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Frequency-Domain Super-Resolution With
Reconstruction Using Compressed Representation

(FDSR-RCR) Algorithm for Remote Sensing
Satellite Images

Jiaqing Miao , Xiaobing Zhou , Guibing Li, Gaoping Li, Li Zeng, Xiaoguang Liu, and Ying Tan

Abstract— In remote sensing image processing for Earth
and environmental applications, super-resolution (SR) is a cru-
cial technique for enhancing the resolution of low-resolution
(LR) images. In this study, we proposed a novel algorithm
of frequency-domain super-resolution with reconstruction from
compressed representation. The algorithm follows a multistep
procedure: first, an LR image in the space domain is trans-
formed to the frequency domain using a Fourier transform.
The frequency-domain representation is then expanded to the
desired size (number of pixels) of a high-resolution (HR) image.
This expanded frequency-domain image is subsequently inverse
Fourier transformed back to the spatial domain, yielding an
initial HR image. A final HR image is then reconstructed
from the initial HR image using a low-rank regularization
model that incorporates a nonlocal smoothed rank function
(SRF). We evaluated the performance of the new algorithm by
comparing the reconstructed HR images with those generated
by several commonly used SR algorithms, including: 1) bicubic
interpolation; 2) sparse representation; 3) adaptive sparse domain
selection and adaptive regularization; 4) fuzzy-rule-based (FRB)
algorithm; 5) SR convolutional neural networks (SRCNNs);
6) fast SR convolutional neural networks (FSRCNNs); 7) practical
degradation model for deep blind image SR; 8) the frequency
separation for real-world SR (FSSR); and 9) the enhanced SR
generative adversarial networks (ESRGANs). The algorithms
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were tested on Landsat-8 and Moderate Resolution Imaging
Spectroradiometer (MODIS) multiresolution images over various
locations, as well as on images with artificially added noise to
assess the robustness of each algorithm. Results show that: 1) the
proposed new algorithm outperforms the others in terms of the
peak signal-to-noise ratio, structure similarity, and root-mean-
square error and 2) it effectively suppresses noise during HR
reconstruction from noisy low-resolution (LR) images, overcom-
ing a key limitation of existing SR methods.

Index Terms— Compressed representation, frequency domain,
low-rank regularization model, remote sensing images, smoothed
rank function (SRF), super-resolution (SR).

I. INTRODUCTION

SUPER-RESOLUTION (SR) is an image enhance-
ment technique that constructs higher spatial resolution

images—or sequences—from observed low-resolution (LR)
images. High-resolution (HR) images can be obtained either
by improving the imaging system itself (hardware upgrades)
or by developing advanced image-processing techniques after
the images have been captured with existing imaging sys-
tems. SR techniques for HR image reconstruction are a key
research area in remote sensing image processing, as spatially
enhanced images allow interpreters to identify finer details and
extract more information than from the original LR images.
The physical basis for this enhancement lies in the fact
that the reconstructed HR image can incorporate information
from multiple sources, rather than relying solely on the LR
image. For instance, when multiple images of the same scene
are acquired nearly simultaneously by imaging systems with
varying resolutions and unaligned pixels, the complementary
information across these images can be utilized to reconstruct a
higher-resolution image than any of the individual constitutive
images.

With the advancement of satellite constellations, such as
the Geostationary Operational Environmental Satellites con-
stellation (GOES-16–GOES 19 [1], [2], SARAH [3], Sentinel
satellites (Sentinel-3 and Sentinel-5 Precursors [4], etc.) [5],
multiple images of the same scene taken within short time
intervals (e.g., one day to one week) have become common.
Furthermore, HR remote sensing image can also be recon-
structed from the limited data of a single LR image based on
single-frame SR technique [6], [7].
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TABLE I
IMAGES AND REGIONS USED FOR SR IMAGE RECONSTRUCTION

However, during the processes of imaging, digitization,
data transmission, and storage, various types of noise, such
as readout noise during the digitization of charge-coupled
device signals, can be introduced. This noise directly affects
image quality. In practical applications like target detection [8],
traffic and safety monitoring [9], and pattern recognition [10],
HR remote sensing images are crucial. While HR images
can be acquired through expensive hardware improvement,
LR images captured by existing instruments can be enhanced
using SR technology, a crucial branch of image process-
ing. In recent years, significant research has focused on SR
techniques and their application to reconstruct HR remote
sensing images, leading to numerous proposed SR algo-
rithms [11], [12], [13], [14], [15], [16], [17], [18], [19].
For example, Dong et al. [20] developed the adaptive sparse
domain selection and adaptive regularization (ASDS-AR-NL)
algorithm. Purkait et al. [21] introduced the fuzzy-rule-
based (FRB) algorithm for single-band image reconstruction.
Zhang et al. [22] proposed a sparse representation-based SR
method for image reconstruction. Dong et al. [23] developed
an SR convolutional neural network (SRCNN), which was
later improved by redesigning the convolutional neural net-
work (CNN) architecture without sacrificing restoration quality
fast super-resolution CNN (FSRCNN) [24]. Zhang et al. [25]
designed the Practical Degradation Model for Deep Blind
Image SR generative adversarial network (BSRGAN), which
generates blur effects using convolution approximation with
isotropic and anisotropic Gaussian nuclei, adds Gaussian noise
of varying levels, and applies Joint Photographic Experts
Group (JPEG) compression with different quality factors. This
model enhances the feasibility of practical single-image SR
applications. Fritsche et al. [26] proposed the frequency sep-
aration for the real-world SR (FSSR) model, which improves
performance on real-world images by natural image fea-
tures and separating the image spectrum into low- and
high-frequency components during training. Wang et al. [27]
explored the enhanced sr generative adversarial networks
(ESRGANs) model, which improved SRGAN by introduc-
ing nonbatch normalized residual-in-residual-dense blocks and
enhancing perception loss, leading to more realistic and natural
texture recovery. Liu et al. [28] proposed the spectral–spatial
attention-based U-Net to fuse hyperspectral and multispectral
images, effectively enhancing both spectral and spatial infor-
mation through attention modules. Dian et al. [29] developed
CNN-Fus, a fusion method based on subspace representation
and CNN denoiser for grayscale denoising, which improves
HR-hyperspectral image recovery accuracy. Li et al. [30]
designed a spectral SR framework by learning a cross-scale
relationship and achieved a satisfactory result. Recently, they
transferred the spectral unmixing into the SR and hence

proposed an effective couple unmixing framework [31].
Deng et al. [32] proposed a novel pyramid Shuffle-and-
Reshuffle Transformer (PSRT) for the task of multispectral
and hyperspectral image fusion. Extensive experiments on
four datasets demonstrate the superiority of the proposed
PSRT. Li et al. [33] proposed an enhanced unmixing-inspired
unsupervised network with attention-embedded degrada-
tion learning to realize multispectral-aided HS-SR. Exten-
sive experimental results on four datasets demonstrate the
effectiveness of the proposed methods. Li et al. [34],
[35] enhanced the deep image prior for the hyperspec-
tral SR, which can obtain a high-quality reconstruction
result.

