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Representation Transfer Learning via Multiple

Pre-Trained Models for Linear Regression
Navjot Singh and Suhas Diggavi , Fellow, IEEE

Abstract—In this paper, we consider the problem of learning a
linear regression model on a data domain of interest (target) given
few samples. To aid learning, we are provided with a set of pre-
trained regression models that are trained on potentially different
data domains (sources). Assuming a representation structure for
the data generating linear models at the sources and the target do-
mains, we propose a representation transfer based learning method
for constructing the target model. The proposed scheme is com-
prised of two phases: (i) utilizing the different source representa-
tions to construct a representation that is adapted to the target data,
and (ii) using the obtained model as an initialization to a fine-tuning
procedure that re-trains the entire (over-parameterized) regression
model on the target data. For each phase of the training method,
we provide excess risk bounds for the learned model compared to
the true data generating target model. The derived bounds show a
gain in sample complexity for our proposed method compared to
the baseline method of not leveraging source representations when
achieving the same excess risk, therefore, theoretically demonstrat-
ing the effectiveness of transfer learning for linear regression.

Index Terms—Machine learing: Transfer learning, few shot
learning, representation learning.

I. INTRODUCTION

A
CRITICAL challenge for Deep Learning applications is

the scