i IEEE
L css

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 70, NO. 1, JANUARY 2025 81

Decentralized Optimization Resilient Against
Local Data Poisoning Attacks

Yanwen Mao “, Deepesh Data®, Suhas Diggavi

Abstracit—In this article, we study the problem of de-
centralized optimization in the presence of adversarial at-
tacks. In this problem, we consider a collection of nodes
connected through a network, each equipped with a local
function. These nodes are asked to collaboratively com-
pute the global optimizer, i.e., the point that minimizes the
aggregated local functions, using their local information
and messages exchanged with their neighbors. Moreover,
each node should agree on the said minimizer despite an
adversary that can arbitrarily change the local functions
of a fraction of the nodes. We present, the resilient av-
eraging gradient descent (RAGD) algorithm, a decentral-
ized, consensus+outlier filtering algorithm that is resilient
to such attacks on local functions. We demonstrate that,
as long as the portion of attacked nodes does not exceed
a given threshold, RAGD guarantees that all nodes will be
able to have a good estimate of the said minimizer. We
verify the performance of the RAGD algorithm via numerical
examples.

Index Terms—Adversarial machine learning, consensus
control, fault tolerant computer networks.

[. INTRODUCTION

HIS article concerns a decentralized optimization problem
T that has seen several applications in the past decade [1],
[2], including federated learning [3], [4]. In this problem, we
have a set of nodes connected via a communication network,
each equipped with a local function, which collectively com-
pute the minimizer of the aggregation of their local functions.
However, in some scenarios, nodes may suffer from malicious
attacks, which render most solutions developed for attack-free
networks [5], [6] invalid. Therefore, it is of significant impor-
tance to develop learning algorithms that are robust to attacks.

A. Existing Work

Several papers have addressed the robust learning problem (or
the robust optimization problem) in the distributed case, see [7],
[81, [9], [10], [11], [12], [13], [14], and [15] and references

Manuscript received 24 January 2023; revised 18 November 2023 and
3 June 2024; accepted 22 June 2024. Date of publication 8 July 2024;
date of current version 31 December 2024. This work was supported in
part by the Army Research Laboratory through Cooperative Agreement
under Grant W911NF-17-2-0196 and in part by the NSF under Grant
2139304, Grant 2146838, and Grant 2007714. Recommended by Asso-
ciate Editor G. Notarstefano. (Corresponding author: Yanwen Mao.)

The authors are with the Department of Electrical and Computer
Engineering, University of California, Los Angeles, CA 90095 USA (e-
mail: yanwen.mao@ucla.edu; deepesh.data@ucla.edu; suhasdiggavi@
ucla.edu; tabuada@ucla.edu).

Digital Object Identifier 10.1109/TAC.2024.3424693

, Fellow, IEEE, and Paulo Tabuada”, Fellow, IEEE

therein. In these works, the existence of a central server is
assumed, which is connected to all nodes in the network and
is responsible for learning the model or computing the mini-
mizer. In this article, we do not assume the existence of such a
central server, i.e., we consider a decentralized setting. In our
problem formulation, each node should learn a model (or obtain
the minimizer), using its own local information and messages
exchanged with its neighbors. Moreover, we adopt the more
general heterogeneous problem setting, where the datasets (or
the local functions) across nodes are different.

The problem of global optimization in peer-to-peer networks
without centralized coordination (i.e., decentralized setting) has
been well-studied [16], [17], [18]. However, these solutions
are vulnerable to attacks: they completely break down if some
local functions are altered by an adversary. This consideration
motivated some other works, which focus on developing robust
decentralized optimization algorithms. Depending on the rela-
tionship between the global minimizer x* of the aggregated local
functions (which is typically assumed to uniquely exist) and the
set S; of minimizers of each local function f;, these works can
be roughly divided into the following three classes:

Class one: Each local function has only one local mini-
mum point, which coincides with the global optimizer, i.e.,
S; ={x*}, i =1,2,...,p. This scenario typically takes place
in a machine learning problem setting where all nodes are col-
laboratively learning a model by performing stochastic gradient
descent using the same dataset, or when the data samples at
all nodes are drawn i.i.d. from the same statistical distribution.
In this case, even without communication, nonadversarial nodes
can reach consensus on the global optimizer, hence, most efforts
have been devoted to accelerating convergence speed by suitably
exchanging messages between neighboring nodes. Representa-
tive works in this class include [19] and [20]. In [20], each node
is asked to perform coordinatewise gradient descent based on
a resiliently aggregated version of its received gradients. The
solution in [19] is similar to [20] but nodes are asked to perform
vanilla gradient descent instead. Both [19] and [20] showed that
collaboration among nodes in a network increases the speed of
model training notwithstanding a small fraction of nodes being
attacked by a Byzantine adversary.

Class two: The global optimizer belongs to the set of local
minimum points of any node, i.e., z* € S;, 1 =1,2,...,p, and
at least one local function has two or more minimizers. In
this case, nodes must rely on messages exchanged with their
neighbors in order to obtain the global optimal point. The
following interesting observation was made in [21]: In this

1558-2523 © 2024 |EEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Minnesota. Downloaded on April 29,2025 at 21:59:23 UTC from IEEE Xplore. Restrictions apply.

82 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 70, NO. 1, JANUARY 2025

setting, it is possible for all nodes to retrieve the exact global
minimum point whereas in the most general case, when there
is no direct relationship between the global minimum point
and the sets of local minimum points, x* is not retrievable.
Papers [21] and [22] fall into this class. The algorithm in [21]
only applies to the special case when all nodes are connected
via a complete network. In [22], it is shown that nodes are able
to agree on the global optimal point given that any local cost
function can be decomposed into a nontrivial weighted sum of
univariate strictly convex function, which comes from a common
size-limited set of basis functions. Their later work [23] extended
this result to the multivariate case and dropped the weighted sum
decomposition assumption made in [22].

Class three: The global optimizer z* is not the local minimum
point for some functions, i.e., there exists ¢ € {1,2,...,p}
so that z* ¢ S;. The robust optimization problem studied in
this class is known to be subject to some fundamental limita-
tions [24], [25]. Su and Vaidya [26] were the first who studied
this setting under the assumption that all local functions are uni-
variate, in which the authors novelly proposed the synchronous
Byzantine gradient (SBG) method, which forces all nodes to
reach consensus on the minimum point of a nonuniformly
weighted sum of the local functions. Similar techniques have
been adopted by Sundaram and Gharesifard [27] in their local
filtering (LF) algorithm, which significantly outperforms the
SBG algorithm in terms of communication load at the price
of requiring an unnecessary assumption on the communication
graph topology. A later work [28] extended the result in [26]
and [27] to the multivariate case. However, the fundamen-
tal limitation of SBG (or LF)-type algorithms is still present
in [27], as the consensus point is only guaranteed to lie in the
smallest hyper-rectangle that contains all the local minimum
points. Recent work of He et al. [29] gave convergence results
under the heterogeneous setting using a novel ClippedGossip
approach, with a slightly different assumption on the power of
the adversary. In addition, differently from the aforementioned
works which attempted to find the minimizer of the aggregated
local functions in the presence of adversaries, Mhamdi et al. [30]
studied this problem from a different perspective by relating it to
the averaging agreement problem. More recently, Kuwaranan-
charoen and Sundaram [31] provided a general algorithmic
framework for the robust learning problem.

There is also a vast literature devoted to the learning problem
when a fraction of data samples is under attack [32], [33], [34].
However, these works differ from our problem setting in the
sense that they assume a fraction of data samples to be attacked,
whereas we assume that all the data samples in a fraction of
nodes are attacked. As a consequence, we are able to filter the
information from a set of nodes whereas such approaches are
not applicable in most adversarial learning problems.

B. Our Contributions

As we can see from the previous discussion, all existing works
on decentralized optimization in the presence of attacks have
its limitations: they either consider a simpler case where some
special relationships exist between the global optimal point and

the sets of local optimal points, or are only able to provide a
loose bound on the distance between the consensus point and the
global minimum point z*. However, it is noteworthy that all these
works consider the attacker to be Byzantine and to possess full
knowledge of the system: including, but not limited to, the graph
topology, all local functions, and the algorithms running at each
node. Moreover, an attacked node may arbitrarily deviate from
its prescribed rules if it is attacked by a Byzantine adversary. In
this article, we consider a milder type of attacks known as data
poisoning attacks, where the adversary still has full knowledge
of the system, but is only able to change the local functions of the
attacked nodes. The main difference between Byzantine attacks
and data poisoning attacks is that an attacked node is still able to
execute its program if it is subject to data poisoning attacks.
Moreover, to limit the impact of the adversary, we assume
the existence of some similarities among local functions (see
Assumption 3), which has been shown necessary in [25] for this
class of problem settings. To the best of the authors” knowledge,
the decentralized optimization problem against data poisoning
attacks, which we refer to as the resilient decentralized global
optimization (RDGO) problem, has not yet been studied.

The main contributions of this article are as follows.

1) We propose a novel filtering algorithm, which robustly
estimates the weighted sum of a set of vectors in R™ in
the presence of data poisoning attacks. The algorithm is
given in Algorithm 2. Moreover, the distance between
the computed weighted sum and the true value scales
well with the dimension n (o< /n), and the fraction e of
attacked vectors (o< €). The algorithm is also light-weight
since its computational complexity scales linearly with n.

2) We propose an algorithm that solves the RDGO problem
when the aggregated function is either convex or belongs
to a special class of nonconvex functions [i.e., satisfies
the Polyak—Lojasiewicz (PL) inequality]. The algorithm
is given in Algorithm 2. The algorithm guarantees the
Euclidean distance between the obtained minimizer and
the true one (in the absence of attacks) to be proportional
to v/n and €, which is proved in Theorem 1. Moreover,
the proposed algorithm tolerates an attack up to half of
the nodes.

3) We verify the theoretical results with a numerical exam-
ple, where 20 nodes in a communication network, each
equipped with a nonoverlapping portion of the MNIST
dataset, collectively train a binary classification model,
despite an adversary, which is able to alter the datasets at
three nodes.

To the best of the authors’ knowledge, our algorithm out-
performs any existing solution, under the same or less stringent
problem setting (e.g., a distributed setting). In Table I, we list six
representative works on robust centralized/distributed optimiza-
tion and compare such results with this article’s contribution.
Compared with the works mentioned in Table I, in this article we
study the resilient optimization problem in a more sophisticated
decentralized setting and provide an algorithm which is robust
against an attack to, at most, half the agents. Estimates of the
global optimizer at all agents are guaranteed to lie in a ball
centered at the optimizer whose radius is proportional to \/n

Authorized licensed use limited to: University of Minnesota. Downloaded on April 29,2025 at 21:59:23 UTC from IEEE Xplore. Restrictions apply.

