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Abstract—Cryptographic functions are instrumental in secur-
ing our electronic communications and systems; yet time and
time again they are mis-used, mis-implemented, or created
in an ad-hoc manner. Additionally, while cryptography plays
a fundamental role in securing systems, it is unfortunately
also used for malicious purposes, such as hiding payloads in
malware. Many such instances occur in closed-source code
or binary applications, which inherently present a challenge
for independent audit and analysis. Therefore, detecting the
presence of cryptographic functions in a binary application
can be both an indicator of malicious behavior as well as a
point of interest for cryptographic analyses and vulnerability
discovery.

While general purpose binary analysis and function iden-
tification techniques are themselves broad and thriving areas
that could help solve these problems, a variety of work across
industry and academia has focused on a subset of this space:
developing techniques and tools that are specifically tailored
to identifying different cryptographic primitives in binary
applications. Despite the relative popularity of this work and
recent advances in the space, it already lacks consistent means
of evaluation or comparisons across tools. As such, we set out to
conduct comprehensive reproduction and replication studies on
all existing work in the space, from multiple perspectives. We
noticed there is a significant gap in comparing tools, as there
is no standardized testing framework allowing one to easily
compare and contrast their strengths and weaknesses on a
level playing field. As such, to complement the traditional R+R
studies, we developed a comprehensive testing and evaluation
framework which includes a number of modern cryptographic
algorithms and real world examples, that allows for the com-
parison of both existing and future work in a uniform manner.
We then carried out reproduction and replication studies, using
both their benchmarks and ours. Finally, based on our insights
from the studies, we highlight major gaps in existing work,
especially as they relate to modern cryptographic primitives
and real-world use cases, and discuss a variety of important
avenues for future work.
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Figure 1. Evolution of cryptographic function identification techniques

1. Introduction

Cryptography has found itself at the core of secure mod-
ern technology and both plays a key role in securing com-
munications and is imperative to many modern systems and
applications. From data integrity to authentication and online
banking to messaging friends, cryptography is everywhere.
Well-known cryptographic libraries, such as OpenSSL [1],
are widely used not only to generate TLS certificates and
validate certificate information, but also to implement cryp-
tography in general purpose applications. Despite their uni-
versal benign usage, cryptographic functions are also heavily
used in malware and to evade security protocols. In recent
ransomware attacks [2], [3], cryptographic functions have
been used to encrypt a victim’s information and later asked
to pay ransom in exchange of recovering their files and
information.

On the one hand, the usage of cryptographic functions
makes it easier to carry out secure and private operations,
and on the other hand, its malicious usage by bad actors
makes it harder for cryptography and security experts to
perform forensic analyses and reverse engineer code. Hence,
the ability to automatically identify or detect the presence
of cryptographic functions in binary applications can be a
crucial part of the security experts’ arsenal. It can assist in
binary analysis to give a better depiction of how the func-
tions work. Determining the type of cryptographic function
in a binary can help to pinpoint the existence of a malicious
payload [4] and also help cryptographic experts identify
potentially insecure protocols or implementations (or those
that require more manual analysis).

While general purpose binary analysis and function iden-
tification techniques are themselves broad and thriving areas
that could potentially solve these problems, a variety of work
across industry and academia has focused on solving these
challenges more specifically: developing techniques and
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tools that are uniquely tailored to identifying cryptographic
primitives in binary applications. This allows researchers to
often provide better results in different domains, leveraging
cryptography-specific features. Cryptographic functions tend
to have many mathematical computations, nested loops, and
exclusive input-output mappings which are distinct from
non-cryptographic functions and can thus be useful as a
means of identification. Harvey et al. [5] first utilized magic
constants to identify cryptographic primitives in 2001. Later
works focused on signature based detection mechanisms.
However, due to the limitations of signature based ap-
proaches, subsequent work placed a greater emphasis on
heuristic based detection, such as identification of basic
blocks, instruction patterns, etc. With the popularization of
modern machine learning algorithms, newer works utilized
deep learning and Al to extract cryptographic features from
a binary.

Unfortunately, while there has been a wealth of work in
the space, it has generally failed to keep up with modern
cryptographic innovations and applications, as well as cur-
rent software engineering and optimization techniques. This
can be difficult to notice as there is no standardized bench-
marking or comparison framework, and individual works
tend to test on algorithms that they are best at identifying,
while neglecting those they cannot. Additionally, as many
techniques are tailored for specific cryptographic algorithms,
architectures, or settings, which change rapidly over time,
reproducing past results can be challenging, making it dif-
ficult to provide comparisons across the growing landscape
as well.

Given how important these tools and techniques can be
for both researchers and practitioners, we aim to reproduce
and replicate all existing tools to date in this domain.
In this endeavor, we also offer a comprehensive analysis
that categorizes and discusses the existing body of work,
highlighting the strengths, weaknesses, and techniques em-
ployed. We also seek to help drive future research in the area
by identifying potential challenges and various factors that
may influence performance. To help provide for a more even
comparison of existing and future work, and to identify gaps
that are in need of future research, we create a benchmarking
framework featuring a number of modern cryptographic
primitives and applications. We then use this framework to
evaluate existing work. Finally, throughout the paper, we
discuss and motivate a variety of open research problems in
the space.

Our contributions. Our primary contributions are:

e We conduct a thorough examination of cryptographic
function identification methods, exploring the range
of techniques utilized and evaluating their respective
strengths and limitations.

We create a standardized suite of performance metrics
and benchmarks to evaluate the effectiveness of current
detection mechanisms and analyze existing tools based
on this suite.

We conduct comprehensive replication and reproduc-
tion studies on all existing work.
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Figure 2. Timeline of the development of cryptographic algorithm detection
tools

« We provide an in-depth analysis of our findings and
categorize the tools according to their performance
across various dimensions.

o Based off of this analysis and our study of existing
work, we discuss the research gaps in this domain and
propose directions for future work.

2. Background

In this section, we provide background on and a classifi-
cation of detection approaches that have been employed by
existing tools to date. Figure 1 shows the evolution timeline
of various techniques and approaches used in cryptographic
function identification research whereas Figure 2 shows the
development timeline of all studied tools. We also provide an
overview of some of the cryptographic features that existing
tools focus on, to help better understand how they work and
contextualize later discussion.

Cryptographic primitive vs. cryptographic function. A
brief note on notation used throughout this paper. When
we refer to a cryptographic function or cryptographic al-
gorithm, we are generally referring to the entirety of a
specific scheme or class of algorithms, such as RSA or
hash functions. When we say cryptographic primitive, we
generally mean a building block for a larger cryptographic
scheme, such as a Feistel network.

2.1. Categorization of detection approaches

Precision, scalability and performance of an identifica-
tion approach all rely on the underlying techniques used.
Detection approaches can be divided into three categories:
i) Dynamic, ii) Static, and iii) Machine learning based
approaches.

Static Approaches. Static approaches perform various
forms of static analysis to detect any static signatures, such
as ’magic’ constants, instruction sequences, and different
code structures such as S-boxes, as a means to identify
cryptographic algorithms. This type of approach is based on
the assumption that cryptographic functions will perform a
large number of arithmetic computations compared to non-
cryptographic functions. Harvey et al. [5] first proposed the
idea of identifying cryptographic algorithms in binary files.
They focused on finding algorithms based on their constant
characteristics. By taking advantage of feature matching,
subsequent works [6], [7], [8] primarily focused on protocol
reverse engineering. Chang et al. [9] created a library of
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3000 plus signature characteristics of cryptographic algo-
rithms and also explored recognizing cryptographic algo-
rithms based on Minimum Perfect Hash Function (MPHF).
Lestringant et al. [10] used data-flow isomorphism to find
symmetric key algorithms.

Off-the-shelf tools such as Draft Crypto Analyzer
(DRACA) [11], Kanal [12], Kerckhoffs [13], Hash & Crypto
Detector (HCD) [14], Signsrch [15], and Findcrypt [16],
utilize static signature patterns of different cryptographic
functions. Static based approaches have low performance
overhead. However, these detection mechanisms can be
easily bypassed using simple obfuscation techniques. For
example, the authors of Aligot [17] showed that simple
data obfuscation techniques can bypass static analysis based
detection mechanisms.

Dynamic Approaches. Dynamic approaches [18], [17],
[19] primarily focus on identifying cryptographic primitives
from execution traces. Lutz et al. [20] first applied dynamic
analysis to identify cryptographic algorithms based on three
indicators: i) presence of loops, ii) changes in entropy, and
iii) high ratio of bitwise arithmetic instructions. Based on
the data avalanche effect, CipherXRay [19] pinpoints the
boundary of cryptographic operations and recovers transient
cryptographic secrets. However, this approach does not work
in the case of stream ciphers, for example, as they do not
show any data avalanche effect.

Grobert et al. [21] proposed heuristic based approaches
on both generic characteristics of cryptographic code and on
signatures for specific instances of cryptographic algorithms
by mapping input-output (I/O) relations. Aligot [17] further
extends this idea of I/O mapping. It retrieves I/O parameters
in an implementation-independent fashion, and compares
them with known cryptographic functions as well as per-
forms an interloop data flow analysis. CryptoHunt [18] used
bit-precise symbolic loop mapping to identify cryptographic
functions and applies guided fuzzing to make the solu-
tion scalable. Park et al. [22] proposed a hardware-assisted
tracing technique to detect symmetric-key cryptographic
routines in anti-reverse engineered binaries via recording
the change of flow instructions from the CPU at run-time.
Dynamic approaches in general perform better than static
based approaches in obfuscated binaries, but suffer from
much greater performance overhead.

Machine Learning Based Approaches. With the growing
popularity of machine learning, several recent works have
explored utilizing such techniques. Shin et al. [23] discussed
how recurrent neural networks can identify functions in
binaries with greater accuracy and efficiency. However, their
approach was generalized for any function identification. For
the purpose of cryptographic function identification, Wright
et al. [24] proposed an artificial neural network model to
classify functional blocks as being either cryptographic or
not by extracting the frequency of different logic instructions
from a disassembled program. Benedetti et al. [25] used the
‘grap’ tool to detect cryptographic algorithms by creating
patterns for AES and ChaCha20. Falke [26] proposed a
neural network based approach by modeling classifiers for
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arbitrary cryptographic algorithms from sample files and
then automatically extracting features to train the neural
network. It offered a high detection rate in combination
with a low false positive rate. Hill et al. [27] proposed a
Dynamic Convolutional Neural Network based learning sys-
tem (CryptoKnight) which learns from new cryptographic
execution patterns to classify unknown software. Jia et al.
[28] proposed an NLP-based approach which first extracts
the semantic information of assembly instructions and then
transfers them into 100-dimensional vectors and later uses
K-Max-CNN-Attention to classify cryptographic functions.

2.2. Cryptographic Features

Cryptographic functions have their own (often quite
distinct) set of characteristics, and work thus far has of-
ten leveraged these for identification, as they can lead to
more tailored or performant techniques than general pur-
pose binary analysis and code identification. Many of these
features only pertain to certain algorithms and cannot be
used to identify others. We now discuss some of the popular
cryptographic features used for identification purposes.

Magic Constants. In this approach, algorithm specific
“magic constants” are searched for in the binary. These are
constant values that must occur in any implementation of
a given algorithm. For instance, Signsrch [15] relies on the
magic number ‘0x9e3779b9’ to detect the TEA algorithm;
however, it fails to identify the algorithm when data obfus-
cation is applied [18].

Presence of Loops. Most cryptographic functions use
some form of loops for key generation, encryption, or other
operations. CryptoHunt [18] utilized loops as a means for
detection. Given that loops may present in regular functions,
further program analysis is necessary to ensure accurate
detection.

Changes in Entropy. The process of decryption usually de-
creases information entropy. Hence, entropy can be used as
an indicator of encrypted versus plaintext data. Several tech-
niques [20], [29] have used entropy to distinguish encrypted
blocks from regular ones. However, relying on entropy can
also lead to false positives in certain circumstances [21].

I/O Mapping. Cryptographic functions sometimes have
one-to-one mappings between their input to output, i.e.,
given a key and the plaintext, we might always get the same
output, or given the input to a hash function, we should
always get the same output. However, these approaches
rely on the accurate extraction of the key and input/output
from the memory, as any wrong extraction can defeat the
usefulness of unique mapping.

Data-Flow Isomorphism. In this approach [10], a Data-
Flow Graph (DFG) [30] is generated from the corresponding
assembly code, and subgraphs in the DFG are checked to
see whether they are isomorphic to the graph signature of a
particular cryptographic algorithm. However, this approach
is limited in the case of conditional statements, which are
more prominent in asymmetric algorithms. Additionally,
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DFG can vary in effectiveness depending on data obfusca-
tions techniques used in the implementation, such as data-
splitting.

S-Box. Substitution boxes (S-Box) [31] are a fundamental
component used in many symmetric key ciphers. For in-
stance, the BLOWFISH algorithm is a 64-bit block cipher
that has an S-Box consisting of 1024 elements [28] which
are usually sequentially stored in memory, allowing tools
to detect BLOWFISH by locating this S-Box in memory.
Similar techniques can be applied to Permutation Boxes (P-
Box) [32], which are methods of bit-shuffling to permute or
transpose bits across S-box inputs.

Instruction Sequences. An instruction sequence is a series
of instructions or commands that a CPU executes in a
specific order to perform tasks within a program. Many
fundamental cryptographic operations will consist of fin-
gerprintable instruction sequences and hence can be used
for the purpose of identification. Nevertheless, this method
may lose its effectiveness when dealing with control-flow
obfuscations such as control-flow flattening [33].

3. Overview

This paper focuses on comprehensive replication and
reproduction studies for existing work on identifying cryp-
tography code in binary applications. To aid in this, we
propose a novel analysis framework aimed at facilitating
a comprehensive evaluation of cryptographic function de-
tection tools’ replicability. Our framework is introduced in
Section 4. Subsequently, we conduct two evaluations: a
reproducibility evaluation in Section 5, and a replicability
evaluation in Section 6. Additionally, we provide further
discussion on the results of our reproducibility and replica-
bility evaluations, as well as point out a number of important
takeaways and directions for future work, in Section 7.
Finally, to support future research in this domain, we present
a summary cryptographic detection approaches and tools in
Section 2 as part of our background.

3.1. Cryptographic Algorithm Detection Tools

A number of cryptographic detection tools have been
developed based on the different approaches discussed in
Section 2.1. We perform our reproduction and replication
studies on all existing work that we were able to find from
2000 until now:

o Aligot [17] « HCD [14]

¢ CryptoHunt [18] o Kerckhoff [13]

o CryptoKnight [27] o PEID KANAL [12]

o DRACA [11] o SignSrch [15]

o FindCrypt2 [16] o Softmax Classifier [28]
o FALKE-MC [26] o Where’s Crypto [34]

Our focus is on evaluating tools specifically designed
for identifying cryptographic functions and comparing these
tools with their stated performance. As such, we exclude
other (broader) binary analysis tools, such as Binshape [35],
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Figure 3. Types of cryptographic functionality and designs targeted by
different tools and approaches, by percentage of tools surveyed

a general-purpose binary analysis tool, or CIS [36], which
focuses on testing cryptographic heuristics rather than actual
algorithms.

We also employ a systematic approach to categorize,
classify, and interrelate the diverse array of knowledge
elements that constitute such tools from several directions
in Section 3.2. Due to space constraints, we include brief
discussions of each tool, along with their strengths and
weaknesses, in Appendix C.

We comprehensively summarize the detection abilities
of each cryptographic function detection tool. We did a
thorough check of each tool’s documents and signatures to
see what types of cryptographic algorithms they can find.
Figure 3 shows the distribution of various algorithms that
existing work has focused on. After that, we gather all the
information we found and explain it in more detail in Table
8. This helps us better understand what each tool can do in
terms of detecting different cryptographic algorithms.

Note that we compiled these results based on informa-
tion provided by the developers of each tool. Through our
comprehensive analysis, we found that commercial tools
like DRACA [11], FindCrypt2 [16], and Signsrch [15] can
detect a diverse range of cryptographic algorithms. However,
their performance falter when encountering obfuscation or
atypical situations. Certain academic-developed tools such
as Aligot [17], CryptoHunt [18], and Where’s Crypto [34]
offer superior analysis results in specific scenarios, such as
detecting cryptographic algorithms from obfuscated bina-
ries. Many of them can only detect a few cryptographic
algorithm, but they can be easily expanded.

It is important to recognize that a simple summary
may not fully capture the current capabilities and detection
abilities of each tool. Moreover, many of these tools were
developed years ago, and they may not be compatible with
current programming languages, compilers, and/or hardware
architectures. This is why our reproduction and replication
study is so crucial. It not only highlights these major gaps in
existing work as the space has progressed, but allows us to
provide insights on the space more broadly, and on a variety
of important avenues for future work.
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Tool ‘ ‘ Method DEE’E:;;m ‘ Language ‘ Cli)?l(‘]lgil{i‘?rfg ‘ Expandable R+R ‘ Ob[f).e]si’igl;]ry ‘ A';;ﬁ/[;h
Aligot 1/0 Parameters Intel Pin Python Yes Yes Reproducible No No
CryptoHunt Bit-precise Symbolic Loop Intel Pin C++ Yes Yes Unable Yes No
CryptoKnight Machine Learning Based Intel Pin, PyTorch Python Yes Yes Both No Yes
DRACA Unknown None Executable No No Replicable No No
FindCrypt2 Magic Constants IDA Pro C++ Yes No Replicable No No
FALKE-MC Neural Network None Unknown Unknown Unknown Unable Yes Yes
HCD Unknown None Executable No No Replicable No No
Kerckhotf Multiple Intel Pin Python No Yes Unable No No
PEiD KANAL Signature Searching None Executable No Yes Replicable No No
Signsrch Signature Searching None Executable No No Replicable No No
Softmax Classifier Neural Network Unknown Python Unknown Unknown Unable No Yes
Where’s Crypto DFG Isomorphism IDA SDK C++ Yes Yes Both No No

Table I. CATEGORIZATION OF EXISTING TOOLS AND THEIR IMPORTANT PROPERTIES

3.2. Categorization of Cryptographic Algorithm
Detection Tools

We employ a systematic approach to categorize, classify,
and interrelate the diverse array of knowledge elements that
constitute such cryptographic detection tools from several
directions. Table 1 contains an overview and summary of
each tool, including its reproduction and replication status
in this work, as well as a variety of information such that
one can easily find or organize existing (and future) tools
based on the per-column categories.

We begin by categorizing the detection approach (broken
down by the different methods discussed previously in Sec-
tion 2.1) and the programming language in which the tool’s
source code is written. We note that some tools are not open
source; they provide only an executable file, and as a result,
we lack information about the source language. Some tools
require specific dependent libraries to run, which can limit
or hinder their usability, and as such we list if there are any
required dependencies. Some tools are installation-free and
do not require compilation, offering an easy, user-friendly
experience. And a few tools provide the capability for
developers to insert new cryptographic algorithm signatures,
thereby expanding their detection capabilities as the field
advances.

4. Analysis framework for open-source detec-
tion tools

Previous tools have been evaluated only with certain
basic cryptographic algorithms, and often seem to lack eval-
uation for false positives, real world applications, and large
scale projects. Therefore, as the first step in our replication
study, we build a new benchmarking framework with a num-
ber of evaluation metrics, which will not only encompass all
evaluations conducted by previous tools but also establish a
unified more comprehensive evaluation benchmark moving
forward.

4.1. Benchmarking Framework

During our study, we identified a significant gap in the
field: the absence of a standardized method for evaluating
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existing tools and their efficacy. We believe that to do a fair
evaluation in any domain requires a standard benchmark. We
propose a benchmarking framework that will help us under-
stand the scalability and effectiveness of any given detection
approach. We have four categories in our framework: i) basic
cryptographic functions, ii) microbenchmarks, iii) libraries,
and iv) large projects. Our framework is flexible and can be
easily updated as the field of cryptography advances.

Basic cryptographic functions. The basic cryptographic
functions category contains cryptographic algorithms from
various standard classes within the cryptographic space. A
single cryptographic algorithm may have multiple versions,
or may use non-standard implementations, so we may se-
lect many different implementations or versions for certain
algorithms. The cryptographic algorithms we select are:

o AES256 « RC4 o SHA256
« DES « RCS « TEA

« ECC « RSA o« XTEA
« MD5 « SHAI « XXTEA

We have chosen these algorithms for several reasons.
First, we have included those recommended by the National
Institute of Standards and Technology (NIST) [37], as they
are widely utilized and cover a broad range of real-world
applications. Second, we have incorporated algorithms like
TEA and MDS5, which, although once popular, are now
considered unsafe or outdated, but still might have historical
significance in applications like malware. Last, we have
selected various variants of a single cryptographic algorithm
to assess a tool’s ability to handle different implementations
effectively.

Microbenchmarks. Our microbenchmarks category con-
tains small programs on file manipulation, networking, I/O
heavy programs, math heavy programs, matrix and ar-
ray, and so-called “golden implementations” of well-known
cryptographic algorithms. We have chosen small programs
such as I/0 heavy and math-heavy programs since they have
similar instruction sets or behavior patterns as cryptographic
functions. This allows us to test for false positives in a
detection framework.

Libraries. We have chosen cryptographic libraries as well
as encoding and compression libraries that have similar
behavior to cryptographic functions including:

Authorized licensed use limited to: Purdue University. Downloaded on April 25,2025 at 17:42:55 UTC from IEEE Xplore. Restrictions apply.



« openssl (3.3.1) e zIib (1.3.1)

o libgerypt (1.8.11) « ffmpeg (7.0.2)
o libsodium (1.0.20) e libgsm (1.0.17)
o mbedTLS (3.6.1) « libjpeg (6b)

o gnuTLS (3.8.6) « libpng (1.6.43)

« bzip2 (1.0.8)

This allows us to again test for false positives, but also
to test for a variety of different cryptographic algorithms im-
plemented in different ways. We select open source libraries
only, so that we are able to compile them based on our
evaluation metrics. For each tool, we used the latest version
available at the time of evaluation. Our selection includes a
diverse range of libraries, from those with frequent recent
updates, such as OpenSSL, to those that are a bit older, such
as libjpeg.

Large projects. We also select Signal, an application
designed for encrypted messaging, to evaluate a tool’s ability
to both scale for large codebases as well as still detect
cryptography within them. We believe that to understand
the scalability of a mechanism, it is crucial to determine
that the tool performs well irrespective of the code size
and its applications. Signal was selected because it both
utilizes multiple (modern) cryptographic schemes and is
open source. This again means we can recompile Signal
with our evaluation metrics, plus establish ground truth for
testing. However, as our framework is open-source, one
could easily extend it to include any future desired large-
scale open-source projects, such as Tor.

4.2. Evaluation Metrics

To ensure a thorough exploration of current tools (and to
provide rigorous and fair evaluation metrics for the future),
we have meticulously crafted a series of evaluation experi-
ments. These experiments are thoughtfully designed to align
with the challenges we discuss in Section 7.6, maximizing
our ability to uncover the current state of these tools and
elucidate their strengths and weaknesses. Our evaluation
metrics are as follows:

« Based on optimization levels: Evaluate based on dif-
ferent compiler optimizations including -O0, -O1, -O2,
-03, -Os, and -Ofast

o Based on different combinations of obfuscation
mechanisms:

— Control-flow obfuscation: Adding bogus control-
flow, control-flow flattening, substitution of instruc-
tions, polymorphism

— Data-flow obfuscation: Data aggregation, data-
splitting, variable transformation

— Modified versions of algorithms: For example,
modified TEA (Russian TEA) used in malware as
suggested in [18]

— Layout Obfuscation: Address obfuscation, obfus-
cating debug information, address layout/memory
layout randomization

— Combination of all prior techniques

« Based on different compilers: Evaluate based on
different compilers, including GCC, CLANG, MSVC

The full list of optimizations, obfuscations, and their
combinations we select for our evaluation can be found in
Appendix A.

We assessed each tool with these benchmarks and met-
rics to thoroughly explore accuracy and detection capa-
bilities when handling binary programs subjected to spe-
cific compiler or optimization/obfuscation techniques.! For
instance, a tool A might successfully detect MD5 when
all optimization flags are applied but fail to do so in the
presence of obfuscation. Conversely, a tool B may be able
to detect TEA when compiled with GCC but not when
compiled with CLANG. This exploration provides us with
a more comprehensive understanding of the current state
of cryptographic function detection tools, revealing their
weaknesses and indicating areas for future development
from various perspectives.

5. Reproduction

We start by assessing the reproducibility of each tool by
employing consistent experimental setups, procedures, and
operating conditions to replicate their purported capabilities.

In our reproducibility evaluation we follow the ACM
guidelines on reproducibility [38], using the same measure-
ment procedure, system setting, and operating conditions as
the tool’s original test cases”. This will help us to understand
the basic fundamental reliability for each tool. When tools
do not pass the reproduction evaluation, we also provide a
brief discussion for why. Table 2 shows the reproducibility
results.

Crypto Crypto

Aligot Hunt Knight DRACA | FindCrypt2 | FALKE-MC
4 X v - - X
PEiD . Softmax Where’s
HCD Kerckhoff KANAL SignSrch Classifier Crypto
- X - - X 4

Table 2. REPRODUCIBILITY OUTCOME FOR EACH TOOLS. v INDICATES
A TOOL THAT HAS PASSED THE REPRODUCTION EVALUATION, WHILE
XREPRESENTS A TOOL THAT HAS EITHER FAILED THE REPRODUCTION
EVALUATION OR IS NOT ACCESSIBLE. —DENOTES A TOOL THAT IS
AVAILABLE FOR USE, BUT THE DEVELOPER HAS NOT PROVIDED THE
ORIGINAL TEST CASES.

Note that for certain tools, the developers only provided
the executable binary program without the accompanying
source code or test cases necessary for evaluation, making
a reproducibility assessment unfeasible (denoted —). Some
tools are not publicly available in either source code or
executable binary form, making a reproducibility evaluation
impossible. As a result, they are marked with a X. Addi-
tionally, we encountered crashes when running Pin-based
tools with the latest version of Intel Pin, indicating that
the design of older cryptographic detection tools may not

1. All benchmarks and metrics we evaluate are available at
https://github.com/BARC-Purdue/CryptoBinary.

2. For the precise details and steps of our reproducibility evaluation see
Appendix B.1.
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be compatible with newer Pin versions. However, Aligot is
the one exception to this. Aligot provides step-by-step test
cases, and, based on this, we have successfully reproduced
each step with the expected results. Therefore, we consider
Aligot reproducible, as we were able to replicate the test
results using their original measurement procedures.

5.1. Non-Reproducible Tools

CryptoHunt has been successfully executed, but we are
unable to provide the complete benchmarking framework
and performance evaluation results. CryptoHunt detects
cryptographic functions in binary code through a bit-precise
symbolic loop mapping approach. However, depending on
the binary’s size, CryptoHunt may identify up to 10,000
loops within the binary. Without additional filtering, the
process of comparing each of these loops with reference
loops becomes exceedingly time-consuming and infeasible.

Kerckhoff cannot be evaluated in this paper due to its
incompatibility with existing available versions of the Pin
tracing tool, which cause it to crash. We have encountered
a similar issue in the replication evaluation as well, which
will be discussed in Section 6.

Softmax Classifier and FALKE-MC cannot be evaluated
in this paper since they are not available for public use,
as neither the source code nor the compiled binary is pro-
vided. Only the original research paper is available, with no
accompanying software or executable.

6. Replication

We now undertake a comprehensive replicability evalu-
ation of existing work across different categories of crypto-
graphic algorithms with our newly proposed analysis frame-
work, in order to understand their consistency, robustness,
and effectiveness. Our replication evaluation follows the
ACM guidelines on replicability [38]. We rebuild each tool
(if the source code is available) and run it across different
system environments using our newly developed evaluation
benchmark as the test cases®. This evaluation encompasses
all work across this domain, allowing us to delve into
their performance and potential limitations. For each crypto-
graphic algorithm, we considered different optimization/ob-
fuscation levels, compilers, and implementations. These ex-
periments are designed to help us understand the consistency
and robustness of existing work and techniques, the current
status of cryptographic function detection performance and
to explore potential future research questions, as well as
to highlight existing challenges in cryptographic function
detection. We also involve micro-benchmarks, libraries, and
large scale projects to examine each tool’s performance in
real-world applications. We present the full results of our
evaluation in Table 9 in Appendix D, and discuss a selection
of the results, as well as their implications, now.

3. For the precise details and steps of our replicability evaluation see
Appendix B.2.
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Cryptographic Algorithm

\
Tool [TAES | DES | MD5 [ RC4 | RC5 [ RSA | SHAI | SHA256 | TEA
v

DRACA X X v
CryptoKnight v X X v
FindCrypt2 X v v v v v v
HCD — — — — — — — - —
PEiD KANAL - - - - - - - - -
SignSrch v X v v 4 v v
‘Where’s Crypto v v v v v v

Table 3. COMPARATIVE ANALYSIS OF DETECTION APPROACHES VERSUS
STATED CAPABILITIES IN ORIGINAL DOCUMENTATION. CROSS MARK
DENOTES INCONSISTENCIES (FALSE POSITIVE OR FALSE NEGATIVE),

CHECK MARK SUCCESSFUL REPLICATION.

Based on our replicability evaluation, we find that some
tools cannot be replicated with our framework. We also
highlight some interesting new results, which may help
direct future research in this field. This will be addressed
in both this section and in Section 7.

6.1. Non-Replicable Tools

Aligot is a cryptographic function identification tool devel-
oped based on Pin, a dynamic binary instrumentation frame-
work developed by Intel. We successfully reproduce the test
cases that Aligot provided. However, Aligot was tested with
Pin 2.10 and Pin 2.12 by its developer, but unfortunately,
these versions are no longer available. Consequently, we
attempted to use an older version of Pin (3.22) but we were
unable to execute Aligot correctly. We believe this to be
due to the fact that this tool does not support and cannot be
executed on recent CPU architectures.

6.2. Unexpected Detection Results

We begin by discussing evaluation results that were

either unexpected or inconsistent based on prior stated find-
ings. During our evaluation, we encountered instances where
certain tools yielded false positives or false negatives in their
detection outcomes. These findings underline the importance
of a more in-depth and rigorous analysis to ensure the
attainment of dependable detection results. As a result, it
is evident that further development is required to enhance
reliability.
Unreplicable cryptographic function detection. In Ta-
ble 8, we list the purported performance for each tool. How-
ever, our evaluation could not verify the detection capabili-
ties for certain cryptographic functions in some of the tools.
Table 3 presents the outcomes of our assessment relative to
the detection capabilities as claimed by the respective tools’
original documentation. If a tool claims to have the ability to
detect a cryptographic algorithm, but we cannot reproduce
the same result in any of our benchmarks or evaluation
metrics, we mark it with a red exclamation mark. Otherwise,
if we can confirm the detection ability, we mark it with a
green circle. A blank means the tool makes no claim about
the given algorithm. Due to the unavailability of documen-
tation for HCD and PEiD KANAL, a comparison of our
evaluation results with their claimed detection capabilities
was not possible.
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Micro-benchmark false positives. In our micro-
benchmark evaluations, we also uncovered new false posi-
tive results. None of the tools falsely considered operations
like file handling, I/O, network connection, or heavy math
operations as cryptographic functions. However, some tools,
such as CryptoKnight and Signsrch, mistakenly identify a
mathematical matrix as a cryptographic function like AES.
Since AES includes the Rijndael S-box (often coded as a
matrix), tools that rely on static signature searches may
incorrectly recognize a matrix as an AES function. This
highlights the importance of broader and more standardized
test cases as well, as things like this were not considered
by previous evaluations. To better understand these results,
in Table 7 (Appendix D) we present the detailed breakdown
of percentage of false positives and false negatives observed
for each tool across various cryptographic functions, offer-
ing a comprehensive comparison of their performance in
these error metrics. This allows us to gain insight into the
likelihood of a tool raising errors when attempting to detect
specific cryptographic functions.

Undetected cryptographic functions in libraries. Finally,
besides standard stand-alone cryptographic functions, we
also selected some real-world cryptographic libraries and
libraries with similar behavior to cryptographic functions to
test on. We find that many tools successfully detect cryp-
tographic functions in these libraries, which is expected, as
some, including openssl and libgcrypt, are indeed primarily
cryptographic libraries. However, it is interesting to note
that this is not true of all tools. Some work fails to detect
cryptographic functions in this setting. For example, tools
like DRACA, HCD, and Signsrch are unable to detect any
cryptographic functions from openssl, while CryptoKnight
and HCD fail to detect cryptographic functions in libgcrypt.
We are not sure why this is the case, and leave this as an
interesting avenue for future work. This also points to the
fact that existing work may have unreliable performance in
real world (large) programs.

Future Research: Certain cryptographic-specific libraries
seem to pose challenges for existing tools; exploring why
this is the case would be an interesting avenue for future
work. Also, existing tools have more false positives/nega-
tives than initially expected, so placing more emphasis on
improving detection accuracy and reducing false positives
or false negatives seems highly relevant.

6.3. Operating System Limitations

The usage of certain tools may be constrained by their
exclusive compatibility with specific operating systems, im-
pacting their efficacy and analysis capabilities. Many tools
are designed and built with specific operating systems in
mind. Fortunately, with the help of other tools, such as
WineHQ, which enables software developed for Microsoft
Windows to run on Unix-like operating systems, developers
can for example use some Windows cryptographic detection
tools in Linux. However, tools are not just limited to running
on specific operating systems, but also restricted to handling
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I Supported System i Supported Binary
| Windows | macOS | Linux [[ Windows | macOS [ Linux

Tool

Aligot
CryptoHunt
CryptoKnight
DRACA
FindCrypt2
HCD
Kerckhoff
PEiD KANAL
Signsrch
Where’s Crypto C
Table 4. TOOL COMPATIBILITY WITH DIFFERENT OPERATING SYSTEMS;
@REPRESENTS A TOOL THAT SUPPORTS THE DESIRED SYSTEM, WHILE
OINDICATES A TOOL THAT DOES NOT SUPPORT THE DESIRED SYSTEM;
© REPRESENTS CASES WHERE A TOOL CANNOT BE EXECUTED ON A
UNIX-LIKE SYSTEM BUT BECOMES FUNCTIONAL WITH THE
ASSISTANCE OF WINEHQ
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binaries compiled for selected operating systems. These
inherent limitations potentially reduce the scope and depth
of analysis a tool can provide, depending on the operating
system selected and targeted in the original work.

In Table 4, we evaluate the capability of exisiting work to

analyze binaries across three different operating systems and
for binaries compiled specifically for each of these operating
systems. We use a © to indicate cases where a tool cannot
be executed on a Unix-like system but becomes functional
with the assistance of WineHQ.
Takeaway: Ideally cryptographic function detection tools
need to support all operating systems to effectively detect
cryptographic functions or malware across diverse envi-
ronments and improve overall detection measures.

6.4. Impact of Compiler Variations

To study the impact of compilers on cryptographic func-
tion detection, we compiled each program in our bench-
marking framework with GCC/G++, CLANG/CLANG++,
and MSVC. Somewhat as expected given the impact a
compiler can have on the resulting binary, our evaluation
shows that tools may output quite different results for dif-
ferent compilers. We choose MDS as an illustrative example,
shown in Figure 4, though we have observed the same
general trends across most cryptographic schemes.

-00  OAR [OFAN | [OFA | [OFA | [OFAN |
8§ 01 oAm (OFAY | (OFAN | (OFAY | (OFAY |
[ ® GCC
§ -02 oAm [OFAN | [OFAN | [OFAY | [OFAN | A Clang
-§ -03  OAR [OFAN | [OFA | [OFA | [OFAN | W MSvC
§ -0s  OAN (OFAY | (OFAN | (OFAY | (OFAY |

ot oAl oLl oLN L JAY | [ VAN |

DRACA Findcrypt2 KANAL Signsrch ~ Where’s Crypto

Cryptographic Function Detection Tool

Figure 4. Evaluation result for MD5 with different compilers. A full marker
indicates that function can be detected and an empty marker that it cannot.

In this example, DRACA, Findcrypt2, PEiD KANAL,
Signsrch, and Where’s Crypto support detecting the MDS5
algorithm. However, their detection capabilities are influ-
enced by the compiler used. All of these tools can detect
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the MD5 algorithm in binaries compiled with the MSVC
compiler, regardless of the optimization flag. In contrast,
for binaries compiled with GCC, they can only detect the
MD5 algorithm when the -O0 optimization flag is applied.
Furthermore, when using the Clang compiler, none of these
tools were able to detect the MDS5 algorithm in the binary.
This suggests that differences between compilers may sig-
nificantly impact a tool’s analysis results. In general, we
found that the MSVC compiler has less impact on detection
results compared to GCC and CLANG. Specifically, if a tool
can detect a certain cryptographic algorithm in a program
compiled by GCC or CLANG, it will also be able to detect
that algorithm in the same program compiled by MSVC.

For example, Signsrch shows inconsistent performance
with Clang, GCC, and MSVC, identifying the SHA-1 hash
function in certain programs compiled with identical op-
timization flags but using a different compiler. We also
observe same behaviour for DARACA when detect XXTEA
algorithm (see Table 9 for details).

The structure of binaries produced by different compil-
ers, such as MSVC, GCC, and LLVM, can vary signifi-
cantly due to differences in object file formats, optimization
strategies, and code generation techniques. Binary analysis
often relies on symbolic information, padding, and inlined
data, all of which are heavily influenced by the compiler
version [39]. These variations can hinder the effectiveness
of cryptographic function detection tools, potentially leading
to inaccurate or incomplete detection results.

Future Research: At present, it is notable that none of
the cryptographic function detection tools consider the
impact of the compiler. Our evaluation results have re-
vealed that the choice of compiler plays a pivotal role
in cryptographic function analysis. The exploration of
compiler effects and their incorporation into cryptographic
function detection tools represents an enticing avenue for
future research. Moreover, understanding and accommo-
dating these compiler-related influences could significantly
enhance both accuracy and reliability.

6.5. Impact of Optimization Flags

Optimization flags and obfuscation can significantly im-
pact the analysis results for cryptographic functions [40].
CryptoHunt[18] and FALKE-MC [26] have explored this
direction. CryptoHunt primarily focuses on specific opti-
mization flags such as —00, -01, and —02, while FALKE-
MC includes programs compiled with —Os and -Ofast
for training. However, we are unable to run either of these
tools, so we cannot confirm their detection performance with
optimization/obfuscations flags. In order to comprehensively
investigate this topic, we have expanded our study to in-
clude additional optimization flags, obfuscation techniques,
and their combinations, thereby providing a more thorough
exploration of their impact on cryptographic algorithm de-
tection.

Our findings indicate that both optimization flags and
obfuscations can affect detection capability. For instance,
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based on our results in Table 9, we can see that Findcrypt2,
PEiD KANAL, Signsrch, and Where’s Crypto can detect
MDS5 when compiled without optimization/obfuscation flags
or compiled with —O01. However, none of these tools can
detect MDS if the binary program is compiled with advanced
optimization/obfuscation flags such as -02, —-Ofast, or
—obs_sub. In addition, we observed that Signsrch ex-
hibits inconsistent performance for SHA-1 or SHA-256,
and DRACA shows unstable performance with XTEA and
XXTEA when running with optimization or obfuscation
flags. Optimization flags significantly alter the structure and
behavior of a binary program by improving performance,
reducing size, and modifying control flow. Techniques like
function inlining, loop unrolling, and dead code elimination
obscure the original source code structure, making it more
difficult for analysts to identify cryptographic functions.

Future Research: The effects of optimization and ob-
fuscation have been noted in works such as CryptoHunt,
which is designed specifically for obfuscated binaries.
However, limitations such as slow performance due to
the large trace size, may reduce its applicability for large
scale projects. Considering that many tools seem to face
challenges with obfuscated binaries, we assert that in-
vestigating the effects of optimization and obfuscation
continues to be a compelling and critical avenue for future
research.

6.6. Impact of Different Algorithm Versions

We also carried out evaluations to determine whether
variations in a cryptographic algorithm affects the success
of its detection. As a case study, we analyzed different
variants of the Tiny Encryption Algorithm (TEA), including
standard TEA, XTEA, and XXTEA. While all the tools were
able to successfully detect TEA binaries with any of these
three variants, we observed some interesting details in the
detection results.

Algorithm [ DRACA | Signsrch

TEA * RC5 or RC6 - 50% | * TEA1_DS [32.]e.4]
* TEA - 67% * TEA encryption/decryption
* RCS or RC6 - 50%

XTEA * TEA - 34% * TEA1_DS [32.1e.4]
* RC5 or RC6 - 50% |

XXTEA * TEA - 67% TEA1_DS [32.le.4]

Table 5. OUTPUT WHEN EVALUATING DRACA AND SIGNSRCH WITH
DIFFERENT VARIANTS OF TEA

For example, as shown in Table 5, when using DRACA
to analyze binaries containing TEA or XXTEA, the tool
provides a confidence score. It tends to determine that a
binary program is more likely to contain TEA functions if
TEA or XXTEA is present. However, when analyzing bi-
nary programs containing XTEA, DRACA may incorrectly
identify RC5 or RC6 as being present in 50% of cases, and
TEA functions in only 34% of cases. In contrast, Signsrch
is able to detect TEA functions in all three binary programs
containing TEA, XTEA, or XXTEA, but it may identify
different TEA signatures in each binary.
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Future Research: Our evaluations indicates that the vari-
ant or version of a cryptographic algorithm plays a crucial
role in its detection, suggesting that existing tools might
struggle to accurately identify certain variants based on
their signatures alone. Currently, there is no approach that
focuses on this difference, which could be an interesting
future research path.

6.7. Impact of Intentional Evasion Tactics

We selected multiple (ransomware) malware binaries,
including CryptoLocker [41], CryptoWall [42], Locky [43],
TeslaCrypt [44], and Win32Dircrypt [45], to evaluate if
cryptographic detection tools are better or worse at finding
cryptographic algorithms in malware binaries (where authors
might intentionally try to obfuscate the presence of cryptog-
raphy) versus normal applications.

We tested the tools with these malware samples and
present the results in Table 6. It is worth noting that malware
may have different versions depending on the discovery
date, and detection results are highly dependent on these
versions. We found that the tools could detect cryptographic
functions in TeslaCrypt version 2 but failed to do so in ver-
sions 1 and 3. This suggests that the malware may employ
non-standard algorithms to evade binary analysis in certain
versions, increasing the difficulty of detection. Furthermore,
cryptographic functions in CryptoLocker’s September 10,
2013 version were detectable by the tools, but in the Novem-
ber 20, 2013, and January 22, 2014 versions, they were
no longer detectable. In the latter two versions, some tools
identified the presence of anti-debugging techniques in the
malware, which might explain why cryptographic functions
could not be detected anymore.

Malware [[ DRACA [ PEiD KANAL | Signsrch | Note
CryptoLocker_10Sep2013 X v v
CryptoLocker_20Nov2013 X X X anti-debug
CryptoLocker_22Jan2014 X X X anti-debug

CryptoWall X X X anti-debug
Locky X X X
TeslaCrypt_vl X X X
TeslaCrypt_v2 v v v
TeslaCrypt_v3 X X X
Win32Dircrypt X v/ v
Table 6. EVALUATION RESULTS FOR CRYPTOGRAPHIC FUNCTION

DETECTION IN DIFFERENT MALWARE VERSIONS

Future Research: Cryptographic function detection can
be a useful component in identifying malware, and ac-
cording to our investigation, current tools do not consis-
tently detect cryptographic functions within the malware
samples. This challenge has been noted in other research
as well, for example, CryptoHunt identified environment-
sensitive malware as a potential source of false negatives
in detection efforts. Therefore, cryptographic function de-
tection primarily focused on targeting malware could be a
highly relevant source of future research in this area.
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7. Discussion

We now provide a discussion backed by our evaluation
results and examination of existing work and implemented
tools, delving into broader issues that we discovered. This
includes discussing additional overarching future research
directions and key areas where improvements can be made
moving forward.

7.1. Approaches to Algorithm Detection in Tools

We start by discussing the detection results of a single
tool for different algorithms. We opted to evaluate 12 dis-
tinct algorithms (AES, DES, ECC, MD5, RC4, RC5, RSA,
SHA-1, SHA-256, TEA, XTEA, and XXTEA) along with
our microbenchmarks, various libraries, and a large-scale
project.

Based on our evaluation (see Table 9), we found that
PEiD KANAL, SignSrch, and Where’s Crypto can detect
most algorithms we selected. This was somewhat expected
as Where’s Crypto is a more modern detection tool. HCD
demonstrated average performance in our evaluation results.
Nonetheless, we came across cases where tools did not de-
tect cryptographic functions they were expected to identify,
indicating potential need to enhance detection accuracy.

Future Research: Current tools seemingly employ various
(often distinct) approaches compared to one another. Many
of these tools also provide developers with the opportu-
nity to expand and enhance their detection capabilities.
Therefore, future research could focus on improving ex-
isting technologies within individual tools and existing
approaches to achieve broader applicability with higher
detection rates, and to make it so that users do not need
to use different tools to best identify different algorithms.

7.2. AI/ML Approach

Artificial intelligence and machine learning (AI/ML)
have been extensively applied across various domains to ad-
dress complex problems. Previous works, like CryptoKnight,
have utilized machine learning techniques for cryptographic
function detection. However, in our evaluation, we found
that these tools did not exhibit satisfactory performance. We
attribute this issue not to the approach itself, but rather to
the fact that these tools typically only offer a demonstration
to showcase the potential application of AI/ML in this field.
The main problem lies in the lack of sufficient signatures or
analysis provided by these tools, which is likely the primary
reason for their low performance.

Future Research: While current AI/ML based tools
demonstrate the feasibility of utilizing AI/ML in crypto-
graphic function detection, they fall short in providing the
robust and comprehensive signature or analysis capabilities
necessary for accurate detection. These seem like promis-
ing future research directions.
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7.3. Lack of Support for Modern Cryptographic
Algorithms

Many modern cryptographic algorithms, such as general
Elliptic-Curve Cryptography (ECC) and more specifically
ECDSA and ECDHE, have found widespread use in diverse
applications [46] due to their advantages in terms of smaller
private key size and improved efficiency at equivalent or
higher security levels. ECDSA is utilized in a number of
areas, including electronic healthcare, banking, commerce,
and vehicles [47], and is currently supported by most major
libraries, including cryptlib, Crypto++, libgerypt, LibreSSL,
and OpenSSL. However, our evaluation reveals that existing
work lacks the ability to find such modern algorithms. As
such, this could be a rich area for future development and
improvement.

Future Research: As the prevalence of applications
adopting ECC continues to rise, the ongoing development
of cryptographic function detection has led to a disconnect
between the outcomes of these efforts and the real-world
applications that people are eager to test, leading to an
important direction for future research.

7.4. Comparative Detection of Similar Algorithms
Across Various Tools

Our evaluation helps provides insights from an algo-
rithmic perspective on how well different tools can detect
the same cryptographic algorithm. In our evaluation, we
test the tools’ abilities to find cryptographic functions in
different settings (optimization flags, compilers, etc.). Figure
5 shows the percentage of algorithms that can be success-
fully detected by a tool across all evaluation experiments
that we ran. We can see that TEA, RC5, and SHA can be
successfully detected in most experiments. However, AES,
and MDS5 can only be found in a few experiments, with
algorithms like RC4 and ECC not even being detected at
all.

From our observations, it is not evident that there exists
a consistent rule governing the ease of detecting specific
categories of cryptographic functions. For instance, when
considering two hash functions, MD5 and SHA, we note
markedly different results. Even within the same family
we find variations; TEA and RCS5, both belonging to the
block cipher family, exhibit detectability, while DES, an-
other block cipher, proves more challenging to detect.

1102

Future Research: Some cryptographic algorithms appear
to be more challenging to detect than others. However,
we have not observed a distinct pattern suggesting that
algorithms within a specific category consistently present
greater difficulty in detection. Therefore, future research
could focus on how to detect cryptographic algorithms that
appear to be harder to identify or investigate the underlying
factors that contribute to variations in the detectability of
algorithms within the same class.

7.5. User Experience

Considering the experience and insights we have gar-
nered from our evaluation process, we believe that dis-
cussing the developer experience is also an intriguing topic,
in terms of how developers interact with these tools and
their ease of use.

Older cryptographic detection tools, such as DRACA,
PEiD KANAL, and SignSrch, do not require developers
to compile and build the tools from source code. Devel-
opers can readily utilize these tools with supported oper-
ating systems. However, when compared to some better
performing tools, these user-friendly alternatives exhibit
lower performance and utility. For example, obfuscation
can disturb the binary analysis process of Signsrch, leading
to false negatives in the detection of certain cryptographic
algorithms. Furthermore, DRACA struggles to accurately
analyze packed executable programs, and consequently, it
can only provide a rudimentary analysis outcome, despite
its ease of use.

In addition to the aforementioned challenges, some tools
pose difficulties for users due to technological complexity
or data-related issues. Take, for instance, IDA Scope, Find-
crypt2, and Where’s Crypto, which all rely on IDA Pro.
IDA Pro is not a free, open-source software, and these tools
cannot be utilized by developers without it. Conversely, tools
such as CryptoKnight and other machine learning-based
techniques require users to provide substantial amounts of
data, which further compounds the difficulty of using these
tools.

However, these tools generally exhibit superior perfor-
mance when compared to user-friendly alternatives. For in-
stance, CryptoHunt consistently yields accurate analysis re-
sults for identification within obfuscated programs. Where’s
Crypto, one of the most recent cryptographic detection tools,
broadens the scope of analysis to encompass unfamiliar
and proprietary cryptographic primitives, without relying on
heuristics to select code fragments.

7.6. Challenges for Future Research

Based on our evaluation, we have identified several
challenges that make cryptographic function identification
difficult. In this subsection, we discuss some of these chal-
lenges, as we believe they may help inform future tool
development and areas of research.

Obfuscation. One of the major challenges in crypto-
graphic function identification is obfuscation. The initial
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purpose of obfuscation was to protect software intellectual
property [48] from malicious reverse engineering attempts.
However, malware authors adopted obfuscation techniques
as a way to avoid detection. Various types of obfuscation
techniques have been implemented to thwart any form of
detection. These obfuscation techniques can be primarily
categorized as: control-flow obfuscation, data obfuscation,
and layout obfuscation. For a variety of reasons, one might
still wish to identify cryptographic code even in the face
of such obfuscation techniques, particularly given its preva-
lence nowadays.

Control-flow obfuscation is the most common type of
obfuscation. A control-flow graph (CFG) [49] embodies the
graphical representation of the flow of a program. To hin-
der CFG-based detection, malware authors introduce tech-
niques such as including bogus control-flow [50], control-
flow flattening [33], and opaque predicates [51]. Similar
to control flow obfuscation, data obfuscation techniques,
like data aggregation and data splitting, attempt to hinder
approaches based on input/output relationships. For exam-
ple, one might split a single variable into two to prevent
detection. Layout obfuscation [52] scrambles the layout of
a program’s instructions while keeping the original syntax
intact. Layouts can be obfuscated by adding meaningless
classifiers, stripping redundant symbols, separating related
code, as well as adding junk code.

Implementation Variation. Despite having a well-defined
specification, cryptographic algorithms can be implemented
in a number of ways while still achieving the same result. In
addition, cryptography is not always implemented correctly
or exactly to spec. For example, buggy implementations of
the TEA algorithm were found [17] in malware such as
Storm Worm and Silent Banker. Hence, even if a detection
approach can find an ideal implementation of an algorithm,
there is no guarantee it can also detect all the implementation
variations of the same algorithm. Our evaluations in this
space are discussed in Sections 6.6 and 6.7.

Differences in Cryptographic Functions. There are fun-
damental differences in different classes of cryptographic
algorithms. Cryptographic features (see Section 2.2) present
in one algorithm may not be present in others. For instance,
the data avalanche effect [19] which says that an insignif-
icant change in the input parameters can make significant
differences in the output, works well for identifying block
ciphers. In the case of stream ciphers, there are no such
observations like data avalanching. Tools must be designed
to account for these differences if they wish to identify broad
classes of algorithms.

Compilers. The choice of compiler can significantly impact
the binary structure of a program in various ways such
as format, linking, inline functions, and compatibility with
different architectures. The incorporation of anti-analysis
techniques further adds to the complexity of cryptographic
function detection. Consequently, working with different
compilers can introduce numerous challenges. Our study
(Section 6.4) demonstrates how a tool’s detection capabili-
ties can vary greatly depending on the compiler used.
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Comparison to General Binary Analysis. Binary code
similarity analysis is an active area of research in the soft-
ware community. There has been a plethora of research [53],
[54], [55], [56], [57], [58], [59], [60] to compare two or
more binaries to identify their similarities or variances.
While such generic binary analysis techniques can be lever-
aged in the detection of cryptographic functions, future
researchers should bear in mind that detecting cryptographic
functions in binary code remains a multifaceted challenge.
Cryptographic algorithms exhibit significant variability in
terms of complexity and implementation. They often involve
intricate mathematical operations and employ various tech-
niques such as bit manipulation, modular arithmetic, and
logical operations. This complexity can pose difficulties in
identifying cryptographic functions without specific knowl-
edge of the algorithm being utilized. In addition, they can
be implemented in diverse ways and may not adhere to
consistent naming or calling conventions, rendering them
more challenging to identify through static analysis alone.

8. Conclusion

Cryptographic function identification has been a popular
area of study in both academia and industry. However,
we noticed a lack of consistent means for evaluation and
comparison among tools. As such, in this work we conduct
comprehensive reproduction and replication studies on all
existing work in the space. To complement the traditional
R+R studies, we developed a comprehensive testing and
evaluation framework which includes a number of modern
cryptographic algorithms and real world examples, that al-
low for the comparison of both existing and future work in a
uniform manner. Finally, we highlight major gaps in existing
work, especially as they relate to modern cryptographic
primitives and real-world use cases, and discuss a variety
of important avenues for future work.
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Appendix A.
List of Optimizations, Obfuscations, and their
Combinations for Our Evaluation Metrics

0)
1y
2)
3)
4)
5)
6)
7

No identification

Identification with optimization flag -O0
Identification with optimization flag -O1

Identification with optimization flag -O2
Identification with optimization flag -O3
Identification with optimization flag —Os
Identification with optimization flag: -Ofast
Identification with instruction substitution obfuscation:
-obs_sub

8) Identification
9)
10)

with control-flow flattening: -obs_fla
Identification with bogus control-flow: -obs_bcf
Identification with combination of obfuscation:
obs_sub, obs_fla, obs_bcf

Identification with combination of obfuscation and op-
timization: -obs_sub, obs_fla, obs_bcf, -O3

1)

Appendix B.
Procedure for R+R Evaluation

B.1. Steps in our Reproduction Evaluation

1) Obtain access to each tool; compile the tool if required,
following the provided instructions.

2) Set up the environment to replicate the tool’s original
configuration (follows the same operating conditions).

3) Obtain the original test cases for each tool. If un-
available, the reproduction evaluation will be skipped
(follows the same measuring system).

4) Execute each tool with the provided test cases to
reproduce the results (follows the same measurement
procedure).

B.2. Steps in our Replication Evaluation

1) Obtain access to each tool; recompile the tool on our
system if the source code is available.

2) Build and run each tool on Windows 10, Ubuntu 18.04,
and macOS Sonoma (follows the different measuring
system).
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3) Compile our custom benchmarks with the evaluation
metrics into binaries for testing.

4) Execute each tool with our benchmarks to assess repli-
cation capability (follows the different location on mul-
tiple trials).

Appendix C.
Tools

We provide introductions to the tools analyzed in this
work. For each tool, we give a high level overview, highlight
key features for a user, and provide a discussion on its
strengths and weaknesses, as relevant.

C.1. Aligot

Summary. Aligot [17] is based on the assumption that the
input-output relations in a cryptographic function remain un-
changed even if there is obfuscation. It performs an interloop
data-flow analysis to identify cryptographic parameters and
then performs a comparison with a reference implementa-
tion. The authors successfully evaluated the tool to identify
four different cryptographic functions: TEA, RC4, AES and
MDs5.

Highlights for User.
« Requires the user to compile the tool with Intel Pin

o Requires an earlier version of Intel Pin and Python
library networkx (latest does not work)

Other Discussion.

« Aligot has not been updated to accommodate the latest
dependency changes. Specifically, the Python library
"networkx" uses different data types that cause crashes
in Aligot

Additionally, the Aligot tracer has not been adapted to
the latest version of Intel Pin, and the tested version
appears to be discontinued

C.2. CryptoHunt

Summary. CryptoHunt [18] introduces the bit-precise
symbolic loop mapping technique to identify cryptographic
functions. Using this technique the tool captures the seman-
tics of possible cryptographic algorithms within a loop and
then performs guided fuzzing to efficiently match boolean
formulas with known reference implementations. It shows
its efficacy on commonly used cryptographic functions such
as TEA, AES, RC4, MDS5, and RSA under different control
and data obfuscation scheme combinations.

Highlights for User.

« Requires the user to compile the tool with Intel Pin
(2.13, 3.2, and 3.28 are tested)

« Requires the user to indicate the reference loop

« Higher accuracy rate and detection results in obfuscated
binaries

Other Discussion.
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o Depending on the binary program size, CryptoHunt
may find 10,000 loops in the binary, which needs to
be compared with the reference one by one. The long
analysis time may not suitable for a large program.

C.3. CryptoKnight

Summary. CryptoKnight [27] employs a Dynamic Con-
volutional Neural Network (DCNN) to learn from variable-
length control flow diagnostics output obtained from a dy-
namic trace, and is able to detect AES, RC4, Blowfish,
MD5, and RSA.

Highlights for User.

o Can easily integrate new samples through the scalable
synthesis of customizable cryptographic algorithms

o Automated and limits user interaction

« High accuracy rate (96%)

Other Discussion.

o Has been evaluated on GnuPG and a real-world ran-
somware binary ’GonnaCry’ and can successfully iden-
tify the use of AES and RSA

C.4. Draft Crypto Analyzer (DRACA)

Summary. DRACA [11] targets preliminary detection
and analysis of cryptographic algorithms within executables.
Although DRACA is implemented as a command line utility
for x86/Win32, it can also analyze Unix ELF binaries, Java
applets, as well as 16- and 32-bit DOS Windows executa-
bles.

Highlights for User.

o No compiling is needed
e Can be directly run by passing the target binary pro-
gram

Other Discussion.

o DRACA can only provide a rough idea of what kind
of algorithms to look at without actual spending time
on decompilation and code analysis.

« Detection result cannot be used without further analy-
sis.

C.5. FindCrypt2

Summary. FindCrypt2 [16] has been implemented as a
plug-in support for IDA Pro [61] which searches constants
used in the initialization of cryptographic algorithms. It can
detect commonly used encryption algorithms.

Highlights for User.

e Requires IDA Pro, a commercial disassembler soft-
ware, which is not free
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C.6. HCD

Summary. HCD [14] detects roughly 90 hash and cryp-
tographic algorithms and compiles for portable executable
files with a GUI interface and Shell integration, Command
line support.
Highlights for User.

« No compiling is needed

e Can be directly run by passing the target binary pro-

gram

Other Discussion.
« Can only detect cryptographic functions in executable
file for Microsoft Windows (.exe). This tool does not
support the analysis of Unix based binary programs.

C.7. PEiD KANAL

Summary. PEiD KANAL [12] is a plug-in for PEiD,
searching for cryptographic algorithms with a specific sig-
nature such as fixed s-boxes, permutation tables, and initial-
ization values. It searches for connections to identified code
or data and find its associated address.
Highlights for User.

o No compiling is needed

o Can be directly run by passing the target binary pro-

gram

C.8. Signsrch

Summary. Signsrch [15] is another IDA Pro plug-in which
aims to detect not just encryption algorithms, but also com-
pression algorithms, multimedia, etc. The tool searches for
known signatures as well as allows a user to add their own
signature.
Highlights for User.

e No compiling is needed

e Can be directly run by passing the target binary pro-

gram

C.9. Where’s Crypto

Summary. Where’s Crypto [34] is an IDA SDK based tool,
aiming to automatically identify cryptographic primitives in
binaries. Where’s Crypto can detect cryptographic functions
that has as-of-yet unknown primitives if it falls within a
taxonomical class of well-defined primitives.
Highlights for User.

« Requires IDA Pro, a commercial disassembler soft-

ware, which is not free
o Supports unknown cryptographic primitives

Appendix D.
Additional Tables

This appendix contains the complete results of all of our
replication and reproduction studies.
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Tool Cryptographic Algorithm Micro-Benchmark
AES [ DES [ MD5 | RC4 [ RC5 | RSA | SHAI | SHA256 [ TEA | File | /O [ Math [ Matrix | Network
False Positive 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
DRACA False Negative || 100% | 100% | 69% 0% 0% 0% 0% 0% 28% 0% 0% 0% 0% 0%
True Positive 0% 0% 31% 0% | 100% | 0% 100% 0% 2% 0% 0% 0% 0% 0%
True Negative 0% 0% 0% 100% | 0% 100% | 0% 100% 0% 100% | 100% | 100% | 100% 100%
False Positive 0% 0% 0% | 100% | 0% 0% 0% 0% 0% 0% 0% 0% 74% 0%
CryptoKnight False Negafive 0% 0% | 100% | 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
True Positive 100% | 0% 0% 0% 0% | 100% | 0% 0% 0% 0% 0% 0% 0% 0%
True Negative 0% 100% | 0% 0% 100% | 0% 100% 100% 100% | 100% | 100% | 100% | 26% 100%
False Positive 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Finderypt2 False Negative || 100% | 0% 69% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
True Positive 0% 100% | 31% 0% 100% | 0% 100% 100% 0% 0% 0% 0% 0% 0%
True Negative 0% 0% 0% | 100% | 0% | 100% | 0% 0% 100% | 100% | 100% | 100% | 100% 100%
False Positive 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 0%
Signsrch False Negative 0% | 100% | 69% 0% 0% 0% 31% 0% 0% 0% 0% 0% 0% 0%
True Positive || 100% | 0% 31% 0% | 100% | 0% 69% 100% | 100% | 0% 0% 0% 0% 0%
True Negative 0% 0% 0% | 100% | 0% | 100% | 0% 0% 0% | 100% | 100% | 100% | 0% 100%
False Positive 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Where’s Crypto False NegAa‘tive 0% 0% 69% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
True Positive || 100% | 100% | 31% 0% 0% 0% 100% 100% | 100% | 0% 0% 0% 0% 0%
True Negative 0% 0% 0% 100% | 100% | 100% | 0% 0% 0% 100% | 100% | 100% | 100% 100%
Table 7. PERFORMANCE METRICS FOR TOOL EVALUATION: FALSE POSITIVES, FALSE NEGATIVES, TRUE POSITIVES, AND TRUE NEGATIVES
Tool Aligot Clr{y]f’;f (I:(rzf’gtt‘l’t DRACA | FindCrypt2 | FALKE-MC | HCD | Kerckhoff Ki}i | signsren gl‘;f;:g; Vélr“ye;f:
ADLER32 v
AES (Rijndael) 4 4 4 v v v v 4
BASE64 4 v
Blowfish v v v v v
Camellia v
CAST v v
CAST-256 v v v
CRC32 v v v v
DES v v v v v
EC v
GOST v v
HAVAL v v v
MARS v v v
MD2 v v
MD4 v v
MD5 v v 4 v v » » v v v
RC2 v v 3 3 v
RC4 v v v v E E
RC5 7 7 p p 7 7
RC6 v v = = v v
Ripemd-160 v v
RSA v v v/
SAFER v v v
SHA-1 v v v v v
SHA-256 v v v v
SHA-512 v v v
SHARK v 4
Skipjack v v v
Square v v
TEA v v v v
Tiger v v v
Twofish v v v
WAKE v v
‘Whirlpool v v
XTEA v

Table 8. CRYPTOGRAPHIC ALGORITHM DETECTION SUPPORT AS STATED IN THE PAPER OR DOCUMENTATION FOR EACH TOOL
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