
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 70, NO. 1, JANUARY 2025 81

Decentralized Optimization Resilient Against
Local Data Poisoning Attacks

Yanwen Mao , Deepesh Data , Suhas Diggavi , Fellow, IEEE, and Paulo Tabuada , Fellow, IEEE

Abstract—In this article, we study the problem of de-
centralized optimization in the presence of adversarial at-
tacks. In this problem, we consider a collection of nodes
connected through a network, each equipped with a local
function. These nodes are asked to collaboratively com-
pute the global optimizer, i.e., the point that minimizes the
aggregated local functions, using their local information
and messages exchanged with their neighbors. Moreover,
each node should agree on the said minimizer despite an
adversary that can arbitrarily change the local functions
of a fraction of the nodes. We present, the resilient av-
eraging gradient descent (RAGD) algorithm, a decentral-
ized, consensus+outlier filtering algorithm that is resilient
to such attacks on local functions. We demonstrate that,
as long as the portion of attacked nodes does not exceed
a given threshold, RAGD guarantees that all nodes will be
able to have a good estimate of the said minimizer. We
verify the performance of the RAGD algorithm via numerical
examples.

Index Terms—Adversarial machine learning, consensus
control, fault tolerant computer networks.

I. INTRODUCTION

T
HIS article concerns a decentralized optimization problem

that has seen several applications in the past decade [1],

[2], including federated learning [3], [4]. In this problem, we

have a set of nodes connected via a communication network,

each equipped with a local function, which collectively com-

pute the minimizer of the aggregation of their local functions.

However, in some scenarios, nodes may suffer from malicious

attacks, which render most solutions developed for attack-free

networks [5], [6] invalid. Therefore, it is of significant impor-

tance to develop learning algorithms that are robust to attacks.

A. Existing Work

Several papers have addressed the robust learning problem (or

the robust optimization problem) in the distributed case, see [7],

[8], [9], [10], [11], [12], [13], [14], and [15] and references

Manuscript received 24 January 2023; revised 18 November 2023 and
3 June 2024; accepted 22 June 2024. Date of publication 8 July 2024;
date of current version 31 December 2024. This work was supported in
part by the Army Research Laboratory through Cooperative Agreement
under Grant W911NF-17-2-0196 and in part by the NSF under Grant
2139304, Grant 2146838, and Grant 2007714. Recommended by Asso-
ciate Editor G. Notarstefano. (Corresponding author: Yanwen Mao.)

The authors are with the Department of Electrical and Computer
Engineering, University of California, Los Angeles, CA 90095 USA (e-
mail: yanwen.mao@ucla.edu; deepesh.data@ucla.edu; suhasdiggavi@
ucla.edu; tabuada@ucla.edu).

Digital Object Identifier 10.1109/TAC.2024.3424693

therein. In these works, the existence of a central server is

assumed, which is connected to all nodes in the network and

is responsible for learning the model or computing the mini-

mizer. In this article, we do not assume the existence of such a

central server, i.e., we consider a decentralized setting. In our

problem formulation, each node should learn a model (or obtain

the minimizer), using its own local information and messages

exchanged with its neighbors. Moreover, we adopt the more

general heterogeneous problem setting, where the datasets (or

the local functions) across nodes are different.

The problem of global optimization in peer-to-peer networks

without centralized coordination (i.e., decentralized setting) has

been well-studied [16], [17], [18]. However, these solutions

are vulnerable to attacks: they completely break down if some

local functions are altered by an adversary. This consideration

motivated some other works, which focus on developing robust

decentralized optimization algorithms. Depending on the rela-

tionship between the global minimizerx∗ of the aggregated local

functions (which is typically assumed to uniquely exist) and the

set Si of minimizers of each local function fi, these works can

be roughly divided into the following three classes:

Class one: Each local function has only one local mini-

mum point, which coincides with the global optimizer, i.e.,

Si = {x∗}, i = 1, 2, . . . , p. This scenario typically takes place

in a machine learning problem setting where all nodes are col-

laboratively learning a model by performing stochastic gradient

descent using the same dataset, or when the data samples at

all nodes are drawn i.i.d. from the same statistical distribution.

In this case, even without communication, nonadversarial nodes

can reach consensus on the global optimizer, hence, most efforts

have been devoted to accelerating convergence speed by suitably

exchanging messages between neighboring nodes. Representa-

tive works in this class include [19] and [20]. In [20], each node

is asked to perform coordinatewise gradient descent based on

a resiliently aggregated version of its received gradients. The

solution in [19] is similar to [20] but nodes are asked to perform

vanilla gradient descent instead. Both [19] and [20] showed that

collaboration among nodes in a network increases the speed of

model training notwithstanding a small fraction of nodes being

attacked by a Byzantine adversary.

Class two: The global optimizer belongs to the set of local

minimum points of any node, i.e., x∗ ∈ Si, i = 1, 2, . . . , p, and

at least one local function has two or more minimizers. In

this case, nodes must rely on messages exchanged with their

neighbors in order to obtain the global optimal point. The

following interesting observation was made in [21]: In this

1558-2523 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Minnesota. Downloaded on April 29,2025 at 21:59:23 UTC from IEEE Xplore. Restrictions apply.

82 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 70, NO. 1, JANUARY 2025

setting, it is possible for all nodes to retrieve the exact global

minimum point whereas in the most general case, when there

is no direct relationship between the global minimum point

and the sets of local minimum points, x∗ is not retrievable.

Papers [21] and [22] fall into this class. The algorithm in [21]

only applies to the special case when all nodes are connected

via a complete network. In [22], it is shown that nodes are able

to agree on the global optimal point given that any local cost

function can be decomposed into a nontrivial weighted sum of

univariate strictly convex function, which comes from a common

size-limited set of basis functions. Their later work [23] extended

this result to the multivariate case and dropped the weighted sum

decomposition assumption made in [22].

Class three: The global optimizer x∗ is not the local minimum

point for some functions, i.e., there exists i ∈ {1, 2, . . . , p}
so that x∗ /∈ Si. The robust optimization problem studied in

this class is known to be subject to some fundamental limita-

tions [24], [25]. Su and Vaidya [26] were the first who studied

this setting under the assumption that all local functions are uni-

variate, in which the authors novelly proposed the synchronous

Byzantine gradient (SBG) method, which forces all nodes to

reach consensus on the minimum point of a nonuniformly

weighted sum of the local functions. Similar techniques have

been adopted by Sundaram and Gharesifard [27] in their local

filtering (LF) algorithm, which significantly outperforms the

SBG algorithm in terms of communication load at the price

of requiring an unnecessary assumption on the communication

graph topology. A later work [28] extended the result in [26]

and [27] to the multivariate case. However, the fundamen-

tal limitation of SBG (or LF)-type algorithms is still present

in [27], as the consensus point is only guaranteed to lie in the

smallest hyper-rectangle that contains all the local minimum

points. Recent work of He et al. [29] gave convergence results

under the heterogeneous setting using a novel ClippedGossip

approach, with a slightly different assumption on the power of

the adversary. In addition, differently from the aforementioned

works which attempted to find the minimizer of the aggregated

local functions in the presence of adversaries, Mhamdi et al. [30]

studied this problem from a different perspective by relating it to

the averaging agreement problem. More recently, Kuwaranan-

charoen and Sundaram [31] provided a general algorithmic

framework for the robust learning problem.

There is also a vast literature devoted to the learning problem

when a fraction of data samples is under attack [32], [33], [34].

However, these works differ from our problem setting in the

sense that they assume a fraction of data samples to be attacked,

whereas we assume that all the data samples in a fraction of

nodes are attacked. As a consequence, we are able to filter the

information from a set of nodes whereas such approaches are

not applicable in most adversarial learning problems.

B. Our Contributions

As we can see from the previous discussion, all existing works

on decentralized optimization in the presence of attacks have

its limitations: they either consider a simpler case where some

special relationships exist between the global optimal point and

the sets of local optimal points, or are only able to provide a

loose bound on the distance between the consensus point and the

global minimum pointx∗. However, it is noteworthy that all these

works consider the attacker to be Byzantine and to possess full

knowledge of the system: including, but not limited to, the graph

topology, all local functions, and the algorithms running at each

node. Moreover, an attacked node may arbitrarily deviate from

its prescribed rules if it is attacked by a Byzantine adversary. In

this article, we consider a milder type of attacks known as data

poisoning attacks, where the adversary still has full knowledge

of the system, but is only able to change the local functions of the

attacked nodes. The main difference between Byzantine attacks

and data poisoning attacks is that an attacked node is still able to

execute its program if it is subject to data poisoning attacks.

Moreover, to limit the impact of the adversary, we assume

the existence of some similarities among local functions (see

Assumption 3), which has been shown necessary in [25] for this

class of problem settings. To the best of the authors’ knowledge,

the decentralized optimization problem against data poisoning

attacks, which we refer to as the resilient decentralized global

optimization (RDGO) problem, has not yet been studied.

The main contributions of this article are as follows.

1) We propose a novel filtering algorithm, which robustly

estimates the weighted sum of a set of vectors in R
n in

the presence of data poisoning attacks. The algorithm is

given in Algorithm 2. Moreover, the distance between

the computed weighted sum and the true value scales

well with the dimension n (∝ √
n), and the fraction ε of

attacked vectors (∝ ε). The algorithm is also light-weight

since its computational complexity scales linearly with n.

2) We propose an algorithm that solves the RDGO problem

when the aggregated function is either convex or belongs

to a special class of nonconvex functions [i.e., satisfies

the Polyak–Lojasiewicz (PL) inequality]. The algorithm

is given in Algorithm 2. The algorithm guarantees the

Euclidean distance between the obtained minimizer and

the true one (in the absence of attacks) to be proportional

to
√
n and ε, which is proved in Theorem 1. Moreover,

the proposed algorithm tolerates an attack up to half of

the nodes.

3) We verify the theoretical results with a numerical exam-

ple, where 20 nodes in a communication network, each

equipped with a nonoverlapping portion of the MNIST

dataset, collectively train a binary classification model,

despite an adversary, which is able to alter the datasets at

three nodes.

To the best of the authors’ knowledge, our algorithm out-

performs any existing solution, under the same or less stringent

problem setting (e.g., a distributed setting). In Table I, we list six

representative works on robust centralized/distributed optimiza-

tion and compare such results with this article’s contribution.

Compared with the works mentioned in Table I, in this article we

study the resilient optimization problem in a more sophisticated

decentralized setting and provide an algorithm which is robust

against an attack to, at most, half the agents. Estimates of the

global optimizer at all agents are guaranteed to lie in a ball

centered at the optimizer whose radius is proportional to
√
n

Authorized licensed use limited to: University of Minnesota. Downloaded on April 29,2025 at 21:59:23 UTC from IEEE Xplore. Restrictions apply.

MAO et al.: DECENTRALIZED OPTIMIZATION RESILIENT AGAINST LOCAL DATA POISONING ATTACKS 83

TABLE I
COMPARISON BETWEEN SOLUTIONS TO THE RDGO PROBLEM IN [9], [11], [7], [8], [10], AND [32], AND THIS ARTICLE

and ε, where n is the dimension and ε is the portion of attacked

agents.

We also note that, any result in this article can be conveniently

specialized to the distributed case, even when the attack is

Byzantine. More details regarding this observation are provided

in Remark 6.

C. Article Organization

The rest of this article is organized as follows. Section II

formulates the RDGO problem. In Section III, we introduce

resilient averaging gradient descent (RAGD) algorithm, which

solves the RDGO problem. This is followed by Section IV in

which how to robustly estimate the weighted sum of a set of

vectors is investigated. The performance of the RAGD algorithm

is studied in Section V. In Section VI, we validate our theoretical

results via a numerical example. Finally, Section VII concludes

this article.

