Θ(r) cannot exist (Holtsmark et al. 1954). Elasticity modulation has
then been shown to achieve streaming configurations similar to those of rigid bodies, but
at significantly lower frequencies. This frequency reduction has relevant implications, as
it renders viscous streaming accessible within the limits of biological actuation.
In this work, we extend this understanding to three dimensions by examining the

minimal case of an oscillating, soft sphere. We first present an improved theoretical
solution for the rigid-sphere case by augmenting the derivation of Lane (1955) with
a previously unaccounted term related to vortex stretching. Our formulation is shown
to significantly enhance quantitative agreement with direct numerical simulations and
experiments. Next, within the same theoretical framework, we consider body elasticity
and seek a modified streaming solution dependent on material compliance. We recover
an independent elastic modification term, similar in nature to the above two-dimensional
result but analytically distinct. We then demonstrate the accuracy of our theory against
direct numerical simulations, and show how observed elasticity effects may translate to
bodies of complex geometry and topology, further expanding the potential utility of soft
streaming.

2. Problem set-up and governing equations

We derive the streaming solution by considering the set-up shown in figure 1, where a
three-dimensional viscoelastic solid sphere Ωe of radius a is immersed in a viscous fluid
Ωf . The fluid oscillates with velocity V(t) = εaω cosωt, where ε, ω and t represent the
non-dimensional amplitude, angular frequency and time. Following our previous set-up
for a soft two-dimensional cylinder (Bhosale et al. 2022a), we kinematically enforce zero
strain and velocity near the sphere’s centre by ‘pinning’ the sphere with a rigid inclusion
Γ of radius b < a, the boundary of which is denoted by ∂Γ . We choose to ‘pin’ the sphere
to suppress its rigid-body motion and simplify mathematical treatment. Experimentally,
this approach may be realized by coating with a soft material a rigid sphere, which in turn
can be suspended in flow as in Kotas, Yoda & Rogers (2007) or Lane (1955). Finally, we
denote by ∂Ω the boundary between the elastic solid and the viscous fluid.
Both fluid and solid are assumed to be isotropic and incompressible, where the fluid

is Newtonian with kinematic viscosity νf and density ρf , and the solid follows the
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Figure 1. Problem set-up. (a) Three-dimensional viscoelastic solid sphere Ωe of radius a with a rigid
inclusion (pinned zone Γ of radius b), immersed in viscous fluid Ωf . In this study, we deploy a spherical
coordinate system where (r, θ, φ) are the radial, polar and azimuthal coordinates. The sphere is exposed to
an oscillatory flow with far-field velocity V(t) = εaω cos(ωt) in the x direction, along the axis of symmetry.
(b) Two-dimensional axisymmetric cross-section of the elastic sphere.

Kelvin–Voigt viscoelastic model. Characteristic of soft biological materials (Bower 2009),
elastic stresses within the solid are modelled via neo-Hookean hyperelasticity with shear
modulus G, kinematic viscosity νe and density ρe. However, we will later show that
the choice of hyperelastic or viscoelastic model does not affect the theory. To simplify
nomenclature, we henceforth refer to the viscoelastic solid as an elastic solid.
The dynamics in the fluid and solid phases is governed by the incompressible Cauchy

momentum equations, non-dimensionalized using the characteristic scales of velocity
V = εaω, length L = a, time T = 1/ω and hydrostatic pressure P = μf V/L = μf εω

(derivation details are in §§ 1 and 10 of the supplementary material available at https://
doi.org/10.1017/jfm.2023.1050):

Incomp.
{∇ · v = 0, x ∈ Ωf ∪ Ωe ,

Fluid
{

∂v

∂t
+ ε(v · ∇)v = 1

M2

( − ∇p + ∇2v
)
, x ∈ Ωf ,

Solid
{
αCau

(
∂v

∂t
+ ε(v · ∇)v

)
= Cau

M2

( − ∇p + β∇2v
) + ∇ · (FFT)′, x ∈ Ωe,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.1)

where v and p are the velocity and pressure fields and F is the deformation gradient tensor,
defined as F = I + ∇u, where I is the identity, u = x − X is the material displacement
field and x,X are the position of a material point after deformation and at rest, respectively.
We comment that we uniformly refer to the hydrostatic stress in both the fluid and solid
phases as ‘pressure’ (p) to avoid cluttering the terminology. The prime symbol ′ on a
tensor denotes its deviatoric. The key non-dimensional parameters within this system are
the scaled oscillation amplitude ε, Womersley number M = a

