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Abstract

Identifying the scaling rules describing ecological patterns across time and space is
a central challenge in ecology. Taylor's law of fluctuation scaling, which states that
the variance of a population's size or density is proportional to a positive power of
the mean size or density, has been widely observed in population dynamics and
characterizes variability in multiple scientific domains. However, it is unclear if
this phenomenon accurately describes ecological patterns across many orders of
magnitude in time, and therefore links otherwise disparate observations. Here, we
use water clarity observations from 10,531 days of high-frequency measurements
in 35 globally distributed lakes, and lower-frequency measurements over multiple
decades from 6342 lakes to test this unknown. We focus on water clarity as an
integrative ecological characteristic that responds to both biotic and abiotic drivers.
We provide the first documentation that variations in ecological measurements
across diverse sites and temporal scales exhibit variance patterns consistent with
Taylor's law, and that model coefficients increase in a predictable yet non-linear
manner with decreasing observation frequency. This discovery effectively links
high-frequency sensor network observations with long-term historical monitoring
records, thereby affording new opportunities to understand and predict ecological
dynamics on time scales from days to decades.
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INTRODUCTION

et al., 2019). However, patterns of ecological variability
are often thought to be unique to a specific spatial or

Characterizing variability in time and space is essential
for understanding diverse ecological phenomena, includ-
ing the stability and predictability of ecosystem prop-
erties and the potential for regime shifts (Cohen, 2014;
Collins et al., 2018; Scheffer et al., 2001; Soranno

temporal scale and have corresponding unique causes
and consequences (Levin, 1992). Understanding factors
that regulate variability across scales, as well as identi-
fying possible scale-invariant phenomena, is a key chal-
lenge in macrosystems ecology (Rose et al., 2017). Such
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a predictive scaling relationship would provide a miss-
ing link between increasingly available high-frequency
datasets and long-term infrequent observations, thereby
improving forecasting capacity in an era of rapid global
environmental change (Heino et al., 2021).

Taylor's law, also referred to as fluctuation scaling,
has traditionally been applied to understand variabil-
ity in the size or density of biological populations, but
has also been observed in a wide variety of spatial and
temporal studies in many disciplines (Eisler et al., 2008;
Taylor, 1961, 2019). As originally proposed, Taylor's law
asserts that, in many populations, fluctuations in pop-
ulation sizes are proportional to some power of average
population size:

o’ =ap’ ey

where ¢ is the variance, y is the mean population size, and
a and b are positive constants (Taylor, 1961). Thus, b equals
the percentage increase in the variance o2 associated with
a 1% increase in the mean p. One interpretation of Taylor's
law is that the exponent b represents the amount of spa-
tial or temporal clustering or aggregation, with higher val-
ues of b signifying more clustering or less synchrony over
space and time (Giometto et al., 2015). Similarly, though
not as extensively studied in the literature, increases in the
coefficient a correspond to greater variability over time or
space, uniformly for every value of the mean p.
Understanding how coefficients in Taylor's law
change with observation frequency may make it possible
to understand and predict ecological variability across
large temporal scales. However, it is currently unclear
what regulates b for many ecological variables, or if this
coefficient exhibits discernible patterns across observa-
tional frequencies. Many explanations such as density
dependence, social behaviour, and species interactions
have been invoked to explain patterns in b in popu-
lations (Kilpatrick & Cruz, 2014; Perry, 1994; Taylor
& Taylor, 1977). However, the large variety of possible
drivers has also led to hypotheses that several process-
independent explanations may exist (Cohen, 2019; Cohen
& Xu, 2015; Giometto et al., 2015; Xiao et al., 2015).
Analysis of water clarity measurements that span
many orders of magnitude of time and space may re-
veal how Taylor's law coefficients change as a function
of temporal and spatial scale of observation. Water clar-
ity is a key indicator of ecological state and overall lake
water quality, regulates a broad range of biological and
physical behaviours in ecosystems, and is responsive to
both biotic and abiotic drivers such as phytoplankton
biomass, dissolved organic matter, and suspended sol-
ids (Adrian et al., 2009; Kirk, 1994; Williamson et al.,
2009). High-frequency (i.e., sub-daily) water clarity mea-
surements are available from sensors deployed on many
waterbodies around the world. When compared across
diverse sites, ecological sensor networks and the high-
frequency measurements they generate may permit the

characterization of variability across several orders of
magnitude in both time and space (Rose et al., 2016;
Rusak et al., 2018). However, the relative youth of ecolog-
ical sensor networks prohibits their application to under-
standing patterns at longer time scales. Complementing
sensor networks, low-frequency measurements of water
clarity have been made for many decades, and over a
century in some cases (Lottig et al., 2014). Integrating
in situ high-frequency environmental measurements
with more traditional long-term monitoring could make
it possible to characterize ecological variability from
days to decades, and to predict variability at one tempo-
ral scale from measurements made at another (Meinson
et al., 2016; Rose et al., 2016).

