

1 **Flow Characteristics over Flat Building Roof with Different**
2 **Edge Configurations for Wind Energy Harvesting: A Wind**
3 **Tunnel Study**

4 Shaopeng Li¹, Wei-Ting Lu², Brian M. Phillips^{3*}, and Zhaoshuo Jiang⁴
5

6 ¹Assistant Professor, Department of Civil Engineering,
7 Louisiana University at Lafayette, Lafayette, United States

8 ²Postdoctoral Associate, Department of Civil and Coastal Engineering,
9 University of Florida, Gainesville, United States

10 ³Associate Professor, Department of Civil and Coastal Engineering,
11 University of Florida, Gainesville, United States

12 ⁴Associate Professor, Department of Civil and Environmental Engineering,
13 San Francisco State University, San Francisco, United States

14 *Corresponding author, brian.phillips@essie.ufl.edu

16 **ABSTRACT:** The impact of climate change and global warming makes it imperative to seek
17 sustainable solutions for the built environment. To facilitate the design of future sustainable
18 buildings, wind tunnel tests are conducted in this study to investigate the flow characteristics and
19 wind energy potential over a flat building roof with different edge configurations. Specifically,
20 this study addresses the effect of parapet walls and roof edge-mounted solar panels on the wind
21 flow over a flat-roof tall building. The results show that parapet walls generally slow down the
22 wind speed and increase turbulence intensity as well as skewness angle, which compromises the
23 efficiency of traditional turbine-based wind energy harvesting. On the other hand, the presence of
24 solar panels on the roof edge (or on the top of the parapet wall) further alters flow separation and
25 has the potential to enhance wind energy harvesting over the roof, especially for the solar panel
26 inclined at 30°. In addition to providing valuable data for validating computational fluid dynamics
27 (CFD) simulations, this study could also help to guide the design of wind energy harvesting
28 devices on the building roof and explore the promising synergy with solar panels.

29 **KEYWORDS:** wind energy; tall building; parapet wall; solar panel; wind tunnel test.

30 **1 INTRODUCTION**

31 Supported by the overwhelming scientific evidence, climate change has long been recognized as
32 a serious phenomenon with severe implications for the planet, its inhabitants, and the built
33 environment (Moss *et al.*, 2010; IPCC, 2023), which motivates researchers to seek sustainable
34 solutions. One effective strategy for climate mitigation is to exploit renewable energy to replace
35 fossil fuel (Ellabban *et al.*, 2014). For example, deployment of energy harvesting devices on
36 buildings (e.g., solar panel and wind turbine) is a promising approach to achieve net-zero emission,
37 considering the convenient use of on-site energy and the reduced cost on power
38 transmission/distribution (Ahmed *et al.*, 2022). Recently, there are growing interests in utilizing
39 wind energy around tall buildings in urban areas due to the high power demand and rich energy
40 potential (Stathopoulos *et al.*, 2018; Toja-Silva *et al.*, 2018; Vita *et al.*, 2020a; Škvorc and Kozmar,
41 2021; Kwok and Hu, 2023). Efforts have been made to investigate the performance of various
42 wind energy harvesting systems on urban buildings such as wind turbines (e.g., Li *et al.*, 2013),
43 power windows (e.g., Jafari *et al.*, 2019), vibration-based energy harvesters (e.g., Abdelkefi, 2016),
44 and innovative building façades (e.g., Hassanli *et al.*, 2017). Among them, wind turbines (with
45 horizontal axis and vertical axis) are currently most popular (Kumar *et al.*, 2018; Anup *et al.*, 2019),
46 and have been implemented in real urban buildings (e.g., Bahrain World Trade Center). These
47 systems can be implemented on rooftops, in through-building openings, on building sides, or
48 between two buildings. Among the various possibilities, implementing wind energy harvesting
49 systems on a building roof is relatively easy (although the overturning moment of the device and
50 the added load on the building need to be carefully analyzed for practical implementation). In
51 addition, roof-mounted energy systems can be introduced to existing buildings, which hence has
52 promising potential for wide applications. As a result, it is of great importance to systematically
53 investigate the flow characteristics over the building roof to inform the practical design of wind

54 energy harvesting devices.

55 Several researchers have studied the wind energy potential over the roofs of tall buildings
56 based on numerical simulation and/or experimental testing. Toja-Silva et al. (2013) used
57 computational fluid dynamics (CFD) simulation based on Reynolds-averaged Navier–Stokes
58 equations (RANS) to investigate the wind energy potential on an isolated building with flat roof,
59 where the performances of horizontal-axis wind turbines and vertical-axis wind turbines were
60 compared. Later, CFD simulations with different turbulence models for RANS were conducted to
61 assess the energy potential for different regions over the building roof (Toja-Silva *et al.*, 2015a).
62 Kono et al. (2016) utilized CFD simulations, specifically, large eddy simulation (LES), to study
63 the effects of wind direction and aspect ratio of a high-rise building for roof-mounted wind
64 turbines. Peng et al. (2020) conducted wind tunnel tests to investigate the wind energy potential
65 over tall building roof, where the effects of building's height ratio and width ratio are examined.
66 Moving from a single building to multiple buildings, Lu and Ip (2009) adopted CFD simulations
67 (RANS) to empirically investigate the feasibility of enhancing power generation through strategic
68 arrangement of building cluster. Wang et al. (2015) evaluated the wind energy over the roof of two
69 perpendicular buildings using CFD simulations (RANS), which considered different factors in
70 terms of building lengths, widths, heights, corner separation distances, angles of inlet and altitudes
71 of assessment. Glumac et al. (2018) conducted wind tunnel tests to investigate the impact of four
72 neighboring buildings on the wind energy potential above a high-rise building, accompanied by
73 roof pressure measurement on the principal building. In addition, CFD simulations (RANS) of
74 generic high-rise building arrays have been conducted to study the impact of building layout
75 parameters such as urban densities and staggered patterns (Juan *et al.*, 2021; Juan *et al.*, 2022).
76 Noting that building shapes can greatly impact the flow field, attempts have also been made to

77 investigate wind energy potential for buildings shapes beyond standard cuboids. Dai et al. (2022a)
78 utilized CFD simulations (RANS) to study the effects of corner modifications for tall buildings,
79 where, compared to benchmark and recessed corners, rounded and chamfered corners are found to
80 be more promising for the installation of wind turbines due to the higher wind velocity and lower
81 turbulence intensity. Dai et al. (2022b) studied the effect of parapet wall height on wind energy
82 potential over tall building roofs using CFD simulation (RANS), revealing the importance of
83 considering parapet wall for wind energy harvesting applications. In addition to flat roofs in
84 abovementioned studies, Toja-Silva et al. (2016) conducted CFD simulation (RANS) to explore
85 the wind energy potential of novel shapes of roof (e.g., spherical roof) and empirically optimized
86 the building roof geometry for harvesting wind energy on high-rise buildings.

87 Despite the merits of being clean and renewable, the intermittent nature of wind makes it
88 difficult to consistently meet the power demand of the building, and hence it is desirable to have
89 multiple energy sources for sustainable buildings. A hybrid wind-solar energy harvesting system
90 is a promising direction, considering the complementarity of technology and stability of power
91 generation (Hong and Chen, 2014; Sinha et al., 2021). Specifically, solar irradiation is available
92 during the day, while the wind energy supply during the night is at its highest. In addition, the
93 availability of solar power is higher than wind in the summer, while the opposite is true in the
94 winter (Liu and Wang, 2009; Huang et al., 2015). It should be noted that mounting solar panels on
95 the building roof can modify the aerodynamic shape and hence affect the wind energy potential.
96 Most of existing research on roof-mounted solar panel focuses on the aerodynamic loads (e.g.,
97 Stathopoulos et al., 2014; Dai et al., 2022c), while only a few studies reveal the flow characteristics
98 over the solar panel (Pratt and Kopp, 2013; Toja-Silva et al., 2015b; Wang et al., 2020). Pratt and
99 Kopp (2013) conducted wind tunnel tests to better understand the flow structures and aerodynamic

100 mechanisms for peak wind loads for roof-mounted solar arrays using synchronized particle image
101 velocimetry (PIV) and pressure measurements. Toja-Silva et al. (2015b), from the view of the
102 wind energy exploitation, performed CFD simulation (RANS) to investigate flow characteristics
103 over the roof-mounted solar panels with two different tilting angles (10° and 30°). Aiming to clarify
104 the relations between flow field and wind pressure distributions on solar panels, Wang et al. (2022)
105 conducted CFD simulations (LES) to examine the flow characteristics around solar arrays mounted
106 on a flat-roof building for two wind directions (0° and 180°). It should be noted that in the
107 abovementioned studies the solar panels are located away from the roof edge. Hence, the impact
108 on wind energy potential over building roof (for wind energy harvesting devices located at a much
109 higher elevation than the solar panel) is not significant, considering that the rooftop flow field is
110 mainly controlled by the flow separation at the roof edge.

111 Noting the significant impact of flow separation at the roof edge on wind energy potential,
112 this study investigates flow characteristics over a flat building roof with different edge
113 configurations through wind tunnel tests. Specifically, this study utilizes velocity probes to
114 characterize the wind flow over a tall building's flat roof, considering different heights of parapet
115 walls and tilting angles of solar panels mounted on the roof edge. Noting that the solar panels can
116 also be used to adaptively change the roof shape for wind energy harvesting, the scenario of solar
117 panels mounted on the top of the parapet wall is also considered to further demonstrate the concept.
118 In the following sections, the experiment setup is first introduced, which is followed by a detailed
119 result analysis. The concluding remarks and future directions are given at the end. This study can
120 effectively contribute to (1) providing valuable data for validating CFD simulations, (2) guiding
121 the design of hybrid wind-solar energy harvesting systems on building roofs, and (3) exploring the
122 promising potentials to develop "morphing" roofs using active devices for maximizing wind

123 (and/or solar) power generation.

124 **2 EXPERIMENT SETUP**

125 **2.1 Model configuration**

126 In this study, building models with nine different configurations are tested in the wind tunnel (see
127 Fig. 1). The models include one baseline model, two models with a parapet wall, three models
128 with solar panels, and three models with both a parapet wall and solar panels. The baseline model
129 has the dimension of 500mm \times 500mm \times 1000mm (aspect ratio 1:1:2), which, using the length
130 scale of 1:50, corresponds to a 50m tall building in full scale. To investigate the effect of parapet
131 walls on rooftop flow characteristics and wind energy potential, two different heights of parapet
132 walls are considered in this study, which are 20mm and 40mm (1m and 2m in full scale). To
133 investigate the impact of the solar panel on wind energy potential, this study considers two
134 scenarios with different mounting locations. In the first scenario, the solar panel with a width of
135 $40\sqrt{2}$ mm and a length of 400mm (4/5 of the building's side dimension) is mounted on the roof
136 edge with three tilting angles (15°, 30° and 45°), in contrast with existing studies that mount solar
137 panel away from the roof edge (Pratt and Kopp, 2013; Toja-Silva *et al.*, 2015b; Wang *et al.*, 2020).
138 In the second scenario, the solar panel (with the same dimension) with three tilting angles (15°,
139 30° and 45°) is mounted on the top of the parapet wall (with 40mm wall height), where the solar
140 panel can also be considered as a potential active device to adaptively change the aerodynamic
141 shape of the building. It is noted that this study only focuses on the wind energy potential, while
142 the wind load on the solar panels needs to be investigated in future studies.

