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ABSTRACT

Trace element paleoenvironmental proxies were used to con-
strain depositional environments for several black shales of the
midcontinent United States to better understand the formation
of metalliferous shales. These shales range in age from Cambrian
to Pennsylvanian. The proxies evaluated were for paleoredox
(U/Th, U-[Th/3], Ni/Co, V/Cr, V/[V+Ni], Mo concentration,
Mo/total organic carbon), basin restriction (Cd/Mo, Co · Mn)
and paleosalinity (Sr/Ba). The results of the paleoredox proxies
indicate a range of depositional conditions from oxic to dysoxic
to anoxic. The findings suggest that the Cambrian Mt. Simon,
Eau Claire, and Tunnel City samples in the northern part of the
study area were deposited under oxic marine conditions influ-
enced by upwelling. The Ordovician black shales from the Oua-
chita Mountains and the Pennsylvanian shales from the Cherokee
and Forest City Basins were likely formed under anoxic, open
marine conditions. The basin restriction and paleoredox proxies
suggest decreasing oxygen levels during the deposition of the
Ordovician shales, whereas the paleosalinity proxy, the Sr/Ba
ratios, during this time suggests decreasing salinity. The Devonian
Chattanooga Shale from the Ozark Dome and the New Albany
Shale from the Illinois Basin were likely deposited under similar
anoxic to dysoxic conditions. Paleoredox proxies suggest that the
Mississippian Fayetteville Shale in the Ozark Dome formed
under a range of oxic to anoxic conditions. Similarly, the Pennsyl-
vanian Atoka and Jackfork Formations in the Ouachitas were
deposited under oxic marine conditions. The results of this study
also highlight the importance of using multiple proxies to inter-
pret paleoenvironments.

Copyright ©2024. The American Association of Petroleum Geologists. All rights reserved. Green Open
Access. This paper is published under the terms of the CC-BY license.

Manuscript received December 5, 2022; provisional acceptance April 18, 2023; revised manuscript
received June 26, 2023; revised manuscript provisional acceptance September 19, 2023; 2nd revised
manuscript received October 10, 2023; 2nd revised manuscript provisional acceptance November 21,
2023; 3rd revised manuscript received December 6, 2023; 3rd revised manuscript provisional
acceptance January 4, 2024; 4th revised manuscript received January 18, 2024; final acceptance
January 26, 2024; preliminary ahead of print version published April 1, 2024.
DOI:10.1306/03212422156

AAPG Bulletin, v. 108, no. 6 (June 2024), pp. 1119–1147 1119

AUTHORS

NoahMorris ~ Department of
Geosciences, University of Arkansas,
Fayetteville, Arkansas; nm009@uark.edu

Noah Morris is a Ph.D. candidate at the
University of Arkansas researching the
geochemistry of organic-rich shales. He
received a B.S. degree in geology from the
University of Oklahoma in 2010 and an M.S.
degree in geology from the University of
Arkansas in 2017. Between receiving his
undergraduate and M.S. degrees, he worked
for Geosearch Logging and ALS Empirica. He
is the corresponding author of this paper.

Adriana Potra ~ Department of
Geosciences, University of Arkansas,
Fayetteville, Arkansas; potra@uark.edu

Adriana Potra specializes in economic
ore geology and radiogenic isotope
geochemistry, with the main research focus
on enhancing the understanding of the
geochemistry of ore deposits. As a graduate
student at Florida International University,
she worked on magmatic-hydrothermal
systems. Since joining the University of
Arkansas, she has been doing research on
constraining the metal source(s) in the
Mississippi Valley-type deposits.

John R. Samuelsen ~ Arkansas
Archeological Survey, Fayetteville,
Arkansas; Department of Anthropology,
University of Arkansas, Fayetteville,
Arkansas; jsamuel@uark.edu

John R. Samuelsen is an archeologist and
computer specialist at the Arkansas
Archeological Survey. He received his B.A.
and B.S. degrees at the University of Florida
in 2004, his M.A. degree at the University of
Arkansas in 2009, and his Ph.D. at the
University of Arkansas in 2020. He is further
developing the use of lead and strontium
isotopes for ancient human sourcing.

ACKNOWLEDGMENTS

This study was funded by US National
Science Foundation Grant No. 1952088.
Core samples were provided by the
Wisconsin Geological and Natural History
Survey. Thanks to Erik Pollock, Lindsey

http://dx.doi.org/10.1306/03212422156
mailto:nm009@uark.edu
mailto:potra@uark.edu
mailto:jsamuel@uark.edu


INTRODUCTION

The formation of shale is a complex topic because shales can
potentially form in any depositional environment that allows
clay-size sediment to settle out of the water column in sufficient
quantities, including lacustrine or fluvial settings, deltas, restricted
marine settings (e.g., tidal flats and lagoons), and marine settings
where the sea floor is below storm-wave base and some high
energy environments, such as debris flows (Boggs, 2006; Peng,
2021). Black shales have been interpreted to form in many of
these environments, including both shallow and deep marine,
which complicates interpreting their depositional environments.
To better constrain their depositional history, geochemical analy-
ses using trace element concentrations can be used as paleoredox
proxies (Jones and Manning, 1994; Tribovillard et al., 2006;
Algeo and Rowe, 2012; Algeo and Li, 2020; Algeo and Liu, 2020;
Bennett and Canfield, 2020; Horner et al., 2021).

This study is a geochemical survey of Paleozoic black shales
from the midcontinent United States (Figure 1) where their geo-
chemical signatures are compared to infer the conditions of their
depositional environments. The samples were selected from
Cambrian- to Pennsylvanian-age formations from the Ozark
Dome, Ouachita Mountains, and the Cherokee, Forest City, and
Illinois Basins (Figure 2). The selection of black shales for this
study was based on their diverse spatial and temporal distribu-
tion, characterized by high organic content (>5 wt. % total
organic carbon [TOC]) and metal-rich attributes, as reported by
Coveney and Glascock (1989) and Coveney (2003). Addition-
ally, the proximity of these shales to various Mississippi Valley-
type (MVT) ore deposits in the midcontinent United States
served as an additional criterion, although a detailed examination
of the correlation between the shales and MVT deposits falls out-
side the scope of this paper.

GEOLOGIC SETTING

There were significant tectonic, geographic, and climatic changes
to the midcontinent of North America during the Paleozoic Era.
During the Cambrian through Devonian, the midcontinent
United States was located between ?15� and 30� south of the
equator, and much of the region experienced warm to arid cli-
matic conditions during much of that time (Boucot et al., 2013).
During the Carboniferous, the craton had migrated to near-
equatorial latitudes, becoming subject to more tropical climates
(Boucot et al., 2013).

