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Representation Transfer Learning via Multiple
Pre-Trained Models for Linear Regression

Navjot Singh

Abstract—In this paper, we consider the problem of learning a
linear regression model on a data domain of interest (target) given
few samples. To aid learning, we are provided with a set of pre-
trained regression models that are trained on potentially different
data domains (sources). Assuming a representation structure for
the data generating linear models at the sources and the target do-
mains, we propose a representation transfer based learning method
for constructing the target model. The proposed scheme is com-
prised of two phases: (i) utilizing the different source representa-
tions to construct a representation that is adapted to the target data,
and (ii) using the obtained model as an initialization to a fine-tuning
procedure that re-trains the entire (over-parameterized) regression
model on the target data. For each phase of the training method,
we provide excess risk bounds for the learned model compared to
the true data generating target model. The derived bounds show a
gain in sample complexity for our proposed method compared to
the baseline method of not leveraging source representations when
achieving the same excess risk, therefore, theoretically demonstrat-
ing the effectiveness of transfer learning for linear regression.

Index Terms—Machine learing: Transfer learning, few shot
learning, representation learning.

I. INTRODUCTION

CRITICAL challenge for Deep Learning applications is
A the scarcity of available labeled data to train large scale
models that generalize well to the data distribution. This is
captured under the framework of Few-Shot Learning where
Transfer Learning has emerged as an attractive framework to
address this issue [1]. In transfer learning, one typically has
access to a model trained on some data domain (hereby called
source domain) that can be adapted to the data domain of
interest (target domain). Within this context, a recently proposed
strategy is that of representation transfer learning [2],[3], where
one typically assumes a shared structure between the source and
target learning tasks. The idea is to then learn a feature mapping
for the underlying model (e.g. Neural Network representations)
using the sample rich source domain that can be utilized directly
on the target domain, for e.g, by training a few layers on top of the
obtained network representation. This adaptation utilizes much
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fewer samples than what is required for training the entire model
from scratch, while achieving good generalization performance
which has been empirically observed for various large-scale
machine learning and signal processing applications including
image, speech and language [1], [4], [5], [6] tasks.

A defining factor in the need for representation transfer
methods is that the source and target domains have different
distributions. Learning across different domains has been stud-
ied extensively in the context of Domain Adaptation (see for
e.g. [7], [8]) where it is usually assumed that source and target
domain data can be accessed simultaneously. However, in many
important practical scenarios of interest, the target data samples
(labeled or unlabeled) are not available when training the source
models. Transferring the source dataset to the target deployment
scenario is infeasible for modern large-scale applications and
violates data privacy. Thus there has been an increasing interest
in transferring pre-trained source models to the target domain
for sample efficient learning.

Despite the immense empirical success of representation
transfer learning, development of a theory for understanding
the generalization of representation learning methods and the
sample complexity requirements is still in its infancy. Recent
efforts in this direction have been made in understanding gen-
eralization for the simpler case of linear regression models [9],
[10], [11], [12]. Within these works, [9], [11], [12] consider a
common low-dimensional representation in the data generation
process for the source and target domains, while [10] allows
for the general case of data-generating representations being
different. However, the analysis presented in that work requires
the number of samples at the target to scale with the dimension
of the model (see [10, Theorem 3.1]), which is impractical for
few-shot learning scenarios.

A related line of work for understanding generalization of
large scale models in the small sample regime is through the
lens of benign overfitting. This is inspired by the surprising
(empirical) observation that many large models, even when they
overfit, tend to generalize well on the data distribution [13],
[14]. In this context, [15], [16], [17] study this phenomena
for linear models and analyze the generalization properties of
the min-norm solution, where optimization methods like Gra-
dient Descent are known to converge to in this setting [18],
[19]. Specifically, these works seek to understand how the data
distribution affects the excess population risk of the min-norm
solution relative to the true data-generating linear model.

In this paper, we make efforts to understanding the gener-
alization of linear models while leveraging pre-trained models
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inspired by the notions of representation transfer learning and
benign-overfitting discussed above. These ideas lend themselves
organically to the construction of a sample efficient training
method for the target which we describe below briefly, along
with our contributions.

Key Contributions: Our work provides a method for lever-
aging multiple pre-trained models for linear regression objec-
tives (of dimension d) on a target task of interest in the small
sample regime (samples np < d). The proposed two-phase
approach leverages representation transfer (Phase 1) and over-
parameterized training (Phase 2) to construct the target model,
and we provide theoretical bounds for the excess risk for each
phase of the training process (Theorems 1 and 2). In particular,
we show that the learned model after the first phase has an
excessrisk of O(9/nr) + €, where ¢ is dimension of the subspace
spanned by learned source representations and € is a constant
that captures the approximation error when utilizing source
representations for the target model (c.f. Assumption 1). This
provides a gain in sample complexity compared to the baseline
O(d/nr) when learning the target model from scratch when the
given source representations span a subspace of dimension much
smaller than d (i.e. ¢ < d). For the case when all representa-
tions are the same (¢ = 0), we recover the result of [9] for a
single common representation. Similarly, for the overall model
obtained after the second phase, we provide conditions on the
target data distribution and the source/target representations that
lead to an excess risk much smaller than O(d4/n7). Thus, we
theoretically demonstrate the benefit of leveraging pre-trained
models for linear regression.

A. Related Work

The problem of learning with few samples has been stud-
ied under the framework of Few-Shot learning, where Meta-
learning—using experiences from previously encountered learn-
ing tasks to adapt to new tasks quickly [20], and Transfer-
learning— transferring model parameters and employing pre-
training or fine-tuning methods [3], are two major approaches.
Theoretical works on Meta-learning algorithms typically as-
sume some relation between the distribution of source and target
tasks, for e.g., being sampled from the same task distribution.
A more general framework is that of Out-of-Domain (OOD)
generalization, where the goal is to learn models in a manner
that generalize well to unseen data domains [21].

Transfer learning, especially, representation transfer learning
has shown empirical success for large-scale machine learn-
ing [2], however, theoretical works on understanding general-
ization in this setting are few; see [12], [22], [23]. A related
line of work is representation learning in context of Domain
Adaptation (DA), see for e.g. [24], [25], [26], [27], [28]. How-
ever, this usually assumes that source and data domains can be
accessed simultaneously. There are deviations from this theme
in Multi-Source DA where the goal is to understand how multiple
source models can be combined to generalize well on a target
domain of interest, although without changing the learned model
based on the target samples [29], [30], [31].