MAO et al.: DECENTRALIZED OPTIMIZATION RESILIENT AGAINST LOCAL DATA POISONING ATTACKS 83

TABLE |
COMPARISON BETWEEN SOLUTIONS TO THE RDGO PROBLEM IN [9], [11], [7], [8], [10], AND [32], AND THIS ARTICLE

[9], [11] [7], [8] [10] [32] Our algorithm
Network Topology Distributed | Distributed | Distributed | Centralized | Decentralized
Maximum fraction of attacked agents % i % % %
Dependence of error on dimension n O(n) O(y/n) O(n) O(y/n) O(y/n)
Dependence of error on fraction of attacked nodes € 0] O(/e) O(e) O(e) O(e)

and €, where n is the dimension and ¢ is the portion of attacked
agents.

We also note that, any result in this article can be conveniently
specialized to the distributed case, even when the attack is
Byzantine. More details regarding this observation are provided
in Remark 6.

C. Article Organization

The rest of this article is organized as follows. Section II
formulates the RDGO problem. In Section III, we introduce
resilient averaging gradient descent (RAGD) algorithm, which
solves the RDGO problem. This is followed by Section IV in
which how to robustly estimate the weighted sum of a set of
vectors is investigated. The performance of the RAGD algorithm
is studied in Section V. In Section VI, we validate our theoretical
results via a numerical example. Finally, Section VII concludes
this article.

Il. PRELIMINARIES
A. Notation

Let R, RT, and N denote the set of real, positive real, and
natural numbers, respectively. Given a vector v € R” where
n is a positive natural number, we use ||v||2 to denote the /o
norm of v. Also, we define the all-ones vector of length n by
1, = (1,1,...,1)7 and I,, to be the identity matrix of order n.
The largest and smallest singular values of a matrix A € R™*?
are denoted by o/ (A) and o, (A), respectively, where n, p are
positive natural numbers. Moreover, we use V f (x) to denote the
gradient of a function f : R™ — R evaluated atz € R™. Further,
let € R*. We denote by B(z,r) = {y € R"||ly — z|] < r}
the ball centered at x with radius r. Moreover, the distance
D(z, S) between a point x € R™ and a set S C R is defined
by D(x,S) = infcg |z — Y2

A weighted directed graph G = (V, £, A) is a triplet consist-
ing of aset of vertices V = {v1, va, . .., v, } with cardinality p, a
set of edges £ C V x V, and a weighted adjacency matrix A €
RP*P_which will be defined very soon. The set of in-neighbors
of a vertex i € V, denoted by Ni" = {j € V|(j,i) € £}, is the
set of vertices connected to 7 by an edge. Similarly, the set
of out-neighbors of a vertex ¢ € V is defined by N = {j €
V|(i,j) € £}. We assume each vertex is both an in-neighbor
and an out-neighbor of itself. The weighted adjacency matrix A
of the graph G is defined entrywise. The entry in the ith row and
jthcolumn, a;;, satisfies 0 < a;; < 1if (i,4) € & and otherwise
Qi = 0.

B. Problem Formulation

We consider a set .S of pnodes connected viaa communication
network, modeled as a directed graph G = (V, €, A). The set V

in G represents the set of nodes and the set £ represents the set of
communication links between all pairs of nodes. In particular,
an edge (i,7) € € exists if and only if node j can receive
information from node ¢. Moreover, each communication link
(i,7) is associated with a positive scalar value a;; > 0, which,
we recall, is the (i, j)th entry of A € RP*P.

We now formally define the RDGO problem.

Definition 1 (RDGO Problem): Consider a set S of p nodes
connected via a communication network. Each node i € S is
equipped with a local function f; : R™ — R where x € R" is
the optimization variable. The RDGO problem asks each node
to find the minimizer z* of the aggregation of the local functions
as follows:

f@) =3 fila)
i€S
using its local function f; and messages exchanged with its
neighboring nodes, notwithstanding some local functions have
been altered by a data poisoning attack.

In the decentralized federated learning problem, each
node ¢ has a local data set Z; ={zy1,z2i2,...,2inv} Of
cardinality N. The federated learning problem asks all
nodes to collectively minimize the following risk function
1/NYP | Z;Vd l(w, z;;) with respect to w and where [is
some loss function. In this case, each local function f;(w) =
% Zjvzl l(w, z;;) is implicitly defined by the local data set Z;
at node 7. The aggregation f of local functions is also named as
the global function in this article.

C. Attack Model

The solution to the global optimization problem is well-
known in the absence of attacks [16], [17], [18], [35]. However,
the problem becomes more challenging when some nodes are
subject to attacks. In this article, we assume that a subset S, C S
of nodes are subject to a data poisoning attack, which is able
to replace the original function f; of an attacked node j € Sy
with fj # fj. Moreover, we define S, = S\\Sy to be the set
of attack-free nodes. For simplicity, we also use f; to denote
the local function of an attack-free node i € S, after the data
poisoning attack. It is trivially seen that, for an attack-free node

The adversary that launches the data poisoning attack is
assumed to be omniscient, i.e., it has full knowledge of the com-
munication graph, the local functions of all nodes, the algorithm
eachnode executes, etc. Moreover, it is able to arbitrarily alter the
local functions of the attacked nodes. However, differently from
Byzantine attacks, we assume that all nodes, even those subject
to data poisoning attacks, are able to execute their protocols
correctly. Moreover, in the context of this article, we assume
the attack is perpetrated before the nodes start executing the

Authorized licensed use limited to: University of Minnesota. Downloaded on April 29,2025 at 21:59:23 UTC from IEEE Xplore. Restrictions apply.

84 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 70, NO. 1, JANUARY 2025

algorithm that solves the RDGO problem, which we will soon
discuss in the next section. The attacked local functions will
not change once the algorithm starts running. This definition
of the data poisoning attack is in line with other works (for
example [36], [37], [38], and [39]) where data poisoning attacks
are studied.

Remark 1: It was argued in [26] that it is impossible to
exactly recover the optimizer x* when some local functions
are attacked by an adversary and when there are no special
relationships between the local functions. Therefore, instead of
exactly recovering the optimizer z*, we study in this article how
well each node can approximate x* using its possibly attacked
local function and messages exchanged with its neighbors.

D. Assumptions

We study the RDGO problem under the following assump-
tions, some of which have already been discussed.

Assumption 1: The communication graph is fixed, connected,
and doubly-stochastic (i.e., the adjacency matrix A of the graph
is a doubly-stochastic matrix). Moreover, the weight associated
with each link is known to the corresponding receiver node, for
example, node j is aware of a;; for any i € S.

Assumption 2: There exists an 0 < € < 1/2, known to all
nodes in the network, such that for any node j, the sum of
link weights corresponding to its attacked in-neighbors is upper
bounded by ¢, i.e.,

Y a<e VieSs. (1)

iGJ\/;"I"ISb

Assumption 3: Each local function is differentiable, and the
Euclidean distance between the gradients of any two local func-
tions evaluated at any point z in the working domain' is upper
bounded by some constant x > 0, i.e.,

Assumption 1 is a constraint on the communication network
topology. This assumption is the simplest one that enables a
solution to the decentralized average consensus (DAC) problem,
where a network of nodes, each having a local initial value, seeks
to agree on the average of their initial values [40], [41]. Note that
the DAC problem is a special case of the RDGO problem,? which
justifies our Assumption 1. Assumption 2 effectively restricts the
power of the adversary. For example, if node j has k neighbors
and the weight on each link to node j is 1/k, Assumption 2
requires that less than half of the links can be attacked since € is
required to be smaller than 1/2. Similar assumptions were made
in [27], with the slight difference thatin [27] itis assumed that the
number of attacked nodes in a neighborhood is upper-bounded.
Lastly, Assumption 3 is shown to be necessary in [25].

Apart from Assumptions 1-3, in this article we also need one
of the following two assumptions to solve the RDGO problem.

! A brief discussion on the working domain will be provided at the end of the
article.

2Consider a special class of the RDGO problem, where the local function at
node 7 is chosen to be f;(z) = (z — ;)T (x — ;). We note that the global
optimizer of this RDGO problem is * = x1 + x2 + .../ + zpp.

Algorithm 1: Resilient Averaging Gradient Descent
(RAGD) Algorithm for Node j.

1 Input: {a;;]i € N"}, firenTeN
2 Initialization: z3[0] := 0;
3fort=0,1,2,... do

4 for k=0,1,2,....,7—1do
5

6

7

Broadcast xf [t] ;

Receive z[t] from i € NJ™;

x?“[t] = ZieN]n aijzf[t];

8 end

9 Compute and broadcast the gradient

Xt =V fJ(a:; [t]) of its local function;

10 | Receive X[t] from i € V™ A

11 ,[l‘j [t] = RWSE({(G,Z], X; [t]),l S ./\/;n}, 6), (the
RWSE algorithm is introduced in Section IV);
2| 29t 4+ 1] = 2 [t] — niylt];

13 end

14 Output: z7[t];

Assumption 4: The global function f is L-smooth and v-
strongly convex, each local function f; is L;-smooth.

Assumption 5 is based on the following definition [42].

Definition 2: A differentiable function f : R™ — R satisfies
the PL inequality with parameter ;1 € R if the following in-
equality holds:

LIV > u(f (@) — fa) 0

for any x € R™ and =* being a minimizer of the function f.

Assumption 5: The global function f is L-smooth and satis-
fies the PL inequality with parameter u, each local function f;
is L1-smooth.

We note that a v-strongly convex function must satisfy the
PL inequality. This result can be observed by choosing p = v.
However, the opposite does not hold. For example, a function
that satisfies the PL inequality may have multiple minimizers.
We also note that if a function f is both L-smooth and satisfies
the PL inequality with parameter p, then p < L.

Ill. RAGD ALGORITHM

In this section, we introduce an algorithm called the RAGD,
which enables all nodes to approximate the global minimum
x* and, thus, solves the RDGO problem. Algorithm 1 is a
pseudocode description of the RAGD algorithm.

The RAGD algorithm has two loops, an inner loop (lines 4-8)
and an outer loop (lines 3—12). In the inner loop, all the nodes
are asked to run a linear iterative algorithm aiming at reaching
consensus on the average of their local estimates.® The input
parameter 7 controls the number of iterations executed in the
inner loop. The estimate at node j in t¢th iteration of the outer

3To avoid ambiguity, we emphasize that all nodes follow their prescribed rules
(i.e., lines 4-8) in the inner loop. This setting is different from some other works
(e.g., [43] and [44]) where malfunctioning nodes may deviate from the rules and
send arbitrary messages to their neighbors.