II. PRELIMINARIES

A. Notation

Let R, R
+, and N denote the set of real, positive real, and

natural numbers, respectively. Given a vector v ∈ R
n where

n is a positive natural number, we use ‖v‖2 to denote the �2
norm of v. Also, we define the all-ones vector of length n by

1n = (1, 1, . . . , 1)T and In to be the identity matrix of order n.

The largest and smallest singular values of a matrix A ∈ R
n×p

are denoted by σM (A) and σm(A), respectively, where n, p are

positive natural numbers. Moreover, we use∇f(x) to denote the

gradient of a function f : R
n → R evaluated atx ∈ R

n. Further,

let r ∈ R
+. We denote by B(x, r) = {y ∈ R

n|‖y − x‖2 ≤ r}
the ball centered at x with radius r. Moreover, the distance

D(x, S) between a point x ∈ R
n and a set S ⊆ R

n is defined

by D(x, S) = infy∈S ‖x− y‖2.

A weighted directed graph G = (V, E ,A) is a triplet consist-

ing of a set of vertices V = {v1, v2, . . . , vp}with cardinality p, a

set of edges E ⊆ V × V , and a weighted adjacency matrix A ∈
R

p×p, which will be defined very soon. The set of in-neighbors

of a vertex i ∈ V , denoted by N in
i = {j ∈ V|(j, i) ∈ E}, is the

set of vertices connected to i by an edge. Similarly, the set

of out-neighbors of a vertex i ∈ V is defined by N out
i = {j ∈

V|(i, j) ∈ E}. We assume each vertex is both an in-neighbor

and an out-neighbor of itself. The weighted adjacency matrix A

of the graph G is defined entrywise. The entry in the ith row and

jth column, aij , satisfies 0 < aij < 1 if (i, j) ∈ E and otherwise

aij = 0.

B. Problem Formulation

We consider a setS of p nodes connected via a communication

network, modeled as a directed graph G = (V, E ,A). The set V

in G represents the set of nodes and the set E represents the set of

communication links between all pairs of nodes. In particular,

an edge (i, j) ∈ E exists if and only if node j can receive

information from node i. Moreover, each communication link

(i, j) is associated with a positive scalar value aij > 0, which,

we recall, is the (i, j)th entry of A ∈ R
p×p.

We now formally define the RDGO problem.

Definition 1 (RDGO Problem): Consider a set S of p nodes

connected via a communication network. Each node i ∈ S is

equipped with a local function fi : R
n → R where x ∈ R

n is

the optimization variable. The RDGO problem asks each node

to find the minimizer x∗ of the aggregation of the local functions

as follows:

f(x) =
∑

i∈S
fi(x)

using its local function fi and messages exchanged with its

neighboring nodes, notwithstanding some local functions have

been altered by a data poisoning attack.

In the decentralized federated learning problem, each

node i has a local data set Zi = {zi1, zi2, . . . , ziN} of

cardinality N . The federated learning problem asks all

nodes to collectively minimize the following risk function

1/N
∑p

i=1

∑N
j=1 l(w, zij) with respect to w and where l is

some loss function. In this case, each local function fi(w) =
1
N

∑N
j=1 l(w, zij) is implicitly defined by the local data set Zi

at node i. The aggregation f of local functions is also named as

the global function in this article.

C. Attack Model

The solution to the global optimization problem is well-

known in the absence of attacks [16], [17], [18], [35]. However,

the problem becomes more challenging when some nodes are

subject to attacks. In this article, we assume that a subsetSb ⊂ S
of nodes are subject to a data poisoning attack, which is able

to replace the original function fj of an attacked node j ∈ Sb

with f̃j �= fj . Moreover, we define Sg = S\Sb to be the set

of attack-free nodes. For simplicity, we also use f̃i to denote

the local function of an attack-free node i ∈ Sg after the data

poisoning attack. It is trivially seen that, for an attack-free node

i, f̃i = fi.
The adversary that launches the data poisoning attack is

assumed to be omniscient, i.e., it has full knowledge of the com-

munication graph, the local functions of all nodes, the algorithm

each node executes, etc. Moreover, it is able to arbitrarily alter the

local functions of the attacked nodes. However, differently from

Byzantine attacks, we assume that all nodes, even those subject

to data poisoning attacks, are able to execute their protocols

correctly. Moreover, in the context of this article, we assume

the attack is perpetrated before the nodes start executing the

Authorized licensed use limited to: University of Minnesota. Downloaded on April 29,2025 at 21:59:23 UTC from IEEE Xplore. Restrictions apply.

84 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 70, NO. 1, JANUARY 2025

algorithm that solves the RDGO problem, which we will soon

discuss in the next section. The attacked local functions will

not change once the algorithm starts running. This definition

of the data poisoning attack is in line with other works (for

example [36], [37], [38], and [39]) where data poisoning attacks

are studied.

Remark 1: It was argued in [26] that it is impossible to

exactly recover the optimizer x∗ when some local functions

are attacked by an adversary and when there are no special

relationships between the local functions. Therefore, instead of

exactly recovering the optimizer x∗, we study in this article how

well each node can approximate x∗ using its possibly attacked

local function and messages exchanged with its neighbors.

D. Assumptions

We study the RDGO problem under the following assump-

tions, some of which have already been discussed.

Assumption 1: The communication graph is fixed, connected,

and doubly-stochastic (i.e., the adjacency matrix A of the graph

is a doubly-stochastic matrix). Moreover, the weight associated

with each link is known to the corresponding receiver node, for

example, node j is aware of aij for any i ∈ S.

Assumption 2: There exists an 0 < ε < 1/2, known to all

nodes in the network, such that for any node j, the sum of

link weights corresponding to its attacked in-neighbors is upper

bounded by ε, i.e.,
∑

i∈N in
j

∩Sb

aij ≤ ε ∀j ∈ S. (1)

Assumption 3: Each local function is differentiable, and the

Euclidean distance between the gradients of any two local func-

tions evaluated at any point x in the working domain1 is upper

bounded by some constant κ > 0, i.e.,

‖∇fi(x)−∇fj(x)‖2 ≤ κ ∀i, j ∈ S. (2)

Assumption 1 is a constraint on the communication network

topology. This assumption is the simplest one that enables a

solution to the decentralized average consensus (DAC) problem,

where a network of nodes, each having a local initial value, seeks

to agree on the average of their initial values [40], [41]. Note that

the DAC problem is a special case of the RDGO problem,2 which

justifies our Assumption 1. Assumption 2 effectively restricts the

power of the adversary. For example, if node j has k neighbors

and the weight on each link to node j is 1/k, Assumption 2

requires that less than half of the links can be attacked since ε is

required to be smaller than 1/2. Similar assumptions were made

in [27], with the slight difference that in [27] it is assumed that the

number of attacked nodes in a neighborhood is upper-bounded.

Lastly, Assumption 3 is shown to be necessary in [25].

Apart from Assumptions 1–3, in this article we also need one

of the following two assumptions to solve the RDGO problem.

1A brief discussion on the working domain will be provided at the end of the
article.

2Consider a special class of the RDGO problem, where the local function at
node i is chosen to be fi(x) = (x− xi)

T (x− xi). We note that the global
optimizer of this RDGO problem is x∗ = x1 + x2 + . . . /+ xpp.

Algorithm 1: Resilient Averaging Gradient Descent

(RAGD) Algorithm for Node j.

Assumption 4: The global function f is L-smooth and ν-

strongly convex, each local function fi is L1-smooth.

Assumption 5 is based on the following definition [42].

Definition 2: A differentiable function f : R
n → R satisfies

the PL inequality with parameter μ ∈ R
+ if the following in-

equality holds:

1

2
‖∇f(x)‖22 ≥ μ(f(x)− f(x∗)) (3)

for any x ∈ R
n and x∗ being a minimizer of the function f .

Assumption 5: The global function f is L-smooth and satis-

fies the PL inequality with parameter μ, each local function fi
is L1-smooth.

We note that a ν-strongly convex function must satisfy the

PL inequality. This result can be observed by choosing μ = ν.

However, the opposite does not hold. For example, a function

that satisfies the PL inequality may have multiple minimizers.

We also note that if a function f is both L-smooth and satisfies

the PL inequality with parameter μ, then μ < L.

III. RAGD ALGORITHM

In this section, we introduce an algorithm called the RAGD,

which enables all nodes to approximate the global minimum

x∗ and, thus, solves the RDGO problem. Algorithm 1 is a

pseudocode description of the RAGD algorithm.

The RAGD algorithm has two loops, an inner loop (lines 4–8)

and an outer loop (lines 3–12). In the inner loop, all the nodes

are asked to run a linear iterative algorithm aiming at reaching

consensus on the average of their local estimates.3 The input

parameter τ controls the number of iterations executed in the

inner loop. The estimate at node j in tth iteration of the outer

3To avoid ambiguity, we emphasize that all nodes follow their prescribed rules
(i.e., lines 4–8) in the inner loop. This setting is different from some other works
(e.g., [43] and [44]) where malfunctioning nodes may deviate from the rules and
send arbitrary messages to their neighbors.

Authorized licensed use limited to: University of Minnesota. Downloaded on April 29,2025 at 21:59:23 UTC from IEEE Xplore. Restrictions apply.

MAO et al.: DECENTRALIZED OPTIMIZATION RESILIENT AGAINST LOCAL DATA POISONING ATTACKS 85

loop and kth iteration of the inner loop is denoted by xk
j [t].

To proceed, we directly provide the following result on the

convergence property of the inner loop.

Lemma 1: Consider a set S of nodes, each starts with an

initial value x0
i [t], and executes lines 4–8 of the RAGD al-

gorithm in parallel. Define x̄[t] = 1
p

∑

i∈S x0
i [t] and dk[t] =

maxi,j∈S ‖xk
i [t]− xk

j [t]‖2. The following two properties re-

garding xτ
1 [t], x

τ
2 [t], . . . , x

τ
p [t] hold for any t ∈ N:

1) 1
p

∑

i∈S xτ
i [t] = x̄[t] ∀τ ∈ N.

2) there exists an a ∈ R
+ and a ρ ∈ (0, 1) such that for any

τ ∈ N, dτ [t] ≤ aρτd0[t].
In the outer loop, all nodes are first asked to reach consensus

on the average of their local estimates by executing the inner

loop. Then, each node is asked to compute and broadcast the

gradient of its (possibly attacked) local function (line 9). We note

that some gradients are not reliable since some local functions

have been altered by the data poisoning attack. Upon receiving

gradients from all its neighbors, each node runs a screening algo-

rithm [the robust weighted sum estimation (RWSE) algorithm],

which allows each node to resiliently approximate the weighted

average of the gradients it receives (lines 10 and 11), and in the

end updates its local parameter by performing a gradient descent

step based on the output of the RWSE algorithm (line 12).

Intuitively, and in contrast with the traditional Byzantine set-

ting [29], [30], the fact that attacked agents only corrupt the local

functions (and then behave correctly throughout) plays a key

role in the algorithm. This weaker Byzantine model simplifies

the problem of consensus of their local estimates.

Remark 2: In line 9 of Algorithm 1, we ask each node j
to compute the gradient of its (possibly attacked) local function

evaluated at its current local estimate xτ
j [t]. If node j is free from

attack, then, Xj [t] = ∇fj(x
τ
j [t]), i.e., the computed gradient

equals the gradient of its original local function evaluated at

the same point. However, if node j is attacked, we make no

assumptions on the relationship between Xj [t] and ∇fj(x
τ
j [t])

except that Xj [t] exists.

Detailed discussion on the RAGD algorithm will be presented

in Section V.