Despite the progress made in SR algorithms, few stud-
ies have focused on SR techniques based on the frequency
domain. The SR theory in the frequency domain is relatively
simple, with low computational complexity, and is well-suited
for parallel computing. However, SR algorithms based on
the frequency domain often produce suboptimal results when
reconstructing a noisy image. To address this deficiency,
we proposed a novel SR reconstruction algorithm. In this new
method, a smoothed rank function (SRF) combined with an
expanded frequency-domain image is used. Reconstruction is
performed on downsampled images in the frequency domain.
Instead of using a traditional low-rank function [36], [37],
[38], we apply a nonconvex nonlocal SRF. The procedure
of the proposed SR algorithm consists of four steps: 1) an
LR image is Fourier transformed to the frequency domain;
2) the frequency-domain image is expanded to the desired
size (number of pixels) of the HR image; 3) the expanded
frequency-domain image is then inverse Fourier-transformed
back to the spatial domain to form an initial HR image; and
4) a final HR image is reconstructed from the initial HR
image using a low-rank regularization model that incorporates
a nonlocal SRF.

II. DATA SOURCES

Two different sets of remote sensing images, namely the
Landsat-8 and moderate resolution imaging spectroradiome-
ter (MODIS) datasets, were selected for this study. Table I
summarizes the locations and dates on which the images
were acquired. The first dataset consists of Landsat-8 L1TP
product images from the panchromatic band (503–676 nm)
with a spatial resolution of 15 m. These Landsat images were
ordered for four different locations: the Antarctic Peninsula,
the Chinese Kunlun Station in Antarctica, Flathead Lake in
Montana, USA, and rain forests in Brazil.

The second dataset used in this study comprises MODIS
images. MODIS data products MOD09GQ and MOD09GA
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were ordered from the United States Geological Sur-
vey’s (USGS) data portal: https://earthexplorer.usgs.gov/. The
MOD09GQ product is the MODIS Terra Surface Reflectance
Daily L2G Global 250 m data, which provides daily surface
reflectivity for bands 1 (620–670 nm) and 2 (841–876 nm) at
250-m spatial resolution and 16 bits radiometric range. The
MOD09GA product is the MODIS Terra Surface Reflectance
Daily L2G Global 500 m and 1 km data, which includes daily
surface reflectance for MODIS bands 1–7 at 500-m spatial
resolution. The spectral bands of the MOD09GA product
include 620–670 nm (B1), 841–876 nm (B2), 459–479 nm
(B3), 545–565 nm (B4), 1230–1250 nm (B5), 1628–1652 nm
(B6), and 2105–2155 nm (B7). Notably, the first two bands
of both the MOD09GQ (250 m) and MOD09GA (500 m)
products are identical but differ in spatial resolution. These
products are acquired simultaneously, providing an excellent
opportunity for evaluating SR algorithms.

III. ALGORITHM DEVELOPMENT

The new SR algorithm for HR image reconstruction is
based on a nonconvex, nonlocal regularization model. The
development process involves several key steps.

1) Block-Grouping Method: A block-grouping approach is
introduced to transform a sparse optimization problem
into a rank-minimization problem, using self-similarity
among image patches [39], [40], [41]. This method is
based on the assumption that there are enough images
of the same scene exhibiting self-similarity, which is
typically the case with remote sensing images of the
Earth’s surface. A patch-based approach is then used to
select image patches with strong correlation to form a
matrix with low rank. We used x̂ i j ∈ CN to denote the
i th patch at position j . For each sample patch xi , patches
are grouped using the K -nearest neighbors algorithm
in local windows (e.g., 50 × 50 window) as shown
below [42]:

Pi =
{

i j |
∥∥xi − x̂ i j

∥∥ < C
}

(1)

where C is a constant and Pi is the position of the patch
x̂ i j . We select m most similar patches, including the sam-
ple patch xi , to form a matrix X i =

[
xi0 , xi1 , . . . , xim−1

]
,

X i ∈ Cn×m .
2) Matrix Grouping for Similarity: Since satellite remote

sensing images are typically too large for direct singular
value decomposition (SVD) [43], [44], the patches are
regrouped based on similarity between matrices. This is
represented as

G i =
{
(i, j)

∣∣∥∥X i − X j
∥∥ < C1

}
(2)

where C1 is a constant for similarity matrices, G i

represents the locations of all matrices X j that are
similar to the sample matrix X i . If matrices satisfy
the similarity condition, they are merged; otherwise,
they remain separate. Therefore, we get a matrix
Yi =

[
xi , xi1 , . . . , xit , x j , x j1 , . . . , x jm−t−2

]
with two sam-

ple patches xi and x j , Yi ∈ Cn×m . These patches have
similar structures and Yi represents a matrix with low
rank.

3) Noise Suppression and Matrix Decomposition: To secure
low-rankness, noise suppression is crucial. This is
achieved by decomposing the matrix Yi into a form of
Yi = Z i + Wi , where Wi denotes a noise matrix and Z i

represents a low-rank matrix that is obtained as follows:

Z i = arg min
Zi

rank(Z i )

s.t. ∥Yi − Z i∥
2
F ≤ σ 2

w (3)

where ∥·∥
2
F denotes the Frobenius norm and σ 2

w rep-
resents the noise variance. To obtain an approximate
solution to (3), the minimization problem is transformed
into a nondeterministic polynomial hard problem, using
a nonconvex model with an SRF [45]. The SRF is used
as an approximation to solve the low-rank minimization
problem. The SRF can be represented by

Gδ(Z) = ℓ −

ℓ∑
j=1

e−σ 2
j (Z)/2δ2

(4)

where Z is a low-rank matrix, ℓ = min{n, m}, δ is a
parameter, and σ j (Z) is the j th singular value of Z .
To avoid falling into a local minimum and ensure con-
vergence when solving the minimization function (5),
the initial value of δ is set to a large value, and it grad-
ually decreases as iterations proceed. The optimization
problem can be expressed as

Z i = arg min
Zi

1
2
∥Yi − Z i∥

2
F + λGδ(Z i ) (5)

where λ is a regularization parameter.