Authorized licensed use limited to: University of Minnesota. Downloaded on April 29,2025 at 21:59:23 UTC from IEEE Xplore. Restrictions apply.

MAO et al.: DECENTRALIZED OPTIMIZATION RESILIENT AGAINST LOCAL DATA POISONING ATTACKS 85

loop and kth iteration of the inner loop is denoted by 2 [t].
To proceed, we directly provide the following result on the
convergence property of the inner loop.

Lemma 1: Consider a set S of nodes, each starts with an
initial value z?[t], and executes lines 4-8 of the RAGD al-
gorithm in parallel. Define Z[t] = 37, g 27[t] and d"[t] =
max; jeg ||2f[t] — 2%[t]||2. The following two properties re-
garding x7[t], #3[t],. .., x}[t] hold for any ¢t € N:

D 5 Yiesz7[t] = z[t] ¥reN,
2) there exists ana € R* and a p € (0, 1) such that for any
T €N, d"[t] < apTd°[t].

In the outer loop, all nodes are first asked to reach consensus
on the average of their local estimates by executing the inner
loop. Then, each node is asked to compute and broadcast the
gradient of its (possibly attacked) local function (line 9). We note
that some gradients are not reliable since some local functions
have been altered by the data poisoning attack. Upon receiving
gradients from all its neighbors, each node runs a screening algo-
rithm [the robust weighted sum estimation (RWSE) algorithm],
which allows each node to resiliently approximate the weighted
average of the gradients it receives (lines 10 and 11), and in the
end updates its local parameter by performing a gradient descent
step based on the output of the RWSE algorithm (line 12).

Intuitively, and in contrast with the traditional Byzantine set-
ting [29], [30], the fact that attacked agents only corrupt the local
functions (and then behave correctly throughout) plays a key
role in the algorithm. This weaker Byzantine model simplifies
the problem of consensus of their local estimates.

Remark 2: In line 9 of Algorithm 1, we ask each node j
to compute the gradient of its (possibly attacked) local function
evaluated at its current local estimate «7 [¢]. If node j is free from
attack, then, X[t] = V f;(«7[t]), i.e., the computed gradient
equals the gradient of its original local function evaluated at
the same point. However, if node j is attacked, we make no
assumptions on the relationship between X [t] and V f; (27 [¢])
except that X, [t] exists.

Detailed discussion on the RAGD algorithm will be presented
in Section V.

IV. RWSE ALGORITHM

In this section, we study the problem of how each node can
resiliently compute the weighted sum of its neighbors’ gradients
under Assumptions 1-3, despite a portion of the gradients hav-
ing been attacked. To solve this problem, we propose a novel
algorithm termed the RWSE algorithm.

The RWSE algorithm is not only the key for solving the
RDGO problem, but also has other applications, for example, it
can be conveniently applied to solve the distributed Byzantine-
resilient optimization problem,* which will be argued in Remark
6. Moreover, we note that RWSE problem is a generalization
of the well-known robust mean estimation (RME) problem,5

4See [16] for a formal definition of the distributed Byzantine-resilient opti-
mization problem.
5See [45] for a formal definition of the robust mean estimation problem.

Algorithm 2: Robust Weighted Sum Estimation (RWSE).
1t Input: {(a;, X;)|i € S}, ¢; Initialization: g := 1,

temp :=0, wo :=0, V:={X1,Xo,..., X},
Ve :={}, g :=0;

2 while g > 1 — € do

3 compute the Euclidean distance between every pair
of nodes and find out a pair with the maximum
distance. If there are multiple pairs, pick one of
them arbitrarily. Without loss of generality we
assume that vectors X; and X} are picked;

s | 5= Toes(as X — Xola):

5 shi= D es(a:|Xn — Xz |l2);

6 if s; > s;, then

7 | ui=1;

8 else

9 | ui=h

10 end

11 V:=V\{X.}, g := g — ay, temp := u;

12 if aiemp > € then

13 ‘ Ve=:VU {Xtemp}’ e = g + Qtemps

14 else

15 | Vo=V, gei=g;

16 end

17 end

18 Output: fi:= -3y a; Xy

Fig. 1. Visualization of Algorithm 2.

hence, RWSE solves the RME problem assuming Assumptions
1-3 hold.

A. Algorithm Description

Since the execution node j is fixed, in this section we drop
this index and represent the weights {a;;} by {a;}. Note that
> ics @i = 1 by Assumption 1. Let S = /\/}“, the message X;
that node 7 receives from node ¢ satisfies the following:

Xi= Vfi,

{Xi £ Vs

where we also dropped time indices ¢t and 7 and used Vf;
in lieu of V f;(z][t]) for simplicity. The goal is to approxi-
mate the weighted average iy = >, ¢ a;V f; using the data
{(a1,X1), (a2, X2), ..., (ap, Xp)} under Assumptions 2 and 3.
Algorithm 2 is a pseudocode description of the RWSE algorithm.
To explain the RWSE algorithm we describe its execution on
the example in Fig. 1. In Fig. 1, a red dot denotes an attacked

1€S,

i1 €Sy “)

Authorized licensed use limited to: University of Minnesota. Downloaded on April 29,2025 at 21:59:23 UTC from IEEE Xplore. Restrictions apply.

86 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 70, NO. 1, JANUARY 2025

TABLE I
ILLUSTRATION OF THE CLASSIFICATION RULE
of Iterations {i,h} u | Case
All iterations {o,a} V {a,a} | a 1
At least 1 iteration {o,0} 0 2
At least 1 iteration {o,a} o 3

An execution of the RWSE algorithm falls into a certain case if
for sufficient number of iterations (as shown in the first column),
an indicated pair of vectors (as shown in the second column) is
chosen since their distance is larger than any other pair. The third
column indicates if a good or attacked vector is removed. For
Example, if for at least one iteration, two good vectors are chosen
and one of them is removed, then the execution falls into Case 2.

vector, whereas a black dot denotes an attack-free vector. All
attack-free vectors (black dots) lie in a ball with diameter s
whereas there are no restrictions on the position of attacked
vectors. In each iteration, the execution node first finds a pair
of vectors (i, h) with the maximum Euclidean distance [see
subgraph (a), also lines 4 and 5 in Algorithm 2), then com-
putes and compares the weighted sum of the distance between
vector ¢ and all other vectors and the weighted sum of the
distance between vector h and all other vectors [see subgraph (b)
and (c), also lines 7—10 in Algorithm 2). In the problem instance
represented by Fig. 1, vector & is closer to the rest of vectors
compared with the attacked vector ¢, hence, in the last subgraph
(d) vector ¢ is removed according to line 11 in Algorithm 2.

In addition, we use a scalar variable temp to store the identity
of the latest removed vector. By Assumption 2 if the weight
a; associated to a vector X; satisfies a; > ¢, then this vector
cannot be attacked. Therefore, if a vector X; with weighta; > ¢
is removed at some iteration and then the algorithm terminates,
there is no harm restoring this vector X; since it must be a
good vector. By doing so we have the following guarantee of
the weight sum of the remaining vectors: g. > 1 — 2¢, where g,
is defined in line 13 or line 15 in Algorithm 2.

B. Performance

Itis trivial that Algorithm 2 will terminate (once enough nodes
are removed the guard in line 3 will be violated). Therefore, we
only need to check how close the output /i is to the true average
ttg- To do this, we divide all possibilities regarding the execution
of Algorithm 2 into three cases. The classification rule is shown
in Table II, where o stands for a good vector and a stands for an
attacked vector. For example, the third row in Table I tells that if
in some iteration the maximum distance lies between two good
vectors and, hence, a good vector is removed in this iteration,
then the execution falls into Case two.

Now, we study the execution of the RWSE algorithm case by
case.

Case 1: During each iteration one attacked vector is removed.

Observation 1: If Case 1 holds during the execution of the
RWSE algorithm, then for any two vectors X;, X} such that
i,h € V., we have || X; — Xp|j2 < 5.

We proceed by examining Case 2. As we will soon see, Case 1
and Case 2 are very similar.

Case 2: In some iterations the distance between a pair of good
vectors is larger than any other pair. Due to this reason a good
vector is removed in this iteration.

Observation 2: If Case 2 holds during the execution of the
RWSE algorithm, then for any two vectors X;, X; such that
i,h € V. we have | X; — Xj|2 < k.

Now, we study the performance of the RWSE algorithm when
either Case 1 or Case 2 holds. The following lemma guarantees
that the output /& of the RWSE algorithm is a good estimate of
fig if either Case 1 or Case 2 holds.

Lemma 2: If Case 1 or Case 2 holds during the execution of
the RWSE algorithm, then the output /i of the RWSE algorithm
satisfies the following:

M—MMS(NXQ%)m.)

Case 3: In some iterations the maximum distance lies between
a good vector and a bad vector, leading to a good vector being
removed.

We first make a claim on the distance between any remaining
attacked vector X, and the vector V f,, which was replaced.
This result will be used in the analysis of the RWSE algorithm
if Case 3 holds.

Lemma 3: 1f Case 3 holds, then for any ¢ € V, N S}, we have
1Xy — Viallz < 2+ 150k

Lemma 4: If Case 3 holds during the execution of the RWSE
algorithm, then the output /i of the RWSE algorithm satisfies the
following:

. 3—4
4= ngll2 < (2 + (1_266)2> €x. (0)

By taking the worst case over the bounds for each of the three
cases we obtain the following result.

Lemma 5: Consider the RWSE algorithm with inputs
{(a;, X;)|i € S} satisfying 1) a1 + a2 +---+a, =1,2) a; >
0Vie S,3)||Vfi — Vinlle < kVi,h € S, and € satisfying 4)
€ < 3. Define 1y = -7, a;V fi. The output i of the RWSE
algorithm satisfies the following:

3462> k. %)

0 — <12
il < (24 2

Remark 3: We see from its description that the RWSE algo-
rithm scales well with the dimension n, since the computational
complexity of the RWSE algorithm grows linearly with the
increase of n. Moreover, according to Lemma 5, the error of
the RWSE algorithm scales with e, which outperforms many
RME algorithms whose error scales with /€ [46]. The authors
believe this is a consequence of Assumption 3 requiring the
dissimilarity among two good gradients to be upper bounded,
whereas in RME algorithms usually deal with random data. It
is also noteworthy that the error of the RWSE algorithm scales
with , which implicitly grows with /7.

Remark 4: Differently from the trimmed mean algo-
rithm [47], we note that the RWSE algorithm is sensitive to
the portion e of attacked nodes in the sense that the guarantee
becomes very loose when e approaches 1/2. The computational
complexity of the RWSE algorithm is proportional to p?.