143

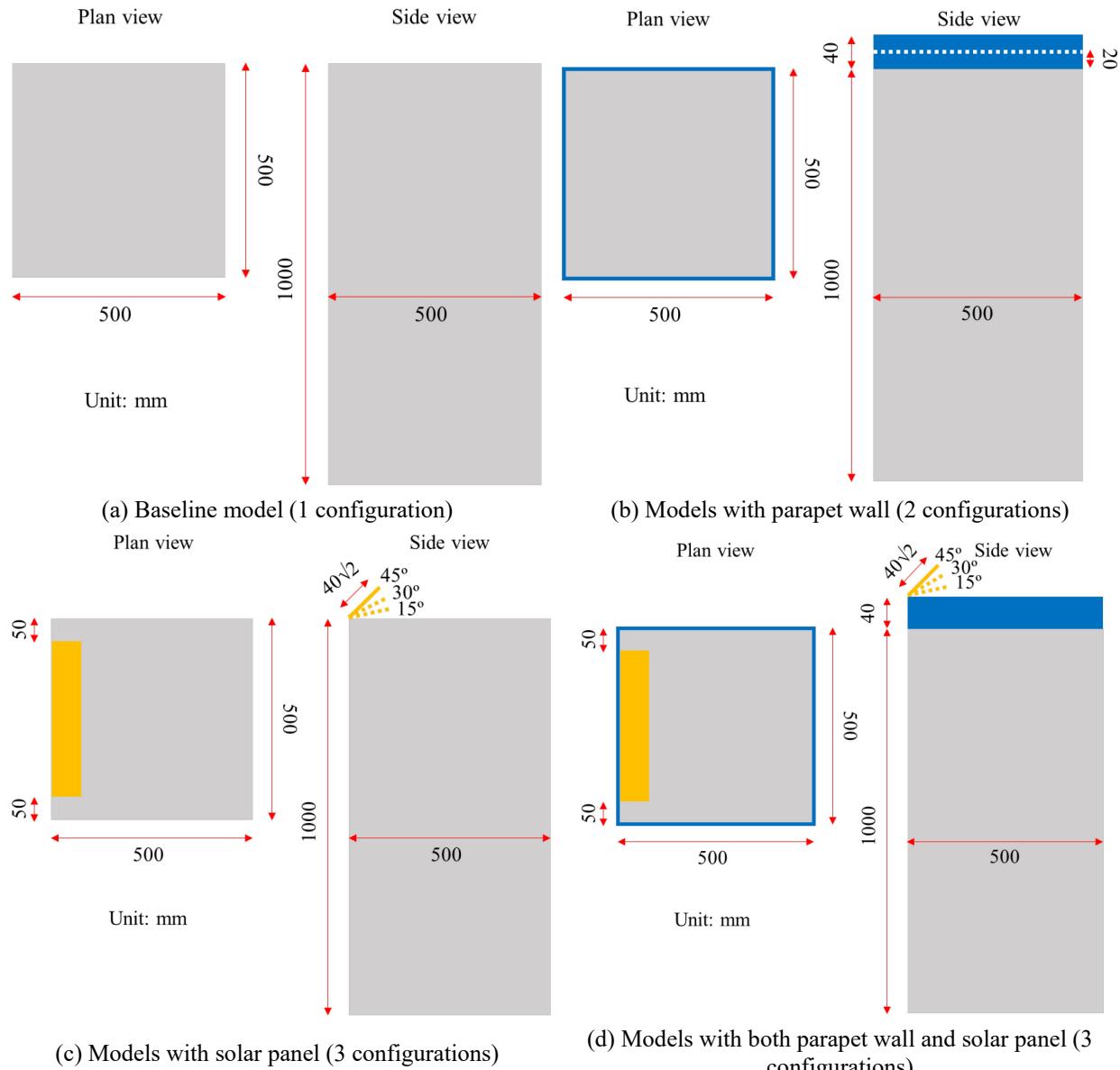
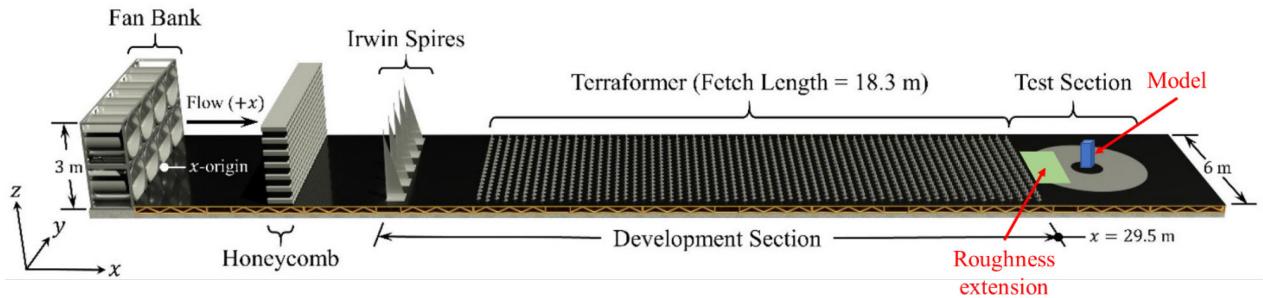
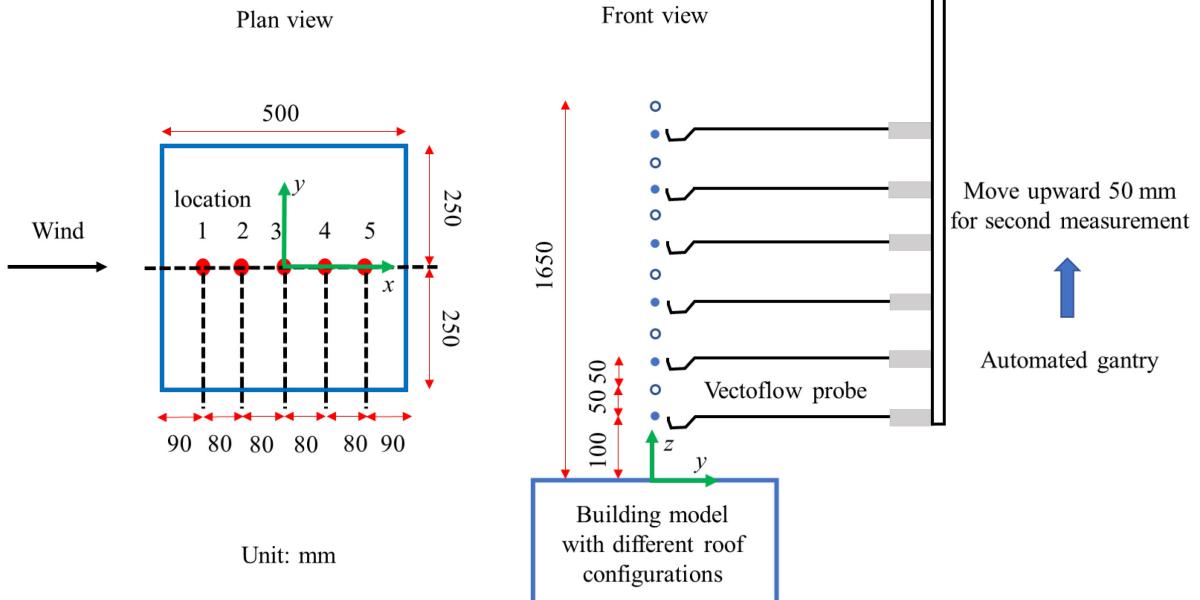


Figure 1. Configurations of nine building models with different roof edge configurations


144

145 2.2 Wind tunnel and sensor instrumentation

146 The wind tunnel tests are conducted in the Natural Hazards Engineering Research Infrastructure
 147 (NHERI) experimental facility (EF) at the University of Florida (UF), which is funded by National
 148 Science Foundation (NSF). The UF boundary layer wind tunnel (BLWT) is a long-fetch low-speed
 149 open circuit tunnel with the dimension of 6 m (width) \times 3 m (height) \times 38 m (length) (see Fig. 2).
 150 In the UF BLWT, eight vane axial fans generate the axial flow passing honeycomb and Irwin


151 spires. The terrain condition is automatically controlled by the Terraformer, an array of 1116
152 electronically actuated roughness element assemblies that independently rotate and translate to
153 precisely control height and aspect ratio. Roughness extension grid is added after the end of
154 Terraformer to avoid rapid change in mean wind speed and turbulence intensity after transitioning
155 into the smooth floor. The model under testing is located at the center of the turntable, which is
156 31.5m downwind of the vane axial fans. Detailed descriptions of the UF BLWT configuration and
157 capability can be found in ([Catarelli *et al.*, 2020a and 2020b](#)). Turbulent flow fields in the wind
158 tunnel are measured with the help of an automated multi-degree-of-freedom instrument gantry,
159 which is capable of traversing longitudinally, laterally, and vertically. The gantry system is
160 equipped with multiple Vectoflow cobra probes that can simultaneously measure the three velocity
161 components of the turbulent winds ([Vectoflow](#)). As shown in Fig. 3, the wind flow above the five
162 locations in the model centerline (with 80mm interval) is measured from the elevation of 1100mm
163 (55m in full scale) to 1650mm (82.5m in full scale) at 50mm intervals (2.5m in full scale).
164 Specifically, the velocity measurements at 12 vertical locations are realized by two independent
165 measurements using six probes with a 100mm gap (i.e., the gantry was moved 50mm upward for
166 second measurement). The probes have an acceptance cone of $\pm 60^\circ$, so data quality will drop if
167 placed into the near-roof recirculation zone (with reverse flow). For the sake of completeness, the
168 data quality of the wind speed measurements in this study is discussed in the Appendix. PIV or
169 CFD may be needed to accurately characterize the flow recirculation zone, which, however, is
170 beyond the scope of this study. Only 0° wind direction is considered in this pilot study for effective
171 comparison of the flow characteristic for different roof edge configurations, while a wide range of
172 wind directions are intended to be considered in the future for practical implementation of wind

173 harvesting devices. The setup in the wind tunnel is shown in Fig. 4. The sampling frequency of the
 174 Vectoflow probes are set to 850Hz and the sampling duration is 120s.

175
176

Figure 2. Configuration of UF BLWT

177
178
179

Figure 3. Sensor instrumentation for wind speed measurement over building roof

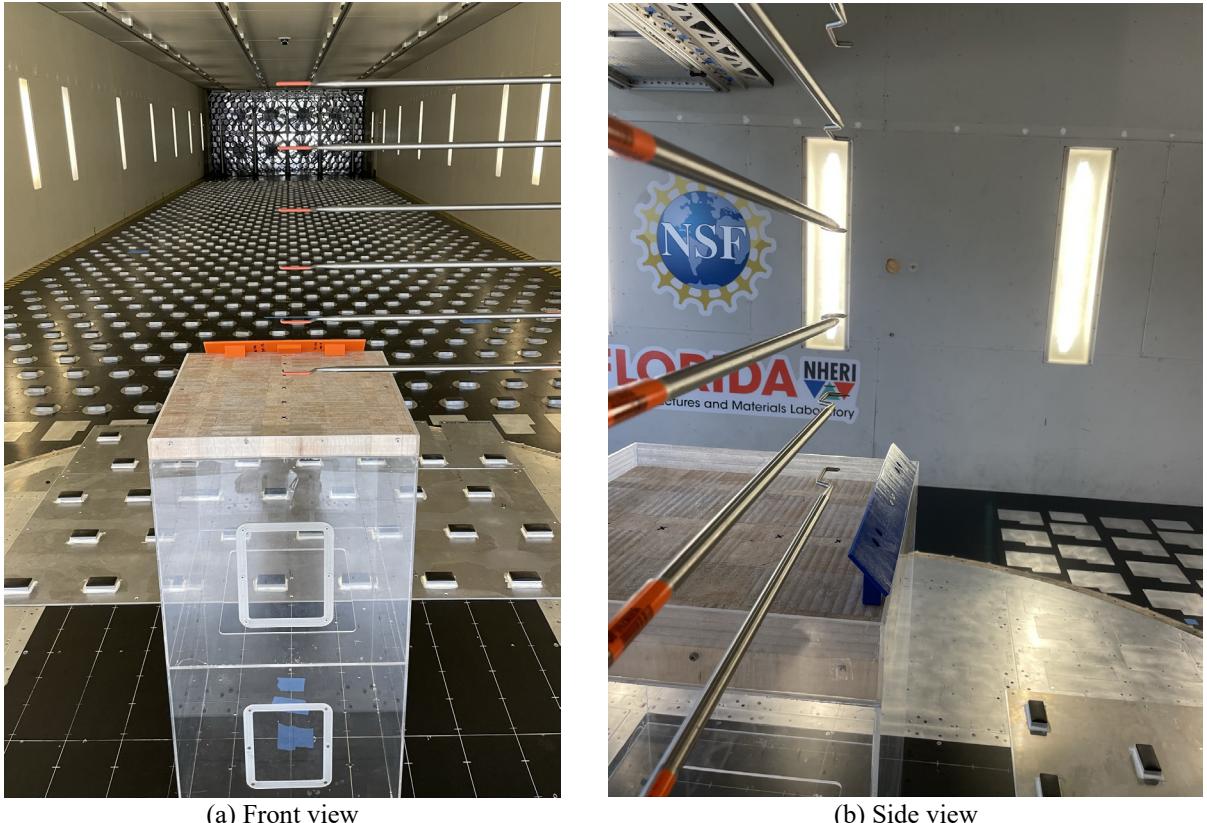


Figure 4. Experiment setup in the wind tunnel

180 3 RESULT ANALYSIS

181 The approach flow condition in the wind tunnel is schematically shown in Fig. 5, where the mean
 182 wind speed U at different elevations z (without model) is normalized by the reference wind speed
 183 $U_{ref} = 11.5\text{m/s}$ at the reference height $H = 1\text{m}$ (note that 1m is the height of the model). The target
 184 approach flow condition was “open terrain” (power law with $\alpha = 0.1$), which corresponds to the
 185 case of a tall building located on flat terrain with good wind energy potential for common turbine-
 186 type devices (e.g., near a lake or ocean). It is noted that different types of wind energy harvesting
 187 devices (e.g., horizontal/vertical-axis wind turbines and vibration-based wind energy harvesters)
 188 can be implemented on the building roof, and their requirements on the wind characteristics may
 189 vary from case to case (Kumar et al., 2018; Anup et al., 2019; Lai et al., 2021), which needs
 190 detailed analysis for each scenario. In addition, only the open terrain condition is considered in the

191 wind tunnel experiment, while the effect of incoming turbulence, which is important for urban
192 setting (e.g., [Vita et al., 2020b](#)), requires further investigations in future work. For the sake of
193 general applications, the study selects the mean wind speed in longitudinal direction U , its
194 turbulence intensity I_u and the skewness angle θ [$\theta = \arctan(W/U)$ reflecting the change of wind
195 direction] as the three main indicators for wind energy potential. In addition, it is assumed that
196 higher values of U and lower values of I_u and θ are generally desirable for turbine-type wind energy
197 harvesting devices. The flow characteristics over the roof of the baseline model, in terms of the
198 three indicators U , I_u and θ are respectively shown in Fig. 6(a)-(c), while the vector-based
199 representation of mean flow field over the five longitudinal measurement locations ($x/B = -0.32, -$
200 $0.16, 0, 0.16, 0.32$; x is coordinate in along wind direction with origin at building roof center; B is
201 the width of the building) is schematically shown in Fig. 6(d). From the change in mean wind
202 speed U , the development of boundary layer over the building roof can be observed in terms of
203 deaccelerating the flow along the x direction. On the other hand, the variation in the skewness
204 angle θ shows the flow separation near the windward edge (based on positive values of θ at location
205 1 and 2) and reattachment near the leeward edge (based on negative values of θ at location 3, 4
206 and 5). These typical characteristics of bluff-body aerodynamics can also be clearly observed in
207 the vector-based mean flow field. Regarding the turbulence intensity, I_u generally increases with
208 the fetch. The variations in different locations become negligible above the elevation around
209 $z/H=1.30$ (15m above the roof in full scale) and the turbulence intensity is close to open flow
210 condition. In the following sections, the impacts of parapet wall and solar panel (mounted on the
211 roof edge and on the parapet wall) on the wind field are presented in detail and the implications on
212 wind energy potential are discussed.