The Ozark Dome, situated in the central part of the study
area, is an uplifted area of Precambrian (1.476 – 0.016 Ga) gran-
ite and rhyolite, followed by 1.38-Ga alkaline intrusions and
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?1.33-Ga mafic intrusions (Lowell and Young,
1999; Meert and Stuckey, 2002). These igneous
rocks outcrop in parts of southeastern Missouri at the
St. Francis Mountains. Overlying this granite and
rhyolite is a sequence of Cambrian- to Mississippian-
age sedimentary rocks. The Ozark Dome is asym-
metrical, with the Paleozoic strata dipping less than
1� on the southwestern margin. The eastern margin
terminates steeply along fault zones (typically reverse
faults) and the Reelfoot rift that separate the Ozark
Dome and the Illinois Basin (Chinn and K€onig, 1973;
McBride and Nelson, 1999). These fault zones, initi-
ated during the early Middle Devonian, were pre-
ceded by the Reelfoot rift, a late Proterozoic to early
Cambrian rift zone now buried under Cretaceous
and Cenozoic sediments of the northern reaches of
the Mississippi Embayment (Ervin and McGinnis,
1975; Devera and Fraunfelter, 1988; Nelson and
Zhang, 1991; Parrish and Van Arsdale, 2004; Van
Arsdale and Cupples, 2013). The southern Ozark
Dome primarily consists of east-striking normal faults
with a mixture of northeast-striking, strike-slip faults
that formed in association with the Ouachita orogeny
(Hudson, 2000). In the Ozark Dome province, the
Chattanooga Shale (Devonian) and the Fayetteville
Shale (Mississippian) were both sampled and are rec-
ognized with formation status in Arkansas, Okla-
homa, andMissouri. TheOuachitaMountains are situ-
ated along the Ouachita fold-thrust belt, which
extends from southwestern Texas and northern Mex-
ico to the southern AppalachianMountains. TheOua-
chita Mountains are a result of transpressional orogeny
of Laurentia andGondwana during the early Carbonif-
erous as the Laurentian plate subducted under the
Gondwanan plate (Hatcher, 2002; Nance et al.,
2010). Laurentia and Gondwana collided along the
southern Appalachians, resulting in the Alleghanian
orogeny. The collision rotated in a clockwise manner,
leading to a “zipper” effect as the sea closed and the
orogeny continued along the Ouachita fold-thrust belt
(Hatcher, 2002). In response, some foreland basins
developed along the northern periphery of the Oua-
chita fold-thrust belt, such as theArkomaBasin.

The Ouachita stratigraphy is generally composed
of deep-water, turbiditic facies where sandstones and
shales are the dominant lithologies (Morris, 1971;
Owen and Carozzi, 1986). The sampled Ouachita
Mountain stratigraphic units in this study include the
Collier Shale (upper Cambrian to Lower Ordovician),

Mazarn Shale (Lower Ordovician), Womble Shale
(Middle to Upper Ordovician), Polk Creek Shale
(Upper Ordovician), Stanley Shale (Meramecian to
Chesterian Series, Mississippian), Jackfork Sandstone
(Morrowan Series, Pennsylvanian), and the Atoka For-
mation (Atokan Series, Pennsylvanian) (Figure 2). All
Ouachita units analyzed in this study were collected
from Arkansas where they are recognized with forma-
tion lithostratigraphic rank.Although theCollier Shale
is the oldest exposed formation in Arkansas, it is not
well studied due to its limited exposure andunexposed
base (McFarland, 2004). The Jackfork Formation was
deposited before the formation of the Arkoma Basin
and contains deep-water flysch deposited during the
initiation of the orogen, followed by the deposition of
the Atoka Formation, which comprises much of the
basin’s sediment (up to ?7620 m thick) (Morris,
1971;Owen andCarozzi, 1986;McFarland, 2004).

Figure 1. Sample localities (black dots) with basins (dashed
lines), uplifts (dotted lines), and the Ouachita fold-thrust belt.
Lead–zinc mining districts (crossed picks) are known for epige-
netic ore occurrences primarily hosted within carbonate rocks,
with potential variability in mineralization relationships to the
studied shales.
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The Illinois Basin developed because of multiple
tectonic events that occurred throughout Precambrian
to Cambrian time, as well as in response to the devel-
opment of the Reelfoot rift and the Rough Creek gra-
ben following the breakup of a supercontinent (Klein
and Hsui, 1987; Kolata and Nelson, 1990a, b). The
basin subsided as an embayment in the cratonic interior
where the Paleozoic stratigraphic units generally dip
south toward the Reelfoot rift and the Rough Creek
graben (Klein and Hsui, 1987; Kolata and Nelson,
1990a, b). During the Carboniferous and Permian, the
Illinois Basin subsided further due to compressional

stresses on the cratonic interior that occurred in
response to the Alleghanian and Ouachita orogenies
(Klein and Hsui, 1987; Kolata and Nelson, 1990a, b).
Throughout most of the basin, the Mt. Simon Sand-
stone overlies the Precambrian igneous basement rocks
(Sargent, 1990).

The Illinois Basin region is composed of several
clastic and carbonate successions, including the Mt.
Simon Sandstone (Cambrian), the Eau Claire Forma-
tion (Cambrian), the Tunnel CityGroup (Cambrian),
and the New Albany Shale (Devonian). The three
Cambrian units were sampled from the northern

Figure 2. Generalized stratigraphic columns of the sampled shales in the study area. Sh.5 Shale.
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margin of the Illinois Basin, and the New Albany was
sampled from the central part of the Illinois Basin.

The Cherokee Basin, which spans Oklahoma and
Kansas, and the Forest City Basin, which spans Kan-
sas, Missouri, Nebraska, and Iowa, are cratonic basins
consisting of a series of clastics and carbonates. These
basins are separated by the Bourbon arch and have
their axes further west near the Nemaha uplift,
which was activated during the middle Carbonifer-
ous (Jopling and Cashion, 1959; Anderson and
Wells, 1968; Harris, 1985; Leighton and Kolata,
1990; Newell, 1995). The basins have generally been
subsiding since the Cambrian but experienced more
rapid subsidence during the Pennsylvanian due to
intracratonic stresses that occurred in response to the
Alleghanian and Ouachita orogenies, similar to the
Illinois Basin (Leighton and Kolata, 1990).

The sampled stratigraphic units in the Cherokee
and Forest City Basins are all Pennsylvanian in age.
Although the lithostratigraphic ranks of these units
vary across the states they are found in, these shales
are generally referred to as a member within the state
they were sampled in. These units include the
Excello Shale, the Little Osage Shale Member of the
Marmaton Group (Desmoinesian Series), the Hush-
puckney, Stark, and Muncie Creek Shale Members
of the Kansas City Group (Missourian Series), the
Vilas and Eudora Shale of the Lansing Group (Mis-
sourian Series), and the Heebner Shale Member of
the Shawnee Group (Virgilian Series).

Paleoredox, Paleoproductivity, and
Paleosalinity Proxies

In this study, a suite of paleoenvironmental proxies
were employed to characterize the geochemical sig-
natures of black shales and to infer the bottom-water
conditions at the time of deposition. Specifically,
these proxies focus on the V/Cr, Ni/Co, U/Th, and
authigenic U (U-Th/3) proxies as evaluated by Jones
and Manning (1994), which have demonstrated their
reliability for reconstructing paleoredox conditions.
The Mo concentration and Mo/TOC paleoredox
proxies follow the approach of Scott and Lyons
(2012), whereas the V/(V+Ni) paleoredox proxy fol-
lows Hatch and Leventhal (1992). Additional prox-
ies considered include the basin restriction proxies
(Cd/Mo and Co · Mn) of Sweere et al. (2016) and
the Sr/Ba paleosalinity proxy of Wei and Algeo

(2020). To accompany these proxies, Tyson and
Pearson’s (1991) thresholds are used to describe the
oxygen content of the seawater: anoxic (0.0 ml O2/L
H2O, H2S = 0), euxinic (0.0 ml O2/L H2O, H2S >
0), dysoxic (?0.0–2.0 ml O2/L H2O), and oxic (>2.0
ml O2/L H2O). This study acknowledges that certain
conditions, such as elevated thermalmaturity, diagen-
esis, and sedimentation rate, may render specific
proxies unsuitable for application in some cases (Klin-
khammer and Palmer, 1991; Ardakani et al., 2016;
Hood et al., 2018; Algeo and Liu, 2020; Crombez
et al., 2020; Mansour et al., 2020; Peng, 2022). How-
ever, this study uses a suite of proxies that, when
aggregated together, should provide reliable insights
into the depositional conditions of the shales.