V. PERFORMANCE OF THE RAGD ALGORITHM

In this section we prove the correctness of the RAGD al-
gorithm. We start with an intuitive explanation of the RAGD
algorithm: The inner loop can be considered as an initialization

Authorized licensed use limited to: University of Minnesota. Downloaded on April 29,2025 at 21:59:23 UTC from IEEE Xplore. Restrictions apply.

MAO et al.: DECENTRALIZED OPTIMIZATION RESILIENT AGAINST LOCAL DATA POISONING ATTACKS 87

step, in which each node initializes their estimate to be the
average of estimates of all nodes throughout the network, up
to some error which decreases exponentially with 7 by Lemma
1. Executing lines 9—12 in Algorithm 1 brings the following two
consequences:

1) The average of local estimates moves toward the mini-
mum point (or a minimum point if there are multiple), up
to some constant error;

2) The distance between two local estimates may increase.

The proof idea is simple. We will prove the following two
facts: 1) the local estimates of all nodes are clustered in a ball,
and 2) the centroid of the ball moves toward the minimizer up
to a constant error. It is a natural consequence of these two
facts that the estimate at any node is close to the minimizer.
We recall the definition d¥[t] = max; jeg ||} [t] — 2 [t][|2 from
Lemma 1 and proceed with our first result in this section.

Lemma 6: Consider a set S of nodes in a communication
network satisfying Assumption 1. Each node has a local function
which satisfies Assumption 3 whereas some local functions are
altered by a data poisoning attack which satisfies Assumption 2.
Let all nodes run the RAGD algorithm in parallel. Moreover, let
either Assumption 4 or 5 hold. For any pair of nodes ¢, j € S, any
t € N and any 7 € N, the output of these nodes z7 [t], z7[t] in

iteration ¢ and the maximum distance d" [#] satisfy the following:
IVfi(af[t) =V i(i[tDlle < & +2L0d7t]. - (8)

Moreover, in this case, the variable /i;[t] in line 11 of the RWSE
algorithm at any node j € S and iteration ¢t € N satisfies the
following:

14252] = w5tz < ee(w + 2L1 d7[E]) ©)

for any j€S5 and any te€ N, where
ienin @iV fi(27[t]) and ¢, = 3e — 4€? /(1 — 2¢).

In the following proposition we show that d"[¢] can be uni-
formly upper bounded over time ¢ if 7 is large enough.

Proposition 1: Under the assumptions of Lemma 6, for any
step size 7 > 0 and any given input r > 0, there always exist a
7o € N suchthatd"[t] < rimpliesd™[t + 1] < rforanyt € N,
if 7> 7.

This proposition tells that, for any given r, as long as all nodes
start from the same initial value in the first iteration (i.e., ¢ = 0),
the inequality d"[t] < r holds for any ¢ € N provided 7 > 79
holds. In brief, the choice of 7 is dependent on the smoothness
of the global function, the convergence rate, and the dissimilarity
among local functions. A detailed expression can be found
in (42).

Combining Lemma 6 with Proposition 1, we notice that for
any iteration ¢ and any node j € S, the variable (defined in line
11 of Algorithm 1) fi;[t] satisfies the following:

1425[2] = w52 < ce(m + 2Lar).

niltl =

(10)

Now, we are ready to analyze the performance of the RAGD
algorithm. Recall the definition Z[t] = % djes 9[t]. The fol-
lowing result shows that in the RAGD algorithm the average of
local estimates is approximately updated with a gradient descent

step.

Proposition 2: Under the assumptions of Lemma 6, for any
teN,n>0,r >0, assume d"[t] < r holds for any 7 € N,
then the following equation holds:

Zt+1] — 2] = — 2V f(z[H]) + 1[4 (11)
p p
for some 1[t] satisfying ||/[t]||2 < pce(k + 2L17) + pLqr.

For simplicity, we define & = pc.(k + 2L17) + pLyr. In-
equality (11) shows that, if we compare the average at iteration
t + 1 and the average atiteration ¢, we determine that the average
Z[t] is updated with a “polluted” gradient, which differs from
the true gradient V f(z[t]) by a vector [[t] whose Euclidean
norm is upper bounded by &, using step size 7/p. As we will
soon see, performing gradient descent on a strongly convex
function (or a function that satisfies the PL condition) using an
approximate gradient makes the average estimate Z[t| converge
to the optimizer =*, up to some constant error.

We proceed by describing the performance guarantee of the
RAGD algorithm, which is also the main result of this article.

Theorem 1: Consider a set of nodes in a communication
network satisfying Assumption 1, each equipped with a local
function satisfying Assumption 3. Moreover, assume a subset of
nodes is subject to a data poisoning attack satisfying Assumption
2. Suppose all nodes in the network run the RAGD algorithm
with = £ and parameter 7 > 7y with 7y defined in (42) with
respect to any given 7 > 0, then the output of every node j € S
satisfies one of the following two possibilities for any ¢t € N:

1) Let 3 = /1 — 7. Assumption 4 implies the following
inequality:

£

la518) = " ll2 < B*Ne310) - ol + 7= 557

+ 7.

(12)
2) Let ' = /1 — £ and S* be the set of minimizers of f.
Assumption 5 implies the following inequality:

D(zf[t], S*) < \Fﬁ’tp (z9[0],5%) + 3 +r. (13)
M M

Remark 5: It can also be seen from Theorem 1 that the output
x7[t] at node j will converge to the ball B(z*,{/(1—)L +
7), if Assumption 4 holds. Moreover, if z9[0] is not in the ball
mentioned above, then the estimate x7 [t] will move toward the
ball. From this discussion we also learn that for any ¢ € N,
27 [t] always lies in the ball B(z*, max(||z*||2,&/(1 — B)L +
7)) since all x(; [0] are assumed to be 0. The result in Theorem
1 implicitly assumes that the working domain contains the ball
mentioned above. A similar analysis also applies to the case
when Assumption 5 holds.

Remark 6: In either case, our RAGD algorithm guarantees
that the distance between the computed minimizer and the true
global minimizer (in the absence of attacks) is bounded by a
constant error term. This differs from some existing works [27],
[28] in which the computed minimizer is only guaranteed to lie in
the smallest hyper-rectangle that contains all local minimizers.°

Moreover, our error term scales linearly with y/n and € when

5Some of these works assume the attack to be Byzantine.

Authorized licensed use limited to: University of Minnesota. Downloaded on April 29,2025 at 21:59:23 UTC from IEEE Xplore. Restrictions apply.

88 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 70, NO. 1, JANUARY 2025

0 50 100 150 200 250 300 350 400 450 500
Iterations

Fig. 2. Testing accuracy over iterations of the RAGD algorithm for
decentralized training a logistic regression function on MNIST dataset
in the presence of attacks changing gradients.

at most half of nodes are under attack, which matches, or even
outperforms its counterpart in the distributed case [7], [9], [48].
We also note that in the absence of attacks, i.e., when € = 0, the
RAGD algorithm specializes to the well-known decentralized
gradient descent algorithm. Lastly, it is observed that, since the
RWSE algorithm can always find a reasonably good estimate of
the average of attack-free gradients regardless of the values of
the attacked gradients, the RAGD algorithm can be applied to
solve the distributed resilient federated learning (respectively,
optimization) problem, even when the adversary is Byzantine.

VI. NUMERICAL RESULTS

In this section, we use a numerical example to illustrate our
theoretical results. We consider a decentralized binary classifica-
tion problem using the MNIST handwritten digits dataset. In this
task, a total of 20 nodes in a randomly generated communication
network are asked to classify digits in two classes corresponding
to the digit 0 and the digit 1, using a logistic regression function
collectively trained by themselves. We note that the logistic
regression function satisfies Assumption 4.

In this test, we use 12 000 samples from the MNIST dataset,
6000 samples are pictures of handwritten zero digits and the rest
are pictures of handwritten one digits. The set of samples is split
into a training set of size 10 000 and a testing set of size 2000.
Moreover, the training set is equally split into 20 subsets each
of size 500, and each node in the network has access to only one
subset of samples.

We first generate a random doubly-stochastic square matrix
of size 20 to represent the communication graph. In this exper-
iment, we perform an attack, which changes all the gradients
from two nodes to a random vector generated using Gaussian
distribution N (0, ,,). In the simulation we set r = 0.05 and
choose the number of iterations of the inner loop 7 to be 10. The
step size is set to be 1 x 1076,

Fig. 2 shows a typical execution of the proposed algorithm
in comparison with the absence of attacks and the attack-only
case. The yellow curve corresponds to the testing accuracy over
iterations when two nodes are subject to the attack mentioned
above. In this case, the testing accuracy is around 60%, whereas
in the absence of attacks the classification accuracy is above
98%. The red curve corresponds to the case when we implement
our RAGD algorithm to combat the attacks. As we can see in

Fig. 2, there is a first phase of about 50 iterations where the
testing accuracy grows exponentially. This is explained by the
bound (12) where the first term on the right-hand side dominates
the other two terms. After about 400 iterations, the testing
accuracy stabilizes around 95%. At this point the effect of the
first term has approximately vanished and we observe the effect
of the last two terms that determine the worst case gap between
the estimated minimizer and the true minimizer.

VIl. CONCLUSION

In this article, we proposed a RAGD algorithm, which solves
the decentralized global optimization problem in the presence
of data poisoning attacks. The proposed algorithm enables all
nodes to approximate the global optimizer, with an error that
scales linearly with y/n where n is the dimension and the fraction
e of attacked nodes.

APPENDIX
A. Proof of Lemma 1 in Section Il

We first introduce the following two results which will be
used in the proof of Lemma 1.

Lemma 7: ([49]) Consider a schur stable’” matrix F' € R"*".
There always exist m > 1 and 0 < p < 1 such that for any n €
N, the following bound holds:

[E™ |2 < mp". (14)

Proof: We first perform a Jordan decomposition of the matrix
F: F =T 'JT where T € R™" is an invertible matrix and .J
is in block diagonal form, i.e., J = diag{Jy, Ja, ..., J; }, where
each J; is a Jordan block. To prove Lemma 4.1, it suffices to
prove the existence of m; > 1 and 0 < p; < 1 for each block J;
such that ||J*||2 < m;p? holds.