213
214
215

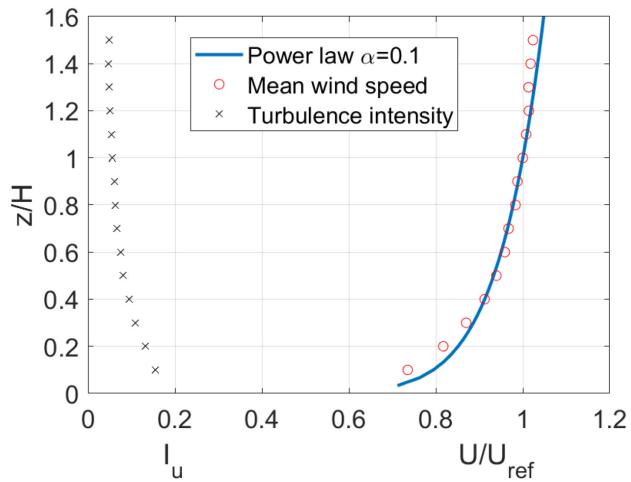
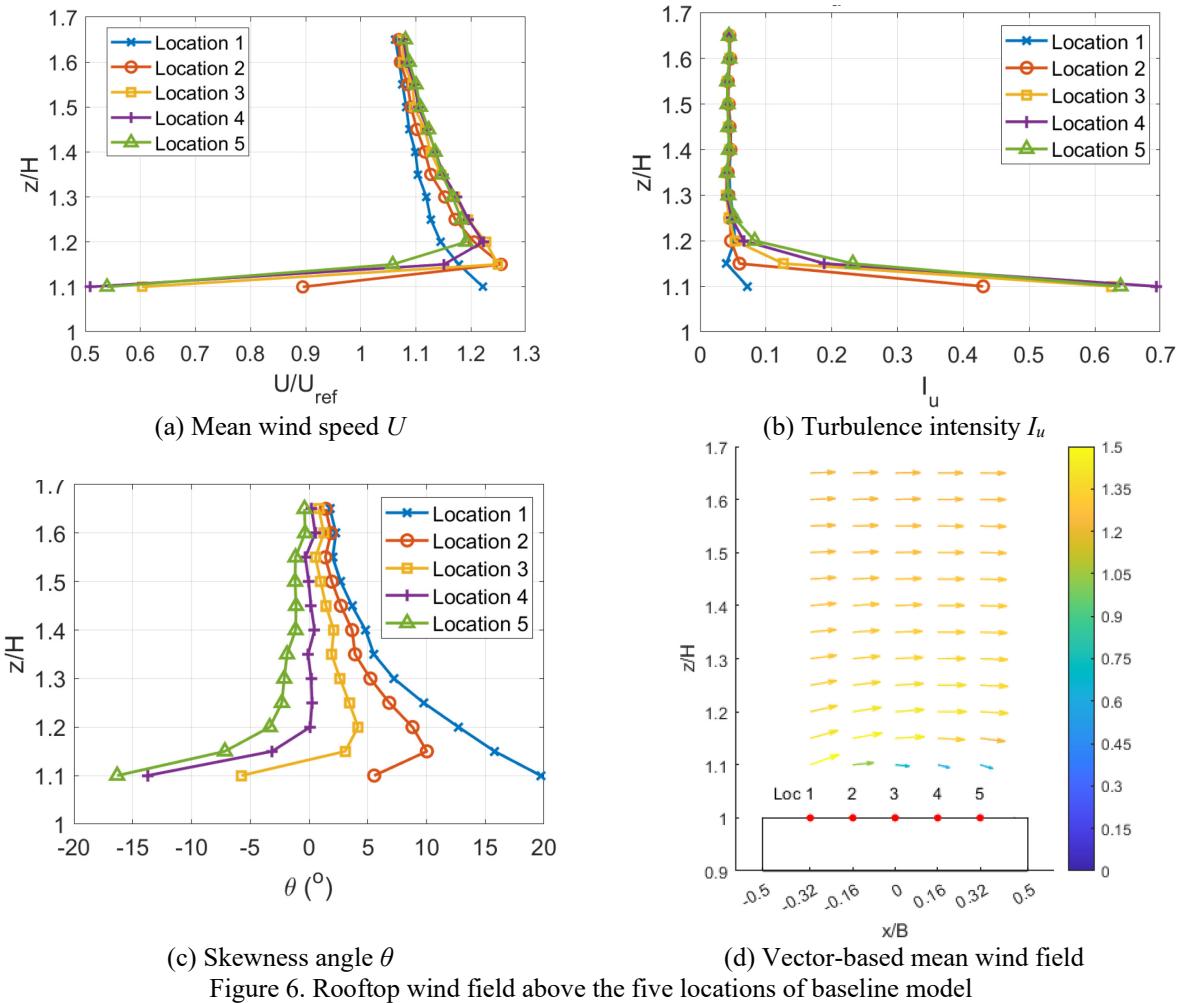



Figure 5. Approach flow condition at the model location

216 **3.1 Effect of parapet wall on flow characteristics and wind energy potential**

217 To illustrate the effect of parapet wall on flow characteristics, the rooftop wind fields for models
218 with 20mm and 40mm parapet wall are compared with baseline model. The mean wind speed U ,
219 turbulence intensity I_u and the skewness angle θ at the five measurement locations are shown in
220 Fig. 7, followed by the vector-based mean flow field in Fig. 8. Compared with the baseline model,
221 the mean wind speed U generally decreases near the roof due to the existence of parapet wall,
222 while a slight increase in U is observed at higher elevations for the leeward side (location 3, 4 and
223 5). Regarding the turbulence intensity, I_u near the roof increases significantly due the existence of
224 parapet wall for all five measurement locations, and the threshold elevation (above which the
225 impact of parapet wall on I_u is small) generally increases with the fetch. In addition, the parapet
226 wall tends to increase the absolute value of skewness angle θ , especially for higher elevations of
227 windward locations and lower elevations of leeward locations. As also observed from vector-based
228 representation in Fig. 8, the parapet wall in fact has the effect of “lifting up” the flow over building
229 roof, and a larger “lift-up” effect occurs with a higher parapet wall.

230 Noting the significant impact of parapet wall on flow characteristics, the obtained results
231 can also be used to inform the practical design of wind energy harvesting systems on the roof of
232 tall buildings. Generally speaking, the existence of parapet wall has negative impacts on wind
233 energy potential, considering (1) the reduced mean wind speed U near the roof will result in low
234 wind power, (2) the increased skewness angle θ may cause misalignment between the wind
235 direction and the wind energy harvesting device, (3) the increased turbulence intensity I_u can lead
236 to low power generation efficiency as well as fatigue issues for common wind energy harvesting
237 devices, and (4) the potential need to increase in the elevation of wind energy harvesting devices
238 (e.g., hub height) to accommodate the “lift-up” effect may result in higher installation costs. To
239 clearly show the impact of parapet wall on the wind energy potential, the flow characteristics at z

240 = 1.10H, 1.15H and 1.20H (5m, 7.5m and 10m above the roof in full scale), as typical installation
241 heights of wind energy harvesting devices, are shown in Fig. 9. It is observed that a higher parapet
242 wall leads to a lower mean wind speed U near the roof for $z = 1.10H$ and $1.15H$, while the impact
243 become less significant at a higher elevation for $z = 1.20H$. Regarding turbulence intensity, the
244 existence of parapet wall can effectively increase I_u for all three elevations. In addition, the effect
245 of parapet become more obvious as the fetch increases. For the skewness angle, parapet wall can
246 generally reduce the absolute value of θ for $z = 1.15H$ and $1.20H$, while a clear trend is not available
247 near the roof at $z = 1.10H$. In addition to the flow characteristics at the three fixed elevations, the
248 minimum hub heights h_{min} of typical horizontal-axis wind turbines for the five measurement
249 locations are also calculated as a metric for wind energy potential, which are shown in Fig. 10.
250 Specifically, the minimum hub height h_{min} in this study is selected as the threshold elevation, above
251 which the turbulence intensity in the longitudinal direction I_u is below 15% (note that linear
252 interpolation is used to determine h_{min}). The threshold value of 15% is adopted based on the
253 specification in European Wind Turbine Standards II ([Pierik et al., 1999](#)), which suggests that the
254 fatigue loads on the wind turbines should be reevaluated based on the actual flow conditions at the
255 site if the turbulence intensity exceeds 15%. The metric of minimum hub height h_{min} has also been
256 used in other existing studies for rooftop wind energy potential ([e.g., Toja-Silva et al., 2015a; Peng](#)
257 [et al., 2020](#)). It is clear from Fig. 10 that the minimum hub height h_{min} monotonically increases
258 with the fetch, which indicate that a higher turbine is required at the leeward side. In addition, h_{min}
259 increases with the height of parapet wall, indicating that taller wind turbines (and hence higher
260 cost) are needed for buildings with higher parapet walls.