A. Model Convergence Analysis

To establish an SR algorithm for HR reconstruction of
remote sensing images using the Alternating Direction Method
of Multipliers (ADMMs) method [46], the SRF function
Gδ(Z) as shown in (4), is a pseudo-norm function. We assume
Q(Z) = P(σ (Z)), where σ(Z) represents the SV of the
matrix Z . We also assume Z has the SVD form Z =

U6V T , where U and V are orthogonal matrices, 6 =

diag
(
σ1, σ2, . . . , σn1

)
is a diagonal matrix of singular values,

n1 = min{n, m}. The derivative of Q(Z) with respect to Z is
given by [22]

∇Q(Z) =
∂ Q(Z)

∂ Z
= Udiag(θ)V T (6)

where θ = (∂ P(Z)/∂ Z) is the derivative of P with
respect to σ(Z). The derivative of the function Hδ(Z) =∑ℓ

j=1 e−σ 2
j (Z)/2δ2

with respect to Z is given by

∂ Hδ(Z)

∂ Z
=

Udiag
(
−

σ1

δ2 e−σ 2
1 /2δ2

,−
σ2

δ2 e−σ 2
2 /2δ2

, . . . ,−
σℓ

δ2 e−σ 2
ℓ /2δ2

)
V T .

(7)

For Z ∈ Cn×m , the minimization problem is solved by
applying weighted thresholds to the singular values, as shown
below:

Z = arg min
Z

1
2
∥Y − Z∥2

F + λGδ(Z). (8)
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Proof: The minimization of the function

K (Z) = (1/2)∥Y − Z∥2
F + λGδ(Z)

can be expressed in a gradient form as follows:

∇K (Z) =
∂K (Z)

∂ Z
= (Z − Y )

+ λUdiag
(σ1

δ2 e−σ 2
1 /2δ2

,
σ2

δ2 e−σ 2
2 /2δ2

, · · · ,
σℓ

δ2 e−σ 2
ℓ /2δ2

)
V T

= 0. (9)

To solve (12) for Z , the gradient descent method is used. The
iterative form for Z is

Z (k+1)
= Z (k)

− α∇K (Z) (10)

where α represents the step size.

B. Establishment and Solution With Respect to the Model

Using the SRF as the low-rank regularization term, the SR
reconstruction model for HR images is formulated as

x = 8−1(U8ω)(
x̂, Ẑ i

)
= arg min

x̂,Ẑ i

∥y − DFx∥2
2

+ η
∑

i

{
∥Ri x − Z i∥

2
F + λGδ(Z i )

}
,

(8x)� = (8ω)� (11)

where ω is the LR image and U and 8 are the up-sized
and Fourier-transformed matrices, respectively. The matrix
y ∈ CM is a compression vector from an HR remote
sensing image that is resized in the frequency domain.
x ∈ CN represents the reconstructed SR image, and
the matrices D ∈ CM×N and F correspond to down-
sized and Fourier-transformed matrices. The regularization
parameters η and λ are applied to enforce sparsity.
Ri x .

=
[
Ri x, Ri1 x, . . . , Rit x, R j x, R j1 x, . . . , R jn−t−2 x

]
repre-

sents a patch group at positions (i, i1, . . . , it , j, j1, . . . , jn−t−2)

and generates a matrix whose columns are similar to xi .
Z i is a low-rank matrix. Gδ(Z i ) is the SRF function. (·)�
denotes the projection function that holds the entries of 8ω

in � while making others to be zeros. Therefore, the matrix
becomes low-rank. The method can now be used to reconstruct
HR images.

We use the ADMM method [47], [48] and Split Breg-
man [49] methods to solve (11). First, we decompose the
problem into two subproblems.

Subproblem 1:

Ẑ i = arg min
Ẑ i

∥Ri x − Z i∥
2
F + λGδ(Z i ). (12)

Subproblem 2:

x̂ = arg min
x̂

∥y − DFx∥2
2 + η

∑
i

∥Ri x − Z i∥
2
F . (13)

For the Subproblem 1, we solve it directly using Z i =

Udiag
(
σ1, σ2, . . . , σn1

)
V T . The step size α should be gradu-

ally reduced for better results. Based on trial and error, we set

the step size as α = δ2. For Subproblem 2, we solve it using
ADMM that leads to the augmented Lagrangian function

(x, z, µ) = arg min
x

∥y − F Dx∥2
2

+ β

∥∥∥∥x − z +
ρ

2β

∥∥∥∥2

2
+ η

∑
i

∥Ri z − Z i∥
2
F (14)

where ρ ∈ CN denotes the Lagrangian multiplier and β >

0 and η > 0 are the regularization parameters. z ∈ CN is
an auxiliary variable. The iterative process for solving the
augmented Lagrangian is expressed as

z(k+1) = arg min
z

β(k)

∥∥∥x (k) − z(k) +
ρ(k)

2β(k)

∥∥∥2

2

+η
∑

i

∥∥Ri z(k) − Z i
∥∥2

F ;

x (k+1) = arg min
x

∥∥y − DFx (k)
∥∥2

2

+β(k)

∥∥∥x (k) − z(k+1) +
ρ(k)

2β(k)

∥∥∥2

2
;

ρ(k+1) = ρ(k) + β(k)
(
x (k+1) − z(k+1)

)
;

β(k+1) = γ β(k)

(15)

where γ > 1 denotes a constant. The solution converges and
can be expressed as

z(k+1)
=

(η
∑

i

RT
i Ri + β(k) I )

−1
(β(k)x (k)

+
µ(k)

2
+ η

∑
i

Ri Z i ) (16)

where
∑

i RT
i Ri is a diagonal matrix. The average is expressed

as
∑

i Ri Z i . Hence, we have

x (k+1)
=

F H
{(DT D + β(k))

−1
(DT y + F(β(k)z(k+1)

−
ρ(k)

2
))}. (17)

Using the ADMM method, we update both the matrix Z i and
the SR image x . The pseudocode of a specific algorithm is
shown in Algorithm 1. The SR model is called the frequency-
domain super-resolution with reconstruction using compressed
representation (FDSR-RCR) algorithm.