In context of leveraging pre-trained models for linear re-
gression, our work is most closely related to [9], [10] that
theoretically analyze representation transfer for linear models.
In contrast to [9], we allow for the true target representations to
be different among the source models as well as the target, and
introduce a notion of closeness between these representations
(c.f. Assumption 1). Although a similar setting was considered
in [10] where representations are assumed to be close in the
{5 norm, their resulting bound for the fine-tuned model risk
shows that the required number of target samples scale with
the dimension of the learned model for efficient transfer [10,
Theorem 3.1]. In contrast, the proposed method in our work
provides analysis relating these bounds to the properties of the
target data distribution taking inspiration from works on benign
overfitting for linear regression [15], [19], [32]. This enables us
to identify conditions on the target data distribution that allow
the required target samples to be much smaller than the overall
model dimension (see Theorem 2).

B. Paper Organization

We set up the problem and define the notation we use
throughout the paper in Section II. Section III describes our
training method for the target task model when given access
to multiple pre-trained source models. Section IV establishes
excess risk bounds of our proposed scheme, which are proved
in Sections V and VI. Section VII provides numerical results
and some concluding remarks are presented in Section VIII.

II. PROBLEM SETUP AND NOTATION

Notation: We use boldface for vectors and matrices, with
matrices in uppercase. For a matrix A, we denote the projection
matrix onto its column space by Pa := A(ATA)'AT where
W denotes the Moore-Penrose pseudo-inverse of the matrix
‘W. We define Pj := I — P a, where I denotes the identity ma-
trix of appropriate dimensions. We denote by C(A) the column
space of a matrix A and by o;(A), A;(A) its i*" largest singular
value and eigenvalue, respectively. ||.||» denotes the Frobenius
norm. For a vector v, ||v||2 denotes the ¢ norm, while for a
matrix V, ||V||2 denotes the spectral norm. Tr[.] denotes the
trace operation. < denotes the inequality sign where we ignore
the constant factors. The notation O is the ‘big-O’ notation and
we define [m] = {1,2,...,m}.

Setup: We consider m number of source tasks and a single
target task. We denote by X C R the space of inputsand Y C R
the output space. The source and target tasks are associated with
data distributions p;, 7 € [m]and pr, respectively, over the space
X. We assume a linear relationship between the input and output
pairs for source task ¢ € [m] given by:

yi =x, Biw; + 2, 0;:=Bw; (1)
where x; € X denotes an input feature vector drawn from
distribution p;, y; € Y is the output, and z; ~ A/(0, o2) denotes
Gaussian noise. The associated true task parameter 8] := B w
is comprised of the representation matrix B} € R¥* which
maps the input to a lower k—dimensional space (where k < d)
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and a head vector w; € R* mapping the intermediate sam-
ple representation to the output'. The data generation process
for the target task is defined similarly with distribution pp
and associated target task parameter given by 67 = Bi.wi.
For sources ¢ € [m], we define the input covariance matrix
¥, = Ex,~p, [xix; ] and similarly for the target distribution,
Xr= EXTNPT [XTX;“]'

In our scenario of interest, the pre-trained models are trained
‘offline’ on source distributions and are made available to the
target task during deployment. That is, for training the target
task, we have access to only the models learned by the source
tasks and not the source datasets themselves. For learning the
pre-trained source models, we assume ng number of samples
for each of the source tasks (thus, mng source task samples
in total) denoted by the pair (X;,y;) for source i € [m] where
X, € R"s*? contains row-wise input feature vectors and y; €
R"™s is the vector of corresponding outputs. We similarly have
np samples (X, yr) for the target task where np < ng. We
also assume nr < d.

With the data generation process defined above, we now define
the expected population risk on the target distribution for 0:

R(é) = EXNPTEyleB?[(y - XT@)Q]

Our goal is to learn a model 6 for the target task that general-
izes well to the target data distribution. Thus, we want 6 that
minimizes the Expected Excess Risk defined by:

EER(, %) := R(0) — R(6%) 2)

Since we are given access to only ny < d target samples, it is
infeasible to learn a predictor from scratch that performs well
for the excess risk defined in (2).

To aid learning on the target, we have access to models learned
on the source tasks. Specifically, the target has access to the
trained source models representations {B; } I ; thatare solutions
of the following empirical minimization problem:

{Bs, Wi} an XBwil; (3

2,4 min
{Bi} {wi} mng

Since we have data rich source domains (ng > d), we expect
the obtained source models B;W; to be close to 0; for i € [m]
(c.f. (1)). For effective repreientatlon transfer, we also want
the learned representations {B;} to be close to the true rep-
resentations {B}, in the sense that they approximately span
the same subspace®. We make this notion precise in Lemma 1
stated with our main results in Section IV. Given access to the
source model representations, our proposed method for training
the target model leverages the representation maps {B;},
to drastically reduce the sample complexity. We describe our

'Our formulation is more general than the one in [9], which considers the same
representation matrices for the source and the target tasks, that is {B}}" | =
B} = B*. The formulation considered in [10] allows for different values of
the B} among the source domains, imposing a structure on the representation
matrices: B = B + A; with [|A; || < 6o for i € [m].

’Dueto the bi-linear nature of the problem, multiple B; and w; may satisfy the
product 0; = B;w;. We provide a note on this technical aspect of the problem
in Section V.

training method in Section III and provide the excess risk bounds
for the resulting target model in Section IV.

III. LEARNING WITH MULTIPLE PRE-TRAINED MODELS

To leverage source representations for training the target
model, it is instinctive that there should be a notion of closeness
between the true source and target model representation that can
be exploited for target task training. We now make this notion
precise. We first define as V* € R%*! the matrix whose columns
are an orthonormal basis of the set of columns of all the source
representation matrices {B; }” ;. The individual source models
can thus be represented by 0; = V*w! for all i € [m]. The
target model 67, = B w#. governing the target data generation
is assumed to satisfy the following:

Assumption 1: Consider the projection of the target model

»wi to space C(V*) given by V*Wk for some Wi, € RL.
Then for some € > 0, we have:

Expy X VW5 — x Biwi]” < 2

The value of € in Assumption 1 above captures how far away
the output of the true target model is to a model learned using
the true source representations. Note that if the columns of B7,
can be constructed by the vectors in V*, the above is satisfied
for e = 0. Assumption 1 can also be re-written as:

2
|2 (v - Bpw)|| < ¢ @

We are given access to np samples for the target machine given
by (X7, yT) and pre-trained models representations from the
sources {BZ} ", (cf. (3)). Our proposed training scheme con-
sists of two phases, which we will now describe independently
in the following. We split the available np target samples into
nr, , N, for the two respective phases. At a high level, in Phase
1, we make use of the available source representations to con-
struct a target representation and adapt it to the target task using
n, samples. The obtained model is then used as an initialization
for Phase 2 where we train the entire (over-parameterized)
model, including the representation matrix, using n7, samples.
We provide the resulting excess risk bounds for the model
obtained after Phase I and the final target model after Phase
2 in Section IV.