√
ρfω/μf , Cauchy number

Cau = ερf a2ω2/G, density ratio α = ρe/ρf and viscosity ratio β = μe/μf . Physically, the
Womersley number (M) represents the ratio of inertial to viscous forces and the Cauchy
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number (Cau) represents the ratio of inertial to elastic forces. Therefore, a higher M
corresponds to stronger dominance of inertia in the fluid environment and higher Cau
values correspond to increasingly soft bodies. We further remark that the inverse of the
Womersley number (1/M) is equivalent to the non-dimensionalized viscous boundary
layer thickness (δAC/a), and thus captures a length scale critical to microfluidic processes.
We then impose a set of boundary conditions upon the governing equations, consistent

with Lane (1955):

Pinned zone {u = 0, v = 0, x ∈ Γ, (2.2)

Interface velocity
{
ve = vf , x ∈ ∂Ω , (2.3)

Interface stresses

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

σ f = −pI + (∇v + ∇vT), x ∈ Ωf ,

σ e = −pI + β(∇v + ∇vT) + M2

Cau
(FFT)′, x ∈ Ωe,

n · σ e · n = n · σ f · n, x ∈ ∂Ω,

n · σ e · t = n · σ f · t, x ∈ ∂Ω,

(2.4)

Far field
{
v(|x| → ∞) = cos tî, x ∈ Ωf , (2.5)

where (2.2) is the pinned-zone rigidity constraint, (2.3) is the no-slip boundary condition
between and solid and fluid phases, (2.4) dictates stress continuity and (2.5) is the far-field
flow velocity. We use subscripts e and f to denote elastic and fluid phases, respectively,
wherever ambiguity may arise. Next, we identify ranges of relevant parameters and solve
(2.1) via perturbation theory.

3. Perturbation series solution

In viscous streaming applications, typically we have small non-dimensional oscillation
amplitudes ε 
 1 (Wang 1965; Bertelsen, Svardal & Tjøtta 1973; Lutz et al. 2005), density
ratio α and viscosity ratio β of O (1), and Womersley number M ∼ O (1) (Marmottant
& Hilgenfeldt 2004; Lutz et al. 2006). For the Cauchy number Cau, we apply the same
treatment as in Bhosale et al. (2022a), where we use Cau = 0 for a rigid body and
Cau = κε with κ = O (1) for elastic bodies. The latter assumption implies that Cau 
 1,
which physically means that the body is weakly elastic. We make this assumption for
two reasons. First, we choose Cau to be small to simplify the treatment of hyperelastic
materials, whose nonlinearities become mathematically challenging for Cau ≥ O (1).
Second, matching Cau with ε simplifies the asymptotic expansion, while preserving the
practical generality of the results (for details, see supplementary material § 2 of Bhosale
et al. (2022a)).
We then seek a perturbation series solution of (2.1) by asymptotically expanding all

relevant fields in powers of ε. Our derivation closely follows the approach taken by Bhosale
et al. (2022a) for two-dimensional elastic cylinders, while augmenting it to encompass
three-dimensional settings. Then, the zeroth-order solution reduces to a rigid sphere in
a purely oscillatory flow governed by the unsteady Stokes equation (Lane 1955). The
first-order solution is subsequently derived in two stages. First, we obtain the deformation
of the elastic body resulting from the flow field at zeroth order. Second, we incorporate the
elastic feedback into the streaming solution by using the obtained body deformations as
boundary conditions for the flow at O (ε). The steps are outlined below, with details listed
in the supplementary material.
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Three-dimensional soft streaming

We start by perturbing to O (ε) all physical quantities q, which include v, u, p, Ω , n, t,
as

q ∼ q0 + εq1 + O(ε2) (3.1)

and substitute them into the governing equations (2.1) and boundary conditions
(2.2)–(2.5). Steps are explicitly reported in the supplementary material (equations (1.17)–
(1.26)), where subscripts (0, 1, . . .) refer to the solution order. We remark that the zeroth
order q0 of quantities non-dimensionalized by V = εaω corresponds to order O (ε) in
dimensional form. Thus, our expansion remains consistent with previous examples of
streaming literature (Longuet-Higgins 1998; Spelman & Lauga 2017) where enumeration
starts from the first order (supplementary material, equation (1.17)). Next, we adopt the
geometrically convenient spherical coordinate system (r, θ, φ), with radial coordinate r,
polar angle θ , azimuthal angle φ and origin at the centre of the sphere. The horizontal axis
direction i corresponds to θ = 0.