IV. RESULTS AND ANALYSIS

To assess the performance of the newly developed model,
we applied the model to a Landsat image and a MODIS
image. An LR image was first synthesized by resizing a
Landsat-8 panchromatic image, originally consisting of 1000
× 1000 pixels, with a scale of 0.25, to an LR image with 250
× 250 pixels. The LR image was resampled from the original
image using the cubic interpolation method, resulting in a
synthetic LR image with a resolution of 60 m. For the MODIS
images, the MOD09GA (500 m resolution) was resized with
scales of 0.5 and 0.25 to generate LR images of 400 ×

400 and 200 × 200 pixels, respectively, from the original
MOD09GA images at a 1-km resolution, which consists of
800 × 800 pixels cross two bands. These synthetic LR MODIS
images were then used to reconstruct HR MODIS images.
The reconstructed HR MODIS images, which have 250-m
resolution, were compared with the original MOD09GQ data,
also at 250-m resolution, acquired at the same time as the
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Algorithm 1 Pseudocode of the FDSR-RCR Algorithm
1: Step 1. Expanded Fourier transform

First, transform an LR image into an image in the
Fourier domain; second, expand the frequency-domain
image to an HR image of the desired size; third, apply the
inverse Fourier transform to obtain the initial HR image.

2: Step 2. Initialization:
Initialize the image x using the inverse Fourier trans-

form; then set parameters and initialize the weights as
described in [45]; and lastly, for each sample patch xi ,
form the patch group Pi and find the corresponding
position G i .

3: Step 3. Main Loop
Establish patch data sets Yi and transform patches into

vectors.
4: Step 4. Solve the Subproblems

For Subproblem 1:
Let the collection be Z (0)

i = Yi ;
Inner loop: (Eq.(12))
For j = 1, 2, . . . , J

(I) the SVD of the low-rank matrix Z i is calculated
by using Z i = Udiag

(
σ1, σ2, . . . , σn1

)
V T ;

(II) calculate the gradient ∇Q(Z ( j−1)
i ) of Q(Z ( j−1)

i )

with respect to Z ( j−1)
i according to Eq.(7);

(III) If j = J , then Z i = Z ( j)
i .

End for.
For Subproblem 2:
For l = 1, 2, . . . , L
Inner loop: (solving Eq.(13))
For k = 1, 2, . . . , K

(I) z(k+1) is calculated by using Eq.(16);
(II) x (k+1) is calculated by using Eq.(17);
(III) update ρ and β:
ρ(k+1)

= ρ(k)
+ β(k)(x (k+1)

− z(k+1)),
β(k+1)

= γ β(k);
(IV) If k = K , then x (l)

= x (k+1).
End for
If l = L , then the final reconstructed HR image x̂ = x (l)

is obtained.
End for

(8x)� = (8ω)�.
End

MOD09GA data. The noise of different levels was then added
to the LR images to create synthetic noisy LR images. Below,
we demonstrate how HR images were reconstructed from
the LR images with synthetic noise using the SR algorithm
developed to test the robustness of the algorithm. A block
diagram illustrating the entire workflow is shown in Fig. 1.

The reconstructed HR images were compared with the
original HR image to assess the performance of the new
SR algorithm. For the regularization parameters λ and η,
when the parameter ranges were set to λ ∈ (0.3, 0.95) and
η ∈ (0.05, 0.25), respectively, the FDSR-RCR algorithm did
not necessarily achieve the best reconstruction results for the
Landsat-8 panchromatic and MODIS images, but it ensured

Fig. 1. Block diagram for the entire workflow.

convergence of the algorithm. The values of the parameters λ
and η were adjusted for different images. Since the nonconvex
function was used as a regularization term, the algorithm
is relatively sensitive to a few parameters. Thus, values of
the parameters were set within these ranges and fine-tuned
to achieve optimal reconstruction results. For the low-rank
matrix Z i , m = 54 similar patches were selected for each
example patch. After several trials, the patch size was chosen
to be 5 × 5. To simplify calculations, three pixels were
taken in both left-right and up-down orientations to extract
the sample patches from the image tensor. The computation
was performed on a Dell Precision 7760 server with 128 GB
RAM and an Intel1 CPU Core2 i7-11800H @ 2.30 GHz.

Fig. 2(a)–(d) shows the original Landsat-8 panchromatic
images over the Chinese Kunlun Station in Antarctica,
the Antarctic Peninsula, Flathead Lake of Montana, USA,
and the rain forest in Brazil, respectively. Fig. 2(e) and (f)
shows the MODIS images of bands 1 and 2 from the
MOD09GA (500 m) product, tile h10v04, covering the North-
western United States, respectively.

To assess the sensitivity of the newly developed FDSR-RCR
model to noise levels in LR images during HR image recon-
struction, random noise at various levels was added to the
original images. The noise had a zero mean and standard
deviations (SD) of 16-bit pixel values: 65 535 × (5.9%),
65 535 × (2%), 65 535 × (6.9%), 65 535 × (3.9%), and

1Registered trademark.
2Trademarked.
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Fig. 2. Original remote sensing images used for algorithm evaluation.
(a)–(d) Landsat-8 panchromatic images acquired on June 3, 2018; March
28, 2018; June 25, 2017; June 25, 2017; and August 6, 2017, respectively,
covering: (a) Chinese Kunlun Station in Antarctica, (b) Antarctic Peninsula,
(c) Flathead Lake, Montana, USA, and (d) Brazilian rain forest. (e) and
(f) Images of bands 1 and 2, respectively, from the MODIS MOD09GA
(500 m) product (tile h10v04) acquired on June 3, 2018, covering the
Northwestern United States.

Fig. 3. Synthetic noisy images for algorithm assessment. Images (a)–(d) cre-
ated by adding random noise with a zero mean and SDs of 65 535 × (5.9%),
65 535 × (2%), 65 535 × (6.9%), and 65 535 × (3.9%), respectively, to the
resized LR Landsat-8 images from the original Landsat 8 panchromatic images
shown in Fig. 2(a)–(d).

65 535 × (3.9%), respectively. Fig. 3(a)–(d) shows the syn-
thetic noisy images corresponding to the Landsat-8 images
from Fig. 2(a)–(d), respectively.

