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The geometric phase provides important
mathematical insights to understand the fundamental
nature and evolution of the dynamic response in a
wide spectrum of systems ranging from quantum to
classical mechanics. While the concept of geometric
phase, which is an additional phase factor occurring
in dynamical systems, holds the same meaning
across different fields of application, its use and
interpretation can acquire important nuances specific
to the system of interest. In recent years, the
development of quantum topological materials and
its extension to classical mechanical systems have
renewed the interest in the concept of geometric
phase. This review revisits the concept of geometric
phase and discusses, by means of either established
or original results, its critical role in the design and
dynamic behaviour of elastic waveguides. Concepts
of differential geometry and topology are put
forward to provide a theoretical understanding of the
geometric phase and its connection to the physical
properties of the system. Then, the concept of
geometric phase is applied to different types of elastic
waveguides to explain how either topologically
trivial or non-trivial behaviour can emerge based on
the geometric features of the waveguide.

This article is part of the theme issue ‘Current
developments in elastic and acoustic metamaterials
science (Part 2)’.

© 2024 The Author(s). Published by the Royal Society. All rights reserved.

royalsocietypublishing.org/journal/rsta

Review

Cite this article: Kumar M, Semperlotti F.
2024 On the role of geometric phase in the
dynamics of elastic waveguides. Phil. Trans. R.
Soc. A 382: 20230357.
https://doi.org/10.1098/rsta.2023.0357

Received: 1 February 2024
Accepted: 29 June 2024

One contribution of 11 to a theme issue
‘Current developments in elastic and acoustic
metamaterials science (Part 2)’.

Subject Areas:
mechanical engineering, topology, mechanics,
wave motion

Keywords:
elastic waves, geometric phase, topological
metamaterials, differential geometry

Author for correspondence:
Fabio Semperlotti
e-mail: fsemperl@purdue.edu

Electronic supplementary material is available
online at https://doi.org/10.6084/
m9.figshare.c.7395500.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

28
 A

pr
il 

20
25

 

http://orcid.org/
http://orcid.org/0000-0001-8369-7015
http://orcid.org/0000-0002-8143-3902
https://crossmark.crossref.org/dialog/?doi=10.1098/rsta.2023.0357&domain=pdf&date_stamp=2024-08-10
https://doi.org/10.1098/rsta.2023.0357
https://doi.org/10.6084/m9.figshare.c.7395500
https://doi.org/10.6084/m9.figshare.c.7395500


1. Introduction
The term geometric phase indicates a phase factor acquired by a dynamical system following
an adiabatic perturbation of the system parameters at the end of which the system is brought
back to the original conditions. The geometric phase is in addition to the usual dynamical phase
accumulated by a harmonically oscillating system. While first recognized in the context of
quantum mechanics [1], it was later observed also in other fields, such as optics [2–4], solid-state
physics [5–7], classical mechanics [8] and molecular physics [9,10]. The concept of geometric
phase has been extended also to non-adiabatic [11,12] and nonlinear dissipative systems [13–
15], and its mathematical foundation has been firmly established [16–18].

The geometric phase has proven to be a powerful concept to provide deep mathemati-
cal insight into certain aspects of dynamic phenomena. The ubiquity and usefulness of the
geometric phase across several disciplines of wave physics and dynamics arise from its rigorous
mathematical description and its interpretation via differential geometry and topology [18].
For example, the geometric phase concept can describe the precession angle of a Foucault
pendulum [19], provide an approach to sense the spatial distribution of scatterers in acous-
tic scattering problems [20,21], model parameter variations required to realize non-Abelian
physics [22,23] and explain mathematical foundations and design principles underlying elastic
topological metamaterials (ETMs) [24–30]. In this article, we will focus on the latter application
as a way to provide a concrete example to illustrate the role of the geometric phase in the design
of dynamical systems.

In recent years, topological metamaterials have gathered the interest of the physics and
engineering communities. While the concept of topological metamaterial has found application
in many areas of physics, in the following, we focus on ETMs as a practical example to
discuss the role of the geometric phase. Certainly, many of these concepts are general and
could be readily extended, for example to photonics and phononics applications. ETMs can
be seen as a class of waveguides whose dynamic response can be understood, and even
engineered, by using concepts of differential geometry and topology. As an example, over the
past decade, ETMs have opened new ways to control and manipulate the propagation of stress
waves. A very distinctive trademark of topological materials is the ability to support elastic
waves (typically on boundaries or interfaces characterized by a topological transition) that are
immune to back scattering from inhomogeneities and defects [31–33]. The ETM field has grown
extremely rapidly during the last decade also capitalizing on the many decades of research on
(quantum) topological insulators [24,26,34], which first exploited the concept of topologically
distinct classes of materials. The extension of these concepts to classical (i.e. non-quantum
mechanical) platforms, such as photonic [35,36] and acoustic systems [30,37], also represented
another key milestone to illustrate the feasibility of topological concepts for ETMs. Given that
this review focuses on the role of geometric phase in the description of the dynamic behaviour
of elastic systems and uses ETMs only as an example of a potential application, a detailed
discussion of ETMs is omitted. Nevertheless, the interested reader can refer to the following
papers [31–33,38,39] and reviews [28–30,37,40–42] as a starting point to explore the ETM field
more in detail.

In view of the rising interest in using the geometric phase to study the dynamics of
structures and materials, a cohesive discussion of its features and potential applications appears
timely and necessary. This is not to say that the literature does not offer discussions on the
geometric phase, but these discussions are often geared towards a quantum mechanical or
theoretical physics audience [16–18,24]. The few discussions focused on applied mechanics tend
to be scattered and limited to a narrow set of applications [20,21,30,43–54], therefore making
approaching this topic and understanding the state of the art quite challenging.

In view of the above considerations, the present article aims to review the concept of
geometric phase in the context of elastic waveguides and to leverage it to explain some
fundamental ideas in ETMs.

2

royalsocietypublishing.org/journal/rsta 
Phil. Trans. R. Soc. A 382: 20230357

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

28
 A

pr
il 

20
25

 



The review is organized as follows. Section 2 introduces the concept of geometric phase
for systems described by a discrete set of variables. Section 3 reviews the formulation for
elastic waveguides and provides examples of geometric phase. Section 4 introduces some
relevant concepts from differential geometry that are applied in §5 to explain the emergence
of the geometric phase in elastic systems. Section 6 discusses the connection between the more
theoretical mathematical ideas and the more practical dynamic behaviour of elastic waveguides
and ETMs. Section 7 summarizes the key points of this work.

2. Geometric phase in discrete systems
The geometric phase appears in a wide range of oscillatory dynamical systems whose response
depends on externally controlled time-varying parameters. Its appearance is well-studied in
dynamical systems described by n state variables, including discrete mechanical systems [8,51].
Following the original formulation [1], the governing equation can be written as:

(2.1)Dtx + L R t x = 0,

where x is the vector of state variables, R(t) is the vector of controllable parameters, t is
time, Dt is a linear differential operator (typically Dt = d2/dt2 in discrete mechanical systems

and Dt = id/dt in quantum mechanical systems), and L R  is a matrix that depends on the

parameters.
If the system’s parameters are constant, the temporal evolution of the system is described by

the modes of oscillation, which are derived by substituting the ansatz x t = Xe−iλt into equation
(2.1), which ultimately gives rise to an eigenvalue problem. The eigenvalue problem reads:

(2.2)L R X R = λ R X R ,

where the explicit dependence of the eigenvalues λ and the eigenvectors X on the parameters
is highlighted. Note that here R is constant by assumption. If X is an eigenvector, then also Xeiγ
is an eigenvector of the system, if γ ranges between 0 and 2π. In this sense, the eigenvector has
an ‘ambiguity’ in phase. If two eigenvectors at a parameter value R0 have the same eigenvalue
and differ by more than just a phase term, they are said to be degenerate. The parameter
value R0 is said to be a degeneracy. In a general scenario, at least three parameters must be
independently controlled to result in a degeneracy [1]. That is, degeneracies have codimension
3. These selected values of the parameters are referred to as ‘accidental degeneracies’. However,
if particular constraints (such as, for example those arising from symmetries in the geometric
configuration of the system) are present, then degeneracies will arise independently of the
specific values of the parameters; or, equivalently, the degeneracies will not be lifted by simply
choosing different values of the parameters (as long as the constraints are not violated). This
latter class of degeneracies is said to be symmetry protected.