3.1. Zeroth-order O (1) solution
The governing equations and boundary conditions in the solid phase at zeroth order O (1)
simplify to

∇ · ((I + ∇u0)(I + ∇u0)T)′ = 0, r ≤ 1; u0|r=ζ = 0, (3.2)

where ζ = b/a is the non-dimensional radius of the pinned zone. Since at this order Cau =
κε = 0, the solution of (3.2) physically corresponds to a fixed, rigid sphere with

∂Ω0 = r = 1; u0 = 0, v0 = ∂u0
∂t

= 0, r ≤ 1. (3.3)

Thus the fluid-phase governing equations and boundary conditions reduce to

M2 ∂∇2ϕ0

∂t
= ∇4ϕ0 r ≥ 1,

v0,r|r=1 = 1
r sin θ

∂(ϕ0 sin θ)

∂θ

∣∣∣∣
r=1

= 0; v0,θ |r=1 = −1
r

∂(rϕ0)

∂r

∣∣∣∣
r=1

= 0,

v0,r|r→∞ = cos θ cos t; v0,θ |r→∞ = − sin θ cos t,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.4)

where ϕ = ϕφ̂ is the vector potential defined as v = ∇ × ϕ, with φ̂ being the unit vector
in the azimuthal direction. We note that ∇2 refers to the vector Laplacian operator, which
is distinct from the scalar Laplacian operator in spherical coordinates. This system ((3.3)
and (3.4)) defines a rigid sphere immersed in an oscillating unsteady Stokes flow, which
has an exact analytical solution (Lane 1955):

ϕ0 = −sin θ

4

(
3
h1(mr)
mh0(m)

− r − h2(m)

r2h0(m)

)
e−it + c.c., r ≥ 1, (3.5)

where i = √−1 and m = √
iM. Here, hn and c.c. refer to the nth-order spherical Hankel

function of the first kind and complex conjugate, respectively. As observed in Lane (1955),
the zeroth-order vector potential field ϕ0 in the fluid phase is purely oscillatory in time, and
thus no steady streaming appears at this order. Moreover, the flow at O (1) is unaffected
by elasticity.
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3.2. First-order O (ε) solution
We then proceed to the next order approximationO (ε), where we expect time-independent
steady streaming to emerge (Lane 1955). At O (ε), the solid governing equations reduce
(supplementary material, equations (1.38)–(1.42), (1.50)) to the homogeneous biharmonic
equation:

∇4ϕe,1 = 0, x ∈ Ωe, (3.6)

where we have defined the strain function ϕe = ϕeφ̂ similar to the fluid phase, so that
the displacement field is u = ∇ × ϕe. Equation (3.6) demonstrates how the specific
choice of solid elasticity model used at O (ε) becomes irrelevant, since all nonlinear
stress–strain responses drop out as a result of linearization (supplementary material,
equations (1.38)–(1.42)). Equation (3.6) is complemented by the Dirichlet boundary
conditions at the pinned zone interface:

u1,r = 1
r sin θ

∂(ϕe,1 sin θ)

∂θ

∣∣∣∣
r=ζ

= 0; u1,θ = −1
r

∂(rϕe,1)

∂r

∣∣∣∣
r=ζ

= 0. (3.7)

Additionally, in accordance with (2.4), the O (1) flow solution exerts interfacial stresses
on the solid, which at O (ε) is no longer rigid but instead deformable. This results in the
following boundary conditions for the radial and tangential stresses at the interface ∂Ω0:

M2

κ

∂u1,r
∂r

∣∣∣∣
r=1

= ∂v0,r

∂r

∣∣∣∣
r=1

,

M2

κ

(
1
r

∂u1,r
∂θ

+ ∂u1,θ
∂r

− u1,θ
r

)∣∣∣∣
r=1

=
(
1
r

∂v0,r

∂θ
+ ∂v0,θ

∂r
− v0,θ

r

)∣∣∣∣
r=1

,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.8)

where the left-hand side corresponds to the elastic stresses in the solid phase
((M2/Cau)(FFT)′, (2.4)) and the right-hand side to the viscous stresses in the fluid
phase (∇v + ∇vT, (2.4)), both evaluated at the zeroth-order interface r = 1. The pressure
term (−pI , (2.4)) cancels out due to pressure continuity at the interface, hence its
absence in (3.8) (supplementary material, equation (1.31)). We point out that the use
of r = 1 in (3.8) is consistent despite the fact that the solid interface deforms at this
order. Indeed, as demonstrated in Bhosale et al. (2022a) and supplementary material
equations (1.44)–(1.47), errors associated with the r = 1 approximation all appear at the
higher orderO

(
ε2

)
and thus do not affect our solution. In addition, we note that the viscous

stress term (β(∇v + ∇vT), (2.4)) is also of higher order O
(
ε2

)
and thus absent in (3.8),

implying that the specific choice of viscosity model is irrelevant at O (ε). Next, we use the
O (1) flow velocity at the interface, (3.4) and (3.5), to directly evaluate the right-hand side
of (3.8):

∂v0,r

∂r

∣∣∣∣
r=1

= 0,

(
1
r

∂v0,r

∂θ
+ ∂v0,θ

∂r
− v0,θ

r

)∣∣∣∣
r=1

= sin θF(m)e−it + c.c.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.9)

with

F(m) = −3mh1(m)

4h0(m)
. (3.10)
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Three-dimensional soft streaming

With the boundary conditions (3.7)–(3.10) resolved, the homogeneous biharmonic (3.6)
can be solved exactly to obtain the O (ε) solid strain function:

ϕe,1 = κ

M2 sin θ
(
c1r + c2

r2
+ c3r3 + c4

)
F(m)e−it + c.c., (3.11)

where the exact expressions for c1, c2, c3, c4 (functions of ζ ) are reported in the
supplementary material (equation (1.57)). The O (ε) solid displacement field u1, both in
the bulk Ωe and at the boundary ∂Ω , can then be directly obtained from (3.11). This, in
turn, kinematically affects the flow at O (ε) via the interfacial boundary conditions, as we
will see.
The flow governing equation at O (ε), in vector potential form, reads

M2 ∂∇2ϕ1

∂t
+ M2

(
(v0 · ∇) ∇2ϕ0

)
− M2

(
(∇2ϕ0 · ∇)v0

)
= ∇4ϕ1, r ≥ 1. (3.12)

We note that the term M2(∇2ϕ0 · ∇)v0 in (3.12), which corresponds to vortex stretching,
is absent in the rigid-sphere streaming derivation of Lane (1955). By considering this
unaccounted term, our work improves upon the existing theory, as demonstrated in § 4.
Next, since we are interested in steady streaming, we consider the time-averaged form

of (3.12):

∇4〈ϕ1〉 = M2 〈(v0 · ∇)∇2ϕ0 − (∇2ϕ0 · ∇)v0〉︸ ︷︷ ︸
right-hand side

, r ≥ 1, (3.13)

where we substitute (3.5) into the right-hand side to yield

∇4〈ϕ1〉 = sin 2θρ(r)φ̂, r ≥ 1,

ρ(r) = M2

16r4

(
r3J(3) + r2J(2) − 6rJ(1) + 6J

)
J∗ + c.c.,

J(r) = 3
h1(mr)
mh0(m)

− r − h2(m)

r2h0(m)
.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.14)

Here, J is the radially dependent term of (3.5), with J(n) and J∗ being its nth derivative
and complex conjugate, respectively. Solving this inhomogeneous biharmonic equation
requires four independent boundary conditions. The first two are the radial and tangential,
time-averaged, far-field velocity:

1
r sin θ

∂(〈ϕ1〉 sin θ)

∂θ

∣∣∣∣
r→∞

= 1
r

∂(r〈ϕ1〉)
∂r

∣∣∣∣
r→∞

= 0. (3.15)