Fig. 3 displays a series of preliminary HR images
reconstructed from the series of images resized from the
corresponding original noise-free images showed in Fig. 1.
The top row shows the resized LR images, listed in the
same order from left to right as in Fig. 1. The scale is
0.25 for the Landsat 8 panchromatic images and 0.5 for the
MODIS images. The second row shows the corresponding LR
images in the frequency domain after the Fourier transform,
with pixels sorted so that those at the center of each image
have the highest values. These LR images in the frequency
domain were then expanded to the same size as the original
images displayed in Fig. 1, with the pixel values of the added
pixels (the black squared shell in the images shown in the
third row) set to 0. The third row shows the corresponding
images from the second row but with expanded pixel sizes
matching the HR images shown in Fig. 1. These images
represent the preliminary HR images in the frequency domain
that require further reconstruction. The fourth row shows the
corresponding images in the spatial domain after applying the

Fig. 4. Top row shows the resized images from the corresponding noise-free
images in Fig. 2. The second row shows the corresponding frequency-domain
images for the top row. The third row shows the same images in the frequency
domain but expanded to the same size as the original images shown in Fig. 2.
The fourth row shows the corresponding images in the space domain, obtained
by inverse Fourier transform. (a) Kunlun Station in Antarctica. (b) Antarctic
Peninsula. (c) Flathead Lake. (d) Rain forest in Brazil. (e) MODIS Band-1.
(f) MODIS Band-2.

Fig. 5. Images from left to right in the top row are the resized images with
a scale of 0.25 from the corresponding noisy images shown in Fig. 3. The
second row shows the corresponding images in the frequency domain. The
third row shows the corresponding images from the second row, expanded
to the same pixel size as the original noisy images shown in Fig. 3. The
fourth row shows the corresponding images from the third row in the space
domain. (a) Kunlun Station in Antarctica. (b) Antarctic Peninsula. (c) Flathead
Lake. (d) Flathead Lake-standby. (e) Rain forest in Brazil.

inverse Fourier transform, representing the preliminary HR
images in the space domain that will be further reconstructed
using the newly developed SR algorithm.

Fig. 4 displays a series of preliminary HR images recon-
structed from the resized images corresponding to the original
noise-free images showed in Fig. 2. The top row shows
the resized LR images, listed from left to right as in
Fig. 2. The second row shows the corresponding LR images
in the frequency domain, and the third row shows the
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Fig. 6. (a) Resized Landsat panchromatic image with a scale of 0.25, same as the leftmost image of the top row of Fig. 4. The image covers the Kunlun
Station in Antarctica. (b) Original HR Landsat panchromatic image covering the Kunlun Station, Antarctica [same as Fig. 2(a)]. The images of the first and
fourth rows are the HR images constructed using (c) bicubic interpolation, (d) sparse representation, (e) ASDS-AR-NL, (f) FRB, (g) SRCNN, (h) FSRCNN,
(i) BSRGAN, (j) FSSR, (k) ESRGAN, and (l) FDSR-RCR models, respectively. The images of the second and fifth rows are the difference images between
the original HR Landsat panchromatic image and the reconstructed HR image using the corresponding algorithm, respectively. The third and sixth rows are
the histograms of the corresponding difference images.

frequency-domain images expanded to match the HR image
size. The fourth row shows the corresponding images in the
spatial domain after the inverse Fourier transform, representing
the initial HR images to be further reconstructed using the
newly developed SR algorithm.

Fig. 5 shows a series of the initial HR Landsat-8 images
reconstructed from the resized LR images of the synthetic
noisy images in Fig. 3. The top row shows the resized LR
Landsat-8 images with a scale of 0.25 from the original noisy
images. The second row shows the corresponding LR images
in the frequency domain, and the third row shows these images
expanded to the same size as the HR images. The fourth
row shows the corresponding spatial domain images after the
inverse Fourier transform, representing the preliminary HR
images to be further reconstructed using the newly developed
SR algorithm.

A. Numerical Experiments on Noise-Free
Remote Sensing Images

The SR images reconstructed from the synthetic noisy
images using the FDSR-RCR model were compared

with those reconstructed using several existing algorithms:
bicubic interpolation, sparse representation, ASDS-AR-NL,
FRB, SRCNN, FSRCNN, BSRGAN, FSSR, and ESR-
GAN. The results are shown in Fig. 6. Fig. 6(c)–(i)
displays the reconstructed images using each of the afore-
mentioned algorithms. The corresponding difference images
are shown in the second and fifth rows, and histograms
of these difference images are in the third and sixth
rows.

To enhance the visibility of the details in the difference
images (shown in rows 2 and 5 in Fig. 6), histogram equaliza-
tion was applied. Upon examining the reconstructed images,
we found that the FDSR-RCR model preserves sharp edges
without noticeable blurring, whereas other SR algorithms
exhibit varying degrees of edge blurring. For example, the
bicubic interpolation method introduces a slight separation
effect, and the FRB, SRCNN, and FSRCNN algorithms cause
a noticeable loss of information in the region with dense
features or rich texture. The BSRGAN algorithm suffers from
uneven lighting, leading to significant reflectivity discrepancies
in the target objects, while ESRGAN results in blurring and
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Fig. 7. Same as Fig. 6 but the HR-image reconstruction was performed on the resized Landsat 8 pan-chromatic image covering the Antarctic Peninsula
(same as the second-from-the-left image in the top row of Fig. 4).

unclear edges. Images reconstructed using the FSSR algorithm
suffer from data loss, leading to partial loss of target objects.
In contrast, the FDSR-RCR model effectively suppresses noise
during the SR process, retaining more surface details than the
other algorithms, as evidenced by the difference images in
Fig. 6.

Fig. 7 shows the reconstruction results of the resized Land-
sat 8 panchromatic image covering the Antarctic Peninsula,
using the same algorithms as those in Fig. 6. The sparse
representation and ASDS-AR-NL algorithms produce results
significantly different from the original HR image, with bicu-
bic interpolation exhibiting obvious edge blurring and loss
of details. The sparse representation method also causes a
distinct sawtooth effect. The FRB, SRCNN, and FSRCNN
algorithms result in data loss in steep areas with many
contours, demonstrating the better capacity of the ASDS-
AR-NL algorithms in preserving the features in areas of
high spatial frequency. The BSRGAN and FSSR algorithms
produce uneven lighting, leading to partial loss of target
objects and distortion, the ESRGAN algorithm exhibits blur-
ring and significant reflectance differences. Among all, the

FDSR-RCR algorithm yields the most accurate and faithful
reconstruction.