Suppose the parameters R(t) complete an adiabatic cycle in T units of time. A cycle of the
system parameters indicates that, in the parameter space, the point describing the properties of
the system traces a closed loop L (i.e. bringing the system back to the initial set of parameters).
The adiabatic variation dictates that the rate of change of parameters is ‘sufficiently slow’, hence
implying that the timescale of the parameters variation is much larger than the difference in the

timescale of oscillations of the excited modes (i.e. T ≫ max 1λi − λj
, where i, j = 1, …,n). Note

that, in this context, the term ‘adiabatic’ is used in its quantum mechanical sense (of a slowly
varying quantity). Therefore, it should not be interpreted in its thermodynamics sense, which
instead indicates a ‘fast enough’ process that prevents heat transfer between a system and its
surroundings.

3

royalsocietypublishing.org/journal/rsta 
Phil. Trans. R. Soc. A 382: 20230357

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

28
 A

pr
il 

20
25

 



In this case, the evolution of a system is described by the adiabatic approximation [55]. In
particular, a system initialized in an eigenvector X(R(0)) evolves as:

(2.3)x t = X R t exp iγ t exp −i
0

tλ R t′ dt′ ,

where 
0

tλ R t′ dt′ is referred to as the dynamical phase [16] and γ is referred to as the

geometric phase. In other words, the state of a system at a time instant t is determined by
the mode of oscillation at the instantaneous parameter value R t , the dynamical phase and
the geometric phase. The dynamical phase describes the oscillatory nature of the system, for
example the phase acquired by a harmonic oscillator with a time-varying spring stiffness. If
the parameters were constant, the dynamical phase would reduce to the familiar expressionexp −iλ R t . The dynamical phase depends on the path traced in parameter space and the rate
of parameter variation.

The geometric phase accounts for the phase ambiguity of the eigenvector. It is computed as [1]:

(2.4)γ t = R 0

R t
Im X R ∗dX R

dR dR,

where X* denotes the conjugate transposed. The derivation of equation (2.4) benefits from
the mathematical discussions of §4 and it is postponed to §5. According to equation (2.4),
the geometric phase depends only on the path traced in parameter space, not on the rate of
parameter variation, in contrast to the dynamical phase.

The geometric phase manifests most evidently at t = T, where the system properties match
the initial values at t = 0 (R 0 = R T ). One may expect that the state of the system at t = T
would equal the state of the system at t = 0 times the contribution of the dynamical phase.
However, equation (2.3) shows that this would be the case only in the absence of the geometric
phase, since:

(2.5)x T = X R 0 exp iγ T exp −i
0

Tλ R t′ dt′ .

The role of the geometric phase can be intuitively understood as being an intrinsic memory of
the system [49]. The phase acquired by an oscillatory system is, loosely speaking, the oscillator’s
‘memory’ because it records the oscillator’s parameter variations over a given period of time
(or, equivalently, the regions of the parameter space that the system has visited at a given time).
This phase ‘memory’ has two parts: the dynamical phase and the geometric phase. While the
dynamical phase is the ‘memory’ component familiar in classical (and quantum) physics, the
geometric phase is an unexpected ‘additional memory’.

3. Geometric phases in elastic waves
The discussion of the occurrence and role of geometric phases in elastic continuous systems
is somewhat scarce and scattered. To address this aspect and provide a more focused discus-
sion of this concept from the perspective of elastic systems, we choose a prototypical system
consisting in an isotropic quasi-one-dimensional waveguide subject to a cyclic and adiabatic
variation of the cross-section’s geometry. By using this example, we will illustrate the type of
mechanisms leading to the accumulation of geometric phase [43]. For quasi-one-dimensional
waveguides, an adiabatic parameter variation means that the lengthscale over which the
parameters vary is much larger than the inverse of the difference in wavenumbers of propagat-
ing waves. The analysis can be generalized to include anisotropic and bulk materials [43,49].
The geometric phase in the context of anisotropic bulk materials is discussed in supplementary
material (§1))
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There are two phase components available in elastic waves: the overall phase accumulated
by a wave packet while travelling through the medium and the polarization angle, which
is relevant for waveguides supporting polarized waves. The polarization angle specifies the
‘orientation’ of the displacement field at a transverse plane of the waveguide, in a manner that
will be further clarified in §3(b). A geometric phase can modify either one of the two phase
components.

The mathematical description of the geometric phase proceeds from the analysis of
the Navie–Lamé (NL) equations of elastodynamics with traction-free boundary conditions.
A quasi-one-dimensional waveguide whose longitudinal axis coincides with the z axis is
considered. The geometric properties of the cross-section at z are defined by the parametersR(z). For this waveguide, the NL equations and traction-free boundary conditions are [56]:

(3.1)μ∇2u + μ + λ ∇ ∇ ⋅ u = ρü,

(3.2)σ ⋅ n̂ = 0,

where ρ is the density, u is the displacement field, λ and μ are the Lamé constants, σ is the stress
tensor and n̂ is the outward unit normal at the surface. The stress tensor for an isotropic linear

elastic solid is [57] σ = C: 1
2 ∇u + ∇u⊺ , where C is the fourth-order stiffness tensor.

If the parameters R are constant, the governing equations admit plane wave solutions of
the form u x, y, z, t = U x, y ei kz − ωt , where ω is the angular frequency, k is the wavenumber
and U(x, y) is the displacement field of a cross-section. The term in the exponent ϕd = kz − ωt
is the dynamical phase. These plane wave solutions are the guided modes of the waveguide
that physically represent displacement field disturbances propagating along the longitudinal z
direction without changes in their cross-sectional displacement fields U(x, y). Guided modes are
determined by substituting the plane wave ansatz into equations (3.1) and (3.2). This results in:

(3.3)L k,R U x, y; k,R = ω2 k,R U x, y; k,R ,

(3.4)B R U x, y; k,R = 0,

where L k,R  and B R  are linear differential operators. Equations (3.3) and (3.4) define an

eigenvalue problem at each value of k. The eigenvalues define the so-called dispersion relations
that link the angular frequency to the wavenumber of modes propagating in the waveguide.
The eigenfunctions U(x, y; k,R) define the cross-sectional particle displacement fields associ-
ated with the guided modes. Further, the dependence of the dispersion relations and of the
eigenfunctions on the parameter R is explicitly indicated in equations (3.3) and (3.4). If two
guided modes at a parameter value R0 have identical eigenvalues for all values of k (i.e.
identical dispersion relations), the associated guided modes are said to be ‘fully degenerate’.
The parameter value R0 will be called a ‘full degeneracy’. This choice of terminology is used
to distinguish it from degeneracy in an eigenvalue problem (§2) that does not depend on a
parameter such as k.

The general set-up to study the geometric phase in the remainder of the paper considers
a waveguide of length Z with the geometric properties R varying adiabatically along the
positive z direction. Further, assume that the properties R(z) vary in a cycle between z = 0 andz = Z, i.e. the properties at z = 0 are identical to those at z = Z, written as R(0) = R(Z). If the
waveguide is harmonically excited with angular frequency ω by the guided mode eigenfunctionU(x, y;R(0)) at z = 0, the steady-state displacement field at z is described by: (i) a guided mode
eigenfunction U(x, y;R(z)), (ii) an amplitude factor a(z) computed by the conservation of an
adiabatic invariant, (iii) the usual dynamical component of phase ϕd computed as:
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(3.5)ϕd = i
0

zk z′ dz′ − iωt,
and (iv) the geometric phase [43,58]. The computation of the geometric phase is deferred to §5
as it can benefit from concepts of topology and differential geometry that will be introduced in
§4.

As discussed in §2, the geometric phase appears as an additional phase component at z = Z
beyond the dynamical phase, representing an ‘additional memory’ of the wave. The appearance
of the geometric phase in elastic waveguides as a correction to the dynamical phase and
polarization angle are illustrated in the following sections.

(a) Topological geometric phase: one-dimensional waveguide with adiabatically varying
cross-section

This section presents an original example of geometric phase that emerges in a wave packet
propagating in an elastic waveguide. Consider the case of flexural waves propagating in an
one-dimensional isotropic waveguide having an adiabatically varying triangular cross-section.
A suitable parameter space to explore the role of adiabatic perturbations can be based on
geometrical variables describing the cross-section. A general triangular cross-section can be
described as a perturbation to an equilateral triangle. As shown in figure 1a, let the two-dimen-
sional coordinates of the vertices of an equilateral triangle be r1, r2 and r3 with respect to
its centroid O. Consider a perturbation to r1 (i.e. the coordinate of the topmost vertex of the
equilateral triangle) by the vector R = Δx, Δy  to obtain r1′ = r1 + R. The shaded triangle formed
by the vertices with coordinates r1′ , r2 and r3 represents a general cross-section.