IV. RWSE ALGORITHM

In this section, we study the problem of how each node can

resiliently compute the weighted sum of its neighbors’ gradients

under Assumptions 1–3, despite a portion of the gradients hav-

ing been attacked. To solve this problem, we propose a novel

algorithm termed the RWSE algorithm.

The RWSE algorithm is not only the key for solving the

RDGO problem, but also has other applications, for example, it

can be conveniently applied to solve the distributed Byzantine-

resilient optimization problem,4 which will be argued in Remark

6. Moreover, we note that RWSE problem is a generalization

of the well-known robust mean estimation (RME) problem,5

4See [16] for a formal definition of the distributed Byzantine-resilient opti-
mization problem.

5See [45] for a formal definition of the robust mean estimation problem.

Algorithm 2: Robust Weighted Sum Estimation (RWSE).

Fig. 1. Visualization of Algorithm 2.

hence, RWSE solves the RME problem assuming Assumptions

1–3 hold.

A. Algorithm Description

Since the execution node j is fixed, in this section we drop

this index and represent the weights {aij} by {ai}. Note that
∑

i∈S ai = 1 by Assumption 1. Let S = N in
j , the message Xi

that node j receives from node i satisfies the following:
{
Xi = ∇fi, i ∈ Sg

Xi �= ∇fi, i ∈ Sb
(4)

where we also dropped time indices t and τ and used ∇fi
in lieu of ∇fi(x

τ
i [t]) for simplicity. The goal is to approxi-

mate the weighted average μg =
∑

i∈S ai∇fi using the data

{(a1, X1), (a2, X2), . . . , (ap, Xp)} under Assumptions 2 and 3.

Algorithm 2 is a pseudocode description of the RWSE algorithm.

To explain the RWSE algorithm we describe its execution on

the example in Fig. 1. In Fig. 1, a red dot denotes an attacked

Authorized licensed use limited to: University of Minnesota. Downloaded on April 29,2025 at 21:59:23 UTC from IEEE Xplore. Restrictions apply.

86 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 70, NO. 1, JANUARY 2025

TABLE II
ILLUSTRATION OF THE CLASSIFICATION RULE

vector, whereas a black dot denotes an attack-free vector. All

attack-free vectors (black dots) lie in a ball with diameter κ
whereas there are no restrictions on the position of attacked

vectors. In each iteration, the execution node first finds a pair

of vectors (i, h) with the maximum Euclidean distance [see

subgraph (a), also lines 4 and 5 in Algorithm 2), then com-

putes and compares the weighted sum of the distance between

vector i and all other vectors and the weighted sum of the

distance between vector h and all other vectors [see subgraph (b)

and (c), also lines 7–10 in Algorithm 2). In the problem instance

represented by Fig. 1, vector h is closer to the rest of vectors

compared with the attacked vector i, hence, in the last subgraph

(d) vector i is removed according to line 11 in Algorithm 2.

In addition, we use a scalar variable temp to store the identity

of the latest removed vector. By Assumption 2 if the weight

ai associated to a vector Xi satisfies ai > ε, then this vector

cannot be attacked. Therefore, if a vector Xi with weight ai > ε
is removed at some iteration and then the algorithm terminates,

there is no harm restoring this vector Xi since it must be a

good vector. By doing so we have the following guarantee of

the weight sum of the remaining vectors: ge ≥ 1− 2ε, where ge
is defined in line 13 or line 15 in Algorithm 2.

B. Performance

It is trivial that Algorithm 2 will terminate (once enough nodes

are removed the guard in line 3 will be violated). Therefore, we

only need to check how close the output μ̂ is to the true average

μg . To do this, we divide all possibilities regarding the execution

of Algorithm 2 into three cases. The classification rule is shown

in Table II, where o stands for a good vector and a stands for an

attacked vector. For example, the third row in Table I tells that if

in some iteration the maximum distance lies between two good

vectors and, hence, a good vector is removed in this iteration,

then the execution falls into Case two.

Now, we study the execution of the RWSE algorithm case by

case.

Case 1: During each iteration one attacked vector is removed.

Observation 1: If Case 1 holds during the execution of the

RWSE algorithm, then for any two vectors Xi, Xh such that

i, h ∈ Ve we have ‖Xi −Xh‖2 ≤ κ.

We proceed by examining Case 2. As we will soon see, Case 1

and Case 2 are very similar.

Case 2: In some iterations the distance between a pair of good

vectors is larger than any other pair. Due to this reason a good

vector is removed in this iteration.

Observation 2: If Case 2 holds during the execution of the

RWSE algorithm, then for any two vectors Xi, Xh such that

i, h ∈ Ve we have ‖Xi −Xh‖2 ≤ κ.

Now, we study the performance of the RWSE algorithm when

either Case 1 or Case 2 holds. The following lemma guarantees

that the output μ̂ of the RWSE algorithm is a good estimate of

μg if either Case 1 or Case 2 holds.

Lemma 2: If Case 1 or Case 2 holds during the execution of

the RWSE algorithm, then the output μ̂ of the RWSE algorithm

satisfies the following:

‖μ̂− μg‖2 ≤
(

2 +
2

1− 2ε

)

εκ. (5)

Case 3: In some iterations the maximum distance lies between

a good vector and a bad vector, leading to a good vector being

removed.

We first make a claim on the distance between any remaining

attacked vector Xq and the vector ∇fq , which was replaced.

This result will be used in the analysis of the RWSE algorithm

if Case 3 holds.

Lemma 3: If Case 3 holds, then for any q ∈ Ve ∩ Sb, we have

‖Xq −∇fq‖2 ≤ (2 + 1
1−2ε)κ.

Lemma 4: If Case 3 holds during the execution of the RWSE

algorithm, then the output μ̂ of the RWSE algorithm satisfies the

following:

‖μ̂− μg‖2 ≤
(

2 +
3− 4ε

(1− 2ε)2

)

εκ. (6)

By taking the worst case over the bounds for each of the three

cases we obtain the following result.

Lemma 5: Consider the RWSE algorithm with inputs

{(ai, Xi)|i ∈ S} satisfying 1) a1 + a2 + · · ·+ ap = 1, 2) ai >
0˜∀i ∈ S, 3) ‖∇fi −∇fh‖2 ≤ κ˜∀i, h ∈ S, and ε satisfying 4)

ε < 1
2 . Define μg =

∑p
i=1 ai∇fi. The output μ̂ of the RWSE

algorithm satisfies the following:

‖μ̂− μg‖2 ≤
(

2 +
3− 4ε

(1− 2ε)2

)

εκ. (7)

Remark 3: We see from its description that the RWSE algo-

rithm scales well with the dimension n, since the computational

complexity of the RWSE algorithm grows linearly with the

increase of n. Moreover, according to Lemma 5, the error of

the RWSE algorithm scales with ε, which outperforms many

RME algorithms whose error scales with
√
ε [46]. The authors

believe this is a consequence of Assumption 3 requiring the

dissimilarity among two good gradients to be upper bounded,

whereas in RME algorithms usually deal with random data. It

is also noteworthy that the error of the RWSE algorithm scales

with κ, which implicitly grows with
√
n.

Remark 4: Differently from the trimmed mean algo-

rithm [47], we note that the RWSE algorithm is sensitive to

the portion ε of attacked nodes in the sense that the guarantee

becomes very loose when ε approaches 1/2. The computational

complexity of the RWSE algorithm is proportional to p2.

V. PERFORMANCE OF THE RAGD ALGORITHM

In this section we prove the correctness of the RAGD al-

gorithm. We start with an intuitive explanation of the RAGD

algorithm: The inner loop can be considered as an initialization

Authorized licensed use limited to: University of Minnesota. Downloaded on April 29,2025 at 21:59:23 UTC from IEEE Xplore. Restrictions apply.

MAO et al.: DECENTRALIZED OPTIMIZATION RESILIENT AGAINST LOCAL DATA POISONING ATTACKS 87

step, in which each node initializes their estimate to be the

average of estimates of all nodes throughout the network, up

to some error which decreases exponentially with τ by Lemma

1. Executing lines 9–12 in Algorithm 1 brings the following two

consequences:

1) The average of local estimates moves toward the mini-

mum point (or a minimum point if there are multiple), up

to some constant error;

2) The distance between two local estimates may increase.

The proof idea is simple. We will prove the following two

facts: 1) the local estimates of all nodes are clustered in a ball,

and 2) the centroid of the ball moves toward the minimizer up

to a constant error. It is a natural consequence of these two

facts that the estimate at any node is close to the minimizer.

We recall the definition dk[t] = maxi,j∈S ‖xk
i [t]− xk

j [t]‖2 from

Lemma 1 and proceed with our first result in this section.

Lemma 6: Consider a set S of nodes in a communication

network satisfying Assumption 1. Each node has a local function

which satisfies Assumption 3 whereas some local functions are

altered by a data poisoning attack which satisfies Assumption 2.

Let all nodes run the RAGD algorithm in parallel. Moreover, let

either Assumption 4 or 5 hold. For any pair of nodes i, j ∈ S, any

t ∈ N and any τ ∈ N, the output of these nodes xτ
i [t], x

τ
j [t] in

iteration t and the maximum distance dk[t] satisfy the following:

‖∇fi(x
τ
i [t])−∇fj(x

τ
j [t])‖2 ≤ κ+ 2L1 d

τ [t]. (8)

Moreover, in this case, the variable μ̂j [t] in line 11 of the RWSE

algorithm at any node j ∈ S and iteration t ∈ N satisfies the

following:

‖μ̂j [t]− μj [t]‖2 ≤ cε(κ+ 2L1 d
τ [t]) (9)

for any j ∈ S and any t ∈ N, where μj [t] =∑

i∈N in
j

aij∇fi(x
τ
i [t]) and cε = 3ε− 4ε2/(1− 2ε)2.

In the following proposition we show that dτ [t] can be uni-

formly upper bounded over time t if τ is large enough.

Proposition 1: Under the assumptions of Lemma 6, for any

step size η > 0 and any given input r > 0, there always exist a

τ0 ∈ N such that dτ [t] ≤ r implies dτ [t+ 1] ≤ r for any t ∈ N,

if τ ≥ τ0.

This proposition tells that, for any given r, as long as all nodes

start from the same initial value in the first iteration (i.e., t = 0),

the inequality dτ [t] ≤ r holds for any t ∈ N provided τ ≥ τ0
holds. In brief, the choice of τ0 is dependent on the smoothness

of the global function, the convergence rate, and the dissimilarity

among local functions. A detailed expression can be found

in (42).

Combining Lemma 6 with Proposition 1, we notice that for

any iteration t and any node j ∈ S, the variable (defined in line

11 of Algorithm 1) μ̂j [t] satisfies the following:

‖μ̂j [t]− μj [t]‖2 ≤ cε(κ+ 2L1r). (10)

Now, we are ready to analyze the performance of the RAGD

algorithm. Recall the definition x̄[t] = 1
p

∑

j∈S x0
j [t]. The fol-

lowing result shows that in the RAGD algorithm the average of

local estimates is approximately updated with a gradient descent

step.

Proposition 2: Under the assumptions of Lemma 6, for any

t ∈ N, η > 0, r > 0, assume dτ [t] ≤ r holds for any τ ∈ N,

then the following equation holds:

x̄[t+ 1]− x̄[t] = −η

p
∇f(x̄[t]) +

η

p
l[t] (11)

for some l[t] satisfying ‖l[t]‖2 ≤ pcε(κ+ 2L1r) + pL1r.
For simplicity, we define ξ = pcε(κ+ 2L1r) + pL1r. In-

equality (11) shows that, if we compare the average at iteration

t+ 1 and the average at iteration t, we determine that the average

x̄[t] is updated with a “polluted” gradient, which differs from

the true gradient ∇f(x̄[t]) by a vector l[t] whose Euclidean

norm is upper bounded by ξ, using step size η/p. As we will

soon see, performing gradient descent on a strongly convex

function (or a function that satisfies the PL condition) using an

approximate gradient makes the average estimate x̄[t] converge

to the optimizer x∗, up to some constant error.