Let the eigenvalue corresponding to block J; be X;, and
furthermore assume .J; is of size s; x s;. We explicitly write
out J;* as follows:

O A
0 (A L (e
J?L =
0 0 AL (Hyapt
0 0 0 AT
] (15)
from which we have the following:
87;71
ot < Azl = 3 (T)mr. as)

J=0

For simplicity, we define U;(n) = Z;":_Ol (%) %"/, We note
that U;(n) is a decaying sequence of n when n is large

7 A matrix is called schur stable if all of its eigenvalues lie strictly in the unit
circle.

Authorized licensed use limited to: University of Minnesota. Downloaded on April 29,2025 at 21:59:23 UTC from IEEE Xplore. Restrictions apply.

MAO et al.: DECENTRALIZED OPTIMIZATION RESILIENT AGAINST LOCAL DATA POISONING ATTACKS 89

enough, since

Uin 1) _ S5 (Yl
U;(n) }:;fg'()|xﬂn—j

Zsl—l (n+1)!
J=0 jl(n+1-4)!

i1 —
Z; 0 jl(n—])'M "

|)L |n+1 g

_ (D!

il (n+1-7)!

< |4l max %
je{0,1,...,s,—1} T
1

= i ax Tt

jE{O,L wsi—1yn+1—7

n+1
= |Ai] - ————. (17)
n+2-—s;

By assumption F' is a schur stable matrix, its eigenvalue
A; satisfies |A;| < 1, which shows there exists Ny € N such
that for any n > Ny, U;(n+ 1)/U;(n) < 1. By picking m; =
max{1,U;(No)}and p; = |A;| - Nog + 1/No + 2 — s; we finish
the proof. |

Lemma 8: The doubly-stochastic adjacency matrix A &€
RP*P associated with a connected graph has exactly one eigen-
value with value 1 and corresponding eigenvector 1,,. Any other
eigenvalue of A lies strictly inside the unit circle.

Proof: Lemma 8 is a standard result. For the sake of com-
pleteness we provide a sketch of its proof.

The proof is based on the definition and known facts about
the degree matrix D and the Laplacian matrix £ corresponding
to a graph G = {V, €, A}. The degree matrix D € RP*? of the
graph G is adiagonal matrix with its sth diagonal element defined
by d;; = Z?Zl a;;. The Laplacian matrix £ of the graph G is
defined by £ = D — A. It is well-known in the literature that if
the graph is connected, by spectral theory, O is an eigenvalue of
L of algebraic multiplicity 1 and its corresponding eigenvalue
is 1,,.

Itis also well-known that the magnitude of any eigenvalue of a
doubly-stochastic matrix A is less or equal to 1. Moreover, since
L =D — A has an eigenvalue 0 with algebraic multiplicity 1,
and D is the identity matrix since A is doubly-stochastic, it is
trivially seen that the algebraic multiplicity of eigenvalue 1 of
Aisl. |

With Lemmas 7 and 8 we provide the proof of Lemma 1 in
the main file.

Proof of Lemma 1:([50]) To start with, we define z*[t] =

(DT, DT)T " foranyk = 0,1,...,and

P
t € N. This definition allows us to write the mathematical

representation of the linear iterative algorithm as the following:

karl[] (18)

t] = (AT @ I,,))2"[t].
To proceed, we find an orthogonal matrix [R S| € RP*P where

= 1/,/p1, and define the following change of coordinates:
zl[] = (RT ® I,,)z*[t] which is the sum of local values, and
25[t] = (ST ® I,)x*[t]. To understand the implication of the
vector z5[t], we note that z5[t] can be equally divided intop — 1
blocks each of size n and each of which can be explained as a

linear combination of vectors in the set {z¥[t], i € S}, i.e., there
exists a set of weights {w1, ws, ..., w,} such that each block in
2K [t] can be writtenas >, g w; k[|- Moreover, by construction
of the matrix S, we have), ¢ w; = 0. This observation shows
that by properly combining terms with positive and negative
coefficients, each block in z5[¢] can be alternatively expressed
by a weighted sum of vectors in the set {}[t] — 2 [t], i,j € S}
where any weight ng is non-negative. This argument shows that
25[t] is closely related to the difference among local values from
different nodes. We also point out the following two properties
regarding the weight values w; and w/ ., which will very soon
be used in this proof:

1) Fact 1: 3 i g s £, which is obtained by com-
bining facts >, qw; =0 and Y, qw? =1 with the
Cauchy—Schwardz inequality;

2) Fact2: 3, jes Wij = D ies,w, >0 Wi < /5.

With the understanding of the change of coordinates, we
obtain the following set of equalities starting from (18):
RT

(o7 ® In> R
@ [|R”

® (?i ®I"> (a'ern) (& s]er)

X (i ®In> z*[t]

ST
_ [|RTATR RTATS
 \|STATR STATS
(é) <

(d) 1 0
= I’I’L
(o srars] 22 (

where in step (a) we left multiply a matrix ([?;} ® In> on

2]’

owig

® 1n> (AT @ I,)2"[t]

RTR RTS
STR STATS

both sides of the equation and in step (b) we use the fact that
[R S]is an orthogonal matrix. Moreover, step (¢) is true since
by Assumption 1 the adjacency matrix of the communication
graph A is doubly-stochastic, and so is its transpose AT, which
implies AT R = R as well as RTAT = R Lastly, in step (d)
we again invoke the orthogonality of the matrix [R S| and the
definition of the vector R. From these set of equalities we observe
that (18) can be decoupled as follows:

19)

Authorized licensed use limited to: University of Minnesota. Downloaded on April 29,2025 at 21:59:23 UTC from IEEE Xplore. Restrictions apply.

90 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 70, NO. 1, JANUARY 2025

where A’ is defined as A’ = ST AT'S. We note that (19) can be
easily generated as follows:

At =2t
U S0 e
Recall the definition K[t = (RT ® I,)ak[t] =
1/yP Y s 20[t] = /pZ|t], the first property is obtained.

To prove the second property, we note that z¥[t] — z¥[t] =

J
(Bi;j ® I,,)z"[t] where B;; € R1*? is a sparse row vector with

zeros almost everywhere except its ith entry being 1 and its jth
entry being —1. This definition allows the following chain:

P[] — a[t]
= (By; @ I,)z"[t]

= (Bij @ I,)(S ® I,)(ST @ I,)z*[t]
= ((BijS) ® I,) 25 [t] 1)

where the second step holds since B;; is perpendicular to the
left kernel of S. Moreover, we note that the following matrix:

alr 5] [(1) ST(LS]

has exactly the same set of eigenvalues as matrix A by con-

RT
ST

struction of {R S} . Since A has only one eigenvalue 1 and the
rest of its eigenvalues lie strictly in the unit circle, we conclude
that all eigenvalues of (A’ ® I,,) strictly lie in the unit circle.
Combining these two observations we obtain the following set
of inequalities:

dT[t] = max [lz7 [t] — x7[t][|2

i,j€S

@ max || (Bi;S) ® I,)25 1]

i,j€S

(b)
< max [((Bi;S) @ Ln)l2 - (A" @ I,)" 29 [t]]|2

< V200 (9)|A’ @ L3 - [|129[¢]]]2
(c)
< V200 (S)mp™ || 29[t 12

(d)
< \fUM S)ymp \/7\/7H13X||$ | — H||2
(22)

< pou(S) mpTd°[t]
N——

a

where in step (a) and step (b) we plug in (21) and (20), respec-
tively. In step (¢) we invoke Lemma 7 since A’ is proved to be
a schur stable matrix.

To see why step (d) holds, we recall that the vector 29 [¢] can
be equally divided into p — 1 blocks each of size n. Moreover,
echoing our discussion beneath the definition of z5[t], each
block in z§[t] can be expressed by a non-negative weighted
sum of vectors in the set {z{[t] — z9[t], i,j € S}, with the

non-negative weight values {w;;, 7, j € S} sum up to at most

+/p/2. This observation leads to the following argument:

> wiy (21t - «j[t)

i,J€8

2
< 3 wigllaf[e] — 2518l
i,jES
< Z w; max||a; t] — ?[t]”g
i,jES
0
< \/% mag ot — 31l 23)

which justifies our step (d) in which we claimed the following:

p
2800, < Vo Ty % max et - oSl @4
By choosing a to be a = pops(S) we finish the proof. |

B. Proof of Lemma 2 in Section IV

Proof: We prove the lemma by taking two steps. We first
compare i = 1/g. ZieVe a; X; with jig = 1/g. Zieve a;V fi.
This is understood as follows: there might be some attacked
vectors left in the set of vectors {X; € R"|i € V.}, this is
because these attacked vectors are so close to good vectors that
the filter is unable to filter them out. For the same reason they
do not pollute the estimate significantly. We first show if we
restore the value of these vectors (i.e., replace X; with V f; for
1 € Ve N Sp), the mean estimate does not change too much.

We have | X; — V fi|]|2 < 2k forany i € V., N Sy,. To see why
this holds, we arbitrarily choose an h € V. N S,, and we have
| X; — Xnlla < kaswell as |V fi — V]2 < k. Since X, =
V f1, we get the result by adding them up.

Therefore, we have the following:

Y icv.ns, (@il Xi = Vfill2) 2
e - 1- 26

15— figll2 < K. (25)
Moreover, we observe that i, is close to the desired value
ftg due to the following two reasons. 1) fi, is the average of the
majority of good vectors, whereas 1, is the average of all good
vectors, and 2) by Assumption 3 any two good vectors do not
differ too much. We note first that if either Case 1 or Case 2 holds,
then for any 7 € S we have the following set of inequalities:

- iIVfi—Vf;
ﬂgIIQSZJEVe(a”gf fill2) <

With these inequalities we can upper bound the distance between
fig and /14, in the following way:

IV fi (26)

kg — figlly

= Z a;Vfi — ,ug
€S

=D @Vt > aiVii— (gefig + (1 —ge)jtg)
i€Ve 1€S\Ve 9

Authorized licensed use limited to: University of Minnesota. Downloaded on April 29,2025 at 21:59:23 UTC from IEEE Xplore. Restrictions apply.

MAO et al.: DECENTRALIZED OPTIMIZATION RESILIENT AGAINST LOCAL DATA POISONING ATTACKS 91

(@)

> aiVii+ > avVf;

i€V i€S\Ve
= aVii+ Y aify)
i€V, ieS\Ve 2
< Y (@illVii = figll2)
€S\ Ve
(b)
< 2ek

where in step (a) we use the equalities i, = 1/ge Y ;v @iV fi
and) ;cq\y, @i = 1 — ge,andinstep (b) we use (26). Summing
up (25) and (27) as follows:
18— pgllz < = gllz + g — pgll2
2ek
1—2e

we obtain the proof of the lemma. |

< 2eKk +

C. Proof of Lemma 3

Proof: We consider the first time when an attacked vector X;
and a good vector X}, are picked since they have the maximum
distance, and X, is going to be removed at the end of this
iteration. Note that at this point (before X} is removed), the
following inequality holds since all the removed vectors are
attacked as follows:

Z a,>1—c¢e.

zeVNS,

We prove that, if it is the case, then there always exist an [€
V' N Sy such that || X; — X2 < 1/1 — 2ek.