A. Phase 1: Transferring Source Representation to Target

In the context of utilizing pre-trained models, we will make
use of the empirical source representations {B ", to learn
the target model. We first construct a matrix Ve Rdxq _whose
columns are the orthonormal basis of the columns of {Bl}iz1
which denotes a dictionary of the learned source representation
matrices’. Note that we have q < mk. Having constructed the
representation, we train a head vector wz, € R? minimizing the

3The construction of V from {]/5;2} can be done by the Gram-Schmidt process.
This can be done in the pre-deployment phase after training the source models,

and V can be made available directly to the target task.
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empirical risk on np, samples:

WT1 — min —
wrER? nTl

2
‘}’T1 X, Vwr H (5)

Here, y, € R"71 denotes the first ny, values of yr and X7, €
R™71 %4 the first nt, rows of X7. We denote the resulting model
at the end of this phase by Oppye, := \A/V?ITI . Since we only have
to learn the head vector using the available representation v,
the sample complexity requirement is greatly reduced, which is
also evident from our bound for EER(Oppyse, , 07) provided in
Theorem 1.

B. Phase 2: Fine-Tuning With Initialization

The obtained model @pp,se, from the previous phase utilizes
empirical source representation for its construction. However,
the true target model 07, may not lie in the space spanned by the
source representation and thus @py,se, lies in a ball centered 07
whose radius scales with € (c.f. Assumption 5). To move towards
the true model 07, we utilize ny, number of target samples
(independent from the n, samples in the previous phase) to train
the entire linear model using Gradient Descent (GD) with Oppyse,
as the initialization. In particular, the GD procedure minimizes
the following starting from Oppase, :

1 2
f(0) = —llyn, — X10,6]3 (6)

TLT2
Here, y1, € R"> and X7, € R"2*¢ are the remaining sam-
ple values from Phase 1. Since ng, < d, we are in an over-
parameterized regime, for which it is known that GD procedure
optimizing the objective in (6) converges, under appropriate
choice of learning rate, to a solution closest in norm to the
initialization [18], [19], [33], [34]; mathematically:

mein ||0 - OPhasel HQ

— X7,b|l2 @)

S.Lt. HyTz - XT26||2 = mgn HyTz

We denote the solution of the above optimization problem as
Ophase,. Which forms our final target task model. We provide
bounds for EER(@ppase, , 07) in Theorem 2.

IV. MAIN RESULTS

We now provide theoretical bounds on the excess risk for
the target (c.f. (2)) when leveraging pre-trained source mod-
els. In Section IV-A, we first state excess risk bounds for the
model obtained after Phase 1 (see Section IlI-A), denoted by
Ophase, = VWT, where target representation V is constructed
as a combination of source representations and adapted to the
target data using ny, amount of target samples by training a
target-specific head vector wr. In Section IV-B, we provide our
overall excess risk for the model Ophyse, (c.f. (7)) obtained by
re-training the entire (over-parameterized) model via Gradient
Descent with 7, number of target samples (independent form
the previously utilized n7, samples) using @ppase, as the initial-
ization.

A. Theoretical Results for Representation Transfer: Phase 1

We work with the following assumptions:

Assumption 2 (Subgaussian features): We assume that
Exp,[x] = 0 for all j € [m] U {T'}. We consider p; to be the
whitening of p; (for j € [m] U{T}) such that Ex_;,[x] =0
and Ex.p, [%x ] = I. We assume there exists p > 0 such that
the random vector X ~ p; is p?-subgaussian.

Assumption 3 (Covariance Dominance): There exists r > 0
such that 3; > rXr for all i € [m].

Assumption 4 (Diverse source tasks): Consider the source
models 8 = V*w} for i € [m]. We assume that the matrix
W = [W],...,W;,] € R satisfies o2 (W*) > Q(™)

Assumption 5 (Distribution of target task): We assume that
w7 follows a distribution v such that ||E .., [ww ]|z is O($).
We denote Xg: = Eg,[ww'].

Note on Assumptions: Assumption 2 on sub-Gaussian fea-
tures is commonly used in literature to obtain probabilistic tail
bounds [9], [10], [15], [32]. Following [9], Assumption 3 states
the target data covariance matrix is covered by the covariance
matrices of the source data distributions. We remark that this
assumption allows the covariance matrices to be different, in
contrast to works [10], [11] that assume a common covariance
matrix for all the distributions. Assumption 4 (also made in
related works [9], [10], [35]) says that the head vectors cor-
responding to the matrix V* for each source model should
span R'. This effectively allows us to recover the representation
V* provided enough source machines (m > [) that individually
capture one or more features of V*. This assumption is also
central to proving our result in Lemma 1 provided below which
show that the matrices V and V*, whose columns form an
orthonormal basis for the span of {B;} and {B;}, respectively,
span the same subspace for constructing the target model.

Lemma 1: Let matrix V € R%4 be formed by empirical
source representations {B } obtained from solving (3) and the
matrix V* € R4/ formed from the true representations {B}.
Under Assumptions 2—4, for any b € R! such that ||blz = 1,
ne > pH(d + log(m/s)) and g, > p*(max{l, q} + log(1/s)).
with probability at-least 1 — &7, we have:

min HXTIVU XT1V b||2

ucR4

02

< — (km + kdmlog(kns) + log < ! >)
rms 51

A proof of the lemma above is provided in Section V. We now
state our main result for the excess risk on after Phase 1.

Theorem 1 (Phase I training result): Fix a failure probability
d € (0,1) and further assume 2k < min{d, m} and the num-
ber of samples in the sources and target satisfy n, > p*(d +
log(m/s5)) and np, > p*(max{l, q} + log(1/s5)), respectively.

MaXe[m] Amax (i
Milc (] Amin(24)
imum eigenvalue of ¥3;. Then with probability at least 1 — § over

the samples, under Assumptions 1-5, the expected excess risk

Define k = where Apax (2;) denotes the max-
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~

Of Ophase, := VW satisfies:

0.2

E[EER(Ophase, - 07)] S 7(‘1 + log(/s)) +

nr
e 1 log 1 N kdlog(kns) + k
rNgm 0 TNy

where expectation is taken over w’. for the target task (c.f.
Assumption 5). We provide proof for Theorem 1 in Section V.

Discussion: The bound in Theorem 1 shows the population
risk of the learned model Ophase, lies in a ball centered at the
true target model risk R(0%) with radius 2, which represents
the approximation error for using source representations for the
target task (see Assumption 1). Note that the expected excess
risk scales as O(4/ns,) with respect to the number of target
samples when the representation is learned from the source
representations. This demonstrates a sample gain compared to
the baseline of O(4/n, ) for learning the entire model (including
representation) with the target data when ¢ < d, that is, when
the empirical source representations together span a subspace of
dimension much smaller than d. For the case when source and
target representations are all the same, B%, = B} = B* € Rk
foralli € [m], the excessrisk scales as O(%/nr, ), whichrecovers
the result of [9].