We proceed by describing the performance guarantee of the

RAGD algorithm, which is also the main result of this article.

Theorem 1: Consider a set of nodes in a communication

network satisfying Assumption 1, each equipped with a local

function satisfying Assumption 3. Moreover, assume a subset of

nodes is subject to a data poisoning attack satisfying Assumption

2. Suppose all nodes in the network run the RAGD algorithm

with η = p
L

and parameter τ ≥ τ0 with τ0 defined in (42) with

respect to any given r > 0, then the output of every node j ∈ S
satisfies one of the following two possibilities for any t ∈ N:

1) Let β =
√

1− ν
L

. Assumption 4 implies the following

inequality:

‖xτ
j [t]− x∗‖2 ≤ βt‖x0

j [0]− x∗‖2 +
ξ

(1− β)L
+ r.

(12)

2) Let β′ =
√

1− μ
L

and S∗ be the set of minimizers of f .

Assumption 5 implies the following inequality:

D(xτ
j [t], S

∗) ≤
√

L

μ
β′tD

(
x0
j [0], S

∗)+
ξ

μ
+ r. (13)

Remark 5: It can also be seen from Theorem 1 that the output

xτ
j [t] at node j will converge to the ball B(x∗, ξ/(1− β)L+

r), if Assumption 4 holds. Moreover, if x0
j [0] is not in the ball

mentioned above, then the estimate xτ
j [t] will move toward the

ball. From this discussion we also learn that for any t ∈ N,

xτ
j [t] always lies in the ball B(x∗,max(‖x∗‖2, ξ/(1− β)L+

r)) since all x0
j [0] are assumed to be 0. The result in Theorem

1 implicitly assumes that the working domain contains the ball

mentioned above. A similar analysis also applies to the case

when Assumption 5 holds.

Remark 6: In either case, our RAGD algorithm guarantees

that the distance between the computed minimizer and the true

global minimizer (in the absence of attacks) is bounded by a

constant error term. This differs from some existing works [27],

[28] in which the computed minimizer is only guaranteed to lie in

the smallest hyper-rectangle that contains all local minimizers.6

Moreover, our error term scales linearly with
√
n and ε when

6Some of these works assume the attack to be Byzantine.

Authorized licensed use limited to: University of Minnesota. Downloaded on April 29,2025 at 21:59:23 UTC from IEEE Xplore. Restrictions apply.

88 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 70, NO. 1, JANUARY 2025

Fig. 2. Testing accuracy over iterations of the RAGD algorithm for
decentralized training a logistic regression function on MNIST dataset
in the presence of attacks changing gradients.

at most half of nodes are under attack, which matches, or even

outperforms its counterpart in the distributed case [7], [9], [48].

We also note that in the absence of attacks, i.e., when ε = 0, the

RAGD algorithm specializes to the well-known decentralized

gradient descent algorithm. Lastly, it is observed that, since the

RWSE algorithm can always find a reasonably good estimate of

the average of attack-free gradients regardless of the values of

the attacked gradients, the RAGD algorithm can be applied to

solve the distributed resilient federated learning (respectively,

optimization) problem, even when the adversary is Byzantine.

VI. NUMERICAL RESULTS

In this section, we use a numerical example to illustrate our

theoretical results. We consider a decentralized binary classifica-

tion problem using the MNIST handwritten digits dataset. In this

task, a total of 20 nodes in a randomly generated communication

network are asked to classify digits in two classes corresponding

to the digit 0 and the digit 1, using a logistic regression function

collectively trained by themselves. We note that the logistic

regression function satisfies Assumption 4.

In this test, we use 12 000 samples from the MNIST dataset,

6000 samples are pictures of handwritten zero digits and the rest

are pictures of handwritten one digits. The set of samples is split

into a training set of size 10 000 and a testing set of size 2000.

Moreover, the training set is equally split into 20 subsets each

of size 500, and each node in the network has access to only one

subset of samples.

We first generate a random doubly-stochastic square matrix

of size 20 to represent the communication graph. In this exper-

iment, we perform an attack, which changes all the gradients

from two nodes to a random vector generated using Gaussian

distribution N (0, In). In the simulation we set r = 0.05 and

choose the number of iterations of the inner loop τ to be 10. The

step size is set to be 1× 10−6.

Fig. 2 shows a typical execution of the proposed algorithm

in comparison with the absence of attacks and the attack-only

case. The yellow curve corresponds to the testing accuracy over

iterations when two nodes are subject to the attack mentioned

above. In this case, the testing accuracy is around 60%, whereas

in the absence of attacks the classification accuracy is above

98%. The red curve corresponds to the case when we implement

our RAGD algorithm to combat the attacks. As we can see in

Fig. 2, there is a first phase of about 50 iterations where the

testing accuracy grows exponentially. This is explained by the

bound (12) where the first term on the right-hand side dominates

the other two terms. After about 400 iterations, the testing

accuracy stabilizes around 95%. At this point the effect of the

first term has approximately vanished and we observe the effect

of the last two terms that determine the worst case gap between

the estimated minimizer and the true minimizer.

VII. CONCLUSION

In this article, we proposed a RAGD algorithm, which solves

the decentralized global optimization problem in the presence

of data poisoning attacks. The proposed algorithm enables all

nodes to approximate the global optimizer, with an error that

scales linearly with
√
nwheren is the dimension and the fraction

ε of attacked nodes.

APPENDIX

A. Proof of Lemma 1 in Section III

We first introduce the following two results which will be

used in the proof of Lemma 1.

Lemma 7: ([49]) Consider a schur stable7 matrix F ∈ R
r×r.

There always exist m ≥ 1 and 0 < ρ < 1 such that for any n ∈
N, the following bound holds:

‖Fn‖2 ≤ mρn. (14)

Proof: We first perform a Jordan decomposition of the matrix

F : F = T−1JT where T ∈ R
n×n is an invertible matrix and J

is in block diagonal form, i.e., J = diag{J1, J2, . . . , Jl}, where

each Ji is a Jordan block. To prove Lemma 4.1, it suffices to

prove the existence of mi ≥ 1 and 0 < ρi < 1 for each block Ji
such that ‖Jn

i ‖2 ≤ miρ
n
i holds.

Let the eigenvalue corresponding to block Ji be λi, and

furthermore assume Ji is of size si × si. We explicitly write

out Jn
i as follows:

Jn
i =

£

¤
¤
¤
¤
¤
¤
¤
¥

λ
n
i

(
n
1

)
λ
n−1
i

(
n
2

)
λ
n−2
i . . .

(
n

si−1

)
λ
n−si+1
i

0 λ
n
i

(
n
1

)
λ
n−1
i . . .

(
n

si−2

)
λ
n−si+2
i

...
...

. . .
. . .

...

0 0 . . . λ
n
i

(
n
1

)
λ
n−1
i

0 0 . . . 0 λ
n
i

¦

§
§
§
§
§
§
§
¨

(15)

from which we have the following:

‖Jn
i ‖2 ≤ √

n‖Jn
i ‖1 =

si−1∑

j=0

(
n

j

)

|λi|n−j . (16)

For simplicity, we define Ui(n) =
∑si−1

j=0

(
n
j

)
|λi|n−j . We note

that Ui(n) is a decaying sequence of n when n is large

7A matrix is called schur stable if all of its eigenvalues lie strictly in the unit
circle.

Authorized licensed use limited to: University of Minnesota. Downloaded on April 29,2025 at 21:59:23 UTC from IEEE Xplore. Restrictions apply.

MAO et al.: DECENTRALIZED OPTIMIZATION RESILIENT AGAINST LOCAL DATA POISONING ATTACKS 89

enough, since

Ui(n+ 1)

Ui(n)
=

∑si−1
j=0

(
n+1
j

)
|λi|n+1−j

∑si−1
j=0

(
n
j

)
|λi|n−j

=

∑si−1
j=0

(n+1)!
j!(n+1−j)! |λi|n+1−j

∑si−1
j=0

n!
j!(n−j)! |λi|n−j

≤ |λi| max
j∈{0,1,...,si−1}

(n+1)!
j!(n+1−j)!

n!
j!(n−j)!

= |λi| max
j∈{0,1,...,si−1}

n+ 1

n+ 1− j

= |λi| ·
n+ 1

n+ 2− si
. (17)

By assumption F is a schur stable matrix, its eigenvalue

λi satisfies |λi| < 1, which shows there exists N0 ∈ N such

that for any n ≥ N0, Ui(n+ 1)/Ui(n) < 1. By picking mi =
max{1, Ui(N0)} and ρi = |λi| ·N0 + 1/N0 + 2− si we finish

the proof. �

Lemma 8: The doubly-stochastic adjacency matrix A ∈
R

p×p associated with a connected graph has exactly one eigen-

value with value 1 and corresponding eigenvector 1p. Any other

eigenvalue of A lies strictly inside the unit circle.

Proof: Lemma 8 is a standard result. For the sake of com-

pleteness we provide a sketch of its proof.

The proof is based on the definition and known facts about

the degree matrix D and the Laplacian matrix L corresponding

to a graph G = {V, E ,A}. The degree matrix D ∈ R
p×p of the

graphG is a diagonal matrix with its ith diagonal element defined

by dii =
∑p

j=1 aij . The Laplacian matrix L of the graph G is

defined by L = D−A. It is well-known in the literature that if

the graph is connected, by spectral theory, 0 is an eigenvalue of

L of algebraic multiplicity 1 and its corresponding eigenvalue

is 1p.

It is also well-known that the magnitude of any eigenvalue of a

doubly-stochastic matrixA is less or equal to 1. Moreover, since

L = D−A has an eigenvalue 0 with algebraic multiplicity 1,

and D is the identity matrix since A is doubly-stochastic, it is

trivially seen that the algebraic multiplicity of eigenvalue 1 of

A is 1. �

With Lemmas 7 and 8 we provide the proof of Lemma 1 in

the main file.

Proof of Lemma 1:([50]) To start with, we define xk[t] =
[

(xk
1 [t])

T , (xk
2 [t])

T , . . . , (xk
p[t])

T
]T

for any k = 0, 1, . . . , τ and

t ∈ N. This definition allows us to write the mathematical

representation of the linear iterative algorithm as the following:

xk+1[t] = (AT ⊗ In)x
k[t]. (18)

To proceed, we find an orthogonal matrix [R S] ∈ R
p×p where

R = 1/
√
p1p and define the following change of coordinates:

zk1 [t] = (RT ⊗ In)x
k[t] which is the sum of local values, and

zk2 [t] = (ST ⊗ In)x
k[t]. To understand the implication of the

vector zk2 [t], we note that zk2 [t] can be equally divided into p− 1
blocks each of size n and each of which can be explained as a

linear combination of vectors in the set {xk
i [t], i ∈ S}, i.e., there

exists a set of weights {w1, w2, . . . , wp} such that each block in

zk2 [t] can be written as
∑

i∈S wix
k
i [t]. Moreover, by construction

of the matrix S, we have
∑

i∈S wi = 0. This observation shows

that by properly combining terms with positive and negative

coefficients, each block in zk2 [t] can be alternatively expressed

by a weighted sum of vectors in the set {xk
i [t]− xk

j [t], i, j ∈ S}
where any weightw′

ij is non-negative. This argument shows that

zk2 [t] is closely related to the difference among local values from

different nodes. We also point out the following two properties

regarding the weight values wi and w′
ij , which will very soon

be used in this proof:

1) Fact 1:
∑

i∈S,wi>0 wi ≤
√

p
2 , which is obtained by com-

bining facts
∑

i∈S wi = 0 and
∑

i∈S w2
i = 1 with the

Cauchy–Schwardz inequality;

2) Fact 2:
∑

i,j∈S w′
ij =

∑

i∈S,wi>0 wi ≤
√

p
2 .