Fig. 8 presents the reconstructed HR images of the resized
Landsat-8 panchromatic image covering the Flathead Lake
area using the same algorithms as those in Figs. 6 and 7. For
this case, the difference between the HR image reconstructed
using sparse representation and the original HR image is the
largest. The cubic interpolation and ASDS-AR-NL algorithms
show noticeable edge blurring and information loss, especially
in regions with complex terrain where the spatial frequency is
generally high. The FRB, SRCNN, and FSRCNN algorithms
still exhibit data loss and edge blurring. The BSRGAN,
FSSR, and ESRGAN suffer from inhomogeneous brightness,
with FSSR showing the most pronounced nonuniformity.
Reconstruction results of the BSRGAN, FSSR, and ESRGAN
algorithms suffer from significant loss of details, with FSSR
exhibiting the most severe information loss, maybe due to their
smoothing effects. The reconstruction result of the ESRGAN
algorithm introduces some details that are not present in the
original image, leading to blurred or distorted features of
target objects. In the reconstructed images by the FDSR-RCR
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Fig. 8. Same as Fig. 6 but HR-image reconstruction was performed on the resized Landsat 8 panchromatic image covering the Flathead Lake, Montana,
USA (same as the third-from-the-left image in the top row of Fig. 4).

algorithm, the partly expanded region (lower left corner) has
the best details of boundaries, and features in heterogeneous
zones were well preserved.

Fig. 9 shows the reconstructed images for the Brazilian
rainforest from the resized Landsat-8 panchromatic image,
similar to the results shown in Figs. 6–8. The FDSR-RCR
algorithm again outperforms other methods in terms of visual
fidelity and feature preservation in forests. The bicubic inter-
polation and ASDS-AR-NL algorithms display blurred edges,
particularly in the enlarged lower-left regions. The sparse
representation method introduces a sawtooth effect, while
the FRB, SRCNN, and FSRCNN algorithms exhibit strong
blurring effects in heterogeneous zones, which are common
in forests. The BSRGAN and FSSR algorithms suffer from
significant information loss, with BSRGAN being the worst.
ESRGAN results in blurred or distorted features, introducing
features not present in the original image. The FDSR-RCR
algorithm preserves object information, patch boundaries, and
feature details effectively, providing the best visual clarity and
least distortion in forests, illustrating its superiority in HR
image reconstruction for forest investigation.

B. Quantitative Evaluation

The histograms of the difference images shown in the third
and sixth rows of Figs. 6–9 are summarized in Table II,
which quantifies the number of pixels within a small range
around 0 (±520) in each difference image. A higher percent-
age of pixels within this small range of pixel values around
0 indicates a better reconstruction. Table II shows clearly that
the FDSR-RCR algorithm has the largest percentage of pixels
concentrated in the narrow range near zero for the images of
the Antarctic Kunlun Station (99.97%), Antarctic Peninsula
(93.56%), Flathead Lake (90.09%), and Brazilian rainforest
(99.99%), indicating that its reconstructed HR images exhibit
the highest fidelity to the original Landsat-8 images.

To further quantify the performance of the algorithms,
we calculated PSNR, SSIM, and RMSE [50], [51] for the
reconstructed images. Results were summarized in Table III.
For the Flathead Lake region (Fig. 8), the bicubic interpolation,
sparse representation, BSRGAN, and FSSR algorithms have
notably higher RMSE values compared to other algorithms.
The FDSR-RCR model consistently shows the lowest RMSE.
Similarly, for the Kunlun Station, Antarctica (Fig. 6), the
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Fig. 9. Same as Fig. 6 but the HR-image reconstruction was performed on the resized Landsat pan-chromatic image covering the rain forest in Brazil (same
as the fifth-from-the-left image in the top row of Fig. 4).

TABLE II
NUMBER OF PIXELS WITHIN A SMALL RANGE OF PIXEL VALUES AROUND 0 OF THE DIFFERENCE IMAGES BETWEEN THE ORIGINAL HR LANDSAT

PANCHROMATIC IMAGE AND THE REBUILT HR IMAGES USING DIFFERENT SR ALGORITHMS

FDSR-RCR algorithm also maintains the lowest RMSE. For
the Brazilian rainforest (Fig. 9), the difference in RMSE values
among all algorithms is less pronounced than the Flathead
Lake case, but the FDSR-RCR model still achieves the lowest

RMSE. The RMSE, PSNR, and SSIM metrics confirm that
the FDSR-RCR model outperforms all other algorithms in
preserving image quality, with the best visual effects least,
and the least errors.
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TABLE III
VALUES OF RMSE, PSNR, AND SSIM FOR DIFFERENT ALGORITHMS IN GENERATING SR IMAGES FROM THE LANDSAT-8 IMAGES SHOWN IN FIGS. 6–9

C. MODIS Images Reconstruction

For the MODIS images, subimages of 400 × 400 pixels
were extracted from Bands 1 and 2 of the MOD09GA (500 m)
product. The MOD09GA images were resized by a scale
of 0.5 to generate synthetic LR MODIS images with 1-km
resolution, which were then used for SR reconstruction. The
reconstructed HR images were compared to the original Bands
1 and 2 images from the MOD09GQ product, which have a
250-m resolution.

Figs. 10–13 show the results of SR reconstruction.
Figs. 10(a) and (b)–13(a) and (b) show the origi-
nal MOD09GA and MOD09GQ images, respectively.
Figs. 10(c)–(h)–13(c)–(h) display the reconstructed HR
images using bicubic interpolation, Sparse Representation,
ASDS-AR-NL, FRB, SRCNN, FSRCNN, and FDSR-RCR
algorithms, along with the corresponding difference images
and their histograms. The FDSR-RCR model consistently
provides the best visual effects, with smaller differences from
the original images, and better preservation of edges and fine
structures compared to the other algorithms.

The last row in Figs. 10–13 shows the histograms of the
corresponding difference images. Tables IV and V summarize
the number of pixels within a small range (±300) around
0 in the difference images. The FDSR-RCR algorithm again
exhibits the highest percentage of pixels within this narrow
range, indicating its superior performance in preserving image
quality.

In terms of RMSE, PSNR, and SSIM, the FDSR-RCR
model outperforms other methods, producing the best recon-
structed HR images with superior feature preservation,
especially in areas of high spatial frequency. This is further
confirmed by the results shown in Tables VI and VII, where
the FDSR-RCR model demonstrates the lowest RMSE and
the highest PSNR and SSIM values, indicating its superior
ability to reconstruct high-quality HR images from LR MODIS
data. These results for MODIS images are very similar to
the Landsat 8 image, even though the spatial resolution is
so different (500 m for MOIS versus 30 m for Landsat 8),

indicating the applicability of the FDSR-RCR algorithm to
images of a broad range of resolutions.