B. Theoretical Results for Overall Scheme: Phasel + Phase2

We require the following additional assumptions:

Assumption 6: The rows of the target data matrix X are
linearly independent.

Assumption 7: The Gradient Descent procedure to optimize
(6) converges to @ppase, With f(Ophase,) = 0.

Assumption 6 is typically made in literature for analysis in
the over-parameterized regime for linear regression, see [15],
and can also be relaxed to hold with high probability instead
and incorporated in the analysis [32]. Assumption 7 holds in our
setting as the objective in (6) is strongly convex and smooth for
which GD can converge to the optimum [36].

Theorem 2 (Phase 1 + Phase 2 training result): Consider
obtaining the final target model by using ny, samples during
Phase 1 for representation transfer and then fine-tuning in Phase
2 with np, samples (independently drawn from Phase 1). Denote
the eigenvalues of the covariance matrix of the underlying data
S by {1;}¢_,. Then under Assumptions 1-7, the excess risk
of the final parameter éT = Ophase, 1S bounded as follows with
probability at least 1 — o:

ﬁ To(ZT)
Ad Ny,

+7r0%1o A
ro e —
& 5 nT2 Rk* (ET>

+Alg2 ro(S7) ( 1 log (1) N (kdlog(/@ns) + k))
Ad N, NgM 1) TN

E[EER (87, 0%)] < (ri(q +log(Y/s)) + €2>

P (27>k7L )
M1 , Ry (B7) = Sis

b>landk* = min{k > 0: (%) > bnTQ}Wlthk’* <
some universal constant ¢; > 1.

We provide a proof for Theorem 2 in Section VI.

Discussion: Theorem 2 shows the excess risk of our overall
target model (éT = Oppase,) as a function of the number of
samples ng,nr,,nr, and parameters depending on the target
data covariance matrix, > 7. Since we re-train the entire model
(including the representation) with nr, target samples, the popu-
lation risk of the learned model R(Oppase, ) can be made closer to
the true risk R(07) by increasing nr,, which is in contrast to the
result of Theorem 1 which shows closeness only in an € radius
ball due to using source representation directly to construct the
target model.

We now provide a baseline comparison to the standard linear
regression scenario where we do no utilize any source models
and instead learn the target task model from scratch using the
available nT = ng, + n7, samples. The excess risk in this set-
tingis O (=% ) If the number of source samples are large enough
(ng > d) to get a good empirical performance on the source
models (c.f. (3)), the bound from Theorem 2 demonstrates a
sample gain compared to the baseline when:

. Here, constant

< T2 for
C1

where r (Xr) =

)\1 To(ET) O’2 1 2
10T (2 (g + log(Ys) +
k* nr o%d
1 2 8
+eotlog <5> (7”% Rk*@T)) < nr, + nr, ®)

It can be seen that for the above relation to hold, we require:

e The target data covariance matrix X7 should be such that
the term Ry (X7 ) is much larger than nr,, and k* < nr,.
This is satisfied, for e.g., in the case when eigenvalues of
Y.p decay slowly from largest to smallest, and are all larger
than a small constant [15].

e Using the definition of ro(X7) = Si=14i/4,, the following
provides a sufficient condition the first term on the L.H.S.
of (8):

d
q> i1 ki d
<
N, Ad nr, + nr,

This, is turn, imposes the following restriction on ¢, which
is the dimension of the subspace formed by the source
representations {B; }:
dhgnr,n
¢ < _ dNT, N1,

Xz i) (g, + 1)
Since np, + np, = nr,itiseasy tocheck that the R.H.S. of
(9)is maximized whenny, = np, = n/2. With this optimal
splitting of the target samples for each of the phases, we

require ¢ < 2%‘”” for the inequality in (8).

©)

V. PROOF FOR PHASE 1 TRAINING

We now provide the proof for Theorem 1 which establishes a
generalization bound for the learned model formed by leveraging
the pre-trained source models.
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We first comment on the solutions obtained from the opti-
mization problem pertaining ot the source tasks and comment
on their efficacy to the representation transfer setup.

Note on the solutions for Source Training (3):

The solution for the bi-linear optimization problem for the
source training in (3) can allow for any solution of the form
Biw; = 6, fori € [m] where multiple B;and w; may satisfy the
product. Crucial to our transfer process is Assumption 4 which
considers that we have enough source domains to reconstruct the
underlying representation matrix V* from the individual source
models.

For the sake of argument, consider the scenario where we
have a large number of source samples for each source do-
main. Then, solving the optimization problem leads to solutions
07 = Biw;. Assume that from solving (3), we obtain B,"
and wo" such that Bo*w,* = Biw; = 6. First consider the
matrix V* € R?*P as the matrix formed by the basis of spans
of the columns of {B},},. Then, as per the definition of 8;
there exists /\;V\: e Rpxm with ith column as W, satisfying
Viwe! = 0f,and thus, VW, = [07,65,...,0] = V*W*,
From Assumption 4, it follows that C (V*W*) =C(V*) and
thus C(V}) 2 C(V*), which implies that we are transferring
the column space of the true underlying representation matrix
to the target domain.

Thus, as long as we solve the problem in (3) yielding the
source representations matrices {Bi} that contain, in their span,
a good estimate of the true underlying source model 8}, we can
leverage the transferred representation matrix formed from the
matrices {BZ} to get a good estimate of the target model (c.f.
Assumption 1).

We now note the following results from [9] that will enable
us to prove Theorem 1 later in Section V-B (and Theorem 2 in
Section VI).

Claim 1 (Covariance of Source distribution, ClaimA.1 of [9]):
Suppose ng > p*(d + log(™/s)) ford € (0, 1). Then with prob-
ability at least 1 — 15—0 over the inputs X4, . .., X,, in the source
tasks, for all 7 € [m] we have

1
0.9%; < —X/X; < 1.1%;
N

Claim 2 (Covariance Target distribution, Claim A.2 of [9]):
Suppose nr > p*(k + log(1/s)) for 6 € (0,1). The for any
given matrix B € Rd“k that is independent of X, with prob-
ability at least 1 — 55 over target data X7, we have

1
09B'Z/B< —B'X;XyB=<1.1B'2;B
nr

Proposition 1 (Lemma A.7 from [9]): For matrices A1, Ao
(with same number of columns) such that AIAl b A2T A, and
for matrices B, Bo of compatible dimensions, we have:

HPX1B1A1B2HF HPA2B1A2B2 ;

I

Proposition 2: Consider matrices A € R**® and B € Rb*¢,
Then for any u € R?, we have:

[PAul < [Pagul3

Proof: For given A € R**® and B € R**¢ and u € R%:

PAull3 = min || Ar — ul]3
reR

\ N

mln Ar —u
min [[Ar —ul}

min || ABs — ul|3
scRe

Pagull3

A. Some Important Results

We now provide proof of results used to establish the resulting
bound for Phase 1 training provided in Theorem 1, which is
proved later in Section V-B. These results provide guarantees on
empirical training of the source models (c.f. Lemma 2) as well as
the performance of empirically learned source representations
on the target data (c.f. Lemma 1).