The perturbations (Δx, Δy) define a two-dimensional parameter space illustrated in figure
1b. The origin represents an equilateral triangular cross-section. A uniform waveguide with this
cross-section has fully degenerate flexural modes that, in the long wavelength approximation,
correspond to the in-plane and the out-of-plane bending modes. This point in parameter space
(and its corresponding values) is a full degeneracy resulting from symmetry. Tracing out the
loop L in the parameter space of figure 1b leads to the waveguide in figure 1c whose cross-sec-
tion at the longitudinal coordinate z (in the physical space) resembles figure 1a.

One way to confirm the appearance of a geometric phase is to perform finite element
simulations of the systems described above. Two stainless steel waveguides shown in figure
1f,i are generated by deforming an equilateral triangular cross-section of side length 15 mm.
In the parameter space, R(z): (i) traces a circle of radius 7 mm centred at the origin (figure 1d)
and (ii) traces forward and backward a semi-circular arc of radius 7 mm centred at the origin
(figure 1g). The variation in cross-section is implemented over a length of 6 m to satisfy the
adiabatic condition. One end of the waveguide is subject to a transverse harmonic excitation
at a frequency f = 20 kHz to produce a flexural mode. The other end is extended by 1.25 m
with a uniform cross-section (not pictured) to prevent reflected waves from interfering with
the desired measurements. The response in time is extracted at the right-hand termination
of the waveguide by solving the model using the commercial finite element software COM-
SOL Multiphysics. Specifically, a transient analysis was performed using the solid mechanics
interface. The model was meshed with tetrahedral elements and by ensuring at least N = 8
elements per wavelength of the flexural mode. The time step of numerical integration was
chosen to satisfy the Courant–Friedrichs–Lewy (CFL) condition [59]), Δt = CCFL/fN, where the
CFL factor CCFL was chosen as 0.1.

Results show that the two waveguides produce time series that are perfectly out-of-phase
with each other (figure 1j). This phase difference of π is due to the geometric phase acquired
by the waveguide of figure 1f. The choice of parameter variation causes both waveguides
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to accumulate the same amount of dynamical phase, so the difference in response is purely
geometrical.

Next, two properties of this geometric phase are demonstrated with further numerical
experiments. The first property is its independence from the rate of variation of the parameters
as long as the adiabatic condition is satisfied. To observe this property, the same parameter
variation of figure 1f,i is implemented over a length longer than 6 m to generate the two
waveguides. The dynamical phase associated with the response of each waveguide measured at
the end (cf. equation (3.5)) changes, but the two time series remain perfectly out-of-phase with
each other. This result confirms that the acquired geometric phase remains π. The simulation
results are presented in §2(a) of the electronic supplementary material.

The second property of the geometric phase refers to the insensitivity to small perturbations
of the parameter variations. For example, deforming the circular loop of figure 1d into an
ellipse still results in a π geometric phase (see §2(b) of the electronic supplementary material for
numerical simulations). As it will be discussed in more detail in the following, the π geometric
phase appears for any loop in the parameter space encircling the origin (i.e. a full degeneracy).
Further, this characteristic arises from the topology of the guided modes, and it motivates the
classification of this geometric phase as ‘topological’.

An additional novel example of a topological geometric phase in shear waves propagating in
an anisotropic bulk material is presented in §1 of the electronic supplementary material.
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Figure 1. A topological geometric phase is observed in one-dimensional waveguides with adiabatically varying cross-
sections along the longitudinal z direction. (a) The shaded region is the cross-section of the waveguide at a given z.
The vertices r1, r2 and r3 form an equilateral triangle. R perturbs the cross-section from an equilateral triangle. (b) The
parameter space is comprised of the components of R, namely, Δx and Δy. The origin of the parameter space corresponds
to an equilateral triangle, which corresponds to a full degeneracy. (c) A waveguide generated by tracing loop L in the
parameter space. The cross-sections and points corresponding to the loop are marked 1–4. (d) A loop in the parameter space
encircling the full degeneracy. (e, f) A front view and an orthographic view of the waveguide corresponding to (d). (g) A loop
in the parameter space not encircling the full degeneracy. (h, i) A front view and an orthographic view of the waveguide
corresponding to (g). Flexural guided modes are excited at the left end of the waveguide in (f) and (i), and the response
is recorded at the right end. The longitudinal z coordinate has been scaled down by a factor of 60 in (f) and (i) for better
visualization. (j) The y component of the displacement field response at a point on the end of the waveguide is plotted for
both waveguides.
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(b) Non-topological geometric phase: polarized waves in helical waveguides
This section explores an example of elastic waveguides that gives rise to a geometric phase of
nontopological nature. Consider waveguides supporting a pair of fully degenerate flexural-gui-
ded modes that have orthonormal eigenfunctions U(1)(x, y) (figure 2a) and U(2)(x, y) (figure 2b),
which correspond to horizontal and vertical particle displacements respectively. Orthonormal-

ity implies SU i ∗ ⋅ U j dxdy = δij, where S is the cross-section, δij is the Kronecker delta, i = 1,2

and j = 1,2. A linear combination of these eigenfunctions, U = c1U 1 + c2U 2 , represents a guided

mode with the particle displacements along the unit vector ĉ = (c1êx + c2êy)/ c1
2 + c2

2 (figure 2c).
The plane wave solution corresponding to U is typically referred to as a polarized wave. The
unit vector ĉ is called the polarization vector (figure 2d). The angle subtended between ĉ and
the c1 axis is the polarization angle γ of the wave. A guided mode eigenfunction proportional
to U(1), shown in figure 2a (U(2), figure 2b) is said to be horizontally (vertically) polarized as its
polarization vector marked by the red (blue) arrow is horizontal (vertical) in figure 2d.

Polarized waves provide several examples of non-topological geometric phases [47,48,50],
which resemble the precession motion of a Foucault pendulum in terms of the associated
parameter space and eigenfunctions [19,48]. Additional examples of non-topological geometric
phases are provided by surface waves [44–46] and waves in rotating media [45,49].

We illustrate the concept of non-topological geometric phase by means of helical waveguides
created by sweeping a circular cross-section through a generating path P (in real space)
[47,50]. Such waveguides support polarized flexural waves, as each cross-section normal to
the generating path is circular, and circular cross-sections support fully degenerate flexural
modes [56]. The geometry of a waveguide (see figure 2f) is specified by the radius r of the
cross-section (fixed to be 0.05 m), the length l of the centreline of the waveguide and a curveC on a spherical parameter space (figure 2e). l determines the length of the generating path P
in figure 2f. Curve C in figure 2e specifies the unit tangent vector t̂ s0  of the generating pathP at the path coordinate s0 (figure 2f). Together, l and C specify the generating path P along
which the circular cross-section of radius r is swept to generate the waveguide in figure 2f. l is
assumed large enough to ensure the adiabatic variation of the path tangents. In what follows,
the curve on the unit sphere is assumed to be a closed loop, such as curve L1 in figure 2g.
This assumption implies that the initial and final tangent vectors of the generating path are
parallel. Then, as a wave propagates along the waveguide, the direction of propagation given

by t̂ adiabatically completes a cycle.
As in the previous section, we can show the occurrence and properties of the geomet-

ric phase in helical waveguides by exploiting numerical simulations. Consider the helical
waveguide depicted in figure 2h generated by the loop L1 in figure 2g. The generating helical
path has a radius rℎ = 2.4 m, pitch p = 14 m and consists of one revolution. The length of

the path is l = (2πrℎ)2 + p2 = 20.58 m. The angle between the unit tangent vector and the axis
of the helix denoted by θ is constant (figure 2g) and equals θ = cos−1(p/l) = 47.12∘ [2]. The
reference eigenfunctions U(1) and U(2) of two fully degenerate and orthonormal guided modes
corresponding to horizontal and vertical polarizations are shown in figure 2a,b. One end of
the waveguide is excited harmonically to produce a horizontally polarized flexural wave. The
displacement field response is recorded at the other end of the waveguide. The recorded guided
mode eigenfunction is plotted in figure 2c, indicating that the polarization angle does not
return to zero at the end of the waveguide. The polarization angle is computed as γ = 114∘
by projecting the displacement profile onto the horizontally and vertically polarized guided
modes (figure 2d). This polarization angle is a geometric phase. As will be discussed in §4(b),
the geometric phase is analytically computed as the solid angle subtended by the loop L1. The
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analytical result is γtheory = − 2π cos θ mod 2π = − 244.9∘ mod 360∘ = 115.1∘, which agrees well
with the numerical computation.