Before proving the claim, we first see what it implies. If || X; —
Xill2 £ 1/1 — 2¢x holds, and by Assumption 3 the following
holds: ||V fn — Vfill2 = || Xn — Xi||l2 < k since we assumed
that h, [€ Sy, from which we conclude the following:

1
[Xi—Xnll2 < [[Xi=Xill2+ ([Xn—Xil2 < <1+1—26) "

27
On the other hand, we note that for any g € V, N S}, we have
the following:

1
[Xq = Xnll2 < [[X5 = Xnll2 < (1 + 1_26> ko (28)
since otherwise Algorithm 2 would not have picked the pair X;
and X),. Again, we invoke Assumption 3 and obtain that || X, —
Vidlz = [IVfn — Vfyll2 < k. Summing these inequalities up
we have the following:

1Xq = Viglla < 1Xg = Xnll2 + [Xn = Vo2

1
<(24+——
—(+1—2e>”

which is exactly the claim in the lemma.

Now, we prove the claim by its contrapositive. Let X be the
closest vector in V' N S, to X; in the Euclidean sense. For the
sake of contradiction, assume the distance between X; and X

(29)

is strictly larger than d, where d > 1/1 — 2ex. We consider the
following set of inequalities:

D au([1X = Xl — [Xn — X-]l2)
zeV

= Y ax(lXi = Xl = | Xn — Xall2)

zeVNs,
+ Y a1 X = Xallo = [Xn — X-]2)
zeVNSy
> Y (X = Xella = 1 Xn — X-|l2)
zeVNs,

+<)) (11X, = Xo2)
zeVNSy

(@)
> > (X = Xgll = 1Xn = Xz |l2)

zeVNS,

+ (> az) (=X = Xpll2 = [X5 — Xll2)
zeVNSy

= Z Az — Z Qz ||Xi_Xf||2

zeVNS, zeVNSy

- Y allXn—Xolo— D a:lXp— Xl
zeVNS, zeVNSy

®)

S A DA PR S
zeVNSY, zeVNSy zeVNS,

- e
zeVNSy

>(1—-2e)d—k

(@

>0 (30)

where in step (a) we use the fact that X ; is the closest attack-free
vector in V' to X, and in step (b) we directly replace with
|X; — Xf|l2 with d, and the inequality sign holds because
Zzevmsg a, — ZzeVﬂSb a, > 0,1.e., the weight sum of attack-
free vectors is higher than the weight sum of attacked vectors.
The last step (¢) comes from the assumption thatd > 1/1 — 2ek.
From this set of inequalities we reach a contradiction since by
assumption the good vector X; was removed whereas X, should
have been removed. |

D. Proof of Lemma 4 in Section IV

Proof: Given Lemma 3, the proof of Lemma 4 is similar to
the proof of 2. In particular, we have the following:

> ievins, (@il Xi = Vfill2)
ge
- 1—2e
3 — 4e
T 122"

10 = figll2 <

€19

Authorized licensed use limited to: University of Minnesota. Downloaded on April 29,2025 at 21:59:23 UTC from IEEE Xplore. Restrictions apply.

92 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 70, NO. 1, JANUARY 2025

where in the second step we invoke Lemma 3. Moreover, the
following inequality also holds:

liig = gll2 < 2ek. (32

Summing up these two sets of inequalities we have the following:

. 3 —4e
i — pgll2 < (2 + (126)2> €x. (33)

E. Proof of Lemma 6 in Section V

Proof: We only prove the first claim. The second claim is a
natural consequence of the first claim and Lemma 5.
To prove the first claim, we note the following:

7,235

]ES

Z [EA 21l

jGS

< dT[t].

7 [t] = z[t]]2 <

(34)

The rest of the proof comes from the following direct
computation:

IV fi(x7[t]) =
<V iz [t]) = V@[]l
+ V@) = V()2
IV 51 = V()2

Vi3t

(@)
< Lufl=7{t] = @[t]lla + & + Lall2F[t] — 2[t]]2

(b)
<201 d'[t] + K (35)

where in step (a) we use Assumption 4 (or Assumption 5) and
in step (b) we plug in (34). [|
F. Proof of Proposition 1 in Section V

Proof: We consider an arbitrary pair of nodes i, j € S. By
Lemma 6 the following two bounds hold:

sl — paltlla < (s + 2Ly d7[f])ee < (5 + 2Lir)ee (36)
142[8] = psltlll2 < (k4 2Ly d7[t])ce < (k+ 2Lar)ce. (37)
In the proof of Lemma 6 we obtain that ||V f;(z][t]) —

Vi@ [t])]l2 < &+ 2L17 holds for any pair of nodes 7, j € S.
This 1mp11es the following:

pit] = pilt]lle < & +2Ly7 (38)

since both y;[t] and p;[t] are weighted sums of local gradi-
ents. Combining all these facts, we have the following set of
inequalities:

221t + 1] — 23t + 1]||2

= (17 [t] = nfut]) — (25 [t = ni; ()]l

< a7 [t] — =3[tz + nll alt] — f; [£]]]2

< il Calt] = palt]) = (it [6] = w5 l2]) + (uealt] — w5t Il
+d"[t]

< nllalt) — i [tll2 + nll 2 (6] — 2521 12
+llpslt] = itz + 7

<n(k+2L17r)(1+ 2¢.) + 7. (39)

Since nodes 7 and j are picked arbitrarily, inequality (39) equiv-
alently implies the following:

d°lt+1] <7 +n(k +2L17r) (1 + 2¢,). (40)

Equation (40) suggests that after the execution of lines 9-12 in
each iteration of the RAGD algorithm, the distance among the
local parameters of a pair of nodes may increase, but will
not increase dramatically, i.e., the distance is upper bounded
by (k+ 2L17r)(1 4 2¢.). In order to make d"[t + 1] < r, we
should mitigate the increase of distance by executing the inner
loop for sufficiently many iterations. This is made possible by
Lemma 4.1, which shows the existence of an ¢ > 0 and a
€ (0,1) such that d7[t] < ap”d[t]. This provides a lower
bound of 7y via the following analysis:
d[t+1] < ap”d’[t + 1] < ap™ (r +n(k + 2Ly7) (1 + 2¢,)).
4D
In order for d7[t + 1] < r, it suffices to pick 7y to satisfy the
following:
a(r +n(k+ 2L1r)(1 + 2¢.))
T

(42)

T0 > 108%
|

G. Proof of Proposition 2 in Section V

Proof: By the RAGD algorithm, each node j updates its local
parameter according to the following:

w3t +1] = @7 [t] - njy[t]

and then executes the linear iterative algorithm to reach consen-
. . . — 1

sus in the next iteration. Note that Z[t] = 5 >, g «7[t] which

was argued in Lemma 1. We have the following equalities:

IS @0+ 1) — a7l 1Y it

jes JES
(44)
Recall the definition of p;[t] in Lemma 6: pu;t] =
> ienin @iV fi(x7[t]), which is the weighted sum of gradients
node 3 should receive in the absence of attacks. Summing
the difference between p; and fi; over all nodes j € S in the
network, we obtain the following:

z fi;[t Z 1]

(43)

Tzt +1] —z[t] =

JjeSs JES

= il =D > ay Vit
jes JES deN

=> iyl = > Vil
jes €S

Authorized licensed use limited to: University of Minnesota. Downloaded on April 29,2025 at 21:59:23 UTC from IEEE Xplore. Restrictions apply.

MAO et al.: DECENTRALIZED OPTIMIZATION RESILIENT AGAINST LOCAL DATA POISONING ATTACKS 93

= Syl - VAGHD) - SV - Vi)
jes €S
- p([t+1] - z[t]) - Vf(z[t])
=S (VAT - VGl @s)
€S

where in the last step we used (44). On the other hand, we have
the following:

> iltl -

jes

> wilt]

jes

<> Naglt] = w2

9 jes

< pee(k +2Lyr) (46)

from the triangular inequality as well as (10). Meanwhile, it also
holds that for any j € S

**ZI Jll2

ZES

Z 5 [t i

zeS

5 (6] = z[t]ll = [lF [t

<r

47)

which, using Assumption 4 (or Assumption 5), yields the
following:

Y (ViilaTlt]) = V filzlt)

€S

< pLyr.
2

The inequalities (45), (46), and (48) together imply the fol-
lowing:

(48)

Z[t+ 1] — z[t] + %Vf(f[t]) < nee(k + 2Lyr) + nlar
2
(49)
which directly implies the claim in the proposition. |

H. Proof of Theorem 1 in Section V

We prove the following lemmas which state that instead of
performing accurate gradient descent, if we only have access to
a gradient which is distance-bounded from the true one by at
most a constant (which we call a roughly correct gradient), the
minimal point of a strongly-convex function can be obtained up
to some error. These results directly lead to Theorem 1.

Lemma 9: Suppose function f : R™ — R satisfies Assump-
tion 4. For any x[t] € R™ updated according to the following:

ot +1] = alt] — 7 (VF(ald]) ~ 1)

where ||I[t]||2 < £ for any ¢ € N, the following inequality holds

foranyt € Nand 8 = /1 —v/L:

(50)

&
(1-p)L

Proof: By Assumption 4, the function f is both v-strongly
convex and L-smooth. This implies for any pair z,y € R", the

l2[t] — 27|z < B°l|2[0] — 27[|2 + (51)

following two inequalities hold:

W)~ @) VT @ -0+ ly -2} G

@)= f@) 2V W)@ —y) + Sy -3 63)
A simple reorganization of (53) yields as follows:

f@) = @) < VTG —2) = Sly—al3. 64

We consider the following set of equalities and inequalities
foranyz,y € R"andz™ = x — 1/LV f(x), which will be used
later.

f@®) = fy)
= (@) = @)+ 1) —)
< V@)t~ 2)+ 5t a3

+ VT @)@ —y) - 5le =yl

= VI @) 9+ 5 IVF@B - Sl - ol
= V@)~ V@)~)

S IV~ 2l — i3
= V@) (@~) ~ 52 IV I@IE ~ S~y

In particular, when y = x*, we have the following:
0< f(a™) = f(z7)

<V (@) (x —a*) - iHVf(HC)H2 — e — 2|13

- 2L) z

In the following we prove the result stated in the lemma:

ot + 1]~ 2*l1
= llalf] — " — T (V$(alt]) 11

< Jlelt] ~ 2* — TV Falt) s + TN,
< o]~ 2 — VS GalDllo + >

(a)
2= 5) et - e + 5

(55)

where in step (a) we plug in z = z[t] and in step (b) we use
)

the definition 8 = /1 — v/ L. We note that 5 € (0, 1). Solving
(55) recursively gives the following:
* * 5
z[t] — z*||2 < BY|z[0] — z¥|2 + ————. (56)
Joft) = a*lls < 8el0) = a*lls + =g
|

Lemma 9 will be used in the proof of the first claim in
Theorem 1. A similar result when the global function f satisfies

Authorized licensed use limited to: University of Minnesota. Downloaded on April 29,2025 at 21:59:23 UTC from IEEE Xplore. Restrictions apply.