Here, we sought to determine if variability in water
clarity was consistent with Taylor's law across a wide
range of lakes and temporal scales, and if so, the degree
to which coefficients describing the relationship between
mean and variance in water clarity exhibited consistent
changes across temporal scales. Using high-frequency
(daily-averaged) light measurements from 35 lakes across
the globe (Figure S1; Table 1), we calculated the variance
and mean for each lake using moving windows ranging
from 2 to 61 days. Complementing these high-frequency
measurements, we used a large US national-scale long-
term dataset to calculate the mean and variance in water
clarity for over 6000 lakes with a median sampling du-
ration of 12years (range: 61 days to 92years). We exam-
ined how Taylor's law coefficients changed with a time
window of increasing duration, and if the relationship
was consistent between days and decades of data. We
hypothesized that ¢ and » would increase with decreas-
ing sampling frequency, consistent with greater possible
variability across space and time when water clarity was
observed at longer time-steps. Finally, we examined the
magnitude of typical changes in water clarity in relation
to ecological processes and sampling design.

MATERIALS AND METHODS
Study sites

We obtained in situ light measurements from 35 globally
distributed lakes (Figure S1). Overall, there was some
bias toward Northern hemisphere lakes, with eleven lakes
in North America, eighteen in Europe, four in South
America, and two in New Zealand (Table 1). Data were
obtained from paired high-frequency sensors (Table SI)
or vertical profilers measuring light at least hourly for
a duration of at least 1 month. However, one lake with
a shorter duration of data was included (Hawksbury
Lagoon, 12days of data) because it expanded the range
of average light attenuation (K, m™") values across all
the lakes. Sensor types and deployment depths varied,
but most lakes used either Onset (seventeen lakes) or
LI-COR sensors (fifteen lakes; see Table 1). NEON data
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g~ o o was obtained from the NEON data portal for five sites
Sela S S|z (NEON, 2020a, 2020b).
< In addition to the high-frequency data, lower-
8 L % frequency water clarity data were obtained from the US
E~la X 3| E Water Quality Portal (WQP) (Read et al., 2017) by down-
§ 'é 32 & E loading all recorded Secchi depth measurements for all
5 lakes, reservoirs, and impoundments. The data retrieval
g o 2 returned over 1.5 million observations from an initial
é w5 < 8| 2 total of 60,363 lakes, nearly all of which are in the United
2l 2 = States
£ .
o !
S &)
22
=% |m o = z Light attenuation calculation
o
o
8 g To convert light measurements from paired sensors
g PN % into light attenuation, we used the following equation
z § £ (Kirk, 1994):
fzl. . LS
=2|2 & 3|2 K, = 1 lEd(Zl)
: .= n @
) - - ; where E (2) is the measurement of downward irradi-
§ (e g 4= ance at depth z and z, > z;. In the cases where more
= “ g than 2 underwater light sensors or a vertical profiler
e E‘ . were used (16 lakes), K, was calculated as the slope
s = oo 53 of the fitted regression line of In(E,) versus depth.
=l DR Light measurements (Table S1) were obtained as PAR
é § (pmol/mzls), Lux (lumens/m?), or wavelength-specific
o 5’2 measurements (pWW/cm?/nm). Although Lux and PAR
§§ Eg both span 400-700nm in the electromagnetic spec-
ES|e 2 NS é‘% trum, they are not equivalent spectra. While Lux can
nos o s5e be converted to PAR by calibration using in situ mea-
o~ o < T%:; surements (Long et al., 2012), only 4 of the 17 lakes
) § i 5 gk using Lux measurements had this conversion avail-
E a5 g § able. Therefore, Lux measurements were not converted
£ ¢ to PAR for the purpose of K, calculation. A detailed
e g 2 g % treatment of potential limitations and assumptions
g2 2 ¥ =23 on sensor design and deployment is included in the
- ! {ig supplemental section of this paper. For comparison,
ool o o ‘E f‘é wavelength-specific measurements were converted to
gz|7 2 7§ g PAR as the sum of all light measurements between 400
g2 and 700 nm before calculating K ;.
E ‘—éé To ensure calculations were minimally influenced
o & 53 by the effects of sun angle and low-light conditions, we
E‘E z 2 only used light measurements taken within 3h of local
AR|ZS 2T % solar noon. Generally, removing data points outside of
EN: this time window resulted in a small shift in the magni-
. & 8 & = § tude of the time series (Figure S2). While sun angle will
219 g < E 2 impact light attenuation based on season and latitude
2 al= < A 2E (Kirk, 1994), this was not found to affect daily rates of
é § —5; change, and the effects of seasonal sun angle were not
§ B %é considered in this analysis, except for the consideration
= g5 . 32 of albedo when necessary. Additional discussion of the
- |- % :‘c:’ g :éb effects of sun angle on the data is included in the sup-
f E 2 S 3 § £ plemental text. For lakes with an above-water sensor, we
@ 2535 E|%E adjusted surface irradiance to irradiance just below the
<| S|2E E|3E .
= == surface according to Paulson and Pegau (2001):
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Ey =(1-)E, 3)