By repeating the simulation with a greater value of the generating path length l, the
geometric phase is verified to be independent from the rate of variation of the parameters (as
long as the adiabatic condition is satisfied). However, the geometric phase is not topologically
protected. Repeating the simulation after perturbing the curve L1 to L2 changes the polarization
angle to 129∘. The corresponding simulations are reported in §3 of the electronic supplementary
material. Indeed, changing the loop in the spherical parameter space changes the solid angle
it subtends, which in turn changes the geometric phase. This is why the geometric phase
discussed here is classified as ‘non-topological’.

(c) Summary of the general characteristics of the geometric phase
The defining characteristics of the geometric phase in elastic waveguides are summarized as
follows. First, waves in elastic waveguides that adiabatically vary along the direction of wave
propagation can exhibit geometric phases either as a correction to the dynamical phase or to
the polarization angle. Second, a geometric phase depends solely on the path described by
the parameters in the parameter space, and it is independent of the rate of variation of these
parameters. This property justifies the terminology ‘geometric’. Third, geometric phases are
categorized into two classes: topological and non-topological. Topological geometric phases are
associated with full degeneracies in the associated eigenvalue problem describing the dynam-
ics of the system equations (3.3) and (3.4). Physically, if a waveguide exhibits a topological
geometric phase, the value of the geometric phase will not be affected by small perturbations

(c) (d)
c2

L2
L1

S0

l

c1

(a) U1
(1) 

(x,y) U1
(2) 

(x,y) U1
  
(x,y)(b)

(g) (h)(e) (f)

ĉ
γ

y

z x

y

z x

Figure 2. A non-topological geometric phase manifests itself in polarized waves propagating in a helical waveguide. The
guided mode eigenfunction U of flexural guided modes in a uniform waveguide with circular cross-section is plotted in
(a–c). The out-of-plane component of the displacement is negligible. (a) A horizontally polarized (x-axis) guided mode. (b) A
vertically polarized (y-axis) guided mode. (c) A guided mode with a general polarization. (d) Polarization vectors for (a) in
red, (b) in blue and (c) in green. The polarization angle of (c) is marked as γ. (e) A path C on the spherical parameter space
parameterized by s. 0, s0 and l denote the path coordinate s at the marked locations. (f) Path P (dashed black line) created

by the curve C of (e) and the waveguide generated by sweeping a circular cross-section along P. The unit tangent t̂ s0

of path P at a path coordinate s0 corresponds to the point on the sphere t̂ s0  on curve C in (e). (g) Loops L1 and L2 in
the parameter space. θ is the half-cone angle subtended by loop L1. (h) A helical waveguide generated from curve L1. A
horizontally polarized flexural wave is excited at the left end. As it propagates down the waveguide, it acquires a polarization
angle γ. The radius has been scaled-up by a factor of 10 for better visualization.
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to either the geometry or the composition (e.g. the material distribution) of the waveguide. On
the other hand, if a waveguide exhibits a non-topological geometric phase, the value of the
geometric phase will change with perturbations to the properties of the waveguide.

4. Concepts from differential geometry
The geometric phase can be further described and understood by using differential geometry
[60]. Two concepts are introduced: fibre bundles and parallel transport.

(a) Fibre bundles

An n-dimensional manifold M is a space that is locally equivalent to the Euclidean space ℝn
(figure 3a). That is, each point R has a neighbourhood U that is equivalent to the Euclidean

space (figure 3b). Two manifolds are said to be topologically equivalent, or simply equivalent,
if they can be continuously deformed into one another. The entire manifold is, in general,
topologically distinct (i.e. not equivalent) from a Euclidean space because its constituent
neighbourhoods may be ‘glued’ together in ways not replicable in a Euclidean space. Familiar
manifolds used in geometry are the plane ℝ2, the cylinder, the sphere and the torus. The latter
three manifolds are not globally equivalent to the plane.

At each point R of a n-dimensional manifold M, another m-dimensional manifold F  may

be attached (figure 3a). This construction gives rise to a (n + m)-dimensional manifold, called a
fibre bundle E, which is illustrated in figure 3c. A point u of the fibre bundle contains information

of a point R of the base manifold and a point f on the fibre at R. In this context, M is the

base manifold, R is a base coordinate, F  is the fibre and f is a fibre element or fibre coordinate.

A fibre bundle is locally equivalent to a Cartesian product of manifolds: a point u on the
fibre bundle has a neighbourhood U × F  (figure 3d), where U is a neighbourhood of the base

manifold containing the base coordinate of u. However, the fibre bundle E is, in general,

topologically distinct from the Cartesian product of manifolds M × F  because the constituent

neighbourhoods may be ‘glued’ together in ways not replicable by a Cartesian product.
If the fibre bundle E is equivalent to M × F , it is said to be trivial. The trivial nature of a fibre

bundle will prove important in subsequent discussions on the topological geometric phase. This
property can be observed from the following mathematical result (theorem 9.1 of [60]): ‘A fibre
bundle defined over a base manifold equivalent to a Euclidean space is trivial.’

The tangent bundle TM is a familiar example of a fibre bundle, where the fibre is the

tangent space of the base manifold M and a fibre element is a tangent vector. The fibre bundle

is constructed by attaching a tangent space to each point of the base manifold. Considering
the example of a sphere, this implies attaching tangent planes to each point on the sphere, as
illustrated in figure 3e. The tangent bundle of a sphere is four-dimensional.

Two fibre bundles of relevance for topological geometric phases are the cylinder and the
Möbius strip. Both are constructed from a circular base manifold S1 and fibre I = [−1,1] (figure
4a). The difference lies in the connections between their component pieces (strips 1 and 2 in
figure 4b,e). If the two strips are joined end-to-end (figure 4b), the construction results in a
cylinder (figure 4c). The cylinder is a trivial fibre bundle as it is equivalent to S1 × I. If one of the
strips is given a half-twist prior to gluing (figure 4e), the construction results in a Möbius strip
(figure 4f). The Möbius strip is a non-trivial fibre bundle. The cylinder and the Möbius strip
are topologically distinct as they cannot be continuously deformed into one another. During
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the discussion of topological geometric phases, the fibre in the above construction will be a
two-point set I = {0, π}. The resulting fibre bundles correspond to the ‘edges’ of the cylinder
(figure 4d) and the Möbius strip (figure 4g).

The physical relevance of the fibre bundles lies in their ability to capture the response of
position- or parameter-dependent systems. The space of allowable values of either positions or
parameters gives rise to the base manifold. At each position or parameter, the space of possible
responses of the system is modelled as a fibre. An example of a position-dependent system
modelled as a fibre bundle is the deformation of an elastic body (figure 3f,g). An undeformed
elastic body defines a manifold M (figure 3f). Each point of the elastic body is associated with a

displacement vector, which can be modelled as an element of a fibre. The fibre depends on the
permissible displacements: for example, a general three-dimensional problem requires ℝ3 as the
fibre, a plane strain problem requires ℝ2 as the fibre and approximate one-dimensional theories,
such as the Euler-Bernoulli beam theory, require ℝ as the fibre. A point u on the resulting fibre
bundle E has a base coordinate R, which describes a point on the elastic body, and a fibre

coordinate u, which describes the displacement at R (figure 3f,g). A deformed configuration of
the body specifies u(R), which corresponds to a section of the fibre bundle. Parameter-depend-
ent systems modelled as fibre bundles form the basis to understand the geometric phase (§5).

(b) Connections and parallel transport
The physical perspective of fibre bundles modelling position- or parameter-dependent
systems suggests that varying the base coordinate (e.g. position on an elastic body) alters
the fibre coordinate (e.g. displacement vector at that position). The process of varying an
element of the fibre bundle by moving the base coordinate along a curve on the base
manifold and recording the associated change in the fibre coordinate is known as parallel
transport. The rule relating the change in fibre coordinates to the change in base coordinates
is known as a connection.