Next, we recall the no-slip boundary condition of (2.3) that needs to be enforced at the
O (ε)-accurate solid–fluid interface:

ve|∂Ω = ve|r=1+εu1,r + O(ε2) = vf
∣∣
∂Ω

= vf
∣∣
r=1+εu1,r

+ O(ε2). (3.16)

We note that the sphere interface at O (ε) deforms as r′ = 1 + εu1,r, where u1,r is the
radial component of the O (ε)-accurate displacement field obtained by taking the curl
of the strain function u1 = ∇ × ϕe,1. Similar to Bhosale et al. (2022a), we enforce
the no-slip boundary condition in (3.16) by deploying the technique presented in
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Longuet-Higgins (1998), where vf |r=r′ is Taylor-expanded about r = 1 (supplementary
material, equations (1.65)–(1.67)):

vf
∣∣
r=1+εu1,r

=
(

vf ,1 + ε
∂vf ,0

∂r
u1,r

)∣∣∣∣
r=1

+ O(ε2). (3.17)

The boundary solid velocity ve|r=1+εu1,r (left-hand side of (3.16)) can be instead computed
to O (ε) accuracy as ∂u1,r/∂t|r=1 (supplementary material, equation (1.64)). We note that
both u1,r and ∂vf ,0/∂r are known from (3.11) and (3.5). Thus, the O (ε) flow velocity
vf ,1 at r = 1, denoted by v1 henceforth, can be obtained by substituting (3.17) into
(3.16) (supplementary material, equations (1.63)–(1.68)). Time averaging then yields the
remaining two boundary conditions for (3.14):

〈v1,r〉
∣∣
r=1 = 1

r sin θ

∂(〈ϕ1〉 sin θ)

∂θ

∣∣∣∣
r=1

= 0,

〈v1,θ 〉
∣∣
r=1 = − 1

r
∂(r〈ϕ1〉)

∂r

∣∣∣∣
r=1

= − κ

M2 sin 2θG1(ζ )F(m)F∗(m)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.18)

with

G1(ζ ) = (ζ − 1)2(4ζ 2 + 7ζ + 4)
3ζ(2ζ 3 + 4ζ 2 + 6ζ + 3)

. (3.19)

Equation (3.18) physically implies a rectified tangential slip velocity (〈v1,θ 〉|r=1 /= 0) in the
fluid phase at the zeroth-order fixed interface r = 1. This slip velocity captures the effect
of body elastic deformation (〈v1,θ 〉|r=1 = 0 for rigid bodies) by equivalently modifying
the fluid Reynolds stresses (sin 2θρ(r) in (3.14)), thus impacting the resulting streaming
flow. We further remark that, in contrast to rigid-body streaming, such modification is
accessible even in the Stokes limit as it is independent of the Navier–Stokes nonlinear
inertial advection, a conclusion similarly drawn in our previous work on two-dimensional
soft-cylinder streaming (Bhosale et al. 2022a). This phenomenon shares characteristics
with the artificial mixed-mode streaming of pulsating bubbles (Longuet-Higgins 1998;
Spelman & Lauga 2017), whereas the streaming process derived here arises spontaneously
from the coupling between viscous fluid and elastic solid.
Given the steady flow of (3.14) and boundary conditions of (3.15) and (3.18), the

streaming solution can finally be written as

〈ϕ1〉 = sin 2θ [Θ(r) + Λ(r)] , (3.20)

where Θ(r) is the rectified rigid-body solution:

Θ(r) = − r4

70

∫ ∞

r

ρ(τ)

τ
dτ + r2

30

∫ ∞

r
τρ(τ) dτ

+ 1
r

(
1
30

∫ r

1
τ 4ρ(τ) dτ + 1

20

∫ ∞

1

ρ(τ)

τ
dτ − 1

12

∫ ∞

1
τρ(τ) dτ

)

+ 1
r3

(
− 1
70

∫ r

1
τ 6ρ(τ) dτ − 1

28

∫ ∞

1

ρ(τ)

τ
dτ + 1

20

∫ ∞

1
τρ(τ) dτ

)
(3.21)

and Λ(r) is the new elastic modification:

Λ(r) = 0.5
κ

M2 G1(ζ )F(m)F∗(m)

(
1
r

− 1
r3

)
(3.22)

979 A7-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
50

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1050


Three-dimensional soft streaming

with G1(ζ ) and F(m) given in (3.19) and (3.10), respectively. We note that while (3.21)
is of the same form as the solution of Lane (1955), the explicit expression of ρ(r) is
different (equation (3.14)) because of the vortex stretching term of (3.12). This concludes
our theoretical analysis.