261

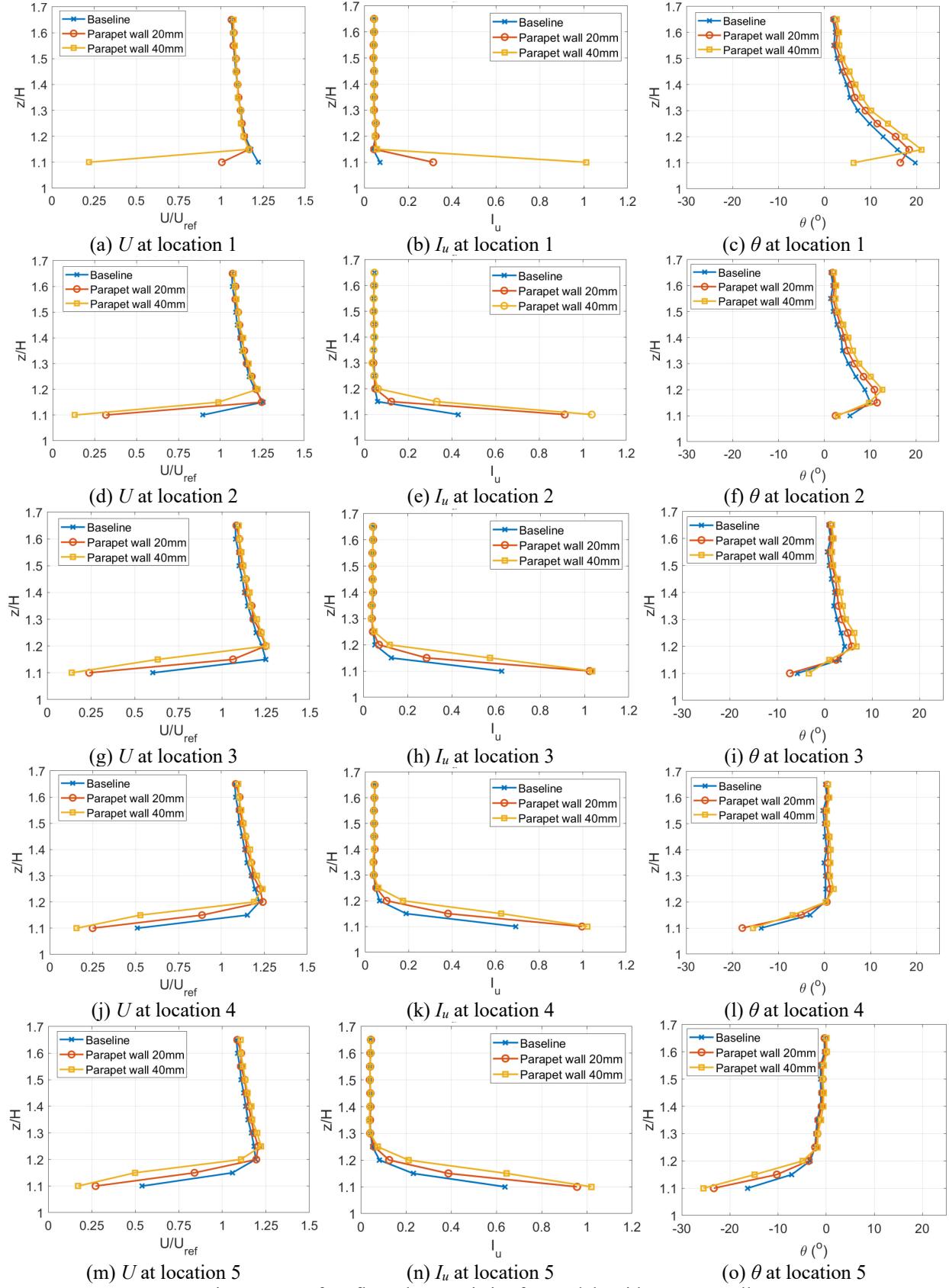


Figure 7. Rooftop flow characteristics for models with parapet wall

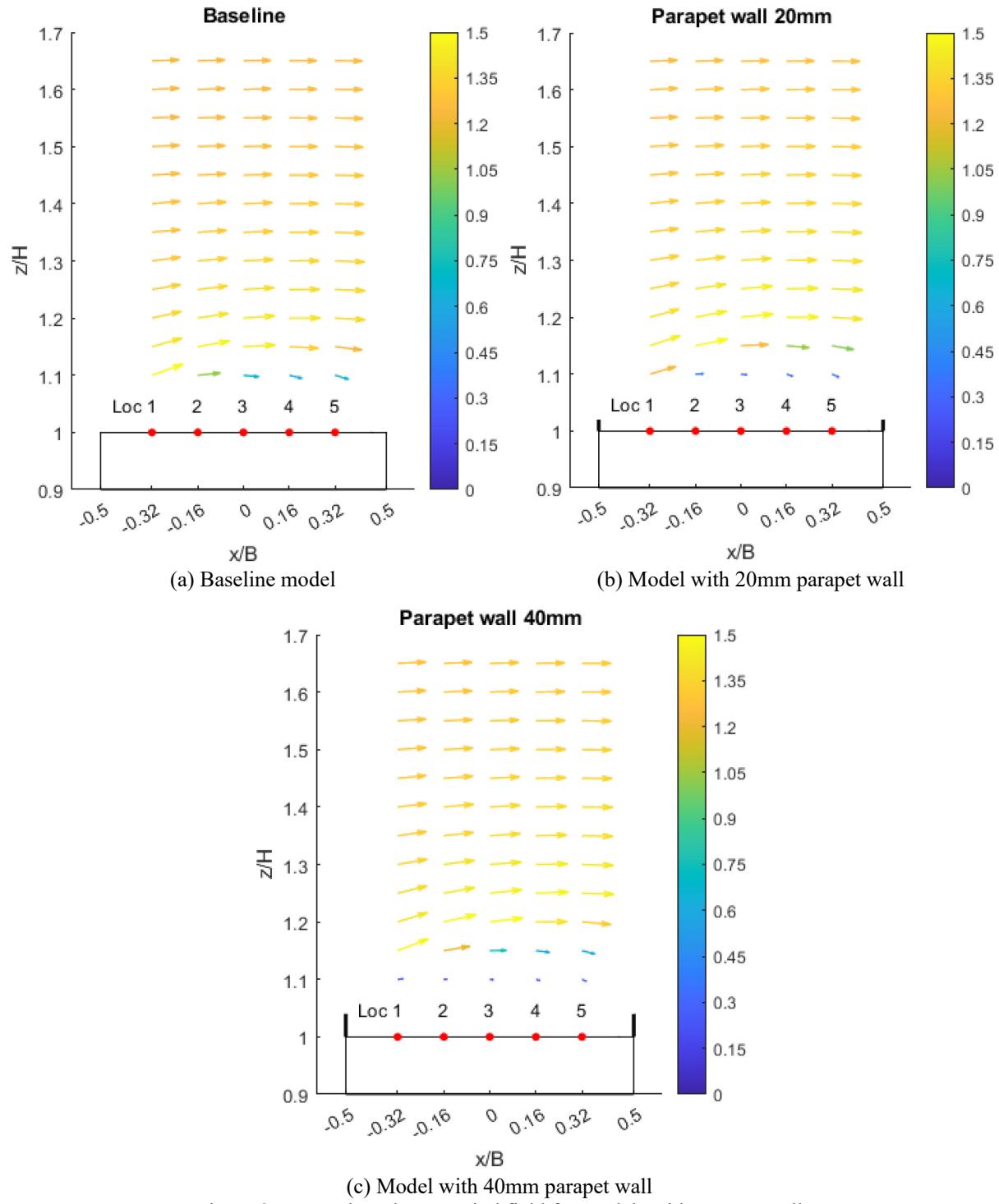


Figure 8. Vector-based mean wind field for models with parapet wall

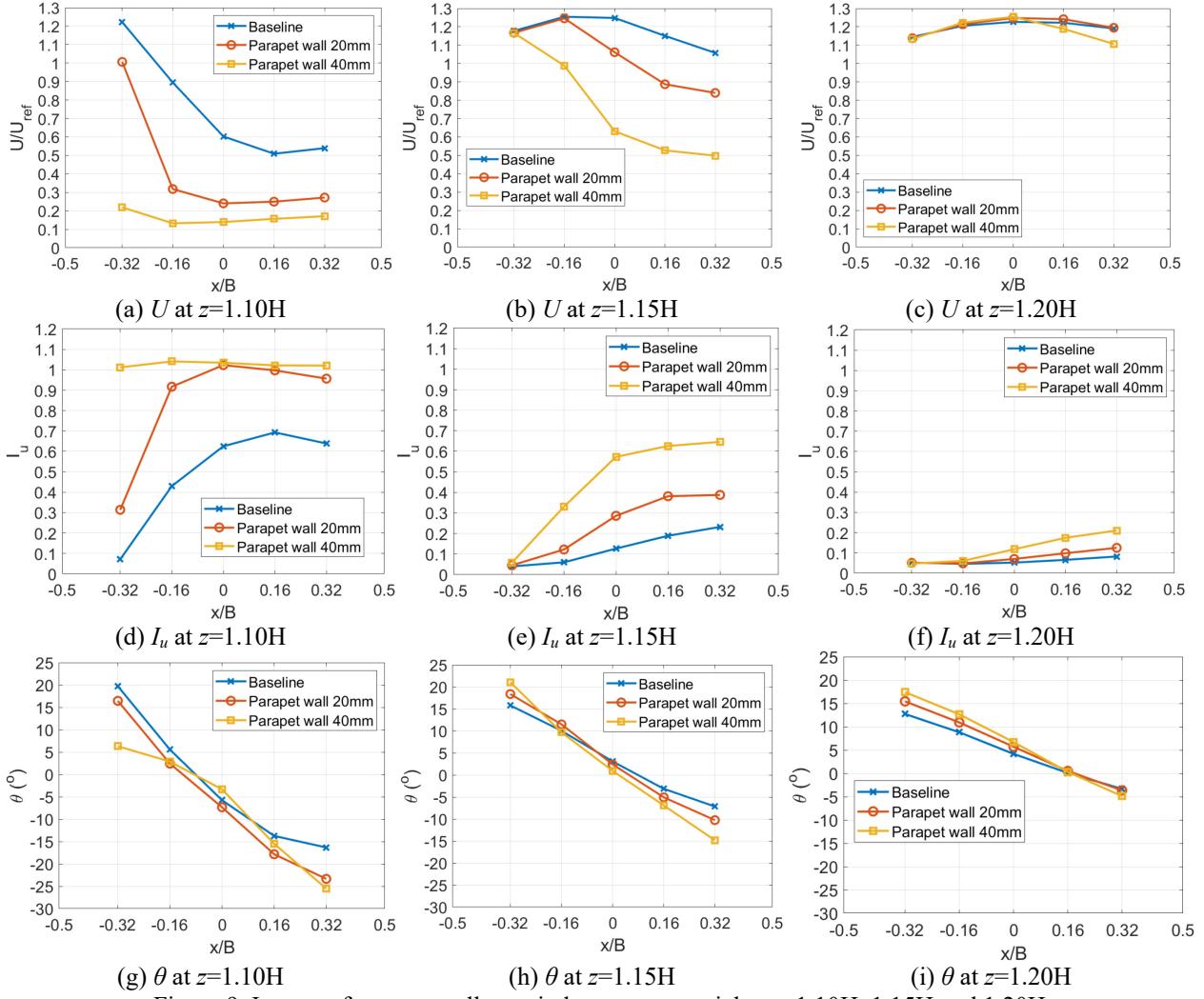


Figure 9. Impact of parapet wall on wind energy potential at $z=1.10H$, $1.15H$ and $1.20H$

265

266

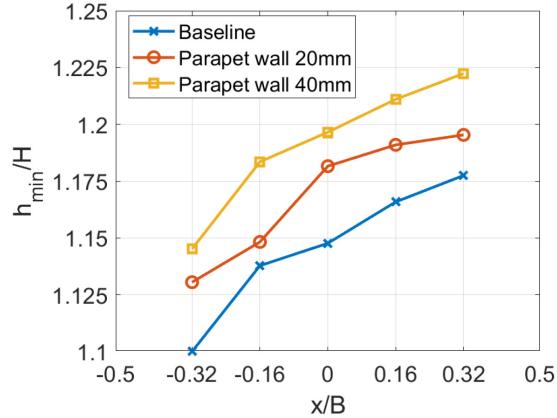
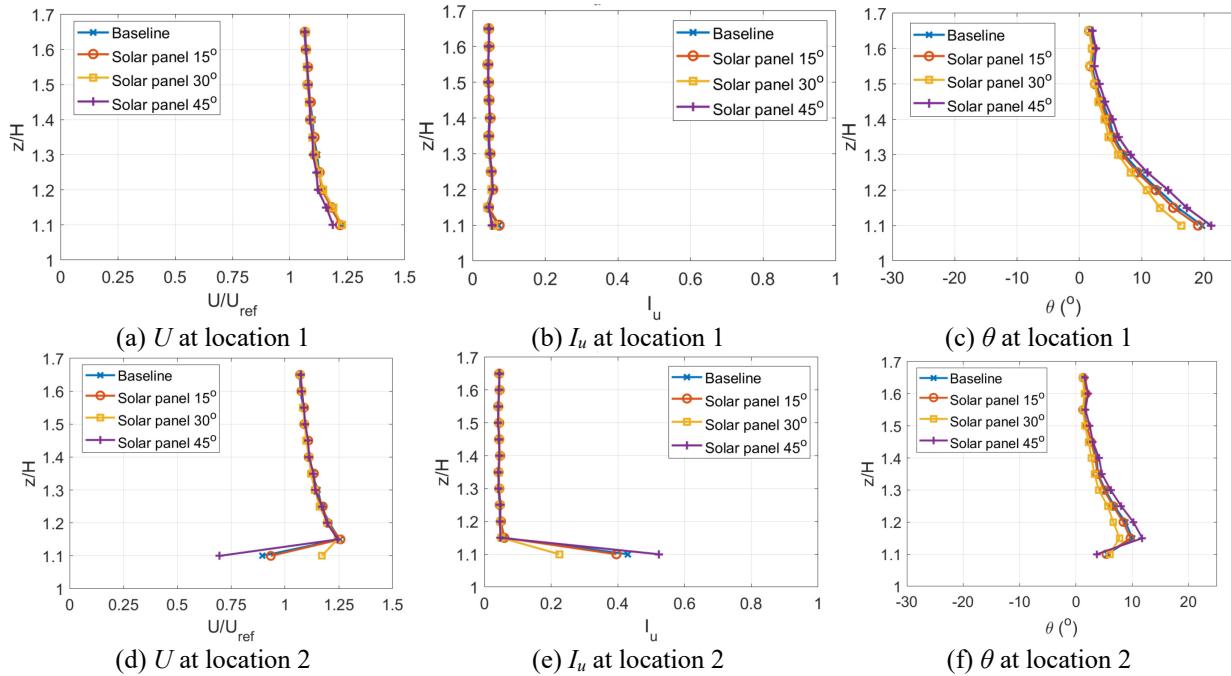


Figure 10. Impact of parapet wall on minimum hub height h_{min}

267

268

269 **3.2 Effect of solar panel on flow characteristics and wind energy potential**


270 *3.2.1 Solar panel mounted on roof edge*

271 To illustrate the effect of solar panels on flow characteristics, the rooftop wind fields for models
272 with solar panels mounted on the roof edge (tilted at 15°, 30° and 45°) are compared with baseline
273 model at the five measurement locations. The mean wind speed U , turbulence intensity I_u and the
274 skewness angle θ are shown in Fig. 11, followed by the vector-based flow representation in Fig.
275 12. It is observed that the model with solar panel tilted at 15° has a very similar wind field in terms
276 of both mean wind speed and turbulence intensity as the baseline model, indicating that 15° tilting
277 angle is too small to significantly modify the flow field. On the other hand, solar panel with 30°
278 and 45° tilting angle can effectively change the flow field. For the solar panel with 45° tilting angle,
279 reduced mean wind speed U is identified near the roof. Skewness angle θ generally increases at
280 most of elevations for the windward side (location 1, 2 and 3), while reduced θ is found near the
281 roof for the leeward side (location 4 and 5). For turbulence intensity, increases in I_u can be observed
282 near the roof. In contrast to solar panel with 45° tilting angle, larger U is observed near the roof
283 for 30° tilted solar panel. Smaller I_u and θ , compared to that of the baseline model, are clearly
284 observed for almost all measurement locations and elevations. These interesting features for 30°
285 tilting angle indicate that the angle of 120°, formed by the building edge and 30° tilted solar panel,
286 can effectively mitigate flow separation on the roof edge.