where Eg‘ is irradiance just below the surface, a is albedo,
and E, is downwelling surface irradiance. We estimated
albedo based on the solar zenith angle (®__ ) according to
(Briegleb et al., 1986):

Zen

a=i< 2.6
100 l.lcos(d>zen)1'7 +0.065

We calculated all values of solar zenith angle based
on local time and latitude using the R package suncalc
(v. 0.5.0).

Interferences such as wave focusing, buoy shadows,
and wiper placement can affect light attenuation calcu-
lations. To reduce their effect on daily light attenuation
estimates, after calculating K, for each set of light mea-
surements, we removed data points where the ratio of
irradiance at the lower light sensor to that at the upper
light sensor was outside the first and third quartile of
the distribution for each day's observations (Figure S2).
Data points where more irradiance was measured at the
lower sensor than the upper sensor were then removed,
obvious erratic measurements were manually removed
(i.e., measurements where sensors were not underwater
or were affected by fouling), and the remaining measure-
ments were used to calculate light attenuation as a daily
average. Days were removed from further analyses if
more than 75% of the measurements within the daily 6-h
window were removed by this process (n=443 days), and
the remaining days were used to generate a time series
(Figure S3).

We calculated the euphotic depth (z_,, m) as the depth
of 1% irradiance using (Kirk, 1994):

Zow= 7 (5)

While euphotic depth is an apparent optical property
that depends on the total irradiance and variation of
K, with depth (Kirk, 1994), this calculation presents an
estimate of euphotic depth that is useful for comparing
potential changes in primary production between days
based solely on changes in K, while holding all other fac-
tors constant.

We next calculated uncertainty due to sensor error in
K, as (Zheng et al., 2002):

2
2 1 2, .2

= 6
Uiq <22_21> (] +u3) (©)

where u, ,is the uncertainty in the calculated K ;and u, and
u, are the uncertainties in the paired light sensors. Typical
sensor uncertainty has been reported in the literature as
3.8% for LI-COR sensors (Long et al., 2012), and 12% for

Onset sensors (Gardner et al., 2020). We assumed sensor
uncertainty was constant for the duration of the studied
period, so u,, depended only on the distance between
paired sensors and the sensor type. For vertical profiler
measurements, we assumed u,, to be 3.8%.

Water clarity measurements (reported as Secchi disk
depth) from the WQP dataset were filtered to include

+ 15[cos(®,e, ) — 0.1] [cos (D, ) — 0.5] [cos (D, ) — 1]> “)

only measurements of at least 10cm and no greater than
30m, and only lakes with at least 61 observations. This
reduced the total number of lakes to 6342 from the WQP.
We then converted all measurements into units of meters
and transformed into K, as (Padial & Thomaz, 2008):

K;=2%SD™"7® (7)

where SD is Secchi depth. Although there is no universal
transformation from Secchi depth to light attenuation, we
performed this transformation for easier comparison to
the high-frequency light measurements.

Variability calculations

To test whether Taylor's law describes variability in light
attenuation, we calculated the rolling mean and vari-
ance for each time series using a centered moving win-
dow ranging from 2 to 61 days. We chose 61 days as the
upper limit for our analysis because not all lakes have
a sufficiently long data record to allow for larger time
windows, and 61 was the last window at which more than
50% of our lakes could be included. The moving window
was applied individually to each point in the time series
such that points were included multiple times in rolling
mean and variance calculations (i.e., the time windows
overlapped). To confirm that trends in ¢ and b with re-
spect to a changing time window were not the result of
varying sample sizes (Downing, 1986), we selected only
lakes with at least 30 data points available at a 61 day
time scale (n=21) and sampled 30 data points from each
lake at each time scale after calculating the rolling mean
and variance. We then fitted a linear regression to the
log—log plot of the rolling variance vs the rolling mean for
each window size across the 21 lakes (using all 30 unique
sampled measurements from each lake), which was used
to calculate the parameters of the power equation:

b,
o? = au! ®)

where af is the variance in K, for time window 7 across
all lakes, y, is the mean K, for time window 7 across all
lakes, and a and b are positive constants. Calculating the
rolling mean and variance for equal window sizes in each
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lake and sampling an equal number of points removed the
influence of the sensor deployment times on the analysis.
While applying a linear regression to the log variance and
log average using this method resulted in autocorrelated
residuals (Xu & Cohen, 2021), we determined that was
not an issue in our analysis as we are specifically look-
ing at the effects of autocorrelation in the time window
used for Taylor's law. Trends in ¢ and b were assessed using
Spearman's rank correlation. For the lakes from the WQP
dataset, we simply calculated the variance and mean light
attenuation across the full observation period for each
lake. We also divided the WQP data by geographic re-
gion in the United States (Northeast, Southeast, Midwest,
Southwest, and West; based on Read et al., 2017) and
assessed the fit of Taylor's law across regions, using an
ANCOVA and paired ¢ test post hoc analysis to test for
regional differences (Table S2). Similar to lakes with high-
frequency sensor measurements, we sampled an equal
number of points (=66, which was the number of lakes
from the region with the least data) from each region to
ensure there was no sample size bias. To confirm that a
linear model was the best fit for all data, we compared
a linear model to polynomial models using the Akaike
Information Criterion (AIC) score. AIC scores confirmed
that linear models were the best fit in all cases. We also
used WQP classifications to assign each lake as either a
natural lake (n=1345) or reservoir (n=1796). We then sep-
arately calculated coefficients from Equation (1) for each
lake type and used ANCOVA to test for a significant dif-
ference in estimates of b.

We repeated this analysis using the entire available
dataset regardless of the number of data points available
at each time window for both the global suite of high-
frequency sensor lakes and the WQP lakes. Fitting the
model to unequally sized distributions did not alter any
of the trends observed, although the magnitude of the b
coefficient decreased slightly (Figure S4).

We also calculated the magnitude of daily change for
both light attenuation (AK ) and euphotic depth (Az_ ) as
the absolute difference between each day and the previous
day, as well as absolute percent change. We also calculated
changes for time windows ranging from 1 to 16 days apart,
as both a single observation and a cumulative observa-
tion. Single observation changes were recorded as the ab-
solute difference between day n and day 1, where day 1
is the date of original measurement. Cumulative changes
were recorded as the sum of all absolute daily changes
between day 1 and day n. We chose 16days as the upper
limit (rather than 61 days) for these analyses because it is
the return time of the Landsat satellites and therefore rep-
resents a commonly used sampling window.

Across-lake comparisons

Across the 35 globally distributed lakes, water chemistry
and trophic state data were collected at each study lake

using a combination of in situ sensors and laboratory
analyses. NEON data was obtained from the NEON
data portal for five sites (NEON, 2020a, 2020c). We
calculated average values of chlorophyll a, dissolved or-
ganic carbon (DOC), fluorescent dissolved organic mat-
ter (fDOM), and turbidity using data from the same time
that light data was collected whenever possible. Where
this was not possible, long-term means were used if avail-
able. We used these data to assess potential optically ac-
tive substance contributions to variation in water clarity.
Specifically, we assessed if water quality or lake attrib-
utes (chlorophyll ¢, DOC, fDOM, turbidity, catchment
area, and residence time) were significant predictors of
residuals in Equation (1).

Water chemistry data from the WQP sites were col-
lected as described by Read et al. (2017). We used these
data and lake origin classifications (constructed reser-
voir versus natural lake) to understand potential drivers
of differences in Taylor's law coefficients; see supplemen-
tal information for further details.

Using high-frequency sensor data from sites with
incident above-surface PAR (n=9) we calculated the
coefficients from Equation (1) (Taylor's law) applied to
incident PAR data. We then compared this coefficient
with the slope coefficient from high-frequency water
clarity data from these same sites. This analyses enabled
us to assess if the observed variability in water clarity
was purely a function of variation in incident light or
whether the variance patterns indicated that water clar-
ity was responsive to other ecological processes.