The elements Mo, V, Ni, Co, Cr, U, and Th hold
significant importance as paleoredox proxies in shale
geochemical analysis. Uranium predominantly exists
as U(VI) in uranyl ions in seawater, with authigenic
U enrichment occurring in sediments due to U(VI)
to U(IV) reduction (Anderson et al., 1989; Klin-
khammer and Palmer, 1991; Crusius et al., 1996;
Algeo and Maynard, 2004). Thorium is used as a
comparison with U in paleoredox proxies because Th
is relatively immobile and typically is found in detri-
tal sediments (Jones and Manning, 1994). Vanadium
behaves quasi-conservatively in oxic waters, associat-
ing closely with the Mn redox cycle in sediments
(Hastings et al., 1996). It can readily be adsorbed on
Mn and Fe oxyhydroxides as vanadate (oxidized V)
(Calvert and Piper, 1984; Wehrli and Stumm, 1989)
and can be reduced to V(IV) under mildly reducing
conditions (Emerson and Huested, 1991; Morford
and Emerson, 1999). Molybdenum, abundant rela-
tive to biological requirements, exhibits conservative
distribution and is also easily adsorbed on Mn oxy-
hydroxides in sediments (Bertine and Turekian,
1973; Crusius et al., 1996). Enrichment of Mo is
linked to organic matter abundance, sulfate reduction
activity, and sulfide presence (François, 1988; Erick-
son and Helz, 2000; Vorlicek et al., 2004). Chro-
mium exists as Cr(VI) in oxygenated seawater and is
reduced to Cr(III) under anoxic conditions, readily
complexing with humic/fulvic acids or adsorbing on
Fe and Mn oxyhydroxides (Calvert and Pedersen,
1993). Cobalt appears as the dissolved cation or com-
plexed with humic/fulvic acids in oxic environments,
and it forms insoluble CoS in anoxic waters (Huerta-
Diaz and Morse, 1992). Nickel behaves as a

Morris et al. 1123



micronutrient in oxic marine environments, cycling
between the sediment and overlying waters based on
the presence of sulfides and Mn oxides (Huerta-Diaz
andMorse, 1990, 1992; Morse and Luther, 1999).

For the Co · Mn and Cd/Mo basin restriction
proxies, these elements are useful sinceMn andCo are
actively scavenged from the water column, resulting in
their depletion with depth, whereas the distribution of
Cd is influenced by phytoplankton uptake and release
(Bruland, 1980; Landing and Bruland, 1980; Knauer
et al., 1982; Statham and Burton, 1986; Conway and
John, 2015; Sweere et al., 2016). In contrast, Mo dis-
plays conservative behavior and is not significantly
influenced by biological interactions (Emerson and
Huested, 1991; Nakagawa et al., 2012). Redox condi-
tions strongly influence the removal pathways of these
elements, with Mn becoming more soluble under
reducing conditions and Co, Cd, and Mo being effi-
ciently sequestered into sediments (Huerta-Diaz and
Morse, 1992; Erickson andHelz, 2000; Vorlicek et al.,
2004; Tribovillard et al., 2006; Little et al., 2015). The
behavior of Mo in euxinic waters makes it a robust
paleoredox proxy, as previously discussed (Crusius
et al., 1996; Algeo and Lyons, 2006; Algeo and Tribo-
villard, 2009; Scott and Lyons, 2012).

In the Sr/Ba proxy, Sr primarily originates from
continental weathering and enters the ocean through
rivers, whereas Ba exhibits a more complex behavior,
influenced by sources like hydrothermal activity and
biogenic productivity, and is scavenged by particles in
the water column (Godderis and Veizer, 2000; Krab-
benh€oft et al., 2010). Barium’s higher affinity for par-
ticulate matter makes it more abundant in freshwater
and detrital sediments, rendering it a crucial indicator
of freshwater input, whereas Sr is more commonly
found inmarine-precipitatedminerals as a substitution
for Ca2+ (Roden et al., 2002; Das and Krishnaswami,
2006; Vetter et al., 2017). The Sr/Ba ratio is affected
by changes in seawater salinity, with high salinity
potentially leading to a higher Sr/Ba ratio due to
reduced particle scavenging (Wei andAlgeo, 2020).

SAMPLING AND METHODOLOGY

Sample Collection and Preparation

Sixty-nine shale samples from 21 stratigraphic units
from across the midcontinent United States were used

in this study (Figure 2). Nearly all samples were col-
lected from outcrops in Arkansas, Iowa, Kansas, Mis-
souri, Nebraska, and Oklahoma (Figure 1; Table 1).
All samples came from exposures where fresh samples
were able to be collected by removing as much of the
exposed surface as possible using conventional hand
tools to obtain the least weathered samples from
behind the outcrop exposure. When available, type
sections or type localities were chosen for sampling.
The type localities of the following shales were sam-
pled during August 2020: Stark (near Stark, Neosho
County, Kansas) (Moore, 1932; Jewett, 1933), Hush-
puckney (railway cut, center north side, Sec. 13,
T19S, R23E, Miami County, Kansas) (Moore, 1932),
MuncieCreek (MuncieCreek, east ofMuncie, Kansas,
in the southern part of Wyandotte County, Kansas)
(Moore, 1932), and Fayetteville (near Fayetteville,
Washington County, Arkansas) (Simonds, 1891). The
Excello Shale was sampled approximately 1.5 miles
from the type section described in Searight (1955)
(NW/4 Sec. 30, T56N, R14W, 2.6 mi west of US
Highway 63, west of Excello, Macon County, Mis-
souri, in the highwall of a coal stripmine pit).

Several sampled localities were chosen because
they had previously been described (see Table 1).
Selected samples of the Collier, Mazarn, Womble,
Polk Creek, Chattanooga, Stanley, and Fayetteville
Shales, as well as the Jackfork Sandstone, have been
previously analyzed by Simbo et al. (2019) in an
effort to constrain depositional conditions using geo-
chemical techniques. However, this study uses what
is considered a more accurate geochemical processing
method (full digestion rather than partial digestion)
and analyzes additional elements for a more thorough
geochemical investigation.