94 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 70, NO. 1, JANUARY 2025

the PL inequality instead of the convexity condition will also be
provided in the following lemma.

Lemma 10: Suppose a function f:R"™ — R satisfies
Assumption 5. For any z[t] € R updated according to the
following:

alt+1] = aft] — %Vf(x[t]) + %l[t] 57)

where ||I[t]||2 < & for any ¢t € N. Let 3/ =1— u/L € (0,1),
the following inequality holds for any ¢ € N:
2
_ * < It _ * g
where f(z*) is the minimum of the function f.

Proof: By L-smoothness of function f, we have the following
inequality:

Flaft+1]) < fa[t]) + VT (ft]) (2]t + 1] - 2[t])

(58)

1
+ S llwft+ 1] = 2[5 (59)

Combining with the update rule (57) yields as follows:
f[t +1]) — f([t])

< VT) (=Y f([t]) +)

S

1 1?7

+5 |- g oretn + pi

2

1 1
< =5 VI @IV F(alt]) + ST

< 5 VAR + 528

w . L
< —7(f=ft]) = f(=) + 575

This can equivalently be written as follows:

(fft + 1)) = f(27)) = (f(=[t]) = f(=7))

1 N 1
< =L (falt) = £(@) + 576

(60)

< (1=)(fGal) - 1) + 576

. 1
< B(f(alt]) = f@) + 57 (61)
Similarly, by solving (61) recursively we obtain the following:
52

2L(1—)
(62)
|
Before giving our proof of Theorem 1, we need to state the

following lemma, which will be used in the proof.

Lemma 11 ([42]): Leta function f : R™ — R satisfy the PL

inequality with parameter p. For any z € R", there always exist
a minimizer x* of f such that

f@) = f@) = Sl — 3.

flt]) = f@@") < (B)'(f(=[0]) — f(=) +

(63)

Proof: The proof can be found in [42]. | |

The most important implication of Lemma 11 is that if a
function f : R™ — R satisfies the PL inequality with parameter
14, then the following bound:

LD, 8%) < f(2) — f(@")
holds, where S* is the set of minimizers of f. This bound will
be used in the proof of the main theorem.

Proof of Theorem 1: First, let Assumption 4 hold. From
Lemma 9, (47), and (11) in the main file, we observe the
following:

(64)

[EAUEEA P
< [|l25[t] = z[tll2 + [12[t] = =72
&
(1-p)L
g
(1-p)L

Similarly, the following inequality can also be obtained from
Lemma 10 and (11) in the main file. Let Assumption 5 holds,
for any x* € S*, we have the following:

< B)|z[0] — *]2 + +r

= ﬂt||x;.[0] — "2 + +r. (65)

52
f(z%)) + AA—F)
(66)
Combining (66) with (64), we obtain the following set of

inequalities:

f@lt]) = f(=") < (B)'(f(z[0]) —

D(z[t], $*) < \/Z(B’V(f(f[o]) —fl@*) + HL(fQ_B/)
2 AY T _ xT* L
< |26 - e+

L 7\t 23*; * 52
S\/M(ﬁ)p([0]75)4—\/#[/(1_5/)

N - e £
_ﬁ(\/ﬁ) D@0})+ =

where in the third step we used L-smoothness of function f.
In the end, we plug in inequality (47) into (67) and obtain the
following inequality:
D@57 < || (\/@)t D00, §°)+ 4|
R (7 e pL(1-p)
(67)
Plugging in the definition 8’ = 1 — u/L into (67) gives us the
following:

=T * é /t IO * é r
D(xj[ﬂ,ms\/;(ﬁ) D (af[0],57) + > +r

+r.

(68)

Authorized licensed use limited to: University of Minnesota. Downloaded on April 29,2025 at 21:59:23 UTC from IEEE Xplore. Restrictions apply.

MAO et al.: DECENTRALIZED OPTIMIZATION RESILIENT AGAINST LOCAL DATA POISONING ATTACKS 95

—

[1]

[4]
[5]
[6]

[7]

[8]

[9]

[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

REFERENCES

J.B.Predd, S. B. Kulkarni, and H. V. Poor, “Distributed learning in wireless
sensor networks,” IEEE Signal Process. Mag., vol. 23, no. 4, pp. 5669,
Jul. 2006.

S. Boyd, N. Parikh, and E. Chu, Distributed Optimization and Statistical
Learning Via the Alternating Direction Method of Multipliers. Boston,
MA, USA: Now Pub., 2011.

M. Ma, A. N. Nikolakopoulos, and G. B. Giannakis, “Fast decentralized
learning via hybrid consensus ADMM,” in Proc. IEEE Int. Conf. Acoust.,
Speech Signal Process., 2018, pp. 3829-3833.

P. Kairouz et al., “Advances and open problems in federated learning,”
Found. Trends Mach. Learn., vol. 14, no. 1-2, pp. 1-210, 2021.

M. Castro et al., “Practical Byzantine fault tolerance,” in Proc. USENIX
Conf. Operating Syst. Des. Implementation, 1999, pp. 173—186.

K. Driscoll, B. Hall, M. Paulitsch, P. Zumsteg, and H. Sivencrona, “The
real Byzantine generals,” in Proc. 23rd Digit. Avionics Syst. Conf., 2004,
pp. 6.D.4-61-11.

D. Data and S. Diggavi, “Byzantine-resilient high-dimensional SGD with
local iterations on heterogeneous data,” in Proc. Int. Conf. Mach. Learn.,
PMLR, 2021, pp. 2478-2488.

D. Data and S. Diggavi, “Byzantine-resilient SGD in high dimensions
on heterogeneous data,” in Proc. IEEE Int. Symp. Inf. Theory, 2021,
pp. 2310-2315.

A. Ghosh, R. K. Maity, S. Kadhe, A. Mazumdar, and K. Ramchandran,
“Communication-efficient and byzantine-robust distributed learning with
error feedback,” IEEE J. Sel. Areas Inf. Theory, vol. 2, no. 3, pp. 942-953,
Sep. 2021.

L. Li, W. Xu, T. Chen, G. B. Giannakis, and Q. Ling, “RSA: Byzantine-
robust stochastic aggregation methods for distributed learning from hetero-
geneous datasets,” in Proc. AAAI Conf. Artif. Intell., 2019, pp. 1544—-1551.
A. Ghosh, J. Hong, D. Yin, and K. Ramchandran, “Robust federated
learning in a heterogeneous environment,” 2019, arXiv:1906.06629.

D. Alistarh, Z. A.-Zhu, and J. Li, “Byzantine stochastic gradient descent,”
in Proc. Adv. Neural Inf. Process. Syst., 2018, pp. 4618-4628.

Y. Chen, L. Su, and J. Xu, “Distributed statistical machine learning in
adversarial settings: Byzantine gradient descent,” Proc. ACM Meas. Anal.
Comput. Syst., 2017, pp. 1-25.

D. Yin, Y. Chen, R. Kannan, and P. Bartlett, “Byzantine-robust distributed
learning: Towards optimal statistical rates,” in Proc. Int. Conf. Mach.
Learn., PMLR, 2018, pp. 5650-5659.

V. Tolpegin, S. Truex, M. E. Gursoy, and L. Liu, “Data poisoning attacks
against federated learning systems,” in Proc. 25th Eur. Symp. Res. Comput,
Secur., 2020, pp. 480-501.

A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-
agentoptimization,” IEEE Trans. Autom. Control, vol. 54,no. 1, pp. 4861,
Jan. 2009.

A. Mokhtari, W. Shi, Q. Ling, and A. Ribeiro, “A decentralized second-
order method with exact linear convergence rate for consensus optimiza-
tion,” IEEE Trans. Signal Inf. Process. Netw., vol. 2, no. 4, pp. 507-522,
Dec. 2016.

F. Bullo, Lectures on Network Systems. Seattle, WA, USA: Kindle Direct
Pub., 2019.

C. Fang, Z. Yang, and W. U. Bajwa, “BRIDGE: Byzantine-resilient decen-
tralized gradient descent,” IEEE Trans. Signal Inf. Process. Netw., vol. 8,
pp. 610-626, 2022.

Z. Yang and W. U. Bajwa, “ByRDIE: Byzantine-resilient distributed
coordinate descent for decentralized learning,” IEEE Trans. Signal Inf.
Process. Netw., vol. 5, no. 4, pp. 611-627, Dec. 2019.

N. Gupta and N. H. Vaidya, “Resilience in collaborative optimization:
Redundant and independent cost functions,” 2020, arXiv:2003.09675.

L. Su and N. H. Vaidya, “Robust multi-agent optimization: Coping with
byzantine agents with input redundancy,” in Proc. Int. Symp. Stabilization,
Safety, Secur. Distrib. Syst., 2016, pp. 368-382.

N. Gupta, T. T. Doan, and N. H. Vaidya, “Byzantine fault-tolerance
in decentralized optimization under minimal redundancy,” 2020,
arXiv:2009.14763.

S. Liu, N. Gupta, and N. H. Vaidya, “Approximate byzantine fault-
tolerance in distributed optimization,” in Proc. 2021 ACM Symp. Princ.
Distrib. Comput., 2021, pp. 379-389.

S. P. Karimireddy, L. He, and M. Jaggi, “Byzantine-robust learning on
heterogeneous datasets via bucketing,” in Proc. 10th Int. Conf. Learn. Rep-
resentations, 2022. [Online]. Available: https://openreview.net/forum?id=
jXKKDEi5vJt

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]
[34]

[35]

[36]

(37]

(38]

(391

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]
[49]

[50]

L. Suand N. H. Vaidya, “Fault-tolerant multi-agent optimization: Optimal
iterative distributed algorithms,” in Proc. 2016 ACM Symp. Princ. Distrib.
Comput., 2016, pp. 425-434.

S. Sundaram and B. Gharesifard, “Distributed optimization under adver-
sarial nodes,” IEEE Trans. Autom. Control, vol. 64, no. 3, pp. 1063-1076,
Mar. 2019.