(e) (f)

(g)

(a) (b)

(c)

(d)

u

R

Figure 3. (a) A two-dimensional manifold M. At a point R, a one-dimensional fibre F  can be attached to create the fibre

bundle in (c). (b) A point R of the manifold M is in a neighbourhood U  that is equivalent to the Euclidean plane ℝ2. (c) A

fibre bundle E created from a two-dimensional base manifold M and a one-dimensional fibre F . The pictured fibre bundle

is trivial. The marked point u has a base coordinate R and fibre coordinate f. (d) u lies in the neighbourhood U × F . (e) A

sphere with a tangent vector v attached at the point R. The green plane is a tangent plane attached at R. Attaching the
tangent plane at each point gives rise to the tangent bundle of a sphere TS2. (f) A curved beam in undeformed (grey) and
deformed (red) configurations. (g) Fibre bundle description of the curved beam modelled by the Euler–Bernoulli theory. The
base manifold M is the centreline of the undeformed beam, and the fibre is ℝ to model the transverse displacement of

the beam. They lead to the (trivial) fibre bundle E = M × ℝ. The marked point u has the base coordinate R and fibre

coordinate u. Sections of the fibre bundle corresponding to the undeformed (black) and deformed (red) beam are marked.
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Figure 5 illustrates parallel transport on the fibre bundle of figure 3 using two (contrived)
connections. The first connection does not change the fibre coordinate during the parallel
transport of an element of the fibre bundle (figure 5a). Such a connection is said to be flat. The
second connection, in general, changes the fibre coordinate during the parallel transport of an
element of the fibre bundle (figure 5b). Such a connection is said to be curved. In particular, the
connection in figure 5b increases the fibre coordinate in proportion to the unwrapped winding
angle of a path about point P. The change in fibre coordinate after parallel transport of an
element of the fibre bundle around a loop in the base manifold is known as holonomy (γ in figure
5b).

The appearance of a holonomy depends on the nature of the fibre bundle (either trivial or
non-trivial) and on the curvature of the connection (either flat or curved). Three representative
examples from geometry are discussed in figure 6.

Figure 6a illustrates parallel transport on a bundle constructed by attaching a perpendicular
line ℝ at each point on the plane ℝ2. The bundle is known as the normal bundle over the plane,
and it is denoted as Nℝ2. Its base manifold is ℝ2, and the fibre is ℝ. As the base manifold

is a Euclidean space, Nℝ2 is trivial. Nℝ2 is, in fact, equal to ℝ3 by construction. A point u
of Nℝ2 describes a vector v normal to the plane ℝ2 that is attached at a point R of ℝ2. Its

fibre coordinate is the vector v and the base coordinate is the point R. Parallel transport on
Nℝ2 corresponds to moving normal vectors along a curve on the plane without rotating them

or changing their lengths. The fibre coordinate does not change along the path upon parallel
transport (figure 6a), indicating that Nℝ2 is flat. The parallel transport of the fibre elements

along any closed loop such as R1R2R3R4 does not result in a holonomy.
Figure 6b illustrates parallel transport on the tangent bundle of a hemisphere of unit radius.

The tangent bundle is trivial because the hemispherical base manifold is equivalent to the
Euclidean plane. Geometric considerations imply that parallel transport of a tangent vector
preserves its length and does not rotate it about the local normal [61,62]. For example, parallel
transport of the vector vi over a ‘small’ distance from R1 to R2 results in the vector v2. Other
possibilities, such as v2′ , are ruled out as they change the length of the vector or involve rotation
about the local normal. The connection describing the parallel transport is curved [63]. Parallel
transport of a vector around a closed loop, such as R1R2R3R4, results in a holonomy. The
holonomy is observed as an angle of rotation γ of the tangent vector. The holonomy acquired
over a loop L is calculated using the Gauss–Bonnet theorem [63] as

(c)1
2

1
2

(d)(a) (b)

(f) (g)(e)

S1
R

fI

Figure 4. Constructing a cylinder and a Möbius strip as fibre bundles. (a) The base manifold S1 and fibre I = [−1,1].
(b) Strips 1 and 2 are the pieces of the fibre bundle. (c) The fibre bundle obtained by gluing the strips 1 and 2 end-to-end
is a cylinder. (d) The edges of a cylinder. (e) One of the strips may be given a half-twist before gluing. (f) The fibre bundle
obtained by gluing the arrangement in (d) is a Möbius strip. (g) The edge of a Möbius strip.
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(4.1)γ L = Sκds,
where κ is the curvature of the base manifold, and S is the surface encircled by the loop L. The
hemisphere has unit curvature (κ = 1), and thus, the holonomy equals the solid angle subtended by
the loop L. Perturbations to the loop L continuously change the holonomy γ, suggesting a geometric
nature of the holonomy. Identical considerations apply to the tangent bundle of a sphere TS2.

The third example is parallel transport on a thickened Möbius strip. A thickened Möbius
strip (figure 6c) is constructed in analogy to the Möbius strip but with an annular base
manifold. It is a non-trivial fibre bundle. Parallel transport of a fibre element preserves its
distance and orientation with respect to the centre plane, implying a flat connection. Parallel
transport over two representative loops L1 and L2 is considered. First, consider the loop L1

encircling the centre of the annulus. The fibre bundle restricted to this loop is a Möbius strip
shown in figure 6d. Parallel transport of a fibre element vi around the Möbius strip changes its
sign, i.e. vi = −vf. Next, consider the loop L2 of the base manifold not encircling the centre of the

(a) (b)

Figure 5. Parallel transport on the fibre bundle of figure 3 according to a connection. C and L are a curve and a loop on
the base manifold, respectively. (a) Fibre bundle with a flat connection. Parallel transport of an element u1 along C does
not change the fibre coordinate f1. It follows that parallel transport of an element u2 along the loop L does not change it.
(b) Fibre bundle with a curved connection. Parallel transport of an element u1 along C changes the fibre coordinate fromf1 to f1′. Parallel transport of an element u2 along the loop L changes the fibre coordinate from f2 to f2′, resulting in a
holonomy of γ.

(a) (b) (c) (d)

Figure 6. Parallel transport on fibre bundles. The fibre element vi at R1 transforms to vf after parallel transport along

the loop R1R2R3R4. (a) Parallel transport on the normal bundle Nℝ2. (b) Parallel transport on the tangent bundle of a

hemisphere. vi at R1 under parallel transport turns into v2 at R2. It does not turn into v2′ at R2 because the connection
prevents rotation about the local normal. (c) A thickened Möbius strip and its annular base manifold. L1 and L2 are two loops
on the base manifold. (d) The thickened Möbius strip restricted to the loop L1 is a Möbius strip.
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annulus. Parallel transport of a fibre element on this loop is identical to parallel transport on the
normal bundle Nℝ2 (figure 6a). Consequently, no holonomy is observed. In general, the change

in sign of the fibre element transported along a closed loop depends only on whether the loop
encircles the centre of the annulus. This indicates the topological nature of the holonomy.

The examples characterize the appearance of holonomy in fibre bundles with a connection.
A trivial fibre bundle with a flat connection does not exhibit holonomy. A trivial fibre bundle
with a curved connection exhibits holonomy with a geometric characteristic. The holonomy is
calculated, in general, using analogues of the Gauss–Bonnet theorem [1]. A non-trivial fibre
bundle with a flat connection exhibits holonomy with a topological characteristic.

The above characterization explains the different mechanisms required to obtain a holon-
omy with either geometric or topological characteristics. Holonomy with a geometric nature
depends on local features of the fibre bundle, namely the curvature induced by the connection,
which can be computed pointwise [60]. Holonomy with a topological nature depends on a
global feature of the fibre bundle, namely the non-trivial nature of the fibre bundle. Note that
trivial and non-trivial fibre bundles are locally indistinguishable because local neighbourhoods
of any fibre bundle are equivalent to Euclidean spaces. In general, quantities related to the
fibre bundle that continuously change with perturbations (geometric nature) depend on local
features, and quantities that are invariant to perturbations (topological nature) depend on
global features.

5. Geometric phase as the holonomy of parallel transport
In view of the concepts introduced in the previous section, the geometric phase in adiabatically
varying elastic waveguides (§3) can be described mathematically by recasting the propagation
of waves as parallel transport on a fibre bundle. However, the way to illustrate this concept
depends on whether the geometric phase affects either the overall phase or the polarization
angle. The two cases are treated separately, and the general conclusions will be drawn at the
end of the section.

(a) Effect on the overall phase
Consider a quasi-one-dimensional semi-infinite waveguide W  whose cross-sectional properties
are described by a set of n parameters, R(z) (figure 7a). The parameters vary adiabatically in a
cycle along the longitudinal direction (z axis). The space of the parameter values is generally
equivalent to ℝn. Each parameter value R can define a uniform waveguide and its guided
modes. Recall from §3 that a parameter value R0 resulting in a waveguide with fully degenerate
modes is said to be a full degeneracy. The parameter space generally consists of non-degenerate
values; only specific parameter values P are fully degenerate. The non-degenerate parameter
values defines the base manifold M, that is M = ℝn − P (figure 7b–d). A parameter space

without full degeneracies results in a Euclidean base manifold and leads to a trivial fibre
bundle (figure 7b). A parameter space with full degeneracies generally leads to a non-trivial
fibre bundle (figure 7d).