With the understanding of the change of coordinates, we

obtain the following set of equalities starting from (18):

([

RT

ST

]

⊗ In

)

xk+1[t]

(a)
=

([

RT

ST

]

⊗ In

)

(AT ⊗ In)x
k[t]

(b)
=

([

RT

ST

]

⊗ In

)

(AT ⊗ In)
([

R S
]

⊗ In

)

×
([

RT

ST

]

⊗ In

)

xk[t]

=

([

RT
A

TR RT
A

TS

ST
A

TR ST
A

TS

]

⊗ In

)([

RT

ST

]

⊗ In

)

xk[t]

(c)
=

([

RTR RTS

STR ST
A

TS

]

⊗ In

)([

RT

ST

]

⊗ In

)

xk[t]

(d)
=

([

1 0

0 ST
A

TS

]

⊗ In

)([

RT

ST

]

⊗ In

)

xk[t],

where in step (a) we left multiply a matrix
([

RT

ST

]

⊗ In

)

on

both sides of the equation and in step (b) we use the fact that

[R S] is an orthogonal matrix. Moreover, step (c) is true since

by Assumption 1 the adjacency matrix of the communication

graph A is doubly-stochastic, and so is its transpose AT , which

implies ATR = R as well as RT
A

T = RT . Lastly, in step (d)
we again invoke the orthogonality of the matrix [R S] and the

definition of the vectorR. From these set of equalities we observe

that (18) can be decoupled as follows:

{
zk+1
1 [t] = zk1 [t]

zk+1
2 [t] = (A′ ⊗ In)z

k
2 [t]

(19)

Authorized licensed use limited to: University of Minnesota. Downloaded on April 29,2025 at 21:59:23 UTC from IEEE Xplore. Restrictions apply.

90 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 70, NO. 1, JANUARY 2025

where A′ is defined as A′ = ST
A

TS. We note that (19) can be

easily generated as follows:

{
zτ1 [t] = z01 [t]
zτ2 [t] = (A′ ⊗ In)z

0
2 [t]

. (20)

Recall the definition zk1 [t] = (RT ⊗ In)x
k[t] =

1/
√
p
∑

i∈S x0
i [t] =

√
px̄[t], the first property is obtained.

To prove the second property, we note that xk
i [t]− xk

j [t] =

(Bij ⊗ In)x
k[t] where Bij ∈ R

1×p is a sparse row vector with

zeros almost everywhere except its ith entry being 1 and its jth

entry being −1. This definition allows the following chain:

xk
i [t]− xk

j [t]

= (Bij ⊗ In)x
k[t]

= (Bij ⊗ In)(S ⊗ In)(S
T ⊗ In)x

k[t]

= ((BijS)⊗ In)z
k
2 [t] (21)

where the second step holds since Bij is perpendicular to the

left kernel of S. Moreover, we note that the following matrix:

[

RT

ST

]

A

[

R S
]

=

[

1 0

0 ST
AS

]

has exactly the same set of eigenvalues as matrix A by con-

struction of
[

R S
]

. Since A has only one eigenvalue 1 and the

rest of its eigenvalues lie strictly in the unit circle, we conclude

that all eigenvalues of (A′ ⊗ In) strictly lie in the unit circle.

Combining these two observations we obtain the following set

of inequalities:

dτ [t] = max
i,j∈S

‖xτ
i [t]− xτ

j [t]‖2

(a)
= max

i,j∈S
‖((BijS)⊗ In)z

τ
2 [t]‖2

(b)

≤ max
i,j∈S

‖((BijS)⊗ In)‖2 · ‖(A′ ⊗ In)
τz02 [t]‖2

≤
√
2σM (S)‖A′ ⊗ In‖τ2 · ‖z02 [t]‖2

(c)

≤
√
2σM (S)mρτ‖z02 [t]‖2

(d)

≤
√
2σM (S)mρτ

√

p− 1

√
p

2
max
i,j∈S

‖x0
i [t]− x0

j [t]‖2

< pσM (S)
︸ ︷︷ ︸

a

mρτd0[t] (22)

where in step (a) and step (b) we plug in (21) and (20), respec-

tively. In step (c) we invoke Lemma 7 since A
′ is proved to be

a schur stable matrix.

To see why step (d) holds, we recall that the vector z02 [t] can

be equally divided into p− 1 blocks each of size n. Moreover,

echoing our discussion beneath the definition of zk2 [t], each

block in z02 [t] can be expressed by a non-negative weighted

sum of vectors in the set {x0
i [t]− x0

j [t], i, j ∈ S}, with the

non-negative weight values {w′
ij , i, j ∈ S} sum up to at most

√

p/2. This observation leads to the following argument:

∥
∥
∥
∥
∥
∥

∑

i,j∈S
w′

ij

(
x0
i [t]− x0

j [t]
)

∥
∥
∥
∥
∥
∥
2

≤
∑

i,j∈S
w′

ij‖x0
i [t]− x0

j [t]‖2

≤
∑

i,j∈S
w′

ij max
i,j∈S

‖x0
i [t]− x0

j [t]‖2

≤
√

p

2
max
i,j∈S

‖x0
i [t]− x0

j [t]‖2 (23)

which justifies our step (d) in which we claimed the following:

∥
∥z02 [t]

∥
∥
2
≤
√

p− 1

√
p

2
max
i,j∈S

‖x0
i [t]− x0

j [t]‖2. (24)

By choosing a to be a = pσM (S) we finish the proof. �

B. Proof of Lemma 2 in Section IV

Proof: We prove the lemma by taking two steps. We first

compare μ̂ = 1/ge
∑

i∈Ve
aiXi with μ̂g = 1/ge

∑

i∈Ve
ai∇fi.

This is understood as follows: there might be some attacked

vectors left in the set of vectors {Xi ∈ R
n|i ∈ Ve}, this is

because these attacked vectors are so close to good vectors that

the filter is unable to filter them out. For the same reason they

do not pollute the estimate significantly. We first show if we

restore the value of these vectors (i.e., replace Xi with ∇fi for

i ∈ Ve ∩ Sb), the mean estimate does not change too much.

We have ‖Xi −∇fi‖2 ≤ 2κ for any i ∈ Ve ∩ Sb. To see why

this holds, we arbitrarily choose an h ∈ Ve ∩ Sg , and we have

‖Xi −Xh‖2 ≤ κ as well as ‖∇fi −∇fh‖2 ≤ κ. Since Xh =
∇fh, we get the result by adding them up.

Therefore, we have the following:

‖μ̂− μ̂g‖2 ≤
∑

i∈Ve∩Sb
(ai‖Xi −∇fi‖2)

ge
≤ 2ε

1− 2ε
κ. (25)

Moreover, we observe that μ̂g is close to the desired value

μg due to the following two reasons. 1) μ̂g is the average of the

majority of good vectors, whereas μg is the average of all good

vectors, and 2) by Assumption 3 any two good vectors do not

differ too much. We note first that if either Case 1 or Case 2 holds,

then for any i ∈ S we have the following set of inequalities:

‖∇fi − μ̂g‖2 ≤
∑

j∈Ve
(aj‖∇fi −∇fj‖2)

ge
≤ κ. (26)

With these inequalities we can upper bound the distance between

μ̂g and μg , in the following way:

‖μg − μ̂g‖2

=

∥
∥
∥
∥
∥

∑

i∈S
ai∇fi − μ̂g

∥
∥
∥
∥
∥
2

=

∥
∥
∥
∥
∥
∥

∑

i∈Ve

ai∇fi +
∑

i∈S\Ve

ai∇fi − (geμ̂g + (1− ge)μ̂g)

∥
∥
∥
∥
∥
∥
2

Authorized licensed use limited to: University of Minnesota. Downloaded on April 29,2025 at 21:59:23 UTC from IEEE Xplore. Restrictions apply.

MAO et al.: DECENTRALIZED OPTIMIZATION RESILIENT AGAINST LOCAL DATA POISONING ATTACKS 91

(a)
=

∥
∥
∥
∥
∥

∑

i∈Ve

ai∇fi +
∑

i∈S\Ve

ai∇fi

− (
∑

i∈Ve

ai∇fi +
∑

i∈S\Ve

aiμ̂g)

∥
∥
∥
∥
∥
2

≤
∑

i∈S\Ve

(ai‖∇fi − μ̂g‖2)

(b)

≤ 2εκ

where in step (a) we use the equalities μ̂g = 1/ge
∑

i∈Ve
ai∇fi

and
∑

i∈S\Ve
ai = 1− ge, and in step (b)we use (26). Summing

up (25) and (27) as follows:

‖μ̂− μg‖2 ≤ ‖μ̂− μ̂g‖2 + ‖μ̂g − μg‖2

≤ 2εκ+
2εκ

1− 2ε

we obtain the proof of the lemma. �

C. Proof of Lemma 3

Proof: We consider the first time when an attacked vector Xi

and a good vector Xh are picked since they have the maximum

distance, and Xh is going to be removed at the end of this

iteration. Note that at this point (before Xh is removed), the

following inequality holds since all the removed vectors are

attacked as follows:
∑

z∈V ∩Sg

az ≥ 1− ε.

We prove that, if it is the case, then there always exist an l ∈
V ∩ Sg such that ‖Xi −Xl‖2 ≤ 1/1− 2εκ.

Before proving the claim, we first see what it implies. If ‖Xi −
Xl‖2 ≤ 1/1− 2εκ holds, and by Assumption 3 the following

holds: ‖∇fh −∇fl‖2 = ‖Xh −Xl‖2 ≤ κ since we assumed

that h, l ∈ Sg , from which we conclude the following:

‖Xi−Xh‖2 ≤ ‖Xi−Xl‖2+‖Xh−Xl‖2 ≤
(

1+
1

1−2ε

)

κ.

(27)

On the other hand, we note that for any q ∈ Ve ∩ Sb, we have

the following:

‖Xq −Xh‖2 ≤ ‖Xi −Xh‖2 ≤
(

1 +
1

1− 2ε

)

κ (28)

since otherwise Algorithm 2 would not have picked the pair Xi

and Xh. Again, we invoke Assumption 3 and obtain that ‖Xh −
∇fq‖2 = ‖∇fh −∇fq‖2 ≤ κ. Summing these inequalities up

we have the following:

‖Xq −∇fq‖2 ≤ ‖Xq −Xh‖2 + ‖Xh −∇fq‖2

≤
(

2 +
1

1− 2ε

)

κ (29)

which is exactly the claim in the lemma.