287 To clearly show the impact of solar panel on wind energy potential, the flow characteristics
288 of three typical elevations at $z = 1.10H$, $1.15H$ and $1.20H$ are shown in Fig. 13. As mentioned
289 previously, the solar panel with 15° tilting angle has relatively small impacts on the flow field,
290 while 45° and 30° degree tilting angles generally have opposite effects on wind energy potential.
291 For $z=1.10H$, it is clear that solar panel with 30° can significantly increase the mean wind speed U
292 and reduce the turbulence intensity I_u as well as skewness angle θ , while the opposite is true for

293 45° tilting angle. The superiority of 30° over 45° tilting angle becomes less significant as the
 294 elevation increases. For $z=1.15H$, the 45° tilted solar panel, although have negligible effects on U
 295 and I_u , may compromise wind energy potential due to increase in skewness angle θ for windward
 296 side (location 1, 2 and 3). In contrast, the 30° tilted solar panel can effectively enhance wind energy
 297 potential, considering the increase in U (for location 4 and 5) and decrease in θ (for all five
 298 locations) as well as I_u (for location 3, 4 and 5). For $z=1.20H$, the differences among the models
 299 with various tilting angle become almost indistinguishable, except for the slight increase in θ
 300 caused by the 45° tilted solar panel and the slight decrease in θ caused by the 30° tilted solar panel.
 301 The minimum hub heights h_{min} of horizontal-axis wind turbines are shown in Fig. 14 for solar
 302 panels with different tilting angles. While solar panel with 30° and 45° tilting angle have nearly
 303 the same h_{min} as that of the baseline, the 30° tilted solar panel can significantly reduce h_{min} for all
 304 locations and hence have the lowest installation cost among other alternatives.

305

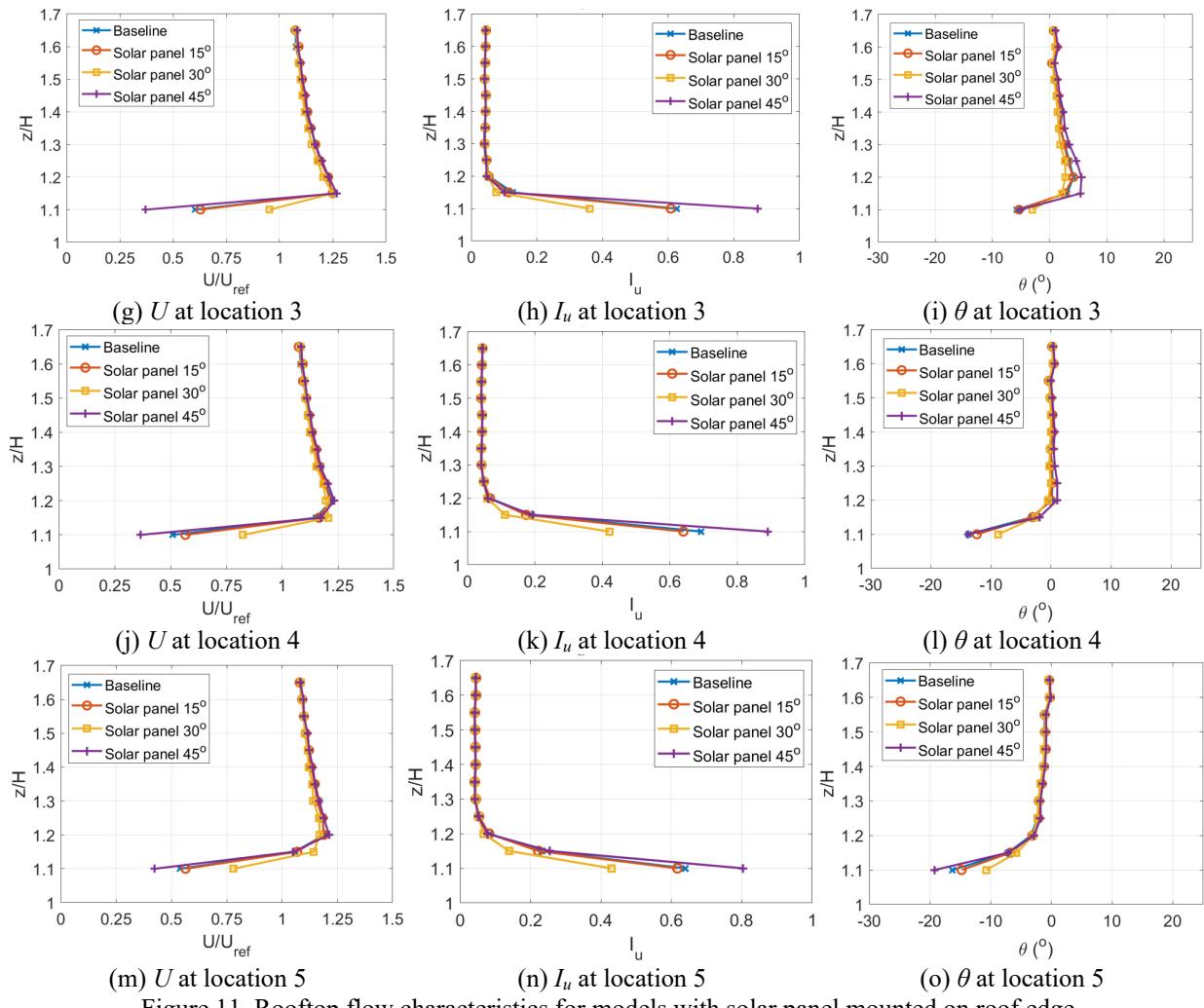


Figure 11. Rooftop flow characteristics for models with solar panel mounted on roof edge

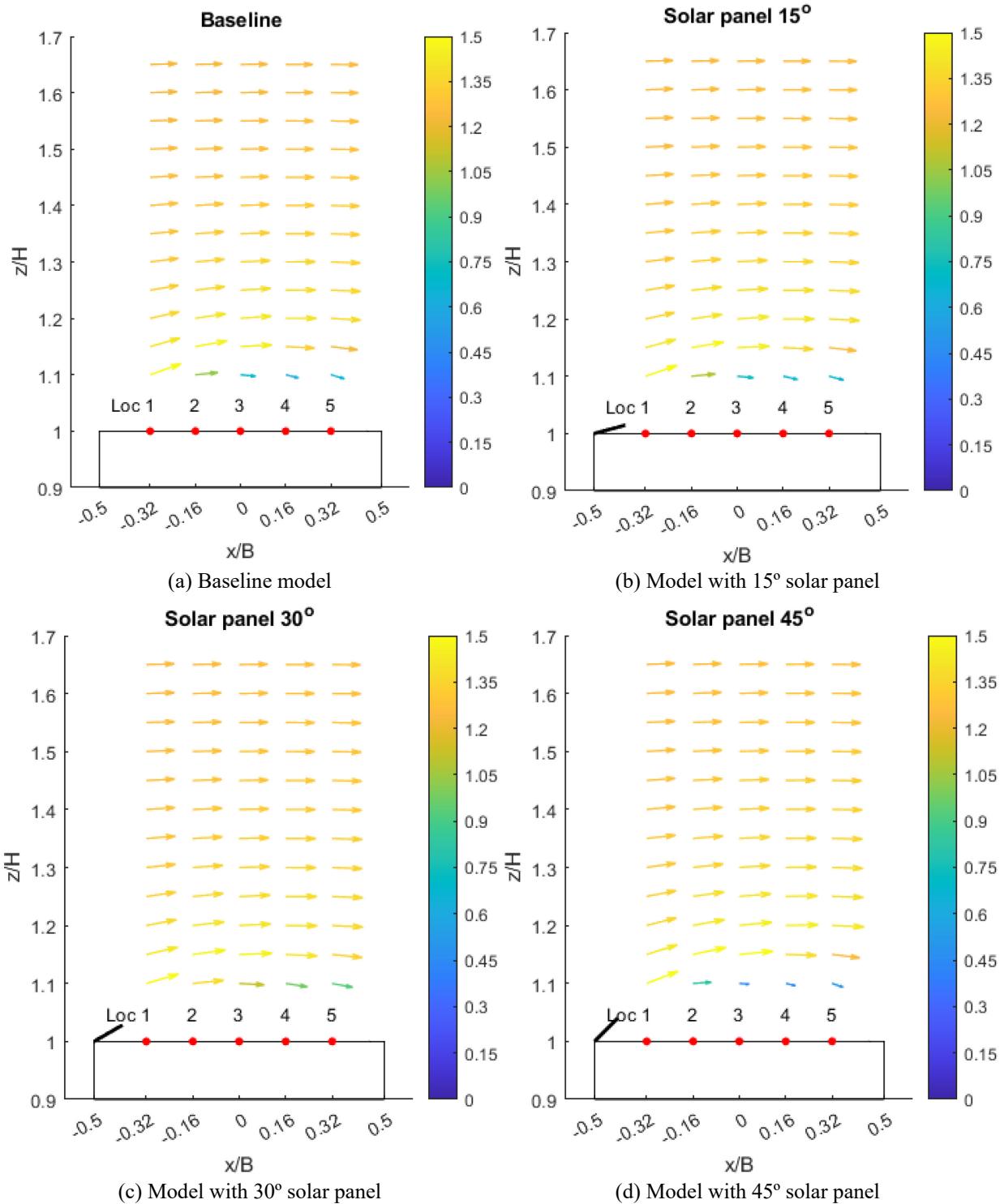


Figure 12. Vector-based mean wind field for models with solar panel mounted on roof edge