The waveguide W  corresponds to a closed loop L on the base manifold, which is parameter-
ized by the longitudinal coordinate z (figure 7b). Let the waveguide be harmonically excited
with angular frequency ω triggering a flexural mode whose eigenfunction is U(x, y;R(0)) atz = 0. The steady-state displacement field at a location z0 is determined up to the geometric
phase as (§3):
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(5.1)u x, y, z0, t = a z U x, y; R z0 exp iγ exp −iωt − i
0

z0
k z′ dz′ .

The geometric phase γ accounts for the phase ambiguity of the guided mode eigenfunction (§2),
that is if U(x, y;R(z0)) is an eigenfunction, then so is U(x, y;R(z0))eiγ. In general, the geometric
phase γ may assume any value from 0 to 2π, that is any point on the complex unit circle U(1).
The geometric phase is described as the fibre coordinate on the fibre U(1) attached to the pointR of the base manifold. For ease of visualization, the fibre is unwrapped into a line whose
colour indicates the fibre coordinate (inset of figure 7b). The base manifold and fibres give rise
to a fibre bundle (figure 7b). In systems with time reversal symmetry, such as conservative
elastic waveguides, the guided modes are described by real-valued eigenfunctions. Thus, a
computed eigenfunction is ambiguous only in its sign, and the geometric phase is restricted
to {0, π}. The geometric phase is described by the fibre {0, π}. Some possible fibre bundles are
shown in figure 7c,d. In this manner, the response of a waveguide to a guided mode excita-
tion has been modelled as a fibre bundle with base manifold as the space of non-degenerate
parameters R and the fibre as U(1) or {0, π}.

A connection on this fibre bundle is provided by the governing equations of motion and
the adiabatic theorem. The adiabatic theorem limits the allowable magnitude of change in the
guided mode eigenfunction over a small longitudinal distance Δz to be of the order of (Δz)2.
That is,

(5.2)U x, y;R z |U x, y;R z + Δz −U x, y;R z ∼ O Δz 2 ,

where the inner product ⟨f|g⟩ is an integral over the cross-section S defined as ∫Sf* ⋅ gdxdy.
Dividing the above equation by Δz and imposing the limit Δz 0 provides:

(a) (b) (c) (d) (e)

(f)

Figure 7. The geometric phase in an elastic waveguide is modelled using a fibre bundle. (a) A quasi-1D waveguide W  with
cross-sectional properties R varying in an adiabatic cycle along z. The waveguide is excited by a guided mode eigenfunctionU(x,y,R(0)) at z = 0. The disturbance propagates to z = z0, where the response acquires a geometric phase γ.

(b) Base manifold M = ℝ2 and fibre U(1) resulting in the fibre bundle E1. Waveguide W  corresponds to the loop L
on the base manifold, which is parameterized by the z coordinate. The fibre U(1) is represented by unwrapping it into a
line, where the colour denotes the fibre coordinate. The fibre is attached at each point, as shown at R(z0), to create the
fibre bundle E1. The colours on the fibre bundle also correspond to the fibre coordinate. Parallel transport of u along L
models wave propagation in W . It results in a holonomy γ, which is a non-topological geometric phase. (c) Base manifold
M = ℝ2 − 0  and fibre {0, π} resulting in a trivial fibre bundle E2. The fibre {0, π}, depicted by blue cubes, is attached at

a point R(z0). (d) Base manifold M = ℝ2 − 0  and fibre {0, π} resulting in a non-trivial fibre bundle E3. Two loops L1

and L2 are marked. Parallel transport of an element u along L1 (L2) results in a topological geometric phase (no geometric
phase). (e) The edge of a Möbius strip, obtained by restricting E3 to loop L1. Parallel transport of u is highlighted. (f) The

edges of a cylinder, obtained from restricting E3 to loop L2. Parallel transport of u is highlighted.
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(5.3)U x, y;R z ∂U x, y;R z
∂z = 0.

Equation (5.3) defines a connection called the adiabatic connection or the Berry connection
[1,18]. If the fibre is {0, π}, the adiabatic connection simply ensures that the fibre coordinate does
not change abruptly (from 0 to π or vice versa) as the base point moves in a neighbourhood
equivalent to the Euclidean space, hence implying that the connection is flat.

Having constructed the fibre bundle and identified a connection describing the dynamics of
the waveguide W , the propagation of the excitation can be described as a parallel transport.
This process is illustrated by figure 7b. The initial cross-section corresponds to a point u on the
fibre bundle with base coordinate R(0) and fibre coordinate zero, since the geometric phase at
the initial value can be arbitrarily set to zero. As the wave propagates down the longitudinal
coordinate z in the adiabatically varying waveguide, the point on the base manifold travels
on the loop L parameterized by z and the fibre coordinate is parallel transported according
to the connection. The fibre coordinate at the end of the loop L, if non-zero, is a holonomy.
However, given that the fibre coordinate is the geometric phase γ, then the geometric phase is
the holonomy arising from parallel transport.

If the fibre bundle is trivial with fibre U(1), the geometric phase is non-topological, and it is
computed as [1]:

(5.4)γ(L) = LIm U(x, y;R(z)) ∂U(x, y;R(z))
∂z ⋅ dR .

Examples of such geometric phase in elastic waves can be found in Tromp and Budden & Smith
[45,49].

If the fibre bundle is non-trivial with fibre {0, π}, the geometric phase is topological.
This situation is exemplified by the discussions on flexural waves propagating in one-dimen-
sional waveguides with adiabatically varying triangular cross-section (§3(a)). The waveguide
property varying along the longitudinal direction is a geometric perturbation R = (Δx, Δy) to
the cross-section. The perturbation parameters lead to a two-dimensional parameter space
with a full degeneracy at R = (0,0) arising from the symmetry of the corresponding uniform
waveguide, which has an equilateral triangular cross-section. Thus, the base manifold is the
punctured plane ℝ2 − {0}, and the fibre is {0, π}. The base manifold and fibre gives rise to one
of the following fibre bundles: (i) a stack of two punctured planes E2 (formally (ℝ2 − {0}) × {0, π};

which is trivial) shown in figure 7c or (ii) a thickened Möbius strip-like bundle E3 (nontrivial)

visualized in figure 7d (cf. §4(a)). Note that the self-intersection is an artefact of describing the
fibre bundle in three-dimensional space. As the simulations of §3(a) confirm the appearance of
a π-valued geometric phase, the fibre bundle must be non-trivial (because a trivial fibre bundle
with flat connection does not exhibit holonomy).

Figure 7d explains the appearance of the topological geometric phase. A waveguide
generated by parameters (not) encircling the full degeneracy corresponds to the loop (L2) L1

on the base manifold. This waveguide is described by a fibre bundle obtained as the restriction
of E3 on (L2) L1. The resulting fibre bundle is the (top and bottom edges of a cylinder, figure 7f)

edge of a Möbius strip, shown in figure 7e. As an element u of the fibre bundle with initial base
coordinate R(0) and fibre coordinate zero is subject to parallel transport along (L2) L1, the fibre
coordinate (remains zero for loop L2) changes to π for loop L1. The topological geometric phase
results from the topological difference between the edge of a Möbius strip and the edges of a
cylinder.
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(b) Effect on the polarization angle
For this case, the construction of the fibre bundle and the identification of the connection is
discussed using the example of polarized flexural waves propagating in a waveguide (§3(b)).

Consider a waveguide W  generated by the closed loop C2 on the sphere (figure 2g,h). Let
the path coordinate along the centreline of the waveguide be s. Let the waveguide W  be
excited by a flexural-guided mode, assumed to be horizontally polarized. At any location s, the
displacement field is determined up to the polarization vector ĉ (§3), which can be any unit

vector in ℝ2. It is modelled as the fibre coordinate on the fibre ℝ2 attached to the point t̂ of the
sphere. The resulting fibre bundle is equivalent to the tangent bundle of the sphere TS2 (figure
3e).

The connection on the fibre bundle is imposed by the governing equations and the adiabatic
theorem. Remarkably, the connection coincides with the natural connection on TS2 arising
from geometric considerations discussed in §4(b), implying that it is curved [47]. The polariza-
tion vector undergoes parallel transport on the spherical base manifold exactly like a tangent
vector (figure 6b). Thus, holonomy manifests as a change in polarization angle γ, which is the
geometric phase. This term is calculated using equation (4.1).