Now, we prove the claim by its contrapositive. Let Xf be the

closest vector in V ∩ Sg to Xi in the Euclidean sense. For the

sake of contradiction, assume the distance between Xi and Xf

is strictly larger than d, where d ≥ 1/1− 2εκ. We consider the

following set of inequalities:
∑

z∈V
az(‖Xi −Xz‖2 − ‖Xh −Xz‖2)

=
∑

z∈V ∩Sg

az(‖Xi −Xz‖2 − ‖Xh −Xz‖2)

+
∑

z∈V ∩Sb

az(‖Xi −Xz‖2 − ‖Xh −Xz‖2)

≥
∑

z∈V ∩Sg

az(‖Xi −Xz‖2 − ‖Xh −Xz‖2)

+

(
∑

z∈V ∩Sb

az

)

(−‖Xi −Xh‖2)

(a)

≥
∑

z∈V ∩Sg

az(‖Xi −Xf‖2 − ‖Xh −Xz‖2)

+

(
∑

z∈V ∩Sb

az

)

(−‖Xi −Xf‖2 − ‖Xf −Xh‖2)

=

⎛

¿
∑

z∈V ∩Sg

az −
∑

z∈V ∩Sb

az

À

⎠ ‖Xi −Xf‖2

−
∑

z∈V ∩Sg

az‖Xh −Xz‖2 −
∑

z∈V ∩Sb

az‖Xf −Xh‖2

(b)
>

⎛

¿
∑

z∈V ∩Sg

az −
∑

z∈V ∩Sb

az

À

⎠ d−
∑

z∈V ∩Sg

azκ

−
∑

z∈V ∩Sb

azκ

≥ (1− 2ε)d− κ

(c)

≥ 0 (30)

where in step (a)we use the fact thatXf is the closest attack-free

vector in V to Xi, and in step (b) we directly replace with

‖Xi −Xf‖2 with d, and the inequality sign holds because
∑

z∈V ∩Sg
az −

∑

z∈V ∩Sb
az > 0, i.e., the weight sum of attack-

free vectors is higher than the weight sum of attacked vectors.

The last step (c) comes from the assumption thatd ≥ 1/1− 2εκ.

From this set of inequalities we reach a contradiction since by

assumption the good vectorXi was removed whereasXh should

have been removed. �

D. Proof of Lemma 4 in Section IV

Proof: Given Lemma 3, the proof of Lemma 4 is similar to

the proof of 2. In particular, we have the following:

‖μ̂− μ̂g‖2 ≤
∑

i∈Ve∩Sb
(ai‖Xi −∇fi‖2)

ge

≤
ε(2 + 1

1−2ε) · κ
1− 2ε

=
3− 4ε

(1− 2ε)2
εκ (31)

Authorized licensed use limited to: University of Minnesota. Downloaded on April 29,2025 at 21:59:23 UTC from IEEE Xplore. Restrictions apply.

92 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 70, NO. 1, JANUARY 2025

where in the second step we invoke Lemma 3. Moreover, the

following inequality also holds:

‖μ̂g − μg‖2 ≤ 2εκ. (32)

Summing up these two sets of inequalities we have the following:

‖μ̂− μg‖2 ≤
(

2 +
3− 4ε

(1− 2ε)2

)

εκ. (33)

�

E. Proof of Lemma 6 in Section V

Proof: We only prove the first claim. The second claim is a

natural consequence of the first claim and Lemma 5.

To prove the first claim, we note the following:

‖xτ
i [t]− x̄[t]‖2 ≤

∥
∥
∥
∥
∥
∥

xτ
i [t]−

1

p

∑

j∈S
xτ
j [t]

∥
∥
∥
∥
∥
∥
2

≤ 1

p

∑

j∈S
‖xτ

i [t]− xτ
j [t]‖2

≤ dτ [t]. (34)

The rest of the proof comes from the following direct

computation:

‖∇fi(x
τ
i [t])−∇fj(x

τ
j [t])‖2

≤ ‖∇fi(x
τ
i [t])−∇fi(x̄[t])‖2

+ ‖∇fi(x̄[t])−∇fj(x̄[t])‖2
+ ‖∇fj(x

τ
j [t])−∇fj(x̄[t])‖2

(a)

≤ L1‖xτ
i [t]− x̄[t]‖2 + κ+ L1‖xτ

j [t]− x̄[t]‖2
(b)

≤ 2L1 d
τ [t] + κ (35)

where in step (a) we use Assumption 4 (or Assumption 5) and

in step (b) we plug in (34). �

F. Proof of Proposition 1 in Section V

Proof: We consider an arbitrary pair of nodes i, j ∈ S. By

Lemma 6 the following two bounds hold:

‖μ̂i[t]− μi[t]‖2 ≤ (κ+ 2L1 d
τ [t])cε ≤ (κ+ 2L1r)cε (36)

‖μ̂j [t]− μj [t]‖2 ≤ (κ+ 2L1 d
τ [t])cε ≤ (κ+ 2L1r)cε. (37)

In the proof of Lemma 6 we obtain that ‖∇fi(x
τ
i [t])−

∇fj(x
τ
j [t])‖2 ≤ κ+ 2L1r holds for any pair of nodes i, j ∈ S.

This implies the following:

‖μi[t]− μj [t]‖2 ≤ κ+ 2L1r (38)

since both μi[t] and μj [t] are weighted sums of local gradi-

ents. Combining all these facts, we have the following set of

inequalities:

‖x0
i [t+ 1]− x0

j [t+ 1]‖2
= ‖(xτ

i [t]− ημ̂i[t])− (xτ
j [t]− ημ̂j [t])‖2

≤ ‖xτ
i [t]− xτ

j [t]‖2 + η‖μ̂i[t]− μ̂j [t]‖2
≤ η‖(μ̂i[t]− μi[t])− (μ̂j [t]− μj [t]) + (μi[t]− μj [t])‖2
+ dτ [t]

≤ η‖μ̂i[t]− μi[t]‖2 + η‖μ̂j [t]− μj [t]‖2
+ η‖μj [t]− μj [t]‖2 + r

≤ η(κ+ 2L1r)(1 + 2cε) + r. (39)

Since nodes i and j are picked arbitrarily, inequality (39) equiv-

alently implies the following:

d0[t+ 1] ≤ r + η(κ+ 2L1r)(1 + 2cε). (40)

Equation (40) suggests that after the execution of lines 9–12 in

each iteration of the RAGD algorithm, the distance among the

local parameters of a pair of nodes may increase, but will

not increase dramatically, i.e., the distance is upper bounded

by (κ+ 2L1r)(1 + 2cε). In order to make dτ [t+ 1] ≤ r, we

should mitigate the increase of distance by executing the inner

loop for sufficiently many iterations. This is made possible by

Lemma 4.1, which shows the existence of an a > 0 and a

ρ ∈ (0, 1) such that dτ [t] ≤ aρτd0[t]. This provides a lower

bound of τ0 via the following analysis:

dτ [t+ 1] ≤ aρτd0[t+ 1] ≤ aρτ (r + η(κ+ 2L1r)(1 + 2cε)).
(41)

In order for dτ [t+ 1] ≤ r, it suffices to pick τ0 to satisfy the

following:

τ0 ≥ log 1

ρ

a(r + η(κ+ 2L1r)(1 + 2cε))

r
. (42)

�

G. Proof of Proposition 2 in Section V

Proof: By the RAGD algorithm, each node j updates its local

parameter according to the following:

x0
j [t+ 1] = xτ

j [t]− ημ̂j [t] (43)

and then executes the linear iterative algorithm to reach consen-

sus in the next iteration. Note that x̄[t] = 1
p

∑

j∈S xτ
j [t] which

was argued in Lemma 1. We have the following equalities:

x̄[t+ 1]− x̄[t] =
1

p

∑

j∈S
(x0

j [t+ 1]− xτ
j [t]) = −η

p

∑

j∈S
μ̂j [t].

(44)

Recall the definition of μj [t] in Lemma 6: μj [t] =∑

i∈N in
j
aij∇fi(x

τ [t]), which is the weighted sum of gradients

node j should receive in the absence of attacks. Summing

the difference between μj and μ̂j over all nodes j ∈ S in the

network, we obtain the following:
∑

j∈S
μ̂j [t]−

∑

j∈S
μj [t]

=
∑

j∈S
μ̂j [t]−

∑

j∈S

∑

i∈N in
j

aij∇fi(x
τ
i [t])

=
∑

j∈S
μ̂j [t]−

∑

i∈S
∇fi(x

τ
i [t])

Authorized licensed use limited to: University of Minnesota. Downloaded on April 29,2025 at 21:59:23 UTC from IEEE Xplore. Restrictions apply.

MAO et al.: DECENTRALIZED OPTIMIZATION RESILIENT AGAINST LOCAL DATA POISONING ATTACKS 93

=
∑

j∈S
μ̂j [t]−∇f(x̄[t])−

∑

i∈S
(∇fi(x

τ
i [t])−∇fi(x̄[t]))

= −p

η
(x̄[t+ 1]− x̄[t])−∇f(x̄[t])

−
∑

i∈S
(∇fi(x

τ
i [t])−∇fi(x̄[t])) (45)

where in the last step we used (44). On the other hand, we have

the following:
∥
∥
∥
∥
∥
∥

∑

j∈S
μ̂j [t]−

∑

j∈S
μj [t]

∥
∥
∥
∥
∥
∥
2

≤
∑

j∈S
‖μ̂j [t]− μj [t]‖2

≤ pcε(κ+ 2L1r) (46)

from the triangular inequality as well as (10). Meanwhile, it also

holds that for any j ∈ S

‖xτ
j [t]− x̄[t]‖2 = ‖xτ

j [t]−
1

p

∑

i∈S
xτ
i [t]‖2

≤ 1

p

∑

i∈S
‖xτ

j [t]− xτ
i [t]‖2

≤ r (47)

which, using Assumption 4 (or Assumption 5), yields the

following:
∥
∥
∥
∥
∥

∑

i∈S
(∇fi(x

τ
i [t])−∇fi(x̄[t]))

∥
∥
∥
∥
∥
2

≤ pL1r. (48)

The inequalities (45), (46), and (48) together imply the fol-

lowing:
∥
∥
∥
∥
x̄[t+ 1]− x̄[t] +

η

p
∇f(x̄[t])

∥
∥
∥
∥
2

≤ ηcε(κ+ 2L1r) + ηL1r

(49)

which directly implies the claim in the proposition. �

H. Proof of Theorem 1 in Section V

We prove the following lemmas which state that instead of

performing accurate gradient descent, if we only have access to

a gradient which is distance-bounded from the true one by at

most a constant (which we call a roughly correct gradient), the

minimal point of a strongly-convex function can be obtained up

to some error. These results directly lead to Theorem 1.

Lemma 9: Suppose function f : R
n → R satisfies Assump-

tion 4. For any x[t] ∈ R
n updated according to the following:

x[t+ 1] = x[t]− 1

L
(∇f(x[t])− l[t]) (50)

where ‖l[t]‖2 ≤ ξ for any t ∈ N, the following inequality holds

for any t ∈ N and β =
√

1− ν/L:

‖x[t]− x∗‖2 ≤ βt‖x[0]− x∗‖2 +
ξ

(1− β)L
. (51)

Proof: By Assumption 4, the function f is both ν-strongly

convex and L-smooth. This implies for any pair x, y ∈ R
n, the

following two inequalities hold:

f(y)− f(x) ≤ ∇fT (x)(y − x) +
L

2
‖y − x‖22 (52)

f(x)− f(y) ≥ ∇fT (y)(x− y) +
ν

2
‖y − x‖22. (53)

A simple reorganization of (53) yields as follows:

f(y)− f(x) ≤ ∇fT (y)(y − x)− ν

2
‖y − x‖22. (54)

We consider the following set of equalities and inequalities

for anyx, y ∈ R
n andx+ = x− 1/L∇f(x), which will be used

later.

f(x+)− f(y)

= f(x+)− f(x) + f(x)− f(y)

≤ ∇fT (x)(x+ − x) +
L

2
‖x+ − x‖22

+∇fT (x)(x− y)− ν

2
‖x− y‖22

= ∇fT (x)(x+ − y) +
1

2L
‖∇f(x)‖22 −

ν

2
‖x− y‖22

= ∇fT (x)(x− 1

L
∇f(x)− y)

+
1

2L
‖∇f(x)‖22 −

ν

2
‖x− y‖22

= ∇f(x)T (x− y)− 1

2L
‖∇f(x)‖22 −

ν

2
‖x− y‖22.