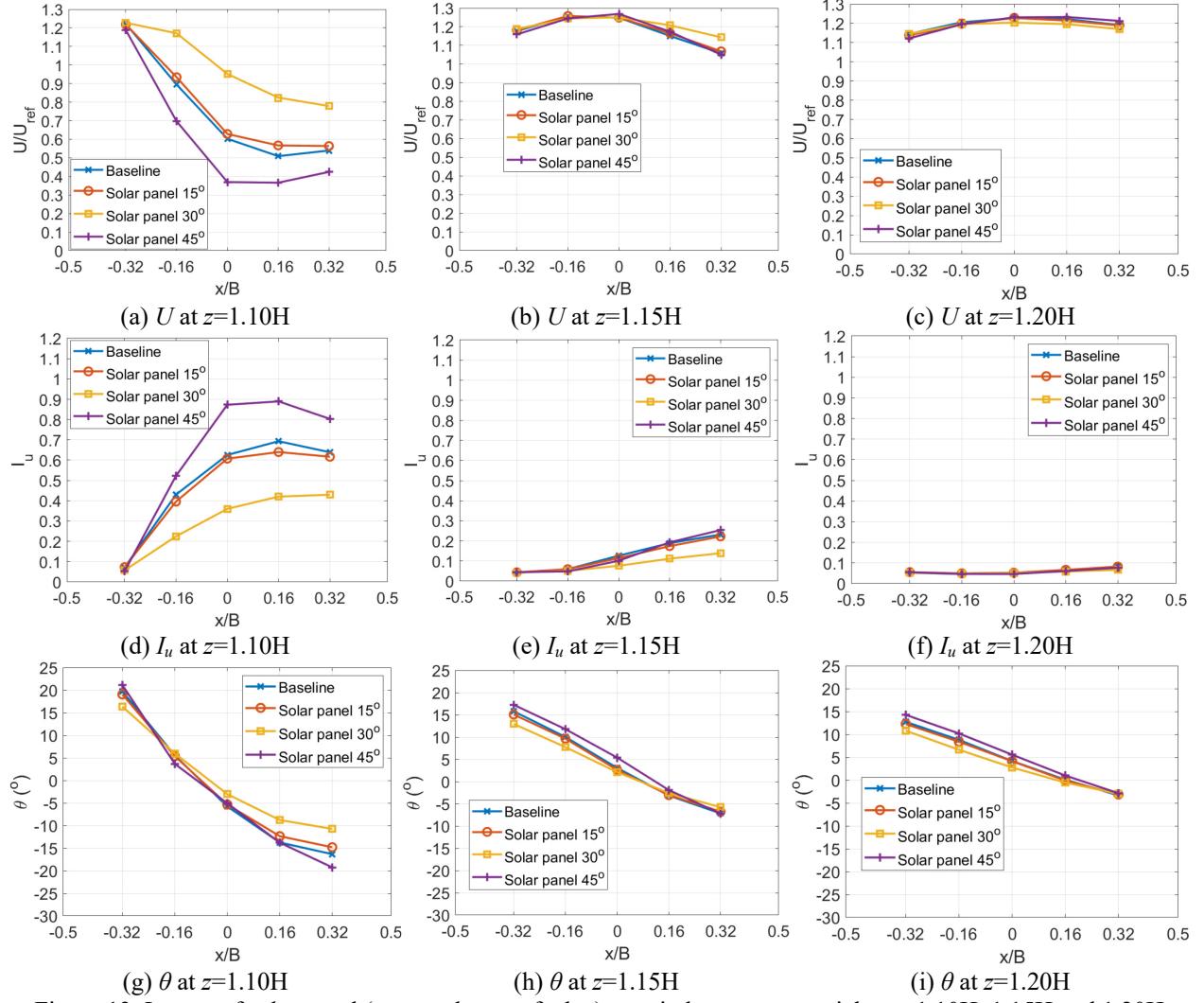
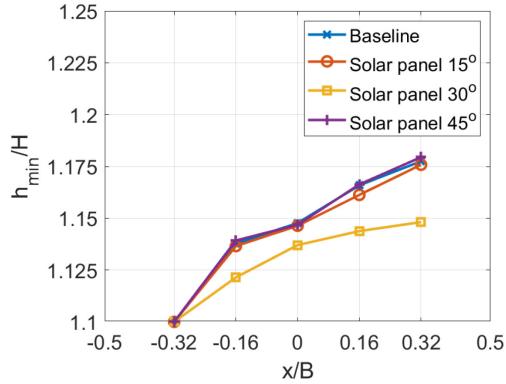
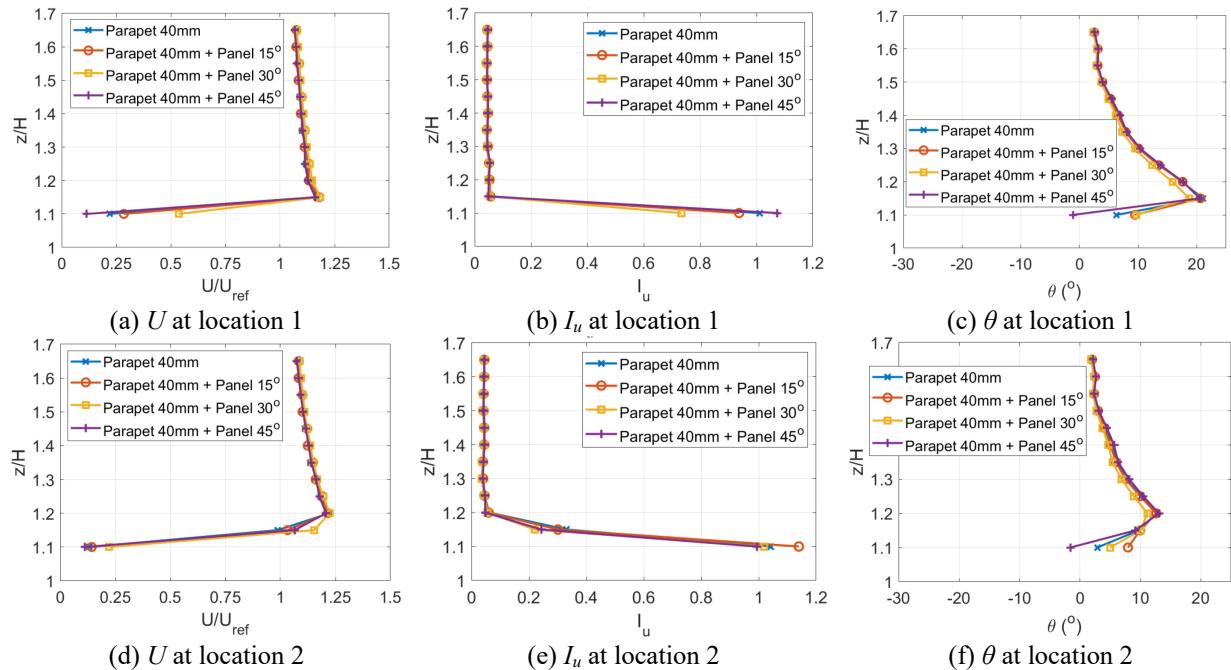



Figure 13. Impact of solar panel (mounted on roof edge) on wind energy potential at $z=1.10H$, $1.15H$ and $1.20H$

309

310

311 Figure 14. Impact of solar panel (mounted on roof edge) on minimum hub height h_{min}
312

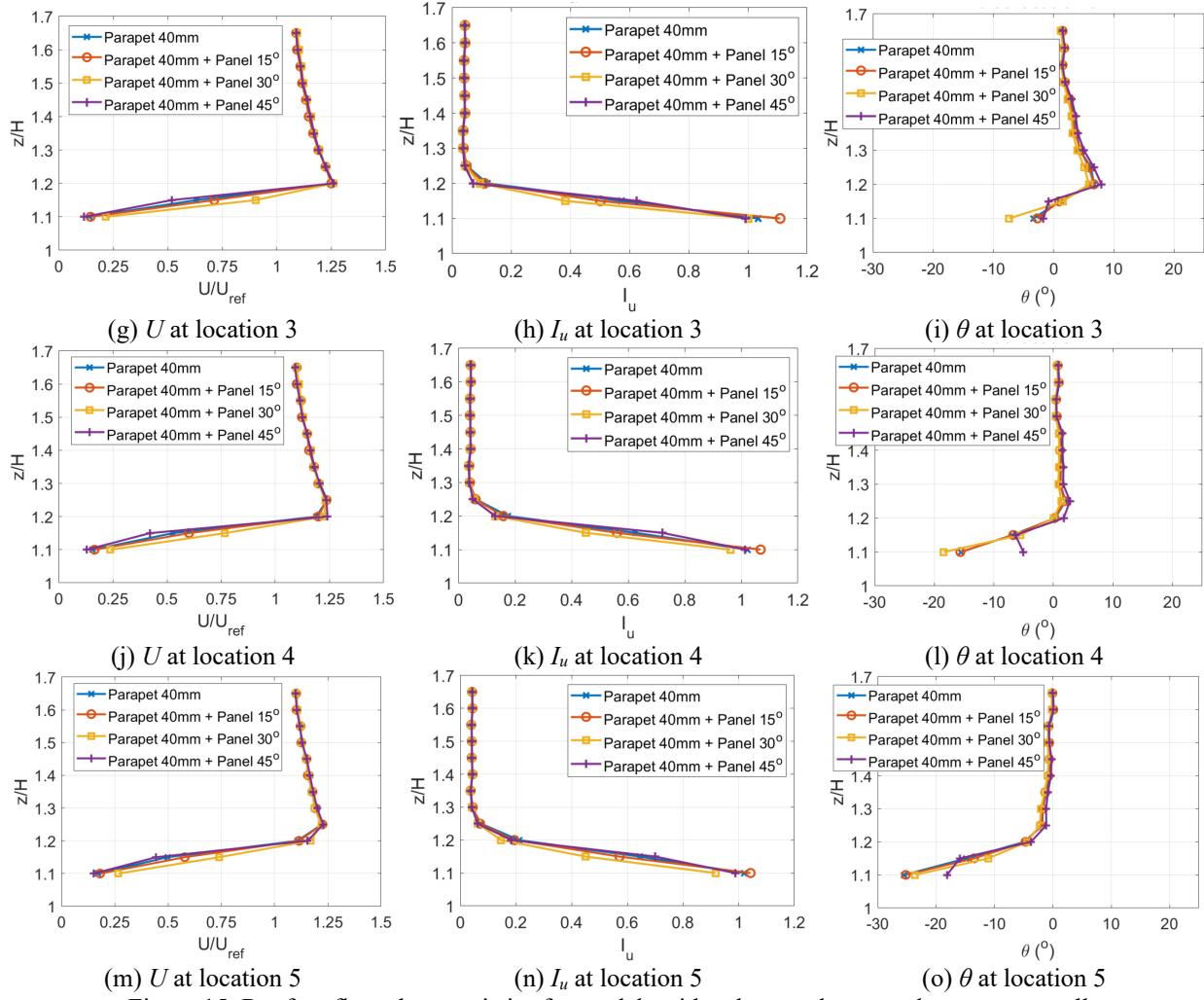
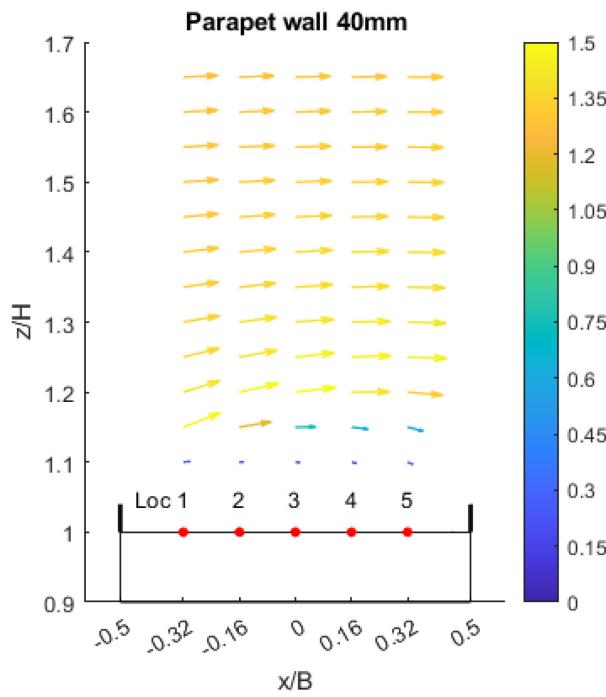
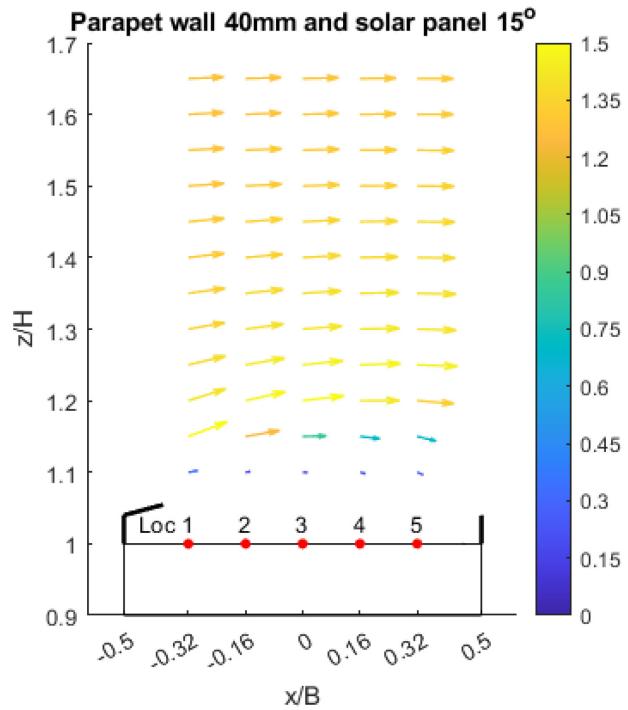

313 3.2.2 *Solar panel mounted on parapet wall*

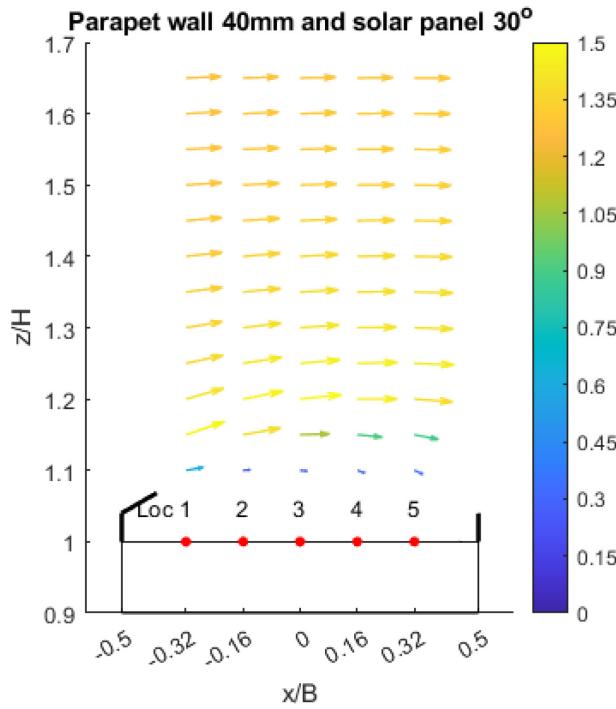
314 The scenarios of solar panel mounted on the top of parapet wall are investigated in this section,
315 which aims to study the feasibility of using solar panel (or some type of active devices) to improve
316 the wind energy potential for the case with only parapet wall (previously considered unfavorable
317 for wind energy harvesting). The wind fields for model of the 40mm parapet wall (as the reference
318 model) and solar panel mounted on the parapet wall (with tilting angle of 15°, 30° and 45°) are
319 presented in Fig. 15, showing the mean wind speed U , turbulence intensity I_u and the skewness
320 angle θ . The the vector-based representation of the mean wind field is shown in Fig. 16. It is noted
321 that the impacts of solar panel are not as significant as that of solar panel mounted directly on the
322 roof edge. Variations in U and I_u mainly occur near the roof, while the impact on θ can reach up
323 to a higher elevation.

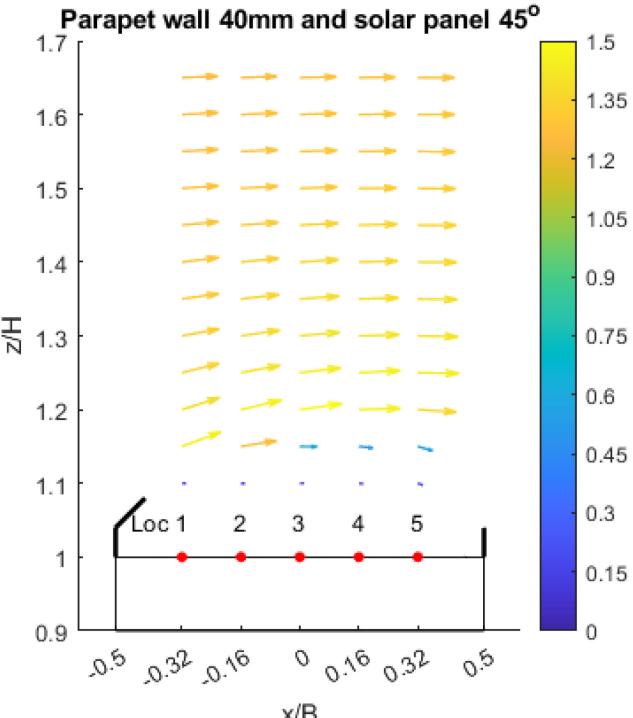
324 To clearly show the wind energy potential impacted by solar panel mounted on the parapet
325 wall, the flow characteristics of three typical elevations at $z = 1.10H$, $1.15H$ and $1.20H$ are shown
326 in Fig. 17. For the mean wind speed, 30° tilted solar angle can significantly contribute to increasing
327 U at $z = 1.10H$ and $1.15H$, compared with the relatively small impact of 15° tilting angle and the
328 general negative impact of 45° tilting angle. The impact of various tilting angles on U becomes
329 insignificant at $z = 1.20H$. Regarding turbulence intensity, 30° tilted solar panel can effectively
330 reduce I_u at both at $z = 1.10H$ and $1.15H$ for all measurement locations, while 15° and 45° tilting
331 angle generally have opposite effects on I_u at different elevations and measurement locations,
332 which are not as promising compared to 30° tilting angle. The impact of tilting angle on I_u become
333 less significant at a higher elevation of $z = 1.20H$. In terms of the skewness angle θ , 45° tilting
334 angle seems to have the best performance at $z = 1.10H$, compared to that of 15° and 30° tilting
335 angle. However, the reduced skewness angle θ from 45° tilting angle may be unimportant,
336 considering the small value of mean wind speed U as shown in Fig. 17(a). On the other hand, 30°

337 tilting angle can generally increase θ for $z = 1.10H$ (except for the leeward location 5), while 15°
 338 tilting angle only increases θ for windward location 1 and 2. At higher elevations of $z = 1.15H$ and
 339 1.20H, the differences in θ resulting from various tilting angles are less significant, where only a
 340 slight improvement due to the 30° tilting angle is observed. The minimum hub heights h_{min} of
 341 horizontal-axis wind turbines are shown in Fig. 18 for models with different tilting angles. The
 342 obtained results clearly show that solar panel with 30° tilting angle has the best performance in
 343 terms of reducing the hub height for buildings with existing parapet wall, which also aligns with
 344 previous conclusion for the stand-alone solar panel on roof edge. The good performance of 30°
 345 tilted solar panel, mounted on the roof edge and on the parapet wall, confirms the promising
 346 potential of enhancing wind energy potentials through modifying the aerodynamic shape of
 347 building roof using active devices.

348


Figure 15. Rooftop flow characteristics for models with solar panel mounted on parapet wall


(a) Flow field for 40mm parapet wall

(b) Model with 40mm parapet wall and 15° solar panel

(c) Model with 40mm parapet wall and 30° solar panel

(d) Model with 40mm parapet wall and 45° solar panel

Figure 16. Vector-based mean wind field for models with solar panel mounted on parapet wall

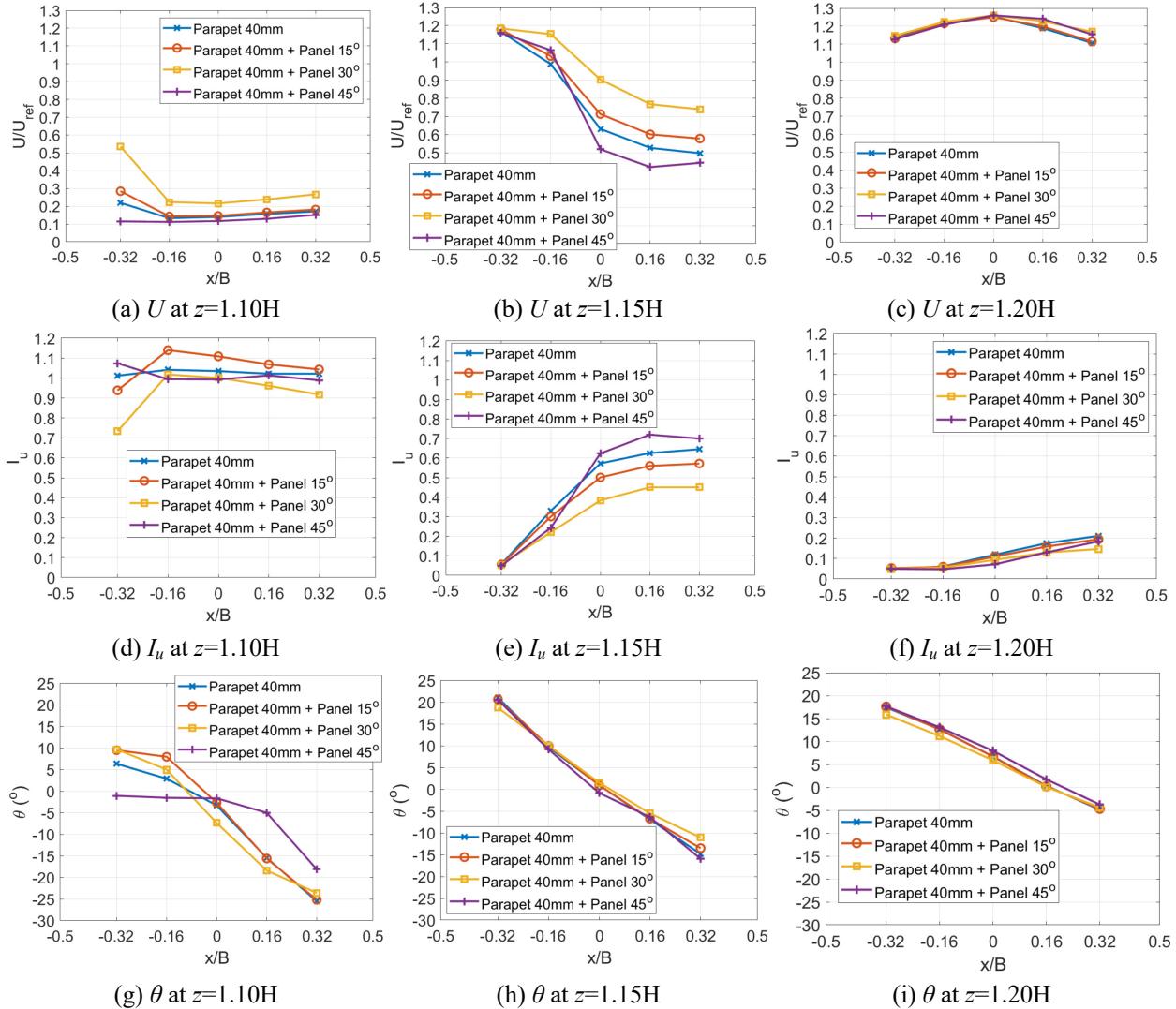


Figure 17. Impact of solar panel (mounted on parapet wall) on wind energy potential at $z=1.10H$, $1.15H$ and $1.20H$

351

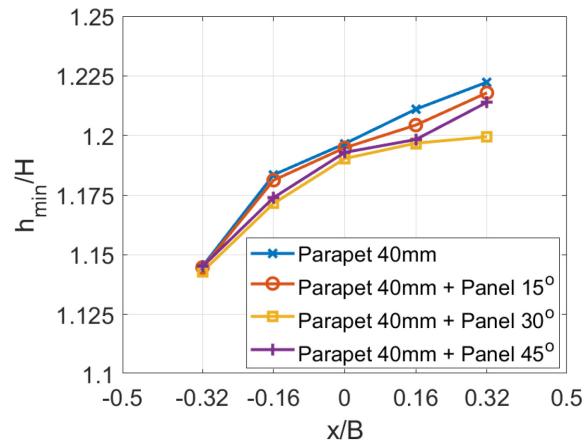


Figure 18. Impact of solar panel (mounted on parapet wall) on minimum hub height h_{min}

352
353

354 **4 CONCLUDING REMARKS AND FUTURE DIRECTIONS**

355 Wind tunnel tests are conducted in this study to investigate the flow characteristics and wind
356 energy potential over flat building roofs with different edge configurations. In total, nine building
357 configurations are tested in the wind tunnel, including one baseline model, two models with only
358 parapet wall, three models with solar panel mounted on roof edge, and three models with solar
359 panel mounted on parapet wall. Compared to the baseline model, the parapet wall generally slows
360 down the wind speed and increases turbulence intensity as well as the skewness angle, which hence
361 compromises the harvesting efficiency of wind energy. On the other hand, implementation of solar
362 panel on the roof edge or on the top of parapet wall can modify the features of the flow separation
363 and has the potential to enhance wind energy harvesting over the roof. Specifically, the promising
364 configuration of 30° tilted solar panel is identified, which can generally increase mean wind speed
365 and reduce turbulence intensity as well as the skewness angle. In addition to providing valuable
366 data for validating CFD simulations, the obtained results in this study reveal the promising
367 potential of using solar panels as active devices to adaptively change the roof shape for maximizing
368 wind power generation. There are also some limitations in this study to be addressed in future
369 work. Noting that only 0° wind direction is considered in the wind tunnel tests; further
370 investigations covering a wide range of wind directions are desired in the future to better inform
371 practical designs of wind energy harvesting devices. Also, this study only empirically identifies
372 the promising 30° tilting angle of solar panels from a limited number of alternatives and for fixed
373 approach flow conditions (both roughness and direction); it is ideal to search with a finer resolution
374 or formulate it as an optimization problem. In addition, this study considers one row of solar panels
375 on the windward roof edge to isolate their effects, which can be extended to more complex layouts
376 in future studies. Lastly, the wind loads on the energy harvesting devices (both wind and solar)
377 need to be assessed for practical implementation.

378 **5 ACKNOWLEDGEMENTS**

379 This material is based upon work supported by the National Science Foundation (NSF) under
380 Grants No. 2028762 & 2028647. Any opinions, findings, and conclusions or recommendations
381 expressed in this material are those of the authors and do not necessarily reflect the views of NSF.

382 **APPENDIX**

383 When measuring wind velocity using pressure-based probes, it is desirable that the instantaneous
384 wind direction lies in the acceptance cone for measurement accuracy. In this study, the five-hole
385 Vectoflow probes are used to measure the turbulent wind speed above the building roof, which has
386 a $\pm 60^\circ$ acceptance cone. Based on these considerations, the data quality is defined in this study as
387 the percentage of samples whose instantaneous wind angle with respect to cobra probe tip
388 orientation (i.e., x direction in Fig. 3) is smaller than 60° . The data quality for four representative
389 cases (i.e., baseline, 40mm parapet wall, 30° solar panel, and the case with 30° solar panel sitting
390 on 40mm parapet wall) are shown in Fig. A1. Note that only the measurement qualities for bottom
391 two rows are shown here, above which the data qualities are all 100%. As shown in Fig. A1, the
392 presence of parapet wall results in a drop in data quality, indicating a low mean velocity and
393 recirculating flow (and hence poor wind energy potential). On the other hand, the existence of 30°
394 solar panel can effectively enhance the data quality, potentially through increased mean wind
395 speed and reduced turbulences. These observations in data quality reinforce the main conclusions
396 of this study.