Four additional samples originated from theCom-
monwealth Edison UPH-1 core in northern Illinois
(Wisconsin Geological and Natural History Survey
[WGNHS] identification number [ID] 33000331)
and one additional sample from theWGNHSHwy A
Quarry 2 core from southern Wisconsin (WGNHS
ID 25000529). The core samples were donated by the
Wisconsin Geological and Natural History Survey to
provide additional geochemical data for shales in the
northernMississippi River Valley. Samples from these
cores include the Eau Claire, Tunnel City, and Mt.
Simon units and have been part of a previous Pb iso-
tope study (Doe et al., 1983). One other sample,
representing the New Albany Shale, originated from
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well cuttings from the Morris 1 well drilled by Ceja
Corporation in 2012 in Shelby County, Illinois (API
12-173-24362). One of the authors was present at the
time of drilling and collected this sample after cleaning
it from water-based drilling mud. In sum, seven shales
have only one sample from each (Mt. Simon and Tun-
nel City [Cambrian]; Collier [Cambrian–Ordovician];
New Albany [Devonian], and Muncie Creek, Stark,
and Vilas [Pennsylvanian]), which cannot be used to
draw inferences, but they can be used to compare with
the other temporally and spatially related shale units in
this study.

Samples were rinsed with deionized water, dried,
and then powdered in an alumina-ceramic dish using
a Spex SamplePrep Shatterbox. All further proces-
sing of the samples was conducted in a class 100
cleanroom at the University of Arkansas to reduce
potential environmental contamination and all lab-
ware used for chemical processing of the samples was
acid cleaned to minimize possible contamination. All
acids used in the chemical processing were previously
distilled in dedicated HNO3 and HCl Savillex DST-
1000 acid purification systems.

TOC

The TOC was evaluated for its use in the Mo/TOC
paleoredox proxy. Dry, powdered samples were
weighed on a Sartorius ISO 9001 microbalance and
placed within a tin capsule. The samples were ana-
lyzed on a Thermo Scientific EA IsoLink isotope ratio
mass spectrometry (IRMS) carbon-nitrogen system
(includes Flash IRMS elemental analyzer, Delta V
IRMS, and Conflo IV universal interface) at the Uni-
versity of Arkansas Stable Isotope Laboratory. The
samples were calibrated with 27 internal silty soil
standard samples (averaging 2.19 wt. %; standard
deviation (s) = 0.071).

Sample Digestion

One hundred milligrams of powder from each sam-
ple were weighed and placed in the polyfluoroalkyl
(PFA) liner of a Parr acid-digestion vessel (model
number 4749). Two milliliters of reverse aqua regia
(3 parts distilled HNO3:1 part distilled HCl) were
added to each sample in a laminar flow fume hood.
Two milliliters of concentrated HF were also added
to each sample and left uncovered for 10 min to vent

volatile gases. The samples in the Parr liners were
inserted into the Parr acid digestion vessels and tight-
ened. The vessels were placed in a Lindberg Blue M
828 oven and heated to 200�C for 8 hr. The vessels
were allowed to cool for 24 hr, and the liners were
extracted and placed in a laminar flow fume hood in
the class 100 clean room. The solution in each liner
was pipetted into a clean 30 ml PFA vial and dried at
90�C. Each sample had 4ml of distilledHNO3 added
and was then heated to 150�C for 8 hr while tightly
capped and subsequently dried at 90�C. Four millili-
ters of distilled HCl were then added and heated to
150�C for 8 hr while capped and then dried at 90�C.
This process of adding HNO3 and HCl was repeated
once more. After each addition of heat, the samples
were cooled to room temperature, and after each
addition of acid, the samples were allowed to remain
uncovered for 10min to remove any volatile gases.

Elemental Concentrations

The dried, digested samples were redissolved in 2 ml
of 2% HNO3 at 150�C for 1 hr. A volume of 0.1 ml
of each sample solution was transferred to clean 5-ml
centrifuge tubes and diluted with 2.9 ml of 2%
HNO3. The samples were analyzed on a Thermo Sci-
entific iCAP Q inductively coupled plasma-mass
spectrometry (ICP-MS) instrument at the University
of Arkansas Trace Element and Radiogenic Isotope
Laboratory. The samples were analyzed for elements
associated with detrital sediment input and redox-
sensitive trace elements. Concentrations are reported
on a whole rock basis (part per million) in Table 2
and Table S1 (supplementary material available as
AAPG Datashare 186 at www.aapg.org/datashare)
(with standard deviations in Table S2, supplementary
material available as AAPG Datashare 186 at www.
aapg.org/datashare). In addition, two sets of ICP-MS
multielement solution standards were made using 10
ppm Inorganic Ventures IV-ICP-MS-71B and 10
ppm high-purity standards ICP-MS-68A-A-100
diluted tomultiple concentrations (500 ppb [s = 7.73
· 10�1], 100 ppb [s = 3.16 · 10�], 50 ppb [s = 2.32 ·
10�], 10 ppb [s = 5.34 · 10�1], 5 ppb [s = 4.09 ·
10�1], 1 ppb [s = 5.59 · 10�1], and 10‰ [s = 7.95 ·
10�1]). Seven duplicate samples and five replicate
samples were also analyzed; these samples were cho-
sen based on age, number of samples for each shale,
and totalmass of each sample available.
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RESULTS

TOC

The TOC results show that many samples have <5%
TOC (45 samples), 10 samples have 5%–10% TOC,
and 14 samples have more than 10% TOC. All sam-
ples >10% TOC are Pennsylvanian shales (Table 2).
These values are similar to the reported values from
other researchers (Figure 3) (James, 1970; Curiale,
1983; Fowler and Douglas, 1984; Ece, 1985;Wenger
et al., 1988; Desborough et al., 1990; Schultz and
Coveney, 1992; Weber, 1994; Sutton and Land,
1996; Hatch and Leventhal, 1997; Sp€otl et al., 1998;
Bisnett, 2001; Akanbi, 2008; Bamijoko, 2010; Parsell,
2011;Alase, 2012; Liu et al., 2019). Themidcontinent

Pennsylvanian shales analyzed have TOC values
between 3.80% and 37.01%, with most being >10%.
The samples with the lowest TOC are one sample of
the Hushpuckney Shale (3.80%) and the Vilas Shale
(5.07%). The Atoka and Jackfork Formations have
similar TOC values (0.91%–1.79% and 0.80%–2.65%,
respectively). TheChattanooga and Fayetteville Shales
also have similar values (1.91%–7.66% and 0.45%–

8.44%, respectively). TheOuachita shales vary in their
TOC content but are typically <5%. The Cambrian
shales from the northern midcontinent have <2%
TOC.

Paleoredox Proxies

The bimetal ratios V/(V+Ni), V/Cr, and Ni/Co, as
well as U/Th and authigenic U, are not in complete
agreement with each other using the thresholds
defined by Jones andManning (1994) (Figure 4). Con-
centration data for the analyzed elements are pre-
sented in Table 2. The V/(V+Ni) model (Figure 4A)
defines all but one sample’s average value (Stark Shale)
within the anoxic or euxinic thresholds, whereas the
Stark sample is defined as within the dysoxic field. The
U/Th and authigenic U models (Figure 4B and C,
respectively) show similar results to each other, with
the authigenic U model favoring additional samples
within the oxic range. Similarly, the V/Cr and Ni/Co
models (Figure 4D and E, respectively) also suggest
similar results to each other, although the V/Cr model
seems to also favor more samples within the oxic–
dysoxic bounds. The ratios in the U/Th, authigenic U,
V/Cr, and Ni/Co proxies of the Atoka, Jackfork, and
Stanley samples are generally within the oxic thresh-
olds. Poor correlations were found with the Fayette-
ville, Mazarn, and Vilas samples because these ratios
are within both the anoxic and oxic fields. The Chatta-
nooga, New Albany, and Stark Shales have values that
generally are within the anoxic and dysoxic limits. The
remainder of the samples generally plot within the
anoxic fields.