In particular, when y = x∗, we have the following:

0 ≤ f(x+)− f(x∗)

≤ ∇fT (x)(x− x∗)− 1

2L
‖∇f(x)‖22 −

ν

2
‖x− x∗‖22.

In the following we prove the result stated in the lemma:

‖x[t+ 1]− x∗‖2

= ‖x[t]− x∗ − 1

L
(∇f(x[t])− l[t])‖2

≤ ‖x[t]− x∗ − 1

L
∇f(x[t])‖2 +

1

L
‖l[t]‖2

≤ ‖x[t]− x∗ − 1

L
∇f(x[t])‖2 +

ξ

L

(a)

≤
√
(

1− ν

L

)

‖x[t]− x∗‖22++
ξ

L

(b)
= β‖x[t]− x∗‖2 +

ξ

L
(55)

where in step (a) we plug in x = x[t] and in step (b) we use

the definition β =
√

1− ν/L. We note that β ∈ (0, 1). Solving

(55) recursively gives the following:

‖x[t]− x∗‖2 ≤ βt‖x[0]− x∗‖2 +
ξ

(1− β)L
. (56)

�

Lemma 9 will be used in the proof of the first claim in

Theorem 1. A similar result when the global function f satisfies

Authorized licensed use limited to: University of Minnesota. Downloaded on April 29,2025 at 21:59:23 UTC from IEEE Xplore. Restrictions apply.

94 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 70, NO. 1, JANUARY 2025

the PL inequality instead of the convexity condition will also be

provided in the following lemma.

Lemma 10: Suppose a function f : R
n → R satisfies

Assumption 5. For any x[t] ∈ R updated according to the

following:

x[t+ 1] = x[t]− 1

L
∇f(x[t]) +

1

L
l[t] (57)

where ‖l[t]‖2 ≤ ξ for any t ∈ N. Let β′ = 1− μ/L ∈ (0, 1),
the following inequality holds for any t ∈ N:

f(x[t])− f(x∗) ≤ β′t(f(x[0])− f(x∗)) +
ξ2

2L(1− β′)
(58)

where f(x∗) is the minimum of the function f .

Proof: ByL-smoothness of function f , we have the following

inequality:

f(x[t+ 1]) ≤ f(x[t]) +∇fT (x[t])(x[t+ 1]− x[t])

+
1

2
‖x[t+ 1]− x[t]‖22. (59)

Combining with the update rule (57) yields as follows:

f(x[t+ 1])− f(x[t])

≤ 1

L
∇fT (x[t])(−∇f(x[t]) + l[t])

+
L

2

∥
∥
∥
∥
− 1

L
∇f(x[t]) +

1

L
l[t]

∥
∥
∥
∥

2

2

≤ − 1

2L
∇fT (x[t])∇f(x[t]) +

1

2L
lT [t]l[t]

≤ − 1

2L
‖∇f(x[t])‖22 +

1

2L
ξ2

≤ −μ

L
(f(x[t])− f(x∗)) +

1

2L
ξ2. (60)

This can equivalently be written as follows:

(f(x[t+ 1])− f(x∗))− (f(x[t])− f(x∗))

≤ −μ

L
(f(x[t])− f(x∗)) +

1

2L
ξ2

≤ (1− μ

L
)(f(x[t])− f(x∗)) +

1

2L
ξ2

≤ β′(f(x[t])− f(x∗)) +
1

2L
ξ2. (61)

Similarly, by solving (61) recursively we obtain the following:

f(x[t])− f(x∗) ≤ (β′)t(f(x[0])− f(x∗)) +
ξ2

2L(1− β′)
.

(62)

�

Before giving our proof of Theorem 1, we need to state the

following lemma, which will be used in the proof.

Lemma 11 ([42]): Let a function f : R
n → R satisfy the PL

inequality with parameter μ. For any x ∈ R
n, there always exist

a minimizer x∗ of f such that

f(x)− f(x∗) ≥ μ

2
‖x− x∗‖22. (63)

Proof: The proof can be found in [42]. �

The most important implication of Lemma 11 is that if a

function f : R
n → R satisfies the PL inequality with parameter

μ, then the following bound:

μ

2
D2(x, S∗) ≤ f(x)− f(x∗) (64)

holds, where S∗ is the set of minimizers of f . This bound will

be used in the proof of the main theorem.

Proof of Theorem 1: First, let Assumption 4 hold. From

Lemma 9, (47), and (11) in the main file, we observe the

following:

‖xτ
j [t]− x∗‖2

≤ ‖xτ
j [t]− x̄[t]‖2 + ‖x̄[t]− x∗‖2

≤ βt‖x̄[0]− x∗‖2 +
ξ

(1− β)L
+ r

= βt‖xτ
j [0]− x∗‖2 +

ξ

(1− β)L
+ r. (65)

Similarly, the following inequality can also be obtained from

Lemma 10 and (11) in the main file. Let Assumption 5 holds,

for any x∗ ∈ S∗, we have the following:

f(x̄[t])− f(x∗) ≤ (β′)t(f(x̄[0])− f(x∗)) +
ξ2

2L(1− β′)
.

(66)

Combining (66) with (64), we obtain the following set of

inequalities:

D(x̄[t], S∗) ≤
√

2

μ
(β′)t(f(x̄[0])− f(x∗) +

ξ2

μL(1− β′)

≤
√

2

μ
(β′)t(f(x̄[0])− f(x∗) +

√

ξ2

μL(1− β′)

≤
√

L

μ
(β′)tD2(x̄[0], S∗) +

√

ξ2

μL(1− β′)

=

√

L

μ

(√

β′
)t

D(x̄[0], S∗) +

√

ξ2

μL(1− β′)

where in the third step we used L-smoothness of function f .

In the end, we plug in inequality (47) into (67) and obtain the

following inequality:

D(x̄τ
j [t], S

∗) ≤
√

L

μ

(√

β′
)t

D(x0
j [0], S

∗)+

√

ξ2

μL(1−β′)
+r.

(67)

Plugging in the definition β′ = 1− μ/L into (67) gives us the

following:

D(x̄τ
j [t], S

∗) ≤
√

L

μ

(√

β′
)t

D
(
x0
j [0], S

∗)+
ξ

μ
+ r. (68)

�

Authorized licensed use limited to: University of Minnesota. Downloaded on April 29,2025 at 21:59:23 UTC from IEEE Xplore. Restrictions apply.

MAO et al.: DECENTRALIZED OPTIMIZATION RESILIENT AGAINST LOCAL DATA POISONING ATTACKS 95

REFERENCES

[1] J. B. Predd, S. B. Kulkarni, and H. V. Poor, “Distributed learning in wireless
sensor networks,” IEEE Signal Process. Mag., vol. 23, no. 4, pp. 56–69,
Jul. 2006.

[2] S. Boyd, N. Parikh, and E. Chu, Distributed Optimization and Statistical

Learning Via the Alternating Direction Method of Multipliers. Boston,
MA, USA: Now Pub., 2011.

[3] M. Ma, A. N. Nikolakopoulos, and G. B. Giannakis, “Fast decentralized
learning via hybrid consensus ADMM,” in Proc. IEEE Int. Conf. Acoust.,

Speech Signal Process., 2018, pp. 3829–3833.
[4] P. Kairouz et al., “Advances and open problems in federated learning,”

Found. Trends Mach. Learn., vol. 14, no. 1–2, pp. 1–210, 2021.
[5] M. Castro et al., “Practical Byzantine fault tolerance,” in Proc. USENIX

Conf. Operating Syst. Des. Implementation, 1999, pp. 173–186.
[6] K. Driscoll, B. Hall, M. Paulitsch, P. Zumsteg, and H. Sivencrona, “The

real Byzantine generals,” in Proc. 23rd Digit. Avionics Syst. Conf., 2004,
pp. 6.D.4–61-11.

[7] D. Data and S. Diggavi, “Byzantine-resilient high-dimensional SGD with
local iterations on heterogeneous data,” in Proc. Int. Conf. Mach. Learn.,
PMLR, 2021, pp. 2478–2488.

[8] D. Data and S. Diggavi, “Byzantine-resilient SGD in high dimensions
on heterogeneous data,” in Proc. IEEE Int. Symp. Inf. Theory, 2021,
pp. 2310–2315.

[9] A. Ghosh, R. K. Maity, S. Kadhe, A. Mazumdar, and K. Ramchandran,
“Communication-efficient and byzantine-robust distributed learning with
error feedback,” IEEE J. Sel. Areas Inf. Theory, vol. 2, no. 3, pp. 942–953,
Sep. 2021.

[10] L. Li, W. Xu, T. Chen, G. B. Giannakis, and Q. Ling, “RSA: Byzantine-
robust stochastic aggregation methods for distributed learning from hetero-
geneous datasets,” in Proc. AAAI Conf. Artif. Intell., 2019, pp. 1544–1551.

[11] A. Ghosh, J. Hong, D. Yin, and K. Ramchandran, “Robust federated
learning in a heterogeneous environment,” 2019, arXiv:1906.06629.

[12] D. Alistarh, Z. A.-Zhu, and J. Li, “Byzantine stochastic gradient descent,”
in Proc. Adv. Neural Inf. Process. Syst., 2018, pp. 4618–4628.

[13] Y. Chen, L. Su, and J. Xu, “Distributed statistical machine learning in
adversarial settings: Byzantine gradient descent,” Proc. ACM Meas. Anal.

Comput. Syst., 2017, pp. 1–25.
[14] D. Yin, Y. Chen, R. Kannan, and P. Bartlett, “Byzantine-robust distributed

learning: Towards optimal statistical rates,” in Proc. Int. Conf. Mach.

Learn., PMLR, 2018, pp. 5650–5659.
[15] V. Tolpegin, S. Truex, M. E. Gursoy, and L. Liu, “Data poisoning attacks

against federated learning systems,” in Proc. 25th Eur. Symp. Res. Comput,

Secur., 2020, pp. 480–501.
[16] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-

agent optimization,” IEEE Trans. Autom. Control, vol. 54, no. 1, pp. 48–61,
Jan. 2009.

[17] A. Mokhtari, W. Shi, Q. Ling, and A. Ribeiro, “A decentralized second-
order method with exact linear convergence rate for consensus optimiza-
tion,” IEEE Trans. Signal Inf. Process. Netw., vol. 2, no. 4, pp. 507–522,
Dec. 2016.

[18] F. Bullo, Lectures on Network Systems. Seattle, WA, USA: Kindle Direct
Pub., 2019.

[19] C. Fang, Z. Yang, and W. U. Bajwa, “BRIDGE: Byzantine-resilient decen-
tralized gradient descent,” IEEE Trans. Signal Inf. Process. Netw., vol. 8,
pp. 610–626, 2022.

[20] Z. Yang and W. U. Bajwa, “ByRDiE: Byzantine-resilient distributed
coordinate descent for decentralized learning,” IEEE Trans. Signal Inf.

Process. Netw., vol. 5, no. 4, pp. 611–627, Dec. 2019.
[21] N. Gupta and N. H. Vaidya, “Resilience in collaborative optimization:

Redundant and independent cost functions,” 2020, arXiv:2003.09675.
[22] L. Su and N. H. Vaidya, “Robust multi-agent optimization: Coping with

byzantine agents with input redundancy,” in Proc. Int. Symp. Stabilization,

Safety, Secur. Distrib. Syst., 2016, pp. 368–382.
[23] N. Gupta, T. T. Doan, and N. H. Vaidya, “Byzantine fault-tolerance

in decentralized optimization under minimal redundancy,” 2020,
arXiv:2009.14763.