RESULTS

We discovered that the relationship between variance in
water clarity (measured as the light attenuation coeffi-
cient K ;, m~') and mean water clarity was consistent with
Taylor's law in both our short-term, high-frequency, and
long-term, low-frequency datasets. At high frequencies,
the data followed Taylor's law at all time windows rang-
ing from 2 to 61 days across lakes (Figure 1). However,
the nature of this relationship changed with the length of
time over which water clarity was averaged, and the fit of
the linear relationship of log variance to log mean (meas-
ured as R?) increased from 0.46 averaging over 2days
to 0.87 averaging over 61days. Both parameters from
Equation (1) (a, b) significantly increased with the size of
the time-averaging window; a (Spearman's rank correla-
tion, p=0.99, p<0.001) increased from 0.0016 averaging
over 2days to 0.028 averaging over 61 days (Figure 1a),
and b (Spearman's rank correlation, p=0.85, p<0.001) in-
creased from 2.31 averaging over 2days to 2.76 averaging
over 61 days (Figure 1). These coefficients both increased
asymptotically and these same patterns were observed
whether overlapping or non-overlapping observation
windows were used. While » and R? both appear to ap-
proach a maximum of about 2.8 and 0.9, respectively,
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FIGURE 1 Values of (a) a, (b) b, and (c) R’ for Equation (8) obtained from fitted regressions of log-log plots of the variance in light

attenuation versus the mean light attenuation for a moving time window ranging from 2 to 61 days. After applying the moving window to each
lake, 30 points were sampled from the time series to avoid overlapping time windows (d) Log-log plots of variance in light attenuation versus
the mean light attenuation for time windows ranging from 2 to 61 days (indicated at the top of each plot). Points represent individual samples,
and the solid line represents the power function as described by (a), (b), and (c) for all lakes. For all plots in (d) =630 (30 points each for 21

lakes).

a kept increasing in the 61-day time window. When the
variance and mean were calculated over the entire pe-
riod available for each lake, regardless of differences in
the observation length of each lake, ¢ was 0.09, b was
2.27 and R* was 0.88 (Figure 2). We found no signifi-
cant relationship between residuals for this relationship
and lake or water quality attributes. However, we found
that eutrophic and dystrophic lakes had greater abso-
lute residuals than mesotrophic or oligotrophic lakes

(Figure S5) The b coefficient applied to incident PAR
was 1.2, whereas the coefficient for water clarity meas-
urements from these same lakes (n=9) was substantially
higher (3.0).

Taylor's law was also satisfied using our long-term (de-
fined as a sampling interval of at least 61 days) water clar-
ity data measured in 6342 US lakes (Figure 3a; n=6342
lakes, »=2.71, R?=0.81). For these lower-frequency ob-
servations, the median number of observations and
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FIGURE 2 Log-logplot of variance in light attenuation versus
the mean light attenuation using the entire time series available for
each lake, so that there is only a single data point per lake. a=0.09,
b=2.27, R*=0.88.

duration of available water clarity measurements were 48
observations and 12years per lake, respectively. We also
found that b varied significantly across US geographic
regions with b ranging from 1.95 to 3.01 (Figure 3b-f;
Table S2). Similarly, b was significantly (p<0.001) lower
for reservoirs (b=2.20) than natural lakes (b=2.74)
(Figure S6).

For the magnitude of daily changes in water clarity,
similar to Taylor's law, we found a strong power rela-
tionship (AK,=0.10 ,ul'l, R>=0.84, 2<0.001) between the
average daily change in water clarity and the average
water clarity coefficient of each lake over the measured
timespan (Figure 4a). However, lakes that experienced
smaller AK, exhibited much greater daily changes in
the estimated depth of the euphotic zone (defined as the
depth range from the surface to where 1% of surface light
remains) (Figure 4b). The relationship between changes
in euphotic depth (Az_ ) and average light attenuation
was also described by a power function (Azeu:0.56u_0'86,
R>=0.68, p<0.001). A large K ,corresponds to a small eu-
photic zone because light is more rapidly attenuated, but
large changes in K, do not necessarily represent equally
large changes in euphotic depth. For example, the larg-
est single observed daily AK ; was 20m™" in Hawksbury
Lagoon, an extremely shallow, hypertrophic, polymictic
lake in New Zealand, which corresponded to a change
in euphotic depth of only 0.12m. On the other hand, a
AK, of just 0.07 m~'in Lago Cochrane, a deep oligotro-
phic lake in Chile, corresponded to a change of 22m in
euphotic depth. However, for both lakes, there was a sim-
ilar change in euphotic depth as a fraction of lake depth
(18% and 22% of the mean depth, respectively).