Molybdenumhas been linked to increasing anoxic
and euxinic conditions, providing a potentially useful
indicator of paleoredox conditions (Wilde et al., 2004;
Gordon et al., 2009; Scott and Lyons, 2012; Sweere
et al., 2016; Algeo and Liu, 2020). TheMo concentra-
tions (Figure 5A; Table 2) show that the Heebner,
Hushpuckney, and Muncie Creek Shales are within
the euxinic thresholds. The values show that the

Figure 3. Reported total organic carbon (TOC) values of the
shales analyzed in this study (red dots) relative to data reported
by other researchers (gray squares) illustrating the range of TOC
in the studied shales (James, 1970; Curiale, 1983; Fowler and
Douglas, 1984; Ece, 1985; Wenger et al., 1988; Desborough et al.,
1990; Schultz and Coveney, 1992; Weber, 1994; Sutton and Land,
1996; Hatch and Leventhal, 1997; Sp€otl et al., 1998; Bisnett, 2001;
Akanbi, 2008; Bamijoko, 2010; Parsell, 2011; Alase, 2012; Liu
et al., 2019). Multiple data points of similar values from other
researchers are indicated by darker shades of gray.
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Figure 4. Paleoredox proxies for analyzed samples with the average values (black squares) and the range of values for each shale unit.
(A) The V/(V1Ni) proxy has thresholds (dashed horizontal lines) between environments as defined by Hatch and Leventhal (1992).
The (B) U/Th proxy, (C) U-(Th/3) proxy, (D) V/Cr proxy, and (E) Ni/Co proxy have thresholds defined by Jones and Manning (1994).
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Figure 5. Paleoenvironmental proxies for analyzed samples with the average values (black squares) and the range of values for each
shale unit. (A, B) Euxinic/noneuxinic thresholds based on Scott and Lyons (2012) (Mo concentrations, Mo/total organic carbon [TOC]). (C)
The Sr/Ba average ratios (black squares) with the range of values with thresholds defined by Wei and Algeo (2020). (D, E) Dashed hori-
zontal lines represent thresholds between environments as defined by Sweere et al. (2016).
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Heebner (94–305 ppmMo) andMuncie Creek (184–
261 ppmMo) Shales have concentrations greater than
the 100 ppm euxinic threshold of Scott and Lyons
(2012), whereas the Hushpuckney Shale has a wider
range of Mo concentrations (7–270 ppm) with some
samples plotting in the noneuxinic field. The Chatta-
nooga, Eudora, and New Albany Shales have values
that span across the boundary between noneuxinic
and the intermediate euxinic/noneuxinic fields. The
remaining shales generally plot within the noneuxinic
bounds according to the Mo concentration model of
Scott and Lyons (2012).

When using the Mo (parts per million)/TOC
(weight percent) ratio proxy (Figure 5B), the highest
values were recorded in the Chattanooga (15.6),
Heebner (15.5), and Polk Creek (14.1) Shales (Table
2). All other samples have values <10, well under the
threshold for euxinic conditions (Mo/TOC ‡ 25) of
Scott and Lyons (2012). Using the averages for each
shale unit, the results show similar trends to those
defined by using the Mo (parts per million) concen-
trations, with a few exceptions. The Heebner, Hush-
puckney, and Muncie Creek Shales have averages
that plot within theMo/TOC range of the indetermi-
nant sulfide field (2–25) (Scott and Lyons, 2012).
The Collier, Womble, and Polk Creek Shales also
have averages that plot in the indeterminant sulfide
field instead of the noneuxinic conditions as seen in
the Mo concentration proxy.

Paleosalinity Proxy

Based on the threshold values of Wei and Algeo
(2020), the Sr/Ba paleosalinity proxy indicates that
36 samples are within the freshwater sediment range
(<0.2), 30 samples are in the brackish sediment range
(0.2–0.5), and 13 samples are in the marine sediment
range (>0.5) (Figure 5C; Table 2). The Cambrian
and Devonian shale samples from the Illinois Basin
are within multiple paleosalinity fields. The Sr/Ba
ratios of the Mt. Simon sample are at the brackish–
marine boundary (Sr/Ba = 0.493), whereas those of
Eau Claire samples (0.215–0.363, average 0.289) are
within the range of brackish conditions. The Cam-
brian Tunnel City sample (0.141) is in the range of
the freshwater setting, and the Devonian New
Albany Shale samples (0.218–0.221, average 0.220)
are along the freshwater–brackish threshold. Simi-
larly, the Sr/Ba ratios of the Pennsylvanian shales from

the Cherokee and Forest City Basins are within multi-
ple fields. The Sr/Ba ratios of the Excello (0.221–
0.248, average 0.235) and Little Osage (0.340–0.58,
average 0.349) Shales fall in the brackish field. The
Sr/Ba ratios of the Hushpuckney (0.84–2.046, aver-
age 0.746), Stark (2.433), and Vilas (0.932) Shales
are in the marine thresholds. The Sr/Ba ratios of the
Muncie Creek samples (0.178–0.295, average 0.237)
range from freshwater to brackish bounds, whereas
those of the Eudora Shale (0.154–0.536, average
0.346) range within freshwater to marine limits. The
Heebner Shale samples (0.360–0.552, average 0.462)
plot in the brackish tomarine domains.

The Sr/Ba ratios of the Devonian Chattanooga
Shale (0.117–0.470, average 0.185) in the southwest-
ern Ozark Dome province fall within the freshwater
to brackish conditions of Wei and Algeo (2020),
whereas those of the Mississippian Fayetteville Shale
(0.348–2.308, average 0.756) range within brackish
to marine settings. The Sr/Ba ratios of the Ouachita
Mountain samples expand across a diverse range of
paleosalinity conditions. The Ordovician Womble
Shale (0.032–0.048, average 0.039) and Polk Creek
Shale (0.017–0.073, average 0.045) and the Missis-
sippian Stanley Shale (0.075–0.171, average 0.127)
are limited within the freshwater setting. TheOrdovi-
cian Mazarn Shale samples (0.114–21.449, average
5.518) range from freshwater to marine settings. The
Pennsylvanian Jackfork Sandstone samples (0.173–
0.395, average 0.289) range from freshwater to
brackish conditions and the Pennsylvanian Atoka For-
mation samples (0.150–0.311, average 0.210) fall
along the freshwater–brackish boundary conditions.

Basin Restriction Proxies

The Co · Mn proxy uses 0.4 as the threshold
between upwelling (Co [parts per milllion] · Mn
[weight percent] < 0.4) and restricted marine (>0.4)
(Sweere et al., 2016). The average Co ·Mn values of
the Atoka, Chattanooga, and New Albany Shales
plot within the confines of restricted marine settings
(Figure 5D). All other analyzed shales have average
Co · Mn values >0.4, which is within the thresholds
of open marine settings with upwelling currents.