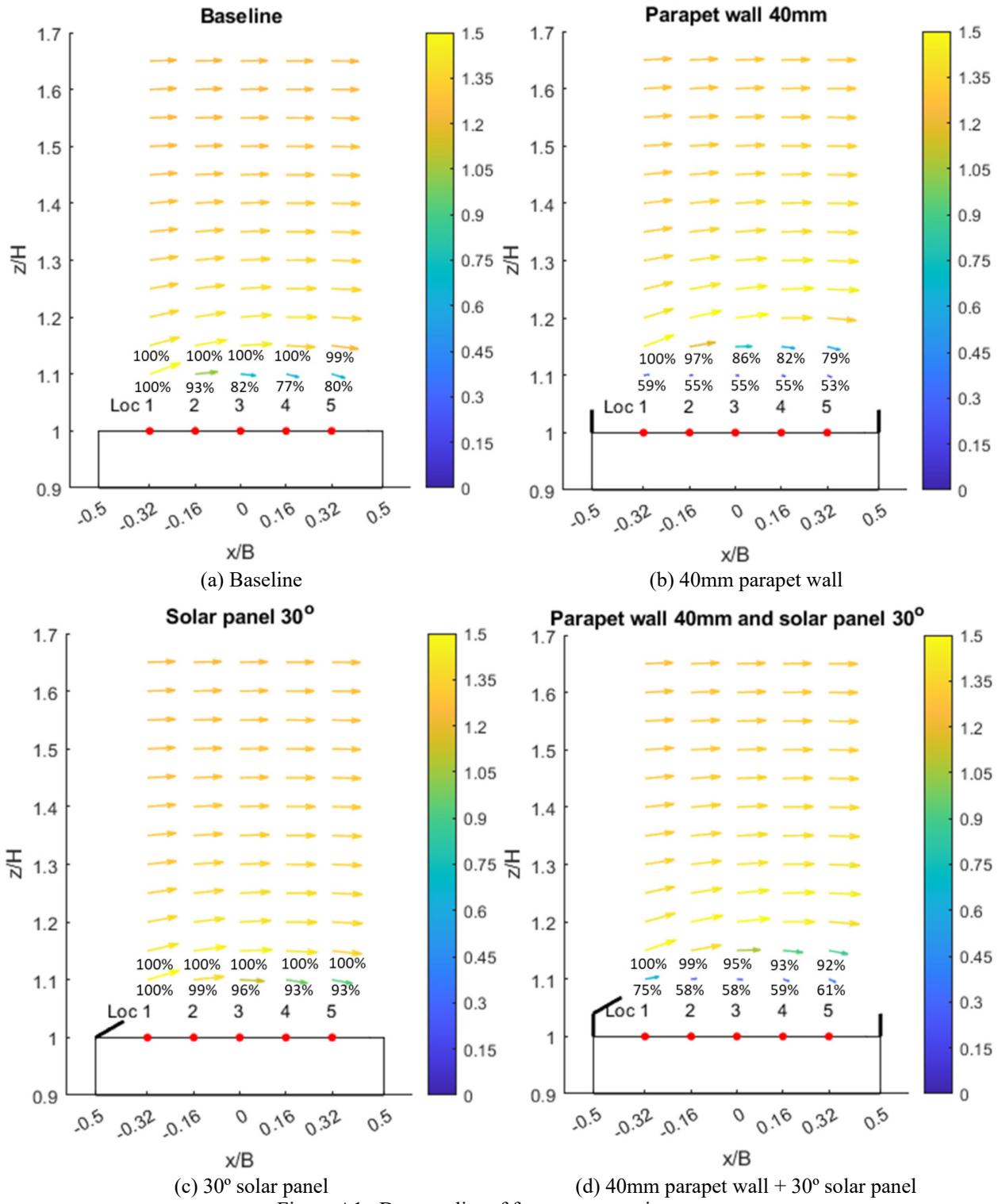


Figure A1. Data quality of four representative cases

398 **REFERENCES**

399 Abdelkefi, A., 2016. Aeroelastic energy harvesting: A review. *International Journal of Engineering Science*, 100,
400 112-135.

401 Ahmed, A., Ge, T., Peng, J., Yan, W.C., Tee, B.T. and You, S., 2022. Assessment of the renewable energy generation
402 towards net-zero energy buildings: A review. *Energy and Buildings*, 256, 111755.

403 Anup, K.C., Whale, J. and Urmee, T., 2019. Urban wind conditions and small wind turbines in the built environment:
404 A review. *Renewable energy*, 131, 268-283.

405 Catarelli, R.A., Fernández-Cabán, P.L., Masters, F.J., Bridge, J.A., Gurley, K.R. and Matyas, C.J., 2020a. Automated
406 terrain generation for precise atmospheric boundary layer simulation in the wind tunnel. *Journal of Wind
407 Engineering and Industrial Aerodynamics*, 207, 104276.

408 Catarelli, R.A., Fernández-Cabán, P.L., Phillips, B.M., Bridge, J.A., Masters, F.J., Gurley, K.R. and Prevatt, D.O.,
409 2020b. Automation and new capabilities in the university of Florida NHERI Boundary Layer Wind
410 Tunnel. *Frontiers in Built Environment*, 6, 558151.

411 Dai, S.F., Liu, H.J., Chu, Y.J., Lam, H.F. and Peng, H.Y., 2022a. Impact of corner modification on wind characteristics
412 and wind energy potential over flat roofs of tall buildings. *Energy*, 241, 122920.

413 Dai, S.F., Liu, H.J. and Peng, H.Y., 2022b. Assessment of parapet effect on wind flow properties and wind energy
414 potential over roofs of tall buildings. *Renewable Energy*, 199, 826-839.

415 Dai, S.F., Liu, H.J., Yang, J.H. and Peng, H.Y., 2022c. Wind loads on roof-mounted isolated solar panels of tall
416 buildings through wind tunnel testing. *Solar Energy*, 231, 607-622.

417 Ellabban, O., Abu-Rub, H. and Blaabjerg, F., 2014. Renewable energy resources: Current status, future prospects and
418 their enabling technology. *Renewable and sustainable energy reviews*, 39, 748-764.

419 Glumac, A.Š., Hemida, H. and Höffer, R., 2018. Wind energy potential above a high-rise building influenced by
420 neighboring buildings: An experimental investigation. *Journal of Wind Engineering and Industrial
421 Aerodynamics*, 175, 32-42.

422 Hassanli, S., Hu, G., Kwok, K.C. and Fletcher, D.F., 2017. Utilizing cavity flow within double skin façade for wind
423 energy harvesting in buildings. *Journal of Wind Engineering and Industrial Aerodynamics*, 167, 114-127.

424 Hong, C.M. and Chen, C.H., 2014. Intelligent control of a grid-connected wind-photovoltaic hybrid power systems.
425 *International Journal of Electrical Power & Energy Systems*, 55, 554-561.

426 Huang, Q., Shi, Y., Wang, Y., Lu, L. and Cui, Y., 2015. Multi-turbine wind-solar hybrid system. *Renewable*
427 *Energy*, 76, 401-407.

428 IPCC, 2023. Climate Change 2023: Synthesis Report of the IPCC Sixth Assessment Report.
429 https://www.ipcc.ch/report/ar6/syr/downloads/report/IPCC_AR6_SYR_LongerReport.pdf, Accessed on June 20,
430 2023.

431 Jafari, S.A.H., Kwok, K.C., Safaei, F., Kosasih, B. and Zhao, M., 2019. Aerodynamic analysis of a stator-augmented
432 linear cascade wind turbine. *Wind Energy*, 22(8), 1148-1163.

433 Juan, Y.H., Wen, C.Y., Li, Z. and Yang, A.S., 2021. Impacts of urban morphology on improving urban wind energy
434 potential for generic high-rise building arrays. *Applied Energy*, 299, 117304.

435 Juan, Y.H., Rezaeih, A., Montazeri, H., Blocken, B., Wen, C.Y. and Yang, A.S., 2022. CFD assessment of wind
436 energy potential for generic high-rise buildings in close proximity: Impact of building arrangement and height.
437 *Applied Energy*, 321, 119328.

438 Kono, T., Kogaki, T. and Kiwata, T., 2016. Numerical investigation of wind conditions for roof-mounted wind
439 turbines: effects of wind direction and horizontal aspect ratio of a high-rise cuboid building. *Energies*, 9(11), 907.

440 Kumar, R., Raahemifar, K. and Fung, A.S., 2018. A critical review of vertical axis wind turbines for urban
441 applications. *Renewable and Sustainable Energy Reviews*, 89, 281-291.

442 Kwok, K.C.S. and Hu, G., 2023. Wind energy system for buildings in an urban environment. *Journal of Wind*
443 *Engineering and Industrial Aerodynamics*, 234, 105349.

444 Lai, Z., Wang, S., Zhu, L., Zhang, G., Wang, J., Yang, K. and Yurchenko, D., 2021. A hybrid piezo-dielectric wind
445 energy harvester for high-performance vortex-induced vibration energy harvesting. *Mechanical Systems and*
446 *Signal Processing*, 150, 107212.

447 Li, Q.S., Chen, F.B., Li, Y.G. and Lee, Y.Y., 2013. Implementing wind turbines in a tall building for power generation:
448 A study of wind loads and wind speed amplifications. *Journal of Wind Engineering and Industrial*
449 *Aerodynamics*, 116, 70-82.

450 Liu, L.Q. and Wang, Z.X., 2009. The development and application practice of wind-solar energy hybrid generation
451 systems in China. *Renewable and Sustainable Energy Reviews*, 13(6-7), 1504-1512.

452 Lu, L. and Ip, K.Y., 2009. Investigation on the feasibility and enhancement methods of wind power utilization in high-
453 rise buildings of Hong Kong. *Renewable and Sustainable Energy Reviews*, 13(2), 450-461.

454 Moss, R.H., Edmonds, J.A., Hibbard, K.A., Manning, M.R., Rose, S.K., Van Vuuren, D.P., Carter, T.R., Emori, S.,
455 Kainuma, M., Kram, T. and Meehl, G.A., 2010. The next generation of scenarios for climate change research and
456 assessment. *Nature*, 463(7282), 747-756.

457 Peng, H.Y., Dai, S.F., Lin, K., Hu, G. and Liu, H.J., 2020. Experimental investigation of wind characteristics and wind
458 energy potential over rooftops: Effects of building parameters. *Journal of Wind Engineering and Industrial
459 Aerodynamics*, 205, 104304.

460 Pierik, J.T.G., Dekker, J.W.M., Braam, H., Bulder, B.H., Winkelaar, D., Larsen, G.C., 1999. Wind energy for the next
461 millennium. In: *Proceedings of the European Wind Turbine Standards II (EWTS-II)*. James and James Science
462 Publishers, London.

463 Pratt, R.N. and Kopp, G.A., 2013. Velocity measurements around low-profile, tilted, solar arrays mounted on large
464 flat-roofs, for wall normal wind directions. *Journal of Wind Engineering and Industrial Aerodynamics*, 123, 226-
465 238.

466 Sinha, S., Chandel, S.S. and Malik, P., 2021. Investigation of a building-integrated solar photovoltaic-wind-battery
467 hybrid energy system: A case study. *International Journal of Energy Research*, 45(15), 21534-21539.

468 Škvorc, P. and Kozmar, H., 2021. Wind energy harnessing on tall buildings in urban environments. *Renewable and
469 Sustainable Energy Reviews*, 152, 111662.

470 Stathopoulos, T., Zisis, I. and Xypnou, E., 2014. Local and overall wind pressure and force coefficients for solar
471 panels. *Journal of wind engineering and industrial aerodynamics*, 125, 195-206.

472 Stathopoulos, T., Alrawashdeh, H., Al-Quraan, A., Blocken, B., Dilimulati, A., Paraschivoiu, M. and Pilay, P., 2018.
473 Urban wind energy: Some views on potential and challenges. *Journal of Wind Engineering and Industrial
474 Aerodynamics*, 179, 146-157.

475 Toja-Silva, F., Colmenar-Santos, A. and Castro-Gil, M., 2013. Urban wind energy exploitation systems: Behaviour
476 under multidirectional flow conditions—Opportunities and challenges. *Renewable and Sustainable Energy
477 Reviews*, 24, 364-378.

478 Toja-Silva, F., Peralta, C., Lopez-Garcia, O., Navarro, J. and Cruz, I., 2015a. Roof region dependent wind potential
479 assessment with different RANS turbulence models. *Journal of Wind Engineering and Industrial
480 Aerodynamics*, 142, 258-271.

481 Toja-Silva, F., Peralta, C., Lopez-Garcia, O., Navarro, J. and Cruz, I., 2015b. Effect of roof-mounted solar panels on
482 the wind energy exploitation on high-rise buildings. *Journal of Wind Engineering and Industrial
483 Aerodynamics*, 145, 123-138.

484 Toja-Silva, F., Lopez-Garcia, O., Peralta, C., Navarro, J. and Cruz, I., 2016. An empirical-heuristic optimization of
485 the building-roof geometry for urban wind energy exploitation on high-rise buildings. *Applied energy*, 164, 769-
486 794.

487 Toja-Silva, F., Kono, T., Peralta, C., Lopez-Garcia, O. and Chen, J., 2018. A review of computational fluid dynamics
488 (CFD) simulations of the wind flow around buildings for urban wind energy exploitation. *Journal of Wind
489 Engineering and Industrial Aerodynamics*, 180, 66-87.

490 Vectoflow, <https://vectoflow.de/en>, Accessed on June 20, 2023.

491 Vita, G., Šarkić-Glumac, A., Hemida, H., Salvadori, S. and Baniotopoulos, C., 2020a. On the wind energy resource
492 above high-rise buildings. *Energies*, 13(14), 3641.

493 Vita, G., Hashmi, S.A., Salvadori, S., Hemida, H. and Baniotopoulos, C., 2020b. Role of inflow turbulence and
494 surrounding buildings on large eddy simulations of urban wind energy. *Energies*, 13(19), 5208.

495 Wang, B., Cot, L.D., Adolphe, L., Geoffroy, S. and Mورchain, J., 2015. Estimation of wind energy over roof of two
496 perpendicular buildings. *Energy and Buildings*, 88, 57-67.

497 Wang, J., Van Phuc, P., Yang, Q. and Tamura, Y., 2020. LES study of wind pressure and flow characteristics of flat-
498 roof-mounted solar arrays. *Journal of Wind Engineering and Industrial Aerodynamics*, 198, 104096.