4. Numerical validation and extension to complex bodies

Next, we compare our theory against known experimental and analytical results in the
rigidity limit (Lane 1955; Riley 1966; Kotas et al. 2007), as well as direct numerical
simulations performed using an axisymmetric vortex-method-based formulation (Gazzola,
Van Rees & Koumoutsakos 2012; Bhosale, Parthasarathy & Gazzola 2021; Bhosale
et al. 2023) (see also the caption of figure 2). The Stokes streamfunction pattern for a
rigid sphere (Cau = 0) oscillating at M ≈ 6 is shown in figure 2(a). We highlight the
twofold symmetry on top of the axisymmetry, and the presence of a well-defined direct
circulation (DC) layer of thickness δDC. This characteristic flow configuration, as well as
the divergence of the DC layer thickness (δDC → ∞) with increasing 1/M, is consistent
with Lane (1955) and Riley (1966). This qualitative behaviour is recovered by our theory at
Cau = 0 (grey line in figure 2d), and by simulations (black circles in figure 2d). However,
we note the significant quantitative difference between the results from Lane (1955) (black
dashed line in figure 2d) and Riley (1966) (purple dashed line in figure 2d) relative to our
simulations/theory, which are instead found to be in close agreement with experimental
results by Kotas et al. (2007) (grey squares). In comparison with the solution of Lane
(1955), the additional accuracy of our theory directly stems from including the vortex
stretching term of (3.13), as previously discussed. In the case of the theory of Riley (1966),
differences are rooted in the assumptions, where we consider the inertial–viscous regime
M ∼ O (1) while Riley assumes the inertial regime M � 1. A detailed description of
Riley’s theory and derivation is provided in supplementary material § 9. We also note that
our theory is found to overpredict δDC (relative to simulations) at highWomersley numbers
(M ≈ 15, left-hand side of figure 2d), in contrast to the quantitative agreement observed for
M < 15. We believe the reason for this deviation lies in our asymptotic assumptions, where
we considered M ∼ O (1). Thus, the applicability of our theory weakens as M increases
beyond this order. We further point out that in the regime M ≈ 15, the theories of Lane
(1955) and Riley (1966) are also found to similarly struggle, with the first overpredicting
and the second undepredicting the numerically obtained δDC.
Next, as we enable solid compliance (Cau > 0), we observe that the twofold symmetry is

preserved (sin 2θ in (3.20)) while δDC contracts due to the elastic modification termΛ /= 0,
in agreement with numerical simulations across a range of Cau (figure 2b–d). These
observations are consistent with our previous work on streaming for a two-dimensional
soft cylinder (Bhosale et al. 2022a), and thus a similar, intuitive explanation exists. The
flow receives feedback deformation velocities on account of the deformable sphere surface,
which acts as an additional source of inertia. Since the Womersley number (M) is the
ratio between inertial and viscous forces, this is equivalent to rigid-body streaming with a
largerM, hence the decrease of DC layer thickness with increasing elasticity. This implies
that an elastic body can access the streaming flow configurations of its rigid counterpart
with significantly lower oscillation frequencies. Such frequency reduction is shown in
figure 2(d) where, for example at Cau = 0.05, the same DC layer thickness is achieved
at ∼ 2× lower frequency. Similar to rigid objects, the δDC of a soft sphere still diverges
with decreasingM, albeit at lower values, since the elastic modification Λ(r) does not alter
the asymptotic behaviour of the rigid contribution Θ(r) (see supplementary material § 6
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(d )
(e)
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Figure 2. Elastic sphere and streaming flow response. (a–c) Three-dimensional time-averaged Lagrangian (i.e.
Stokes-drift-corrected; supplementary material § 3) Stokes streamfunction depicting the streaming response at
M = 6 with increasing softness Cau. (a) Rigid limit Cau = 0, (b) Cau = 0.025 and (c) Cau = 0.05. Note that
blue/orange represent clockwise/counterclockwise rotating regions. The non-dimensional radius of the pinned
zone is set at ζ = 0.4 throughout the study, to maintain the tangential slip velocity magnitude (3.18) at O (1),
consistent with the asymptotic analysis. The effect of pinned zone radius on streaming flow is detailed in § 4
of the supplementary material. (d) Normalized DC layer thickness (δDC/a) versus inverse Womersley number
(1/M) from our theory (dots) and simulations (solid lines), for varying body elasticity Cau. Viscous streaming
theories (for a rigid sphere) by Riley (1966) (purple dashed line) and Lane (1955) (black dashed line) are also
reported for reference, together with experimental results (grey squares) by Kotas et al. (2007). (e–g) Radial
decay of velocity magnitude along θ = 90◦ from theory and simulations at M = 6, with increasing softness
Cau. (e) Rigid limit Cau = 0, ( f ) Cau = 0.0125 and (g) Cau = 0.025. Additional information can be found in
supplementary material § 8.

for details). We further note that as Cau increases andM decreases, the deviation between
simulations and theory grows. This follows from the fact that as κ/M2 in (3.18) increases,
the tangential slip velocity assumed to be of O (ε) can exceed O (1), eventually leading to
the breakdown of the asymptotic analysis. We conclude our validation by showing close
agreement between theoretical and simulated radially varying, time-averaged velocities 〈v〉
at θ = 90◦ (figure 2e–g). For a detailed analysis concerning the effect of inertia (M) and
elasticity (Cau) on velocity magnitudes (flow strength), refer to § 4 of the supplementary
material.
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Inner

flow ring

Outer

flow ring

V (t) = εaω cos(ωt)

(b)(a) (c)

Figure 3. Extension to complex bodies. Here we consider compliance-induced streaming in a soft torus, a
complex shape entailing multiple curvatures and distinct topology relative to the sphere. Numerically simulated
time-averaged Eulerian flow topologies for a torus of core radius r and cross-sectional radius a = r/3, atM ≈ 4,
with varying body elasticity Cau. (a) Rigid limit Cau = 0, (b) Cau = 0.025 and (c) Cau = 0.05. The viscous
fluid oscillates with velocity V(t) = εaω cosωt. The torus is ‘pinned’ at the centre of its circular cross-section
by a rigid toroidal inclusion of radius 0.4a. All other physical and simulation parameters are consistent with
sphere streaming (see caption of figure 2 for details).

Finally, we demonstrate how gained theoretical insights translate to three-dimensional
geometries characterized by multiple curvatures and distinct topology, illustrated here
by means of a torus, a shape of interest due to its microfluidic properties (Chan et al.
2022) and recent bioengineered demonstrations (Dou et al. 2022). Figure 3(a) presents
the streaming flow generated for a rigid torus immersed in an oscillatory flow field at
M ≈ 4. As can be seen, the highlighted recirculating flow features (inner/outer flow rings
that may be used for particle manipulation) are weak for practical applications in the rigid
limit. This can be remedied by increasing elasticity (Cau), for which we indeed observe
enhanced flow strengths (figure 3b,c). Finally, we highlight that to obtain a flow topology
similar to that of figure 3(c), but with a rigid torus, oscillation frequencies ∼4× higher are
necessary (supplementary material § 7), in conformity with the intuition gained via the
soft-sphere streaming analysis.

5. Conclusion

In summary, this study improves existing three-dimensional rigid-sphere streaming theory,
expands it to the case of elastic materials and further corroborates it by means of
direct numerical simulations. Our work reveals, in keeping with our previous work on
two-dimensional soft cylinders, an additional streaming mode accessible through material
compliance and available even in Stokes flow. It further demonstrates how body elasticity
strengthens streaming or enables it at significantly lower frequencies relative to rigid
bodies. Finally, we show how theoretical insights extend to geometries other than the
sphere, highlighting the practical generality of our theory. Overall, these findings advance
our fundamental understanding of streaming flows, with potential implications in both
biological and engineering domains.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2023.1050.
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Code availability. The axisymmetric flow numerical solver (Bhosale et al. 2023) used for this work is
publicly available at https://github.com/GazzolaLab/PyAxisymFlow.
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