(c) General considerations
The previous two sections highlighted a few general considerations for a waveguide W  with
adiabatically varying parameters R along the propagation coordinate z (or s): (i) the propaga-
tion of waves resulting from a harmonic excitation is described as a parallel transport on a
fibre bundle, (ii) the geometric phase is the holonomy arising from this parallel transport. The
classification of holonomies according to the nature of the fibre bundle (trivial or non-trivial)
and curvature of the connection (flat or curved) applies to geometric phases. In particular, a
waveguide exhibiting a topological geometric phase has full degeneracies in the parameter
space and is described by a non-trivial fibre bundle analogous to the edge of a Möbius strip. A
waveguide exhibiting a non-topological geometric phase is described by a fibre bundle with a
curved connection. This classification is verified in the examples in §3.

6. Topological classification of elastic waveguides
The previous discussion on the geometric phase has illustrated the role of differential geometry
and topology in understanding the dynamics of elastic waves. In this section, we show how the
relation between geometric phase, topology and dynamic response can be leveraged to design
elastic waveguides.

In particular, we review the role of the geometric phase in the context of the design of
ETMs. Broadly speaking, elastic metamaterials [64,65] are typically periodic structures obtained
by repeatedly assembling in space a section (called the unit cell) that embeds all the funda-
mental structural features of the material. The unit cell properties (e.g. geometry, materials,
symmetries, etc.) can be tailored to enable a wide range of unconventional static and dynamic
responses, such as negative Poisson’s ratio [66], negative refractive index [67], non-reciprocity
[68] and cloaking [69,70], just to name a few. Given the vastness of the design space, it is
very challenging to comprehensively explore unit cell designs in search of specific material
response. However, topology can be leveraged as an additional tool to support this search.
Certain combinations of the unit cell properties, particularly those involving restrictions on
spatial and temporal symmetries, lead to a specific class of metamaterials known as ETMs.
The waveguiding properties of ETMs are closely connected to the topological properties of the
dispersion relations, in a manner that is elucidated in the remainder of this section.
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The ability to characterize the material behaviour using topological concepts was first
identified in the context of band structure analysis of condensed matter systems. The topologi-
cal classification of abstract spaces and the physical classification of materials were unified in a
remarkable chain of discoveries between 1970 and 2000 (see [24,26]). These studies showed how
naturally occurring crystalline materials could be modelled as fibre bundles, and the corre-
sponding physical properties were linked to topological invariants.1 As an example, electric
polarization was understood as the holonomy of parallel transport [7]. These investigations
led to a ‘periodic table’ of topological materials [26]. According to this classification scheme,
materials can be categorized based on the topology of their band structure and on the value of
the associated invariant. This invariant captures the global (topological) properties of the band
structure, hence characterizing the dynamic behaviour of the medium at a much deeper level
that is independent from specific values of the material parameters. Materials characterized
by the same invariant form a topological material class, which means that the topological
nature of their band structure is intrinsically equivalent. On the other side, materials in distinct
topological classes have inequivalent band structures that are typically separated by degener-
acies; more precisely, if a variation of the material parameters changes the topological class,
the corresponding band structures cannot be morphed into each other unless the band gap
closes and reopens (i.e. degeneracies are created and annihilated). Further, in accordance to
the bulk-boundary correspondence principle [24,26], an interface between two topologically
distinct materials, whose invariants differ by n units, supports n localized excitations called
edge modes. These edge modes are protected against back-scattering produced by any potential
defect or perturbation of the interface because the edge modes are determined by the global
(topological) properties of the bulk, not by the local properties of the interface. The only way to
alter the edge modes is to destroy the topological property of the bulk. These unique properties
of the edge modes have led to technological advances in electronics and information processing
[71].

The success of the ‘periodic table’ of (quantum) topological materials spurred new directions
such as higher-order topological metamaterials [72], non-Abelian materials [22] and topolog-
ical defects [73]. Each direction further built upon the connections between the topological
characterization of the band structure and the corresponding exotic material behaviours. In
each of these new material classes, a material is described as a fibre bundle and relates abstract
properties of the fibre bundle to the observable behaviour of the material.

In the last decades, researchers have successfully adapted some of these concepts to engineer
classical (i.e. non-quantum) topological metamaterials for elastic waves, acoustics and photonics
[35,39,42]. In the context of ETMs, research focused on the identification and realization of
material architectures capable of mimicking the dynamic behaviour of their quantum mechani-
cal counterparts. It is important to highlight the foundational difference between quantum and
classical materials (whose behaviour is ruled by quantum and classical mechanics, respectively)
ultimately allows only analogies between the two material systems.

The first generation of ETMs replicated specific classes from the ‘periodic table’ of quantum
topological materials [39]. Analogous to their quantum counterparts, such ETMs mapped to
fibre bundles and topological invariants, and interfaces between topologically distinct ETMs
supported robust, localized edge modes according to the bulk-boundary correspondence. The
desirable properties of the edge modes found technological applications. For example, in a
two-dimensional ETM, a line interface between topologically distinct ETMs supported localized
propagating waves immune to back scattering even in the presence of inhomogeneities and

11Mathematical parameters that identify global properties of abstract mathematical spaces; in geometry, this parameter is
the genus. Topological invariants do not change under continuous deformations of the space. For example, a sphere has
genus g = 0. The sphere can be continuously morphed into a parallelepiped, which is also described by g = 0; therefore, the
sphere and the parallelepiped are topologically equivalent objects.
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defects [33]. Soon after, ETMs based on higher-order topology [74] and topological defects
appeared [75].

The initial development of ETMs was rapid since most designs emulated the design
characteristics of their quantum counterparts. Nevertheless, researchers have only begun
exploring ETM designs and capabilities [41,76]. To support the development of ETMs, design
tools rooted in differential geometry and topology are critical. However, currently these ideas
are spread out over different fields and making their role in the design process of ETMs
not always directly accessible. This section presents an attempt to fill this gap by using the
notions introduced in §4. In particular, it highlights the link between waveguides, fibre bundles,
topological invariants and dynamics using simple (yet generalizable) examples.

(a) One-dimensional waveguides classified using topological geometric phase
Consider the adiabatically varying triangular waveguides presented in §3(a). A waveguideW  can be visualized as a closed loop, say L1, on the base manifold ℝ2 − {0} (figure 8a), as
discussed earlier. L1 is parameterized by the longitudinal coordinate z. A waveguide can also be
visualized in terms of the dynamical properties of its cross-section. Each point R on the loop L1

corresponds to a cross-section of the waveguide W  at some coordinate z along the longitudinal
axis. This cross-section, with parameters R(z), defines a uniform waveguide denoted WR(z).
The dynamical properties of the flexural guided modes of the uniform waveguide WR(z) are
described by the dispersion relations ω(k,R(z)). By allowing z to vary, ω(k,R(z)) can capture the
dispersion relations of every cross-section of W . For a convenient visualization, we fix k and
plot ω as a function of z in figure 8b–d. This plot is referred to in the following as the ‘ω-z’
plot. The two curves in a ω-z plot generally do not intersect. The curves intersect if, and only
if, the flexural guided modes for some WR(z) are fully degenerate, which means that the loop
corresponding to W  passes through the full degeneracy (the origin). This situation is illustrated
by loop L2 in figure 8a and the corresponding ω-z plot in figure 8c. We digress to note that while
the point degeneracy on plots analogous to ω-z curves is crucial in the context of topological
classification, its connection with a full degeneracy on the dispersion relation is a peculiarity in
the present system. In general, full degeneracies are rare in the general context of topological
classification.

The first perspective establishes a classification scheme of the waveguides into two types,
WO and WE. Let the number of times the loop corresponding to a waveguide encircles the

origin be denoted by ν. Then, WO (WE) is the class of the waveguide for which ν is odd (even).

Waveguides in class WO (WE) acquire (do not acquire) a geometric phase of π. For example, in

figure 8a, the waveguide corresponding to loop L1 (L2) is in the class WO (WE), which acquires

(does not acquire) a geometric phase of π.
The properties of this classification scheme parallel the topological classification of metama-

terials. Firstly, the classification scheme is robust against continuous geometric perturbations
to a waveguide. Geometric perturbations to a given waveguide manifest as changes to the
corresponding loop. If these perturbations are small enough, such as perturbing loop L1 to L1′
in figure 8a, the waveguide class does not change. Secondly, waveguides in different classes are
separated by gap closures in the ω-z plot. If a perturbation deforms a waveguide into a different
class, there is an intermediate waveguide whose loop passes through the origin. For example, in
figure 8a, perturbing the waveguide corresponding to loop L1 into a waveguide corresponding
to loop L3 passes through an intermediate waveguide corresponding to loop L2, for which the
gap is closed in the ω-z plot.