These results would also be useful for the proof of Theorem 2
presented later in Section V1.

1) Proof of Lemma 1: We first prove Lemma 1 which estab-
lishes a bound on using the learned empirical representation V
on the target data. N

[Restating Lemma 1] Consider the matrix V' € R%*4 formed
by empirical source representations {B; } obtained from solving
(3) and the matrix V* € R?*! formed from the true representa-
tions {B;}. Forany b € R! such that||b||o = 1, with probability
at-least 1 — 67, we have:

m]iRn HXT\Afu — X7 V'b|2
uclR?

1
(k‘m + kdmlog(kns) + log ( ))
g o1

Proof: We first note that:
||P§T\7XTV*b||2 = lrlré%%r}l [X7Vu — X7 Vb,

O'QTLT

<

Using the fact that {w;} span the space R!, we can write b =
W*a for some cv € R where ¢ is O(1). We have:

[Py XrV7b[3 = [PL o XrV'Wealf

< Py, Xr VW%

= IP
i=1

L oXe Vi

(a)
S nr Z HPll/zAzl/QV*N*HQ
i=1

®) o & . agre s

S = z:llP yag B VW i3

o e PL X, V*'w; 10

S ras s Z || I3 a0y
where (a) follows from Claim 2 (with B = [V —V*)), (b)

follows from Assumption 3 and (¢) from Claim 1. We now note
that V*w; = B;w,. We now note that V is the matrix whose

Authorized licensed use limited to: University of Minnesota. Downloaded on April 29,2025 at 22:03:49 UTC from IEEE Xplore. Restrictions apply.



214 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 19, NO. 1, JANUARY 2025

columns are an orthonormal basis of the set of columns of the
matrices {B;}. Thus for each ¢ € [m], there exists a matrix C;
such that B; = VC,. Now using the result of Proposition 2 we
have:

Prop.”2
IPL oXeVibE < L ZHPL g XiBiw

~

nr 2

™™g

IN

Py 5 (XiBjw; +2;) - X;Bjw

(VR

@
Il
—

nr 2

TN

B.Yi— XZB:W

I
M-
e,
¥
w

~
Il
—

2

3
S
S

nr =~
= X, B;w;
s

— XZB:W

<.

The proof can then be concluded by using the result from
Lemma 2 stated below that provides a bound for the trained
empirical source models in (3).

We now provide Lemma 2 which establishes guarantees on
the learned empirical source models.

Lemma 2 (Muln Source training guarantee): With probabil-
ity at least 1 — £, we have:

2

3

i=1

2

2 <km + kdmlog(kns) + log (;))

Proof: First we instantiate Claim 1, which happens with prob-
ability atleast 1 — 1%. For the given source datasets and matrix
A € RY™™ with columns {a;}, we define the map X'(A) as
X(A) = [Xja; Xsay... X,,a,,]. Now consider the matrix
A € R?*™ whose columns are given by {B;w; — Biw:}"
For convenience of notation, we define X'(A) := [X; (B, w1 —
Biw?) X, (BW — BE,w?,)]. We are interested in
providing a bound for the quantity ||X'(A)||%. The i*" column
of the matrix A can be decomposed as R;r; where R; € Qg0
(set of tall orthonormal matrices in d x 2k) and r; € R?¥,

A= [erl R2r2 . Rmrm]

For each ¢ € [m], we now decompose X;R; = U;Q; (where
U, € O, 2, and Q € R?*2F)_ Since {Bz,wz} n are the
optimal solutions for the source regression problems, we
have -7, [ly: — XiBoW, |3 < Y0 [ly: — X,Biw; 3. Sub-
stituting y; = X;Biw} + z; for i € [m], we get || X (A)]|% <
2(Z,X(A)) (where the inner product of matrices is trace of
their product) and we denote the matrix of noise vectors as
Z = [Z]_ 7o Zm} € R™*™ Now:

m m

= Z Z:XZRZI‘l = Z ZIUiQiri

i=1 i=1

(z,x(A)) (11)

<> |[Uulz], 1Qiri],

i=1

<X Ul X v,
=2

We will now provide a bound for the first term in the prod-
uct on the R.H.S. of (12). Since U; depends on R;, it also
depends on the value of Z. To provide a bound, we use an
e-net argument to cover all possible values of {R;},. We
first consider a fixed set of matrices {R;}", C O}.,,. For
these given matrices, we can find decompose X;R; = U;Q;
for i € [m], where {U,;}~, C O <2k do not depend on Z.
Thus we have &3 >, ||U /[ z;[|2 ~ x?(2 km). Thus w.p at least
1 — ', we have:

- 1
;’|U1TZZH2 < (km—i—log (6’))

Hence for the given {R;}"™ ,, using the result from (13) in (12),

U7z, 1 X(A)]F (12)

2

13)

we have:
_ 1 _
(2, 2(8)) 5 0* (b + 102 (3 ) ) 1)1
where A = [Ryr; Rory... R,,r,,]. Now we consider an

<-net of O}, denoted by N of size |N| < (@)21@771,
Using the union bound, with probability at least 1 — |[N]d":

<Z,X(A)> (k:m+log< )) |X(A)||F, V{R:} CN
(14)

_ ) . .
Choose &' = 20(EmLaE s then the above holds with probabil-

ity atleast1 — % . We will now use the results from the following
claim, which is proved in Section V-A2 below.

Claim 3: Under the assumptions of Theorem 1, the following
hold:

1) Wpatleast1 — &, | Z]|% < o?(nym + log(3))

2) If the result in 1) holds and ‘Claim 1 holds, then ||A[|% <

M where Ao = Mile () Amin(2;)

3) If the results in 1), 2) above hold and Claim 1 holds,
the2n [X([Rir1 ... Rpyrp] — [Rarl SRy <
5 o2 (ngm + log()) for some {R;} C N where x =
max;e[rm] Amin (Z1)
minz‘e[m] )Lmin(zi) .