The Cd/Mo proxy defines ?0.1 as the threshold
between upwelling (>0.1) and restricted marine (<0.1)
settings and generally shows similar results to the Co ·
Mn proxy (Sweere et al., 2016). The Chattanooga,
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MuncieCreek, NewAlbany, Polk Creek, Stark, Vilas,
and Womble Shales have Cd/Mo ratios <0.1, falling
within restrictedmarine bounds (Figure 5E; Table 2).
Nearly all other samples have minimum values that
are greater than 0.1, which firmly places them in the
open marine threshold. However, the average
Cd/Mo ratios of the Stark andWomble Shale samples
are 0.094 and 0.092, respectively, which is along the
threshold between the two environmental settings.
Sweere et al. (2016) links this proxy to productivity
by relating high Cd/Mo ratios (>0.1) with increased
organic production (e.g., plankton) driven by upwell-
ing currents, which provide Cd to the sediments
upon burial. Low Cd/Mo ratios (<0.1) indicate
preservation-driven conditions, with no upwelling
currents providing nutrients for organic communities,
thus little Cd settles to the sediment (Sweere et al.,
2016). When the Cd/Mo ratio is used in conjunction
with Co ·Mn, many shales plot within the bounds of
openmarine environments with high organic produc-
tivity (Cd/Mo >0.1) with the exception of theWom-
ble, Polk Creek, Chattanooga, New Albany, Atoka,
Jackfork, Eudora, Stark, and Vilas Shales (Figure 6)
(Sweere et al., 2016). The Chattanooga and New
Albany Shales plot within a range associated with
restricted to open marine conditions. The Ordovician
samples from the Ouachitas have a pattern showing
both a decrease in the Cd/Mo ratios and Co · Mn

values over time during the deposition of the Collier
to Polk Creek Shales. The Collier and Mazarn Shales
are both within the openmarine, productive environ-
ment fields, but during the deposition of theWomble
and Polk Creek Shales, they shift to lower production
values that are more similar to the modern Black Sea
(Sweere et al., 2016).

DISCUSSION

Understanding the paleoenvironmental conditions
during the deposition of shales can be challenging
due to discrepancies among the paleoredox proxies.
However, by considering the range of values for each
proxy, the depositional conditions of these shales can
be constrained. These models indicate that many of
the analyzed shales were likely exposed to anoxic or
dysoxic marine conditions during their formation
(Figures 4A–E; 5A, B). The summarized average
values are provided in Tables 3 and 4.

Cambrian Shales

Focusing on the Cambrian Mt. Simon, Eau Claire,
and Tunnel City Formations in the northern Illinois
Basin, these clastic units have generally been inter-
preted as forming in shallow marine environments,

Figure 6. Basin restriction proxy combining the Cd/Mo and Co3 Mn proxies. Cambrian samples (purple), Ordovician (red), Devonian
(gray), Mississippian (blue), and Pennsylvanian (green); interpretations are based on Sweere et al. (2016).
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spanning from below storm-wave base to intertidal
zones (Walcott, 1914; Buschbach, 1975; Driese
et al., 1981; Droste and Shaver, 1983; Sargent and
Lasemi, 1993; Morse and Leetaru, 2005; Aswaseree-
lert et al., 2008; Eoff, 2014). However, the lower
andmiddleMt. Simon Formation has been associated
with fluvial braided river deposits, with indications of
eolian transport (Freiburg et al., 2014).

This study’s samples indicate that all three
formations—Mt. Simon, Eau Claire, and Tunnel
City—were generally deposited under oxic conditions
(Figures 4A–E; 5A, B). However, the Tunnel City
Formation exhibits a higher Cd/Mo ratio (Figure 5E),
suggesting the possibility of deposition under more
restricted conditions without significant influence
from upwelling currents. The Sr/Ba ratios (Figure 5C)
of the Eau Claire and the single sample from the Tun-
nel City suggest brackish and freshwater settings of
Wei and Algeo (2020), respectively. The single sam-
ple from the Mt. Simon Shale falls on the threshold
between brackish and marine environments. These
observations suggest that these shales likely formed
under relatively similar conditions that were influ-
enced by freshwater input.

Ordovician Shales

The Ordovician Ouachita shales, including the Col-
lier, Mazarn, Womble, and Polk Creek Shales, are
interpreted to have been deposited under generally
anoxic and open marine conditions based on the
paleoenvironmental proxies. The Lower Ordovician
Mazarn Shale indicates a range of oxic to anoxic con-
ditions. The Mo concentration and Mo/TOC proxies
both suggest that the Mazarn Shale was not depos-
ited in euxinic conditions due to lowMo abundances,
indicating a lack of significant H2S in the environ-
ment (Figure 5A, B). Coupled with the V/Cr and
Ni/Co ratios, this suggests that persistent euxinia
may not have been present, or if it was, it was not
widespread, potentially with local or seasonal varia-
tions in oxygen and/or sulfide concentrations in the
Mazarn Shale.

The Cd/Mo versus Co · Mn proxy (Figure 6)
indicates open marine environments among the
Mazarn samples with higher organic production than
preservation, similar to the Collier Shale. However,
the single sample from the Collier Shale suggests
deposition under anoxic conditions based on the

Ni/Co, V/Cr, U/Th, and V/(V+Ni) proxies (Figure
4A, B, D, E). The presence of disarticulated trilobites
suggests that the Collier Shale represents a deposit
from the continental slope or deep-water basin, com-
posed of sediment transported from the outer conti-
nental shelf (Pitt et al., 1961; Hart et al., 1987;
Hohensee and Stitt, 1989; Stitt et al., 1994). How-
ever, based on geochemical characteristics of modern
continental shelf deposits of Abshire et al. (2020), it
is not clear if the Collier was deposited on a distal
shelf, but the Mo, V, Ni, and Cu abundances do not
preclude the possibility that the overlying Mazarn
and Womble Shales were deposited on a shelf slope.
Interestingly, the Sr/Ba ratios of the Mazarn Shale
(Figure 5C) exhibit the widest range of values among
the studied samples, suggesting deposition in fresh-
water to marine settings. However, only one sample
falls within the marine field, suggesting a potential
overwhelming influence of fresh water relative to
marine waters during the deposition of the Womble
Shale, whereas the other samples show similarities to
the Collier Shale in terms of Sr/Ba ratios.

The Ordovician Womble Shale appears to have
been deposited under anoxic conditions, likely non-
euxinic, in open marine settings but with some envi-
ronmental changes during deposition. The range of
Co ·Mn values in the analyzed samples indicates the
possible influence of upwelling on the depositional
environment (Figure 5D). This is supported by the
Cd/Mo versus Co ·Mn values (Figure 6), which sug-
gest that part of the Womble Shale experienced a
productivity-driven environment, but over time, the
shales became more preservation-driven (Sweere
et al., 2016). Among the studied samples, the Wom-
ble Shale shows lower Sr/Ba ratios compared with
theMazarn Shale, possibly indicating a change in sed-
iment source because the Taconic orogeny was con-
temporaneous with deposition of these Ordovician
shales (Gleason et al., 1994, 1995, 2002; Liu, 2020).

The Ordovician Womble and Polk Creek Shales
are both inferred to have been deposited under anoxic
environments influenced by upwelling (Figures 4A–
E; 5A–E). However, they became increasingly
preservation-driven, with decreasing Cd/Mo ratios
over time compared with the older Cambrian and
Ordovician shales (Figure 5E). The Co xMn values in
the PolkCreek Shale fall outside of the range of values
used by Sweere et al. (2016) to definemodern deposi-
tional environments, thus suggesting the possibility of
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hydrothermal, diagenetic, or other chemical altera-
tions (Figure 5D; Tables 3, 4). The Sr/Ba ratios present
similar conditions as those observed in the Womble
Shale (Figure 5C). The increasing relatively high Mo/
TOC and V/(V+Ni) ratios, and Mo concentrations,
suggest a possible transgressive event during the depo-
sition of the Mazarn, Womble, and Polk Creek Shales
that led to increasing anoxic and euxinic conditions, as
well as increased accumulation of redox-sensitive ele-
ments by the end of theOrdovician (Figure 5B).