Further, this classification scheme is also topological in nature. Recall from §5(a) that
waveguides in class WO (WE) give rise to a non-trivial (trivial) fibre bundle resembling the edge

of a Möbius strip shown in figure 7e (edges of a cylinder, figure 7f). Thus, the classification

19

royalsocietypublishing.org/journal/rsta 
Phil. Trans. R. Soc. A 382: 20230357

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

28
 A

pr
il 

20
25

 



scheme essentially distinguishes between these trivial and non-trivial fibre bundles. The
topological invariant is the holonomy of the parallel transport along the base manifold, which is
precisely the topological geometric phase (figure 7e,f).

(b) Topological classification of elastic metamaterials
The above classification scheme is readily adapted to ETMs once the fibre bundle description
is identified. One-dimensional ETMs that are infinite and periodic along the z direction are
considered. Further, the unit cell of length a is assumed to be symmetric about the xz and yz
planes to prevent coupling between flexural, torsional and longitudinal modes. Such metama-
terials admit solutions of the form u x, y, z, t = U x, y, z; k ei kz − ωt  to the NL equations, whereU(x, y, z; k) is a periodic function of z called the Bloch wave mode [64,77]. The Bloch wave modeU(x, y, z; k) and angular frequency ω(k) are computed by solving a wavenumber dependent
eigenvalue problem. These properties of the ETM are graphically described by plotting the
dispersion relation, which shows the angular frequency as a function of the wavenumber, e.g.
figure 9d–f. Due to the spatial periodicity of the metamaterial, the solutions are periodic in k
with periodicity 2π/a, i.e. U(x, y, z; k) = U(x, y, z; k + 2π/a) and ω(k) = ω(k + 2π/a). In other words,
the wavenumber is a circle S1 represented as the interval [−π/a, π/a] with the endpoints glued
together. The wavenumber defines a circular base manifold. At each wavenumber k, the Bloch
wave mode U(x, y, z; k) has a phase degree of freedom, as it can be arbitrarily multiplied by
a phase factor eiθ. This is described as a U(1) fibre. Thus, a Bloch wave mode of an ETM is
naturally described as a fibre bundle.

Analogies from the previous section can now be exploited. The wavenumber k plays the
role of the longitudinal coordinate z. The dispersion relation is analogous to the ω-z plot. Two
specified Bloch modes U(1) and U(2) (e.g. corresponding to the longitudinal mode) correspond
to the two curves of the ω-z plot. A physical classification scheme can be established using
the following criterion: ‘Two waveguides belong to the same material class if they can be
transformed into one another by continuous variation of either the geometric or the material
properties without closing the gap between U(1) and U(2) in the dispersion relation’. This
classification is also a topological classification of the fibre bundles. In this example, the
topological invariant is the holonomy of parallel transport of a Bloch wave mode around the
circular base manifold according to the Berry connection (equation (5.3) with k replacing z). It is
called the Zak phase, computed using equation (5.4) as:

(6.1)θZak = Im
−π/a

π/a v dv
dk dk .

(a)
Dy

Dx

(b)

L1
L1

L1¢

L2

L2
L3

L3

(c) (d)

zzz

F
re
q
u
en
cy

Figure 8. (a) Parameter space used to generate the one-dimensional waveguides with adiabatically varying triangular
cross-sections. Each loop corresponds to a waveguide. (b), (c), (d) show the ω-z plots corresponding to loops L1, L2 and L3

at a fixed k.
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The Zak phase assumes a value of 0 or π modulo 2π. Intuitively, the Zak phase distinguishes
between twisted Möbius strip-like fibre bundles and untwisted cylinder-like fibre bundles.

A concrete realization of the above ideas for longitudinal modes was studied by Yin et al.
[78]. The results are reproduced in figure 9. They considered stepped beams with a unit cell
of fixed length l = 15 cm, as shown in figure 9a–c. The effect of varying the length a of the
thicker portion of the unit cell on the dispersion relation was investigated. As a was increased
from 0 to l, the geometry of the waveguide and its dispersion relation were plotted (see figure
9a–f). It is seen from these results that the band gap between two Bloch modes U(1) and U(2)

closes at a value a = acrit = 7.5 cm (figure 9e). The parameter value acrit and k = 0 results in
an accidental degeneracy. This indicates that waveguides generated with a < acrit and a > acrit

belong to potentially different material classes. The topological nature of the classification is
verified by computing the Zak phase corresponding to the dispersion curve labelled as U(1),
which is 0 (π) for waveguides with a < acrit (a > acrit).

The physical significance of the topological invariant manifests in the finite structure shown
in figure 9g created by joining two waveguides with Zak phases equal to 0 and π, respectively.
According to the bulk-boundary correspondence, the difference between the invariants of the
constituent waveguides equals the number of localized edge modes at their interface. Here,
the invariants differ by one unit because the Zak phase can only take values 0 and π. Thus,
the resulting structure possesses a single edge mode at the interface (figure 9h) at a frequency
within the common band gap of the two halves of the composite waveguide (figure 9i). The
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Figure 9. One-dimensional stepped beam waveguides with unit cell of length l = 15cm of which the length a is the
thicker region. (a) a = 5cm, (b) a = 7.5cm, (c) a = 10cm. (d–f) Dispersion relations corresponding to the waveguides
in (a–c) with the bandgaps highlighted. (g) A finite beam constructed by joining 5 unit cells with a = 5cm and 5 units
cells with a = 10cm. (h) The mass normalized z-component of displacement of a mode of vibration that is localized at
the interface of the topologically distinct regions. The longitudinal z coordinate has been scaled down by a factor of 5 in
(g) and (h) for better visualization of the waveguides. (i) Frequency response curve of the finite beam. The beam is subjected
to harmonic excitation along the z direction at the top end (black arrow in (g)) and the z component of displacement
response is measured at the bottom end (red arrow in (g)). The natural frequency of the localized mode is within the common
frequency gap of the dispersion relations in (d) and (f). Figure adapted from Yin et al. [78].
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mode is robust against small geometric or material perturbations that preserve the reflection
symmetries of the structure as such perturbations do not change the topological class of the
constituent waveguides.

In general, for ETMs emulating the ‘periodic table’ of topological metamaterials, the ETM
maps to a fibre bundle with base manifold as the Brillouin zone (circle for one-dimensional
ETM, 2-torus for two-dimensional ETM, 3-torus for three-dimensional ETM) and fibre as the
Bloch wave mode. The topological invariant is computed using standard formulae derived in
the literature [26]. Note that the invariant is, in general, not a geometric phase. The invariant is
determined by the dimension of the waveguide and its symmetries. The topological invariant
relates to edge modes at the interface of topological distinct ETMs through the bulk-boundary
correspondence.

ETMs based on more recent design principles such as higher-order topological metamateri-
als or topological defects also benefit from these concepts. Indeed, higher-order topological
metamaterials are generalizations of the one-dimensional Zak phase [72,79] and phenomena at
topological defects are extensions of the ‘periodic table’ of topological metamaterials [26,73].

7. Conclusions
This article reviewed the concept of geometric phase in the context of elastic waves and
presented some applications to the design of dynamic and topological elastic materials. The
geometric phase in quasi-one-dimensional waveguides was examined via practical examples,
theoretical explanations and design applications. The geometric phase was observed to depend
solely on the path traced out in parameter space, and not on the rate of change of parameters. It
can also be classified as either topological or nontopological. Only the former is robust against
small perturbations to the design of the waveguide. The geometric phase was also discussed
using the concepts of fibre bundles and parallel transport, hence leading to its interpretation as
the holonomy resulting from parallel transport. Similarly, the topological nature was distin-
guished based on the nature of the fibre bundle and its connection. Topological geometric
phases require non-trivial fibre bundles resembling the edge of a Möbius strip, which are
associated with full degeneracies in the parameter space describing the waveguide. Non-topo-
logical geometric phases require curved connections, which arise in rotating systems and in
systems supporting polarized waves. The latter class of systems are described by the tangent
bundle of a sphere. The interpretation of the geometric phase via arguments of differential
geometry also enables its application to the design of ETMs. Indeed, ETMs can be described as
fibre bundles classified according to topological invariants. Crucially, the abstract classification
of fibre bundles indicates that the interface of ETMs with differing topological invariants can
support localized edge modes. These edge modes are topologically protected against certain
perturbations to the properties of the waveguide.

The concept of geometric phase provides a rigorous and powerful tool to support either
the theoretical understanding of ETMs or the design of novel ETMs. Indeed, the geometric
phase complements other existing analysis tools to enable the selective exploration of the vast
metamaterial design space in search of materials with unique properties.
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