10 4
10" 4

Var(Kg) (m™)

T T T
10° 10’ 10° 10’ 10° 10’
Average Ky (m*1)

FIGURE 3 Variance in light attenuation (K,) versus average
K, calculated from at least 15 Secchi depth measurements spanning
at least 61 days in lakes across (a) the entire US national dataset
(y=0.05x>"", R?=0.81, p<0.001, n=6342), (b) the US Midwest
(y=0.06x>%3, R*=0.86, p<0.001, n=66), (c) the US Northeast
(y=0.05x>"", R?=0.73, p<0.001, n=66), (d) the US Southeast
(y=0.06x>%, R*=0.70, p<0.001, n=66), (¢) the US Southwest
(y=0.2x"%, R*=0.66, p<0.001, n=66), and (f) the US West
(y:O.lx“O, R2:0.81,p<0.001, n=66). For each of the previous
equations the null hypothesis, that the slope is equal to zero, was
rejected. An equal number of points were sampled from the regions
used in (b—f) to avoid the influence of sample size on results.

Daily percent change in water clarity across lakes
was highly variable and displayed no discernible pat-
tern (Figure 4c), suggesting that proportionally larger
changes are no more frequent in low-clarity lakes than
in high-clarity lakes. While large daily changes in water
clarity were occasionally observed in most lakes, they
were much less common than smaller changes; the me-
dian average daily percent change across all lakes was
10% (range: 2%-43%). No trends were observed in re-
lation to different sensor manufacturers, measurement
frequency, or number of sampled days. For example,
both the second highest (Lake Glubokoe, 38%) and low-
est (Lake Gribsoe, 2.0%) average daily percent changes
were calculated from Onset sensors measuring at 10-min
intervals.

Both cumulative and observed absolute changes in
water clarity and euphotic depth increased roughly
linearly with time (Figure S7). For example, averaged
across the 35 lakes for which high-frequency data
were available, the cumulative absolute change in the
euphotic zone was 20m at 16days. In contrast, com-
paring any pairs of days 16days apart, the estimated
euphotic zone depth differed by 2.1 m on average, in-
dicating that much of the short-term change in water
clarity represents variability around the mean, rather
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FIGURE 4 Average daily change (a) in light attenuation (K ) as a magnitude, (b) euphotic depth, and (c) light attenuation as a percent
change against average light attenuation for each lake. The euphotic zone represents the depth range over which photosynthesis can occur.
Error bars in (a) and (b) represent the standard error in average daily change, and the lines represent the best fitting linear model on log-log
coordinates. Linear relationships on log—log plots are equivalent to power functions, and the fitted regressions yield: (a) y=0.10;4“, R>=0.84,
p<0.001 and (b) y=0.56,% R*=0.68, p<0.001. In (c), colours define the sensors used, and point size represents the number of sampled days.

than consistent directional change. This same general
observation held true individually in each of our lakes.
To determine how much variability in water clarity
would be missed when sampling at different intervals,
we calculated the ratio of the observed change in water
clarity to the cumulative change in water clarity up
to l6days for each lake except Hawksbury Lagoon,
since only 12days of data were available for this lake
(Figure 5). We found that, on average, 50% of the vari-
ability in water clarity is missed if the sampling fre-
quency is 3days, while 75% is missed using a sampling
frequency of 8 days.

DISCUSSION

Using water clarity as an integrative ecological at-
tribute, we demonstrate that ecological variability is
consistent with Taylor's law across lakes from days
to decades. Furthermore, model coefficients describ-
ing the power-law relationship between the mean and
variance increase in a predictable way with increasing
time intervals, such that the b coefficient at roughly
2months (b=2.76) is similar to the value observed at
a decadal scale (h=2.71). Our discovery effectively
links the behaviour of variance across many orders
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0.751

0.25

Proportion of variation observed
o
(6)]

1 4 8 12 16
Sampling rate (days)

FIGURE 5 Theratio of daily change in light attenuation
measured as a single observation n days from the original
measurement to daily change in light attenuation as a cumulative
day-to-day change for all n days since the original measurement,
where x=n days. Points represent the average ratio for each lake at

n days, and grey lines represent fitted power functions for each lake.
The thick black curve represents the average power function applied
to all lakes, y=x""%". Thin black lines show the average number

of days required for the ratio to reach values of 0.75, 0.5, and 0.25.
The y axis can be interpreted as the proportion of potential daily
variation that is observed using the sampling frequency on the x axis.
Hawksbury Lagoon was excluded from this figure since only 12days
of data are available.

of magnitude in water clarity, demonstrating the po-
tential to predict variance at one temporal scale from
that observed at another scale. These insights link
high-frequency measurements to long-term ecological
records. This research is the first we know to test and
confirm Taylor's law using high-frequency ecological
measurements, which are becoming increasingly avail-
able via numerous sensor networks.