V. NUMERICAL EXPERIMENTS ON REMOTE SENSING
IMAGES WITH SYNTHETIC NOISE

To assess the robustness of the algorithms, evaluation
was performed using the Landsat-8 images that cover the
Kunlun Station in Antarctica, the Antarctic Peninsula, and the
Flathead Lake. The noise of various levels was introduced
into the images, as shown in Fig. 3. SR reconstruction was
then performed, following a process similar to the noise-free
case described in Section IV-A. The reconstruction results
produced by the FDSR-RCR model were compared with
those from the bicubic interpolation, sparse representation,
and FRB algorithms.

The results are presented in Figs. 14–16, and the cor-
responding values of the perceptual quality index (PQIs)
are summarized in Table VIII. Table VIII and Figs. 14–16
show that the FDSR-RCR model maintains a performance
comparable to that observed with noise-free images, demon-
strating significant advantages in suppressing random noise
across different noise levels. The reconstruction results from
the FDSR-RCR algorithm are consistently better than those
from the other algorithms in terms of visual quality and PQI
values. The sparse representation, ASDS-AR-NL, and FRB
algorithms also show some capacity for noise suppression,
particularly when dealing with images containing lower noise
levels, though their performance is not as robust as that of the
FDSR-RCR model.

Overall, the FDSR-RCR algorithm stands out with the
best PQI values, showing its effectiveness in reconstructing
high-quality HR images from noisy input images. This rein-
forces its strong ability to suppress noise while preserving
image details.

VI. DISCUSSION

The success of the SRF regularization method relies heavily
on the appropriate adjustment of the weight parameters in
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Fig. 10. Results of SR reconstruction for the MODIS Band-1 image (sur_refl_b01_1) of the MOD09GA product. The image was acquired on June 3, 2018.
(a) Original MODIS Band-1 image of the MOD09GA product. (b) Original image of the MODIS Band-1 image of the MOD09GQ product acquired on the
same day. (c)–(h) Reconstructed images by the bicubic interpolation, sparse representation, FRB, SRCNN, FSRCNN, and FDSR-RCR models, respectively.
(c)–(h) First and fourth rows are the reconstructed HR images using the matching algorithms, the second and fifth rows are the difference images between
the original HR image and the matching rebuilt HR images, and the third and sixth rows are the histogram of the difference images for the corresponding
algorithm.

TABLE IV
NUMBER OF PIXELS WITHIN A SMALL RANGE OF PIXEL VALUES AROUND 0 OF THE DIFFERENCE IMAGES BETWEEN THE ORIGINAL MODIS IMAGES

AND THE REBUILT HR (SCALE OF 0.5) RESULTS USING DIFFERENT SR ALGORITHMS

the data fidelity and regularization terms. When these weight
parameters are optimally selected, this method can produce
high-quality HR reconstructions. Experiments were conducted
using the Landsat-8 and MODIS images as well as Landsat-8
images with varying levels of added noise. The HR images
reconstructed using the bicubic interpolation, sparse represen-
tation, ASDS-AR-NL, FRB, SRCNN, FSRCNN, BSRGAN,
FSSR, ESRGAN, and FDSR-RCR models were compared to

the original HR images. Results consistently show that the
newly developed FDSR-RCR algorithm outperforms the other
algorithms in fidelity, visual effects, and noise suppression.

Errors typically occur in transition zones between different
geological features and land covers where the spatial frequency
is generally very high. However, the reconstructed images
using the FDSR-RCR method demonstrate that even in these
challenging transition zones, the pixel values maintain high
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Fig. 11. Same as Fig. 10 but the SR reconstruction was performed on the MODIS Band-2 image (sur_refl_b02_1). The images were acquired on June 3,
2018.

TABLE V
NUMBER OF PIXELS WITHIN A SMALL RANGE OF PIXEL VALUES AROUND 0 OF THE DIFFERENCE IMAGES BETWEEN THE ORIGINAL MODIS IMAGES

AND THE REBUILT HR (SCALE OF 0.25) RESULTS USING DIFFERENT SR ALGORITHMS

fidelity to the original images. This is critical for remote
sensing applications, where reliable delineation of complex
geological or ecological surface features is essential. High-
fidelity reconstruction in these transition zones is especially
important for accurately classifying land cover and land use.

The core objective of SR technology lies in enhanc-
ing image resolution and improving detail expression. The
algorithm itself does not specify the exact resolution of
an image. The study is grounded in the observation that
most current optimization-based SR techniques attempt to

reconstruct HR images from LR counterparts by solving the
nondeterministic polynomial-hard problems. However, such
approaches encounter inherent bottlenecks due to the absence
of prior information about HR images during reconstruction.
To address the limitation, we introduce a novel strategy
combining frequency-domain expansion of LR images with
random sampling information injection in the frequency
domain of HR images. The methodology effectively incor-
porates prior knowledge of HR images during reconstruction,
thereby generating SR images with enhanced details. Com-
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Fig. 12. (a) Resized MODIS Band-1 image of the MOD09GA product with a scale of 0.5. (b) Original image of the MODIS Band-1 image of the MOD09GQ
product. (c)–(j) Reconstructed images by the bicubic interpolation, sparse representation, FRB, SRCNN, FSRCNN, FSSR, ESRGAN, and FDSR-RCR models,
respectively. (c)–(j) First and fourth rows are the reconstructed HR images using the matching algorithms, the second and fifth rows are the difference images
between the original HR image and the corresponding rebuilt HR results, and the third and sixth rows are the histogram of the difference images for the
corresponding algorithm.