We now use the results of the Claim 3 to complete the proof of

the lemma. We note that there exists some A with {R;}™, C N/
such that:

LA < (2, X(A))

=(2,X(A)) +(Z,X(A - A))

< \/(km+log(§,)) XA + 2] | X(A-A) |

< a\/ (m-+108 (5 ) )- (@) + 1(A-B)l)
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N g\/(nsm log <1)> |X(A - A)|r

%)UIX(A)IIF\/(kaog (5))
e omre(2)

where (a) follows from (14) wp >1— £, (b) from 1) in
Claim3); w.p. > 1 — 2 and (c) uses the fact that &' < &, k < n,
and 3) in Claim 3. Since the above result gives an inequality
in terms of | X(A)|% and ||X(A)||r, we can conclude the

following:

(A S max {a\/<km+1og (5))

We choose € =

nk%, and note that ng > k, which gives:

1A < aﬂkmﬂog (5))

-6
20( 6m€\/ﬁ )2kdm

km .

nsvk "

[ROSIEES 0\/km + kdm log (m’f) log (;)
€
1
0\/km + kdmlog (nsk) + log (6)

_(%4_

Substituting the value of ¢’ = and € =

Hence the following holds with probability at least 1
s 5.
20 T 20)°
1
X (A% < o? [km + kdmlog (nsk) + log (5>}
2) Proof of Claim 3:

1) This follows from the fact that —
2)

=11 ZI[E ~ x(nsm)

m

1X(A)F =D IXi(Biws, — Biw))|3

m

=Y (Biwi, — Bjw)) X/ X;(B;W;, — Bjw))
=1
>ns Y (BiW;, — Bjw;) 3;(BiW;, — Bjw))
=1

where Ajow := Mingefy,) Amin(2;). Since [X(A)]Z <
2(Z, X(A)) < 2||Z]|p||X(A)]|r, we have [ X(A)|[p <
2||Z|| . Using the result from part 1. of the claim statement
combined with the upper bound derived above, we have:

o? 41 1
7/Ls)\low et o8 0

3) For some {R;} C N we have >, |R; — Ri||r <
| = = €. Therefore:

lalE <

[X(A-A)[F = Z 1X;(R; — Ri)ri 3

i=1

m
< Z X5 [3[1R: — Ri|%]rs|3
=1

< ns€® Q- 2 2
S 23 ISl el
i=1

ne)\h h
S—= ZH ill3

) Ns€ )"hzgh

—~
S

N2

(? 77,362)\.}w'gh o? (nsm + 10g(%))

~

m2 NsMow

2 2
RE )\higho' 1
= I7 m =+ 1 —
m2Aow mamm +log )

Here, Apign = MaX;c[m] Amax (i) Where to arrive at (a),
we have used the fact that {R,; } have orthonormal columns
and used the definition of A, and (b) follows from using
2) from the claim statement.

B. Proof of Theorem 1

Having established the helper results above, we now provide
a proof for Theorem 1.

[Restating Theorem 1] Fix a failure probability § € (0,1)
and further assume 2k < min{d, m} and the number of sam-
ples in the sources and target satisfy ng > p*(d + log(™/s))
and ny, > p*(max{l, q} + log(1/s)), respectively. Define =

maXie[m] Amax (i
nllrll&[‘rn mm(z )

value of 3;. Then with probability at least 1 — § over the
samples, under Assumptlons 1-5, the expected excess risk of the
learned predictor w on the target (x — XTVWT) for Phase 1
satisfies:

where A.x (2;) denotes the maximum eigen-

2

E[EER (Opnase, 07)] S —— (¢ + log(1/s)) + €
T

1 log <1) n (kdlog(/ms) + k)}
MM 0 Mg

Proof: We will first instantiate Lemma 1. We then instantiate
Lemma 2 twice, once with [V — V*] and the other time with
[B% — V*]. Then we assume that the result from Lemma 2
holds. All these events happen together with probability at least

+02{
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1- 2705. The expected error for the target distribution is given
by:
T e, 12
EER (Ophase, » 07) = Expy {x Biwh —x VWTi|
1/2 N * * 2
[ (95w

1/2 T * % 2 1/2 * * * Tk 2
< ‘ pIs (VWT -V WT)‘ , + HET (Brwp — Vi'wrh) ‘2
(a) VPN 2
< || (Ver - v |+ e
2
®) 1 ~ ~ 2,
S — |xr (Vor - vy )| +e
nr 2
_Lp XV ||+ e
T X VYT — ATV Wrp 2+e
1 * o * 2
%o [P (K VW 20) = X V') ‘2
2
+— HPX o (XrBiw) — Xp Vi) ‘2 +é

where (a) follows from Assumption 1 and (b) uses Claim 2.
Using the fact that [Py _¢[[2 < 1 (since Py g is a projection
matrix) and using Claim 2, we have:

2
<1 HPX (X V' + 27) — X Vo)) ‘ b
< 1 * % 2
S o [P XV 4 4 Py, g

where the first inequality follows from Assumption 1 and
Claim 2. We can take the expectation over the distribution of
w7 and use Assumption 5 to yield:

* 1 ¥
E;V% [EER (Ophase, - 07)] S — nyl HPXTVXTV

s

1
2
+ €+ E HPXT{/ZT

We now make use of the following lemma, which is proved
below in Section V-B1 that provides a bound for the first term
in (15).

Lemma 3 (Target Training Guarantee): Assuming the results
in Claim 1, Claim 2 (withB = [V — V*]) and Lemma 2 hold,
we then have:

2 2
5 7’LTO'~
F 7 rngof (W)

1
X (km+kdm log(kns)+ log (6))

Substituting the result from Lemma 3 in (15) and using
of(W*) > ™, the following bound holds with probability at

_26.
least =

1 *
HPXTVXTV

EVV} [EER(QPhasel ) GT)] 5 E HPXTVZTHQ te

+ 2 (km + kdmlog(kns) + log (;))

MM

Finally, the last term in above can be bounded by us-

ing a concentration inequality for x2-squared distribution.
38

In particular, with probability at least 1— %> we have
||PXT(*,ZT||% < 02(q +log(1/s)). Thus the followmg bound
holds on E,:. [Err(ﬁ s, Wi)] with probability at least 1 — §:

1
EW*T [EER (Ophase, , 07)] S e+ ;02(‘1 + log(1/s))
T

+
rNgM

1
2 (kzm + kdmlog(kns) + log (5>)
_ 2 { log (1> N (kdlog(lms) + kﬂ
TNgM ) N
o2
+ — (g +log(1/s)) +¢°
nr

1) Proof of Lemma 3: We start the proof by using Proposi-
tion 1 and Claim 2:
2

ot (W) |[Py, X V7[5 < of (W)nr

<TLTZ

i=1

1 1/2 *
Pl StV

F
2
P 1/2A21/2V*~*

2

The proof now follows the same procedure as in Proof of
Lemma 1 starting from (10) and following it up with Lemma 2.

VI. PROOF FOR PHASE 2 TRAINING

We now provide a proof for our bound in Theorem 2 which
establishes excess generalization risk for the model obtained
after combined Phase 1 and Phase 2 training.