[24] S. Liu, N. Gupta, and N. H. Vaidya, “Approximate byzantine fault-
tolerance in distributed optimization,” in Proc. 2021 ACM Symp. Princ.

Distrib. Comput., 2021, pp. 379–389.
[25] S. P. Karimireddy, L. He, and M. Jaggi, “Byzantine-robust learning on

heterogeneous datasets via bucketing,” in Proc. 10th Int. Conf. Learn. Rep-

resentations, 2022. [Online]. Available: https://openreview.net/forum?id=
jXKKDEi5vJt

[26] L. Su and N. H. Vaidya, “Fault-tolerant multi-agent optimization: Optimal
iterative distributed algorithms,” in Proc. 2016 ACM Symp. Princ. Distrib.

Comput., 2016, pp. 425–434.
[27] S. Sundaram and B. Gharesifard, “Distributed optimization under adver-

sarial nodes,” IEEE Trans. Autom. Control, vol. 64, no. 3, pp. 1063–1076,
Mar. 2019.

[28] K. Kuwaranancharoen, L. Xin, and S. Sundaram, “Byzantine-resilient
distributed optimization of multi-dimensional functions,” in Proc. Amer.

Control Conf., 2020, pp. 4399–4404.
[29] L. He, S. P. Karimireddy, and M. Jaggi, “Byzantine-robust decentralized

learning via clippedgossip,” 2022, arXiv:2202.01545.
[30] E. M. E. -Mhamdi, S. Farhadkhani, R. Guerraoui, A. Guirguis,

L.-N. Hoang, and S. Rouault, “Collaborative learning in the jun-
gle (decentralized, byzantine, heterogeneous, asynchronous and non-
convex learning),” in Proc. Adv. Neural Inf. Process. Syst., 2021,
pp. 25 044–25 057.

[31] K. Kuwaranancharoen and S. Sundaram, “On the geometric conver-
gence of byzantine-resilient distributed optimization algorithms,” 2023,
arXiv:2305.10810.

[32] E. Rosenfeld, E. Winston, P. Ravikumar, and Z. Kolter, “Certified robust-
ness to label-flipping attacks via randomized smoothing,” in Proc. Int.

Conf. Mach. Learn., PMLR, 2020, pp. 8230–8241.
[33] E. Wong, L. Rice, and J. Z. Kolter, “Fast is better than free: Revisiting

adversarial training,” 2020, arXiv:2001.03994.
[34] A. Raghunathan, J. Steinhardt, and P. Liang, “Certified defenses against

adversarial examples,” 2018, arXiv:1801.09344.
[35] A. Mokhtari, Q. Ling, and A. Ribeiro, “Network newton distributed

optimization methods,” IEEE Trans. Signal Process., vol. 65, no. 1,
pp. 146–161, 2016.

[36] H. Xiao, B. Biggio, G. Brown, G. Fumera, C. Eckert, and F. Roli, “Is
feature selection secure against training data poisoning?,” in Proc. Int.

Conf. Mach. Learn., PMLR, 2015, pp. 1689–1698.
[37] N. Baracaldo, B. Chen, H. Ludwig, and J. A. Safavi, “Mitigating poisoning

attacks on machine learning models: A data provenance based approach,”
in Proc. 10th ACM Workshop Artif. Intell. Secur., 2017, pp. 103–110.

[38] Y. Shoukry, P. Martin, P. Tabuada, and M. Srivastava, “Non-invasive
spoofing attacks for anti-lock braking systems,” in Proc. Int. Conf. Cryp-

tographic Hardware Embedded Syst., 2013, pp. 55–72.
[39] Y. Shoukry, P. Martin, Y. Yona, S. Diggavi, and M. Srivastava, “PyCRA:

Physical challenge-response authentication for active sensors under spoof-
ing attacks,” in Proc. 22nd ACM SIGSAC Conf. Comput. Commun. Secur.,
2015, pp. 1004–1015.

[40] L. Xiao, S. Boyd, and S.-J. Kim, “Distributed average consensus with
least-mean-square deviation,” J. Parallel Distrib. Comput., vol. 67, no. 1,
pp. 33–46, 2007.

[41] K. Cai and H. Ishii, “Average consensus on arbitrary strongly connected
digraphs with time-varying topologies,” IEEE Trans. Autom. Control,
vol. 59, no. 4, pp. 1066–1071, Apr. 2014.

[42] H. Karimi, J. Nutini, and M. Schmidt, “Linear convergence of gradient
and proximal-gradient methods under the Polyak-Ojasiewicz condition,”
in Proc. Joint Eur. Conf. Mach. Learn. Knowl. Discov. Databases, 2016,
pp. 795–811.

[43] S. Farhadkhani, R. Guerraoui, N. Gupta, R. Pinot, and J. Stephan, “Byzan-
tine machine learning made easy by resilient averaging of momentums,”
in Proc. Int. Conf. Mach. Learn., PMLR, 2022, pp. 6246–6283.

[44] S. P. Karimireddy, L. He, and M. Jaggi, “Learning from history for
byzantine robust optimization,” in Proc. Int. Conf. Mach. Learn., PMLR,
2021, pp. 5311–5319.

[45] S. B. Hopkins and J. Li, “How hard is robust mean estimation?,” in Proc.

Conf. Learn. Theory, 2019, pp. 1649–1682.
[46] I. Diakonikolas, G. Kamath, D. Kane, J. Li, A. Moitra, and A. Stew-

art, “Robust estimators in high-dimensions without the computational
intractability,” SIAM J. Comput., vol. 48, no. 2, pp. 742–864, 2019.

[47] G. Lugosi and S. Mendelson, “Robust multivariate mean estimation: The
optimality of trimmed mean,” Ann. Statist., vol. 49, no. 1, pp. 393–410,
2021.

[48] L. He, S. P. Karimireddy, and M. Jaggi, “Byzantine-robust learning on
heterogeneous datasets via resampling,” 2020, arXiv:2006.09365.

[49] C.-T. Chen, Linear System Theory and Design. London, U.K.: Oxford
Univ. Press, 1999.

[50] S. S. Kia, B. V. Scoy, J. Cortes, R. A. Freeman, K. M. Lynch, and
S. Martinez, “Tutorial on dynamic average consensus: The problem, its
applications, and the algorithms,” IEEE Control Syst. Mag., vol. 39, no. 3,
pp. 40–72, Jun. 2019.

Authorized licensed use limited to: University of Minnesota. Downloaded on April 29,2025 at 21:59:23 UTC from IEEE Xplore. Restrictions apply.

96 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 70, NO. 1, JANUARY 2025

Yanwen Mao received the B.E. degree in
electrical engineering and power automation
from Shanghai Jiao Tong University, Shanghai,
China, in 2017, the M.S. and Ph.D. degrees in
electrical and computer engineering from the
University of California, Los Angeles, CA, USA,
in 2019 and 2022, respectively.

His current research interests include decen-
tralized optimization and robust networked con-
trol systems.

Dr. Mao was the recipient of the Ultra High
Voltage Scholarship at Shanghai Jiao Tong University.

Deepesh Data received the B.Tech. degree in
computer science and engineering from the In-
ternational Institute of Information Technology
(IIIT-H), Hyderabad, India, in 2011, and the
M.Sc. and Ph.D. degrees in computer science
from the Tata Institute of Fundamental Research
(TIFR), Mumbai, India, in 2017 and 2022,
respectively.

From 2018 to 2022, he was a Postdoctoral
Scholar with the University of California, Los An-
geles (UCLA), and from 2017 to 2018, with the

Indian Institute of Technology Bombay (IIT-B). He is currently a Research
Scientist with Meta Platforms, Inc., Menlo Park, CA, USA. His research
interests are in distributed optimization, machine learning, differential
privacy, cryptography, algorithms, and information theory, with a current
focus on privacy-preserving machine learning.

Dr. Data was the recipient of the Best Paper Award from the ACM
Conference on Computer and Communications Security (CCS) 2021,
ACM India Doctoral Dissertation Award for 2019 (Honorable Mention),
TIFR-Sasken Best Ph.D. Thesis Award for 2017–18 in Technology and
Computer Sciences, and Microsoft Research India Ph.D. Fellowship for
2014–17.

Suhas Diggavi (Fellow, IEEE) received the un-
dergraduate degree from IIT, Delhi, and the
Ph.D. degree from Stanford University, Stanford,
CA, USA.

He was a Principal Member Research Staff
with AT&T Shannon Laboratories and directed
the Laboratory for Information and Communica-
tion Systems (LICOS), EPFL. He is currently a
Professor of electrical and computer engineer-
ing with the University of California (UCLA), Los
Angeles, CA, USA, where he directs the Infor-

mation Theory and Systems Laboratory. He has eight issued patents.
His research interests include information theory and its applications to
several areas, including machine learning, security and privacy, wireless
networks, data compression, cyber-physical systems, and bioinformat-
ics and neuroscience.

Dr. Diggavi was the recipient of several recognitions for his research
with IEEE and ACM, including the 2013 IEEE Information Theory Soci-
ety & Communications Society Joint Paper Award, the 2021 ACM Con-
ference on Computer and Communications Security (CCS) Best Paper
Award, the 2013 ACM International Symposium on Mobile Ad Hoc Net-
working and Computing (MobiHoc) Best Paper Award, the 2006 IEEE
Donald Fink prize paper award among others, and the 2019 Google
Faculty Research Award, 2020 Amazon Faculty Research Award, and
2021 Facebook/Meta faculty research award. He was selected as a
Guggenheim Fellow in 2021. He was a IEEE Distinguished Lecturer
and was also on board of governors for the IEEE Information The-
ory Society (2016–2021). He has been an Associate Editor for IEEE
TRANSACTIONS ON INFORMATION THEORY, ACM/IEEE TRANSACTIONS ON

NETWORKING, and other journals and special issues, as well as in the
program committees of several IEEE conferences. He has also helped
organize IEEE and ACM conferences including serving as the Technical
Program CoChair for 2012 IEEE Information Theory Workshop (ITW),
the Technical Program CoChair for the 2015 IEEE International Sym-
posium on Information Theory (ISIT), and General CoChair for ACM
Mobihoc 2018.

Paulo Tabuada (Fellow, IEEE) was born in Lis-
bon, Portugal, one year after the Carnation Rev-
olution. He received the “Licenciatura” degree
in aerospace engineering from Instituto Supe-
rior Tecnico, Lisbon, Portugal, in 1998, and the
Ph.D. degree in electrical and computer en-
gineering from the Institute for Systems and
Robotics, Instituto Superior Tecnico, in 2002.

From 2002 to 2003 he was a Postdoctoral
Researcher with the University of Pennsylvania.
After spending three years with the University

of Notre Dame, as an Assistant Professor, he joined the Electrical and
Computer Engineering Department with the University of California, Los
Angeles, CA, USA, where he currently is the Vijay K. Dhir Professor of
Engineering.

Dr. Tabuada was the recipient of multiple awards including the NSF
CAREER Award in 2005, the Donald P. Eckman Award in 2009, the
George S. Axelby Award in 2011, the Antonio Ruberti Prize in 2015
for his contributions to control and cyber-physical systems. He was
awarded the grade of Fellow by IFAC in 2019. He has been Program
Chair and General Chair for several conferences in the areas of control
and of cyber-physical systems, such as NecSys, HSCC, and ICCPS.
He is currently the Chair of HSCC’s steering committee and was on the
editorial board of the IEEE EMBEDDED SYSTEMS LETTERS and the IEEE
TRANSACTIONS ON AUTOMATIC CONTROL.

Authorized licensed use limited to: University of Minnesota. Downloaded on April 29,2025 at 21:59:23 UTC from IEEE Xplore. Restrictions apply.