K. Kuwaranancharoen, L. Xin, and S. Sundaram, “Byzantine-resilient
distributed optimization of multi-dimensional functions,” in Proc. Amer.
Control Conf., 2020, pp. 4399-4404.

L. He, S. P. Karimireddy, and M. Jaggi, “Byzantine-robust decentralized
learning via clippedgossip,” 2022, arXiv:2202.01545.

E. M. E. -Mhamdi, S. Farhadkhani, R. Guerraoui, A. Guirguis,
L.-N. Hoang, and S. Rouault, “Collaborative learning in the jun-
gle (decentralized, byzantine, heterogeneous, asynchronous and non-
convex learning),” in Proc. Adv. Neural Inf. Process. Syst., 2021,
pp- 25 044-25 057.

K. Kuwaranancharoen and S. Sundaram, “On the geometric conver-
gence of byzantine-resilient distributed optimization algorithms,” 2023,
arXiv:2305.10810.

E. Rosenfeld, E. Winston, P. Ravikumar, and Z. Kolter, “Certified robust-
ness to label-flipping attacks via randomized smoothing,” in Proc. Int.
Conf. Mach. Learn., PMLR, 2020, pp. 8230-8241.

E. Wong, L. Rice, and J. Z. Kolter, “Fast is better than free: Revisiting
adversarial training,” 2020, arXiv:2001.03994.

A. Raghunathan, J. Steinhardt, and P. Liang, “Certified defenses against
adversarial examples,” 2018, arXiv:1801.09344.

A. Mokhtari, Q. Ling, and A. Ribeiro, “Network newton distributed
optimization methods,” IEEE Trans. Signal Process., vol. 65, no. 1,
pp. 146-161, 2016.

H. Xiao, B. Biggio, G. Brown, G. Fumera, C. Eckert, and F. Roli, “Is
feature selection secure against training data poisoning?,” in Proc. Int.
Conf. Mach. Learn., PMLR, 2015, pp. 1689-1698.

N. Baracaldo, B. Chen, H. Ludwig, and J. A. Safavi, “Mitigating poisoning
attacks on machine learning models: A data provenance based approach,”
in Proc. 10th ACM Workshop Artif. Intell. Secur., 2017, pp. 103-110.

Y. Shoukry, P. Martin, P. Tabuada, and M. Srivastava, “Non-invasive
spoofing attacks for anti-lock braking systems,” in Proc. Int. Conf. Cryp-
tographic Hardware Embedded Syst., 2013, pp. 55-72.

Y. Shoukry, P. Martin, Y. Yona, S. Diggavi, and M. Srivastava, “PyCRA:
Physical challenge-response authentication for active sensors under spoof-
ing attacks,” in Proc. 22nd ACM SIGSAC Conf. Comput. Commun. Secur.,
2015, pp. 1004-1015.

L. Xiao, S. Boyd, and S.-J. Kim, “Distributed average consensus with
least-mean-square deviation,” J. Parallel Distrib. Comput., vol. 67, no. 1,
pp. 33-46, 2007.

K. Cai and H. Ishii, “Average consensus on arbitrary strongly connected
digraphs with time-varying topologies,” IEEE Trans. Autom. Control,
vol. 59, no. 4, pp. 1066-1071, Apr. 2014.

H. Karimi, J. Nutini, and M. Schmidt, “Linear convergence of gradient
and proximal-gradient methods under the Polyak-Ojasiewicz condition,”
in Proc. Joint Eur. Conf. Mach. Learn. Knowl. Discov. Databases, 2016,
pp. 795-811.

S. Farhadkhani, R. Guerraoui, N. Gupta, R. Pinot, and J. Stephan, “Byzan-
tine machine learning made easy by resilient averaging of momentums,”
in Proc. Int. Conf. Mach. Learn., PMLR, 2022, pp. 6246-6283.

S. P. Karimireddy, L. He, and M. Jaggi, “Learning from history for
byzantine robust optimization,” in Proc. Int. Conf. Mach. Learn., PMLR,
2021, pp. 5311-5319.

S. B. Hopkins and J. Li, “How hard is robust mean estimation?,” in Proc.
Conf. Learn. Theory, 2019, pp. 1649-1682.

1. Diakonikolas, G. Kamath, D. Kane, J. Li, A. Moitra, and A. Stew-
art, “Robust estimators in high-dimensions without the computational
intractability,” SIAM J. Comput., vol. 48, no. 2, pp. 742-864, 2019.

G. Lugosi and S. Mendelson, “Robust multivariate mean estimation: The
optimality of trimmed mean,” Ann. Statist., vol. 49, no. 1, pp. 393—410,
2021.

L. He, S. P. Karimireddy, and M. Jaggi, “Byzantine-robust learning on
heterogeneous datasets via resampling,” 2020, arXiv:2006.09365.

C.-T. Chen, Linear System Theory and Design. London, U.K.: Oxford
Univ. Press, 1999.

S. S. Kia, B. V. Scoy, J. Cortes, R. A. Freeman, K. M. Lynch, and
S. Martinez, “Tutorial on dynamic average consensus: The problem, its
applications, and the algorithms,” IEEE Control Syst. Mag., vol. 39, no. 3,
pp. 40-72, Jun. 2019.

Authorized licensed use limited to: University of Minnesota. Downloaded on April 29,2025 at 21:59:23 UTC from IEEE Xplore. Restrictions apply.

96 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 70, NO. 1, JANUARY 2025

Yanwen Mao received the B.E. degree in
electrical engineering and power automation
from Shanghai Jiao Tong University, Shanghai,
China, in 2017, the M.S. and Ph.D. degrees in
electrical and computer engineering from the
University of California, Los Angeles, CA, USA,
in 2019 and 2022, respectively.

His current research interests include decen-
tralized optimization and robust networked con-
trol systems.

Dr. Mao was the recipient of the Ultra High
Voltage Scholarship at Shanghai Jiao Tong University.

Deepesh Data received the B.Tech. degree in
computer science and engineering from the In-
ternational Institute of Information Technology
(IT-H), Hyderabad, India, in 2011, and the
M.Sc. and Ph.D. degrees in computer science
from the Tata Institute of Fundamental Research
(TIFR), Mumbai, India, in 2017 and 2022,
respectively.

From 2018 to 2022, he was a Postdoctoral
Scholar with the University of California, Los An-
geles (UCLA), and from 2017 to 2018, with the
Indian Institute of Technology Bombay (lIT-B). He is currently a Research
Scientist with Meta Platforms, Inc., Menlo Park, CA, USA. His research
interests are in distributed optimization, machine learning, differential
privacy, cryptography, algorithms, and information theory, with a current
focus on privacy-preserving machine learning.

Dr. Data was the recipient of the Best Paper Award from the ACM
Conference on Computer and Communications Security (CCS) 2021,
ACM India Doctoral Dissertation Award for 2019 (Honorable Mention),
TIFR-Sasken Best Ph.D. Thesis Award for 2017—-18 in Technology and
Computer Sciences, and Microsoft Research India Ph.D. Fellowship for
2014-17.

Suhas Diggavi (Fellow, IEEE) received the un-
dergraduate degree from IIT, Delhi, and the
Ph.D. degree from Stanford University, Stanford,
CA, USA.

He was a Principal Member Research Staff
with AT&T Shannon Laboratories and directed
the Laboratory for Information and Communica-
tion Systems (LICOS), EPFL. He is currently a
Professor of electrical and computer engineer-
ing with the University of California (UCLA), Los
Angeles, CA, USA, where he directs the Infor-
mation Theory and Systems Laboratory. He has eight issued patents.
His research interests include information theory and its applications to
several areas, including machine learning, security and privacy, wireless
networks, data compression, cyber-physical systems, and bioinformat-
ics and neuroscience.

Dr. Diggavi was the recipient of several recognitions for his research
with IEEE and ACM, including the 2013 IEEE Information Theory Soci-
ety & Communications Society Joint Paper Award, the 2021 ACM Con-
ference on Computer and Communications Security (CCS) Best Paper
Award, the 2013 ACM International Symposium on Mobile Ad Hoc Net-
working and Computing (MobiHoc) Best Paper Award, the 2006 IEEE
Donald Fink prize paper award among others, and the 2019 Google
Faculty Research Award, 2020 Amazon Faculty Research Award, and
2021 Facebook/Meta faculty research award. He was selected as a
Guggenheim Fellow in 2021. He was a IEEE Distinguished Lecturer
and was also on board of governors for the IEEE Information The-
ory Society (2016-2021). He has been an Associate Editor for IEEE
TRANSACTIONS ON INFORMATION THEORY, ACM/IEEE TRANSACTIONS ON
NETWORKING, and other journals and special issues, as well as in the
program committees of several IEEE conferences. He has also helped
organize IEEE and ACM conferences including serving as the Technical
Program CoChair for 2012 IEEE Information Theory Workshop (ITW),
the Technical Program CoChair for the 2015 IEEE International Sym-
posium on Information Theory (ISIT), and General CoChair for ACM
Mobihoc 2018.

Paulo Tabuada (Fellow, IEEE) was born in Lis-
bon, Portugal, one year after the Carnation Rev-
olution. He received the “Licenciatura” degree
in aerospace engineering from Instituto Supe-
rior Tecnico, Lisbon, Portugal, in 1998, and the
Ph.D. degree in electrical and computer en-
gineering from the Institute for Systems and
Robotics, Instituto Superior Tecnico, in 2002.

From 2002 to 2003 he was a Postdoctoral
Researcher with the University of Pennsylvania.
After spending three years with the University
of Notre Dame, as an Assistant Professor, he joined the Electrical and
Computer Engineering Department with the University of California, Los
Angeles, CA, USA, where he currently is the Vijay K. Dhir Professor of
Engineering.

Dr. Tabuada was the recipient of multiple awards including the NSF
CAREER Award in 2005, the Donald P. Eckman Award in 2009, the
George S. Axelby Award in 2011, the Antonio Ruberti Prize in 2015
for his contributions to control and cyber-physical systems. He was
awarded the grade of Fellow by IFAC in 2019. He has been Program
Chair and General Chair for several conferences in the areas of control
and of cyber-physical systems, such as NecSys, HSCC, and ICCPS.
He is currently the Chair of HSCC’s steering committee and was on the
editorial board of the IEEE EMBEDDED SYSTEMS LETTERS and the |IEEE
TRANSACTIONS ON AUTOMATIC CONTROL.

Authorized licensed use limited to: University of Minnesota. Downloaded on April 29,2025 at 21:59:23 UTC from IEEE Xplore. Restrictions apply.