TABLE VI
VALUES OF RMSE, PSNR, AND SSIM FROM THE SR IMAGE FOR THE CASE STUDIES OF THE MODIS IMAGES SHOWN IN FIGS. 10 AND 11

pared with the original LR images, the reconstructed HR
image demonstrates superior spatial resolution and richer
textural information, providing enhanced data support for sub-
sequent analytical applications and image interpretation. The
algorithm synthetically integrates frequency-domain process-

ing, advanced sampling techniques, and optimization theory.
Through systematic operations and constrained processing
of LR remote sensing images, it successfully achieves SR
images and establishes a robust computational framework for
advanced remote sensing image applications. The compre-
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Fig. 13. Same as Fig. 12 but the SR reconstruction was performed on the resized MODIS Band-2 image (sur_refl_b02_1) of the MOD09GA. The image was
acquired on June 3, 2018. (a) Resized MODIS Band-2 image with a scale of 0.5, (b) original image of the MODIS Band-1 image, (c) bicubic interpolation,
(d) sparse representation, (e) FRB, (f) SRCNN, (g) FSRCNN, (h) FSSR, (i) ESRGAN, and (j) FDSR-RCR models, respectively.

TABLE VII
VALUES OF RMSE, PSNR, AND SSIM FOR THE SR IMAGE FROM THE CASE STUDIES OF THE MODIS IMAGES SHOWN IN FIGS. 12 AND 13

hensive approach significantly advances the state-of-the-art in
image enhancement by effectively balancing reconstruction
accuracy and computational efficiency.

The theoretical performance of the proposed algorithm can
be analyzed from two perspectives: computational complex-
ity and reconstruction quality. First, the frequency-domain
expansion and inverse Fourier transform convert the spec-

tral information of LR images into the spatial domain
to generate an initial HR image. This step achieves
a computational complexity of O(N · log N ), where N
denotes the total number of pixels in the image. Second,
the low-rank regularization model incorporating a nonlo-
cal smooth rank function is employed to optimize the
initial HR image through the ADMM iterative optimiza-
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TABLE VIII
RMSE, PSNR, AND SSIM VALUES FOR DIFFERENT ALGORITHMS IN SR OF THE LANDSAT-8 IMAGES WITH DIFFERENT

NOISE LEVELS SHOWN IN FIGS. 14–16

Fig. 14. Results of SR reconstruction from the Landsat-8 images covering
the Kunlun Station, Antarctica, with random noise of zero means and an
SD of 65 535 × (5.9%). (a) Resized Landsat 8 image with a scale of 0.25.
(b) Original Landsat 8 image. (Top row) (c)–(f) Reconstructed HR images by
the bicubic interpolation, sparse representation, FRB, and FDSR-RCR models,
respectively. (Bottom row) The difference images between the reconstructed
HR images and the original images.

Fig. 15. Same as Fig. 14 but the SR reconstruction was performed on the
Landsat-8 image covering the Antarctic Peninsula with the random noise of
zero mean and an SD of 65 535 × (2.0%).

tion algorithm, which exhibits a complexity of O(K ·

N 2), where K represents the number of iterations. The
K -nearest neighbors algorithm for identifying similar patches
incurs a complexity of O(m · M), where m is the number
of pixels per patch in the similarity matrix and M denotes
the total number of patches in the image. The computational
complexity of performing the SVD scales as O(max3(m, n)),
where n is the number of patches constituting the similarity
matrix. Consequently, the overall computational complexity of
the algorithm is O(N · log N + K · N 2

+m · M +max3(m, n)),
which becomes relatively high for large-scale images.

Fig. 16. Same as Fig. 14 but the SR reconstruction was performed on the
Landsat-8 image covering the Flathead Lake, Montana, USA, with the random
noise of zero means and an SD of 65 535 × (5.9%).

Regarding reconstruction quality, the frequency-to-spatial
domain conversion effectively restores global image informa-
tion. In contrast, the low-rank regularization model enhances
reconstruction performance by constraining the image rank
and enforcing nonlocal smoothness, which effectively removes
noise and enhances details. However, the reconstruction
quality depends on factors such as frequency-domain expan-
sion size, regularization parameters, and convergence criteria,
necessitating a tradeoff between computational efficiency and
reconstruction fidelity.

In summary, the proposed algorithm demonstrates superior
performance in image SR tasks and is particularly suitable for
applications demanding high-quality reconstruction.

The proposed algorithm also has some limitations: the
algorithm performs Fourier transforms and inverse transforms
between the frequency and spatial domains, while involving
matrix operations in optimizing the objective function. The
multiple transformations and complex matrix computations
significantly increase the overall computational complexity.
Moreover, the incorporation of a computationally intensive
nonlocal regularization term for enhanced precision further
contributes to the extended execution time. Parameter settings
(e.g., regularization parameters η and λ in the objective
function) require manual adjustment, demonstrating limited
adaptability. Future research will focus on developing an
optimized framework utilizing fast transformation techniques
to replace conventional Fourier transforms, reducing com-
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putational overhead in transformation processes. To enhance
parameter adaptability, reinforcement learning will be imple-
mented to dynamically adjust parameters in the objective
function based on quality feedback from SR outcomes during
remote sensing image processing. These proposed improve-
ments aim to mitigate current limitations and enhance the
algorithm’s practical applicability and reliability in real-world
scenarios.

VII. CONCLUSION

In summary, a regularization-based frequency-domain SR
algorithm for satellite remote sensing images has been devel-
oped, utilizing a nonlocal low-rank SRF function, with
reconstruction performed via the ADMM method.

The regularization approach effectively captures inher-
ent structural correlations within the image data, thereby
enhancing the reconstruction quality while preserving essen-
tial textural details. Simultaneously, the nonlocal nonconvex
low-rank regularization method demonstrates exceptional effi-
cacy in exploiting the intrinsic structural redundancy present
across similar image patches, thereby establishing itself as a
rigorous mathematical framework for HR image reconstruc-
tion from LR counterparts. This approach capitalizes on the
self-similarity property inherent in remote sensing images,
enabling the preservation of fine-scale details while effec-
tively suppressing noise during the reconstruction process. The
incorporation of nonconvex regularization further enhances the
model’s ability to capture complex structural dependencies,
resulting in superior fidelity compared to conventional convex
regularization methods. The newly developed FDSR-RCR
model has been evaluated against various traditional SR algo-
rithms, including bicubic interpolation, sparse representation,
ASDS-AR-NL, FRB, SRCNN, FSRCNN, BSRGAN, FSSR,
and ESRGAN using Landsat-8 and MODIS images. Results
show that the FDSR-RCR model consistently outperforms in
terms of better visual quality, lower RMSE, higher PSNR,
and SSIM values. This advantage is particularly notable when
reconstructing images from LR inputs contaminated by various
levels of noise, owing to the model’s inherent ability to sup-
press noise effectively. The FDSR-RCR model demonstrates
strong performance in SR reconstruction, even for images with
downscaled LR images as small as 0.25 of the original size.
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