Devonian Shales

The Devonian Chattanooga Shale of the Ozark Pla-
teaus is interpreted as a widely deposited flooding
sequence across much of the midcontinent United
States under arid climatic conditions (Lowe, 1975;
Parrish, 1982; Kirkland et al., 1992; Houseknecht
et al., 2014). Geochemical proxies of this shale sug-
gest deposition in an anoxic or possibly low-oxygen
environment (Figures 4A–G; 5A–E). The Cd/Mo
versus Co · Mn values indicate that the Chattanooga
Shale formed in open to restricted settings, character-
ized by comparatively low productivity and signifi-
cant Mo accumulation relative to Cd deposition
(Figure 6). The presence of Mo in this and other
proxies suggests potential stratification of the water
column (Figures 5A, B; 6), possibly leading to anoxic
conditions at the sediment–water interface. The
Sr/Ba ratios are similar to those reported by Song
et al. (2021) and suggest freshwater to brackish set-
tings, which may be attributed to detrital sediment
influx into the depositional environment. These
proxy results are also comparable with that of the
New Albany Shale, suggesting that the Chattanooga
and New Albany Shales may have been exposed to
similar conditions during their deposition.

Mississippian Shales

Based on trace element concentrations of the Stanley
Shale, it has been proposed that this shale was depos-
ited along an active continental margin, involving tec-
tonic collision with mafic (oceanic) crust, possibly
through obduction, prior to the deposition of the
Stanley Shale (Totten et al., 2000). During this time
prior to the Ouachita orogeny, the continents of
Laurentia and Gondwana were converging, and it is
suggested that a volcanic arc system along the

Gondwanan margins served as the source of ash beds
in the Stanley Shale (Shaulis et al., 2012). Submarine
pyroclastic flows and subsequent settling (and sorting)
of ash within the water column have been suggested as
the cause of the tuff beds within the Stanley Shale,
which have undergone minimal diagenetic alteration
(Niem, 1977; Loomis et al., 1994). The Stanley Shale
also contains bedded barite deposits (Howard and
Hanor, 1987; Hanor, 2000), hypothesized to have
formed as a result of tropical/subtropical ocean up-
welling, where high productivity occurs at shallow
depths and sinking organic matter settles in deeper,
low-oxygen environments (Jewell, 1994).

The geochemical proxies (Figures 4A–E; 5A–E)
suggest the presence of oxic conditions in a restricted
marine setting during the deposition of the Stanley
Shale. The Cd/Mo ratios (Figure 5E) indicate that
upwelling was unlikely to have occurred in the envi-
ronment. As paleoproductivity proxies, the Cd/Mo
versus Co · Mn values (Figure 6) suggest that the
Stanley Shale formed in an environment conducive
to productivity but situated near the threshold
between open marine and restricted settings. The
Sr/Ba ratios (Figure 5C) in this study suggest the
presence of fresh water during deposition seemingly
in contrast with the deep-water interpretations of Tot-
ten et al. (2000) and McFarland (2004). Also, strata-
bound barite beds have been reported in the Stanley
Shale, which have been argued to have developed
under anoxic conditions (Zimmerman, 1976; Miller
et al., 1977). A possible remedy for this paradox could
be sediment gravity flows from the continental shelf
to deep-water settings redepositing oxygenated sedi-
ments into anoxic deep waters (Hanor and Baria,
1977). Depositional dynamics that formed these bar-
ite beds may indicate a limitation of this Sr/Ba proxy
(Zimmerman, 1976).

The Late Mississippian Fayetteville Shale is
believed to have been formed on a gently dipping
continental marine shelf with shallow marine waters
ranging from intertidal to depths of up to 200 m
(Handford, 1986; Xie et al., 2016). The Cd/Mo and
Co ·Mn proxies (Figure 5D, E) indicate that the for-
mation of this shale was primarily driven by produc-
tivity, with some degree of basin restriction. How-
ever, the extent of basin restriction in the Fayetteville
Shale remains unclear (Figure 5D, E), whereas the
Sr/Ba ratios suggest brackish to marine environments
(Figure 5C). The average value of the samples (0.3)
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approximates the threshold between open and
restricted settings (0.4), indicating an open marine
influence. The TOC content of the Fayetteville Shale
exhibits greater variability compared with the other
shales studied, and unlike the other shales, the Fay-
etteville shows a positive correlation with TOC and
the enrichment of specific trace elements such as Ni
and U. It is uncertain if there is a relationship
between TOC and the Co · Mn proxy, although no
relationship is observed between TOC and Cd/Mo.

Pennsylvanian Shales

The Pennsylvanian Jackfork Sandstone is interpreted
to have formed in deep-water environments consist-
ing of turbidite deposits from the early stages of the
Ouachita orogeny (Morris, 1971; Owen and Carozzi,
1986). The lower to upper Atoka Formation repre-
sents a facies change from deep-water deposits to
shallow-marine and deltaic deposits (Houseknecht
and Ross, 1992; Dickinson et al., 2003). The paleoen-
vironmental proxy models (Figures 4A–E; 5A–E)
suggest that the shales of the Atoka and Jackfork For-
mations analyzed in this studywere deposited in a rel-
atively similar oxic, open marine environment,
although the Atoka Formation shows indications of
more restricted marine conditions. When interpreted
in relation to organic productivity and preservation,
the Cd/Mo versus Co ·Mn proxy indicates that both
the Atoka and Jackfork Formations favored produc-
tivity in restricted environments (Figure 6). Accord-
ing to current Sr/Ba ratios (Figure 5C) and previously
published results, these formations exhibit similar
predominantly brackish waters (Gleason et al., 1995;
Reid, 2003; US Geological Survey, 2008; Zou et al.,
2017). These ratios may be attributed to the deltaic
environment inferred for the Atoka Formation
and the submarine slope deposits of the Jackfork For-
mation (Morris, 1971; Owen and Carozzi, 1986;
Houseknecht and Ross, 1992; Dickinson et al.,
2003). Considering that these formations consist of
thick sequences of clastic sediments that experienced
rapid burial and potential hydrothermal alteration
during theOuachita orogeny, hydrothermal influence
may also be plausible (Bottoms et al., 2019; Simbo
et al., 2019).

The Pennsylvanian black shales analyzed in this
study, including the Excello, Little Osage, Hush-
puckney, Stark, Muncie Creek, Eudora, and Heebner

Shales, exhibit relatively similar paleoredox proxy
values. They have some of the highest concentrations
of TOC, V, Ni, Cr, Mo, Cd, and U among the stud-
ied shales (Table 2). The majority of the samples
exhibit Sr/Ba ratios indicating brackish to marine set-
tings, with the Stark Shale having the highest Sr/Ba
values, suggesting marine conditions (Figure 5C).
The proxy models strongly suggest that the Excello,
Little Osage, Hushpuckney, and Eudora Shales were
deposited under anoxic, noneuxinic conditions
(Figures 4A–E; 5A, B). However, the Cd/Mo and Co
·Mnproxies (Figure 5D, E) provide conflicting results
individually regarding the Cherokee and Forest City
Basins’ restriction during deposition, except for the
Muncie Creek Shale, which indicates open marine
conditions in both proxies. When combining the two
proxies (Figure 6), most of these Pennsylvanian shales
suggest they were formed in productivity-driven open
marine environments, except for the Stark, Muncie
Creek, and Vilas Shales, which are indicated to have
formed undermore preservation-driven environments.