The data for Phase 2 training is given by (Xr,,yr,)
where yr, = Xp,B5wi + z7,. Here 67 := Bi-w* denotes
the true data generating target model. We define P =
X1, (X, X, ) ' X, as projection matrix on the row-space of
matrix X7, and P =1 Py.

We first note the following result that establishes where the
Gradient Descent solution converges to, the proof of which is
given in Section VI-Al below.

Lemma 4: Under the assumptions of Theorem 2, performing
gradlent descent on the objective (6) with the initialization
0 .= = Opnyee, and learning rate 7, yields the solution:

0G’D = O(OC) = PHH;“ + PJ_HPhasel + X;z (Xsz;g)_l
where P = X, (X7, X7, ) ' X7, is the projection matrix on
the row-space of matrix X, and P, =1 P).

A. Proof of Theorem 2

We now use the solution of the gradient descent 9T = 0ap
derived in Lemma 4 and find the excess population risk. The
excess risk is given by:

EER(éTv 0;‘) EXT2 ~pT (X OT X;Q eGD)Q
= Ex,~p, Tr[(07—06D) "X, X1, (05—6cp))

= |=/2(05 — 6cp)|3
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Substituting the value of 8 p from Lemma 4 we get:

EER(O7,60%) < 2||=/°P, (05 — 01,13

+ 2| 27X, (Xn, X7,) 123 (16)
‘We focus on the first term for now. We have:
=P (05 — 01,3 = (05 — 61,) ' PI=rP (65 — 0r,)

= (0’? - OTO)TPI

HET - —X X,

1 *
<2T - X}ZXTZ) P, (65 —07,)
nr
1 /2 ’
<2T — X;2XT2> P, (6} —071,)
nr

2

||PL(0§“ — 0,13 (17)

The second term in (17) can be bounded by [P (6% —
01,)|13 < ||(6% — 61,)||3 by noting that ||P, ||z < 1. We thus
finally get the bound:

1

EER(O7,0%) < 2 HZT - —X7, X7,
nr

167 — 6,)13
2

+2| 2K, (X, X, ) a2 (18)

We now provide a bound for the second term in (18). Note:
1 —_
|27 X1, (Xr,Xp,) 23 =
z' (X7, X7,) ' X, 2 Xp, (X1, X7,)

From [15, Lemma 9], we can get a high probability bound
(probability > 1 — e~%) on this term for some ¢ > 0 as

127 XE, (X, XT,) 23
< (4t +2)0’Tr (X, Xp,) ' X, Br Xy, (X, Xq,) )
To bound the trace term, we use [15, Lemma 13, 18]: For uni-

versal constantb, ¢ > 1and k* := min{k > 0 : r;(Xr) > bn},
we have

Tr (X0, X7,) ' X0, 20X, (X, X7,) )

NG
- bn Rk* (ZT)
z}f:fk Ry (37) = w Substituting

the value of ¢ = log( 5) Plugging the resulting bound in (18),
we can finally claim that the following holds with probability at

5.
least 1 — 5

where 7 (3r1) =

1

EER(O7,05) < HET - —XT X || 1107

2

rertv(5) (3 * 7o)

The covariance approximation error in the first term of above
can be bounded by the result in [37, Theorem 9]. This yields the
following bound on the approximation with probability at least

—0,)|13

1 — e % over the choice of data matrix X, for some constant
u>0andd§; > 1

Zdﬂ i
< uii max ==

by ——X X
H g " 2 nril

Sk [6 &

b b
nriq nr nr

= log(2), with probability at least 1 — 3,

iy b
< uA1 max _,
2 nT)q

St 1 1\ 1 1
PRI nTlog 5 7nTlog 5 (19)

Denote the eigenvalues of covariance matrix of the target data
as {Ai}le, with A1 > ... Ag, we then have:

Substituting 97

HET - —X7, X,

1 *
BER(67.67) < | L2007~ 0n,)
o Md
k* bnr,
+co?lo + 2)
¢ (5> (bnTz Ry ()
i>khi 3 2
where ri(2r) = ik, Ry (Br) = 5254,
Here, constant b>1 and k* =min{k > 0:
( )>bn} and the covariance estimation term

be  bounded by ||z:T—LXTXT2||2

u)»lmax{,/ nT 111 , nT M ,/nT log ,nT log

with probability at least 1 — 5. We now substitute the value of
|27(65 — 67,)||2 from Theorem 1 (as 87, = VW, which
was obtained by using n7, target samples). Thus the final bound
after Phase 1 and Phase 2 training, after taking the expectation
w.r.t the target model 0%, is given by:

E[EER (67, 9’%)]

o2 1 1
< — 1 Z
~ H 5 A T 8 <§)
N H T X, a* (kdlog(/-ms) + k)
9 Ad TN

1 1
Sro = (o2 | (g +10g(® 2
—&-H T - X L X1, e (0 [TlT1<q+ og( /5))]+6>

+ec 10 K +b77/7T2
7 & (5 bnT2 Rk*(ET)

where u, ¢ are universal constants. We now substitute the bound

for the covariance estimate from (19) and simplfy the expression

TO(ET) > 1-log(5) > 1 since we have a few
2

by assuming

target samples:

E[EER (87, 05)] <

’U,)»l T‘()(ET) <O’2

)‘-d nrm,

(g + log(1/s)) + 62)

T
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n uri10? 1o(Er) ( 1 log <1> n <kd10g(’ms) ‘Hf))
Ad nr, MgMm 0 TN

+ co?log 1 ﬁ 4 bniTz
1) bnT2 Rk*(ET)

1) Proof of Lemma 4: For any time step ¢ of the gradient
descent process, the gradient of the objective in (6) evaluated at
0® is given by:

2
vf(e(t)) = 7X;2 (XT20(t) - yT2)
nr
The gradient update step using step size 7 is given by:
2
o+l — g(t) _ JX;Q (XT20(t) —yn,)
nr

= GTU + X;za(t)

where a is some vector in R"7. In the limit, the gradient descent
convergence to a solution of the form:

0 =07, +XJ,a (20)

Since the problem in (6) is over-parameterized, there exists a
value 0 such that f(6*) = 0. This follows from the fact that
X, has full row rank. The gradient descent solution, under an
appropriate choice of the learning rate, thus converges to this
value while yield a zero loss, implying:

X1,0) = yr, = X1,07 + 21,
= Xr, (07, + Xp,a) = X107 + 27,
=a= (X7, Xp,) (X1, (07 — 01,) + z71,)
Substituting this in (20), we get
Ocp = 9(>)
=07, + X7, (X1, X7,) (X1, (07 — 01,) + 27,)
=P 07 + P07, + Xy, (X, Xp,) 'z,

VII. NUMERICAL RESULTS

We now provide numerical simulations for our proposed
scheme for optimizing linear regression objectives in a data
scarce regime. To demonstrate the effectiveness of leveraging
pre-trained representations and fine-tuning, we consider the case
where we have access to the true representation matrix V*
formed by the source representations. We compare the perfor-
mance of models obtained after Phase 1 and Phase 2 training
for different parameters of interest and discuss their sample
complexity requirements.