Changes in water clarity, despite being mechanisti-
cally governed by variation in both biotic and abiotic
characteristics (Kirk, 1994; Morris et al., 1995; Rose
et al., 2014), exhibit predictable behaviour across a wide
range of temporal scales and across sites. Both « and b
increased with the averaging window used, which is con-
sistent with our explanation of a greater degree of vari-
ability and a lack of synchrony across sites at larger time
scales (Reuman et al., 2017). The dependence of b on the
size of the averaging window has also been observed
in temporal fluctuations in the stock market (Eisler &
Kertész, 2006) and complex network traffic (Duch &
Arenas, 2006), and in the spatial distribution of urban

facilities (Wu et al., 2019). In the case of stock market
fluctuations, Eisler and Kertész (2006) attributed this to
the time taken for news reports and policy changes to
affect the stock market. Similarly, the observed increase
in ¢ and b with averaging time in our study demonstrates
that variation in water clarity and differences across sites
is greater over longer time periods, as expected, and is
likely the result of the increased chance of a meteorolog-
ical or other type of event (e.g., algal bloom) that alters
water clarity as well as the influence of seasonal events
(e.g., mixing, photobleaching) on water clarity. The sub-
stantial difference of the slope coefficient b between
light attenuation (b=3.0) and incident above-surface
light (b=1.2) suggests that different processes regulate
the relationship between mean and variance in these
two different types of data. However, that time series
of two very different phenomena, namely our observa-
tions of water clarity and the observations of Eisler and
Kertész (2006) of the stock market, both obey Taylor's
law in a similar fashion adds to the evidence of one or
more broadly applicable underlying mathematical ex-
planations that are independent of the conditions of any
particular study system (Cohen, 2019; Eisler et al., 2008;
Giometto et al., 2015; Xiao et al., 2015).

Additionally, we show that across all time windows,
b is always greater than two, which is higher than many,
but not all, observations of Taylor's law (Eisler et al.,
2008; Giometto et al., 2015). One explanation for this is
that water clarity measurements may be relatively auto-
correlated, as we also found that the increase in b with
averaging time corresponded with increased autocor-
relation in the averaged water clarity time series. This
hypothesis is consistent with previous research that sug-
gested increasing temporal autocorrelation can lead to
greater b estimates (Xu & Cohen, 2021). The degree of
autocorrelation may also explain geographic variability
in b coefficients (Figure 3), but we have not tested that
possibility.

Thedifference in b calculated from our high-frequency
versus low-frequency observations suggests that although
variance in water clarity exhibits clear patterns consis-
tent with Taylor's law, ecological heterogeneity across
regions, lake types, and through time in individual lakes
still plays an important role in regulating variability in
water clarity. For example, across regions of the United
States we see that b is largest in the north (Northeast,
Midwest), lower in the south (Southeast, Southwest), and
intermediate in the west (West). A possible explanation
for this may be that lakes in northern or mountainous
regions experience greater seasonality than those in the
south, resulting in a wider range of water clarity values.
These results are consistent with Soranno et al. (2019),
who found that regional and local spatial drivers such
as land use and land cover in catchment watersheds, re-
gional climate, and lake morphology, had a greater effect
on total variation in lake ecosystem properties than tem-
poral effects. Similarly, our results showing that variance
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increases with the mean faster in natural lakes than in
reservoirs demonstrate how lake attributes influence
variance patterns. Further research is needed to iden-
tify specific factors controlling these differences, which
could result from the fact that reservoirs are more heavily
managed and also often dominated by different optically
active substances than natural lakes. Regardless, our re-
sults indicate that across a wide variety of geographic
regions and climates, land use and land cover types, and
morphological characteristics (Table 1), variation in lake
water clarity at both short- and long-term time scales is
largely generalizable using only the average water clarity
and the amount of variability measured over any given
period of time.

While variation in water clarity was consistent with
Taylor's law across lakes, the high-frequency time series
for individual lakes exhibited variance patterns that were
not always consistent with Taylor's law. One reason for
this is that even for the largest time window of 61 days,
the range of observed water clarity measurements, and
hence variance, was relatively small and rarely exceeded
an order of magnitude across the observation period.
In contrast, across lakes, average water clarity spanned
several orders of magnitude (Figure 2). In the few cases
where water clarity in an individual lake spanned a com-
plete or near-complete order of magnitude during the
observation period (Prairie Lake, Prairie Pothole, and
Buffalo Pound), the data were consistent with Taylor's
law (Figure S3). This agrees with previous studies that
have assessed the limitation of small data sets or small
variation in measurements on Taylor's law bias (Clark &
Perry, 19995). It is likely that within most individual lakes
and at the temporal scale of days to seasons, the range of
water clarity variability is not large enough to warrant
applying Taylor's law individually, absent a substantial
event that greatly alters water clarity. This implies that
for most lakes, a long-term estimate of water clarity may
be sufficient to estimate potential short-term variance
based on the relationship observed across lakes.

For most lakes, it was difficult to identify the spe-
cific sources of variation in water clarity from the data
we collected. It is well known that water clarity is pri-
marily governed by optically active substances includ-
ing algal biomass, dissolved substances, and inorganic
suspended solids (Kirk, 1994; Rose et al., 2014), and can
be influenced by meteorological events (Anthony et al.,
2004; Perga et al., 2018). Our findings are consistent with
past studies showing that both dissolved organic matter
and algal biomass (as measured by chlorophyll ¢ con-
centrations) are important in regulating water clarity
(Figure S8). While we did not identify specific drivers of
variations in clarity in most lakes, we observed strong
relationships between variance in water clarity and the
average concentrations of optically active substances
(Figure S9). The Taylor's law slope coefficient b (from
Equation 1) also did not differ between lakes where algal
biomass dominated water clarity versus lakes where

non-algal particulates dominated water clarity (p=0.115;
Figure S10). However, the intercept a for the non-algal
lakes was larger than the intercept for algal lakes, and
hence the overall variance was larger in the non-algal
lakes. Additionally, although the sample sizes are small,
eutrophic and dystrophic lakes appeared to have greater
absolute residuals for Equation (1) (Figure S5). These re-
sults reinforce the important role that substances includ-
ing dissolved organic matter and algal biomass play in
regulating variability in water clarity. Further research is
needed to assess if individual differences in Taylor's law
slope coefficients among lakes are associated with dif-
ferences in optically active substances, or if variability is
changing over time.

Our results show that a substantial amount of tem-
poral variation is missed when water clarity is coarsely
sampled. For example, we found that sampling water
clarity every l6days, which corresponds to the fre-
quency of the return time of Landsat satellites, misses
over 75% of the variation in water clarity (Figure 5;
Figure S7). Many researchers suggest gathering in situ
data within 3days of a satellite overpass as valida-
tion for remote sensing estimates (Kuhn et al., 2019;
Olmanson et al., 2008). However, our findings suggest
that euphotic depth, and similarly Secchi depth, poten-
tially differs by over 2m on average over the course of
3days in oligotrophic lakes.

Variations in water clarity are ecologically important.
Daily changes in water clarity and euphotic depth were
typically low (the median daily change was less than 13%
of the maximum in half of the sampled lakes). However,
our results indicate that the low variation in light attenua-
tion observed in clearer lakes often corresponds to higher
variation in euphotic depth and Secchi depth. Because
the euphotic zone regulates the depth range over which
primary production can occur, large variations in water
clarity are likely to quickly alter patterns in productivity
(e.g., Leach et al., 2017). Changes in water clarity also
alter how zooplankton behaviorally respond to threats
from ultraviolet radiation and fish predation pressure
(Williamson et al., 2011) and water clarity is a key fac-
tor regulating fish species distribution (Ferguson, 1958).
Additionally, because water clarity regulates how heat is
absorbed in the water column, variation in water clar-
ity also impacts temperature and dissolved oxygen dy-
namics in lakes (Perga et al., 2023). Scaling relationships
are a fundamental component of ecological theory, but
their application to highly dynamic ecosystems depends
on quantifying variance appropriately (Savage, 2004).
Our results advance the current understanding of light
variance in lakes, which may lend itself to the applica-
tion of other scaling relationships to lake ecosystems.
Understanding the relationship between mean and vari-
ance in water clarity, and for more ecological variables in
a variety of ecosystems, will enable researchers to quan-
tify patterns of variability and heterogeneity across time
and space.
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To our knowledge, this study represents the larg-
est collection of high-frequency water clarity mea-
surements to date and covers a wide range of lake
ecosystems and geographical regions. Our results
demonstrate the value of integrating data measured
across diverse temporal scales from days to decades,
and across regional to global extents. Our findings also
highlight the benefits of high-frequency measurements
to supplement more conventional lower frequency (e.g.,
monthly to annual) measurements, and the possibility
of estimating variability at longer time scales (e.g.,
years to decades) from daily measurements. While
our research focused only on water clarity in lakes,
similar methods applied to other ecological variables
could greatly expand insights into the scaling of vari-
ance at landscape and macrosystem scales. However,
our results also demonstrate that Taylor's law can-
not be blindly applied to predict ecological variation
at longer time scales from short-term measurements.
Variance patterns in individual lakes were not consis-
tent with Taylor's law unless they exhibited variability
of at least an order of magnitude, and the relationship
across lakes depends on the averaging window because
the variance increases with time. These insights im-
prove the ability to integrate ecological data collected
across highly variable spatial or temporal scales and
may improve understanding of macrosystems phenom-
ena from site-based research.
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