The Stark Shale indicates deposition under
anoxic conditions, potentially with some dysoxic con-
ditions present (Figures 4A–E; 5A, B). The Cd/Mo
ratio and Co · Mn values suggest the possible pres-
ence of upwelling (Figure 5D, E), and the Sr/Ba ratios
indicate marine settings (Figure 5C). The Heebner
Shale appears to have been deposited in strongly
anoxic, restricted environments (Figures 4B, C; 5D,
E), with the Mo and V/(V + Ni) proxies suggesting
the presence of euxinic conditions (Figures 4A, 5A).

TheMuncie Creek andVilas Shales showCd/Mo
ratios and Co ·Mn values that suggest the possibility
of upwelling (Figure 5D, E), and the Sr/Ba ratios indi-
cate brackish to marine settings (Figure 5C). How-
ever, whereas the Vilas Shale exhibits Mo and Mo/
TOC values indicating noneuxinic depositional set-
tings (Figure 5A, B), the V/(V + Ni) and Mo proxies
for the Muncie Creek Shale suggest euxinic condi-
tions (Figures 4A, 5A). The Cd/Mo versus Co · Mn
proxy (Figure 6) indicates that the Vilas Shale repre-
sents a preservation-driven sequence among the stud-
ied Pennsylvanian shales.

Assessing the Reliability of Proxies

This study highlights the importance of using multi-
ple paleoenvironmental proxies to develop an inter-
pretation of the depositional environments of shales,
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especially because of the difficulty in establishing reli-
able geochemical proxies (Jones and Manning, 1994;
Averyt and Paytan, 2004; Anderson and Winckler,
2005; Algeo and Liu, 2020). The V/(V+Ni) proxy in
this study suggests nearly all studied shales formed
under anoxic conditions, whereas the other paleore-
dox proxies exhibit more variation, including oxic
conditions in some shales. The Sr/Ba proxy indicates
that nearly all samples formed under the influence of
brackish or freshwater conditions, or with input of
this water, although previous studies have indicated
these shales formed in shallow to deep-water marine
environments (Hatch and Leventhal, 1997; Aswaser-
eelert et al., 2008; Zou et al., 2017). The Mississip-
pian Stanley Shale is indicated to have formed under
oxic conditions with significant freshwater input, as
inferred from the proxies employed in this study.
However, the strata-bound barite beds within the
shale have been contended to originate syngenetically
and/or diagenetically under anoxic conditions, pro-
moting the preservation of organically derived Ba
(Zimmerman, 1976; Miller et al., 1977). Hanor and
Baria (1977) proposed that these beds formed at the
base of the shelf slope from the influence of gravity
flows during the initiation of the Ouachita orogeny,
which supplied sediment derived from the continen-
tal shelf. Although the sediments of the Stanley Shale
may have initially originated from oxic waters before
redeposition as debris flows, subsequent precipitation
of barite beds may have occurred under anoxic,
deep-water conditions. Therefore, geochemical indi-
cators suggesting deposition in conditions present on
continental shelves, may be retained after sediment
redeposition via gravity flows into deep-water set-
tings. Additionally, the relationship between metals
and organic matter, such as the Mo/TOC proxy, is
reliant on the preservation of organic matter to infer
depositional conditions because metals can complex
with organic matter potentially resulting in higher
concentrations of some metals, such as V. However,
organic matter sources and compositions have chan-
ged throughout the Paleozoic, which may limit the
preservational ability of organic matter or the abun-
dance of somemetals (Negri et al., 2009).

Differences in these proxies may be attributed to
factors that may increase or decrease concentrations
of some elements in the depositional or postdeposi-
tional environments (e.g., diagenesis, hydrothermal
fluids, etc.). Additionally, some proxies have not

been well established and may have limitations
regarding environmental conditions that could result
in inconsistent interpretations, ultimately diminish-
ing their utility (Averyt and Paytan, 2004; Anderson
and Winckler, 2005). Therefore, further analysis is
needed to assess the reliability of paleoenvironmental
proxies with these shales. It is important to note that
the number of samples analyzed for these shales is
limited, which restricts making comprehensive infer-
ences, but they are valuable for comparative pur-
poses. Additional sampling may also help refine the
spatial resolution across the study area and vertically
within individual stratigraphic sequences, as well as
validate or invalidate the usefulness of these proxies
for these shales, especially for those with a limited
number of samples.

CONCLUSIONS

A geochemical survey of Paleozoic shales across the
midcontinent United States shows that the black
shales form under varying depositional conditions,
although multiple paleoenvironmental proxies are
required to interpret their depositional environment
due to the lack of a single, reliable proxy. In the
northern Illinois Basin, the Cambrian Mt. Simon,
Eau Claire, and Tunnel City Shales are suggested to
have formed under oxic, open marine conditions
affected by upwelling. The Devonian Chattanooga
(Ozark Dome) and New Albany (Illinois Basin)
Shales have very similar paleoenvironmental charac-
teristics to each other, indicating they likely formed
under dysoxic to anoxic conditions. Unlike the afore-
mentioned rocks, the Mississippian Fayetteville Shale
appears to have been exposed to a wider range of
conditions, ranging from oxic to anoxic, although it is
unclear how these conditions changed over time or
spatially during the deposition of the shales. Most
proxies imply that the Carboniferous Stanley, Atoka,
and Jackfork Formations of the Ouachita Mountains
and the Vilas Shale of the Cherokee and Forest City
Basins were also deposited under oxic conditions.

The shaleswith themost strongly anoxic indicators
are many of the Cambrian–Ordovician shales of the
Ouachita Mountains (Collier, Womble, and Polk
Creek) and many of the Pennsylvanian shales of the
Cherokee and ForestCity Basins (Excello, LittleOsage,
Hushpuckney, Muncie Creek, Eudora, Heebner).
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The paleoredox and basin restriction proxies indicate
that the late Cambrian to Early Ordovician Collier
Shale formed under anoxic, open marine conditions.
This was later followed by the Mazarn Shale, which
may have formed under a much wider range of open
marine conditions, potentially ranging from oxic to
anoxic, but it is unclear what is responsible for this
wide range. The overlying Womble and Polk Creek
Shales suggest that they both formed under anoxic
conditions that may have been influenced by oceanic
upwelling currents. However, during the deposition of
the Womble Shale, the geochemistry of the environ-
ment appears to have changed, becoming increasingly
anoxic. This may have been due to a sedimentation
rate change during their deposition (Gleason et al.,
1994, 1995, 2002; Liu and Algeo, 2020). Many Penn-
sylvanian black shales of the Cherokee and Forest City
Basins (Eudora, Excello, Heebner, Hushpuckney, Lit-
tle Osage, Muncie Creek, and Stark Shales) that have
been described as metalliferous appear to have formed
under anoxic and in some cases, euxinic conditions.
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