A. Setup

We generate the d X ¢ matrix V* matrix with entries sam-
pled from the standard normal distribution, with d = 1000 and
q = 50. We generate np, € {100,200, 300,1000} number of
samples for the target data for Phase 1 to form the matrix X,
which is generated with i.i.d Gaussian entries with mean 0 and

covariance matrix X7. To simulate slowly decaying eigenvalues
of X7, we set them as A; = e+ 4¢forje [d], where 7 =1
is the decay factor and £ = 0.0001. The true target model 67
is generated as u+ v where u € R? lies in the span of V*
and v is Gaussian vector with covariance matrix o2 and zero
mean. We call the expected ratio of u to v as the in-out mixture
representation ratio.* The target output vector yr is generated
asyr, = X707 + zr,, with z7, being a Gaussian noise vector.
Phase 1 training thus seeks to minimize the objective in (5)
(with V replaced by V*, since we assume access to complete
source representations) and we denote the output model Oppase, -
For Phase 2 training, we optimize the objective in (6) using
new nr, € {100,200, 300, 1000} number of target samples with
Ophase, as initialization to obtain the final model Oppase,. We
compare the performance of @phase, and Ophase, on 500 test
samples generated from the target data. As a baseline, we also
consider the performance of the scheme which takes ny, + nr,
number of target samples and trains the model from scratch, i.e.,
without leveraging the source representations V*. We denote the
model obtained form this scheme as 6.

B. Results

The results from Phase 1 and Phase 2 training for different
splits for the number of phase target samples and € values® are
shown in Table I. The numerical values, which are averaged
over 10 independent runs, denote the ratio of the error obtained
by the learned model after the respective phase and the error
of the underlying true data generation model 67 for the target
data on a test dataset. In a data-scarce regime, (np,,nr,) €
{(100,100), (200, 200), (300, 300)}, the performance of the
model learned from scratch (without leveraging source repre-
sentations; denoted by column Scratch) can be unsatisfactory.
As expected, even pre-training (Phase 1) and fine-tuning (Phase
2) in low data regimes does not yield good performance if
the source models are not useful for the target data, which
is the case when the in-representation mixture to out-mixture
ratio for 07 is small, as shown by the performance for values
5dB, 1dB in Table I. However, utilizing source representations
gives significantly better performance relative to training from
scratch in cases when 67, doesn’t lie far off from V* as can be
seen by comparing the values of Phase 2 and Scratch training
results for in-out signal mixture ratio of 50 dB, 20 dB, 10 dB.
Thus leveraging source representations for target training can
be beneficial in scare-data regimes when source representation
are useful for the target task and thus representation transfer is
practical. It can be seen that training from scratch could perform
well for a data-rich regime, (ng,,nr,) = (1000, 1000). Here,
the performance of the learned model after Phase 1 degrades

4The parameter a% indirectly enables us simulate the value of € in Assump-
tion 1, with larger values of a% implying that 67 lies farther away from the
subspace spanned by the columns of V*. A higher 0% values thus yields a small
value for the in-out representation mixture ratio.

SThe values in the ‘In-Out Representation Mixture Ratio’ column in Table T
correspond to the ratio of the signal in the subspace spanned by columns of V*
and the added out of subspace signal (of variance O'%) added to it to generate
the true target model 7. Lower values of this ratio correspond to higher values
of O’%.
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TABLE I
PERFORMANCE COMPARISON FOR LEARNED MODELS AFTER PHASE 1 (PRE-TRAINING), PHASE 2 (FINE-TUNING) AND LEARNING FROM SCRATCH

Sample Configuration In-Out Representation Mixture Ratio for 67, (in dB) Phase 1 Phase 2  Scratch
50 1.01 1.01 10.17
20 3.21 3.05 10.41
np, = 100, n7, = 100 10 9.97 9.17 10.98
5 16.13 15.84 12.74
1 28.01 26.61 15.96
50 1.01 1.00 9.71
20 2.03 1.88 9.33
np, = 200, n7, = 200 10 5.71 5.14 10.33
5 10.09 9.10 11.79
1 15.30 13.62 13.68
50 1.01 1.00 8.13
20 1.90 1.69 8.35
np, = 300, n7, = 300 10 5.30 4.46 9.07
5 9.12 7.60 9.95
1 14.55 12.12 12.13
50 1.01 1.01 1.01
20 1.74 1.01 1.01
np, = 1000, ng, = 1000 10 4.72 1.09 1.01
5 7.92 1.12 1.01
1 12.47 1.21 1.01

with decreasing in-out representation mixture ratio as the source
representations become less useful to learn 67.. Meanwhile,
performing fine-tuning in addition to utilizing source representa-
tions, as in Phase 2, yields much better performance of the overall
learned model with relative errors much less than after Phase 1.
Thus, fine-tuning on target data (Phase 2) can be essential in
addition to leveraging source models directly by pre-training
(Phase 1) when the true model 67 lies farther away from the
subspace spanned by the source representations.

VIII. CONCLUSION

In this work, we proposed a method for training linear regres-
sion models via representation transfer learning in the limited
sample regime, when given access to multiple pre-trained linear
models trained on data domains (sources) different form the
target of interest. We established excess risk bounds for the
learned target model when (i) source representations are used
directly to construct a target representation and adapted to the
target task, and (ii) when the entire resulting model is fine-tuned
in the over-parameterized regime using target task samples. Our
bounds showed a gain in target sample complexity compared to
the baseline case of learning without access to the pre-trained
models, thus demonstrating the benefit of transfer learning for
better generalization in the limited sample regime. Our provided
numerical results corroborated this fact and showed superior
performance of our proposed scheme compared to learning from
scratch in data-scare regimes.

As future extensions to this work, it is of interest to see
how non-linear activation functions can be introduced in the
model to analyze more complicated architectures like Neural
Networks (NNs). Analyzing representation transfer learning
with multiple NNs and utilizing recently developed results in
benign over-fitting for this setting [38] is an interesting next step.
In many scenarios of interest, for training the source task models,

unlabeled data from the target distribution might be available.
While there are empirical works utilizing unlabeled samples in
the context of semi-supervised adaptation [27], [39], [40], theo-
retical results on understanding generalization of representation
transfer learning methods (with pre-training/fine-tuning) and
their sample complexity requirements are missing and would
be an interesting direction to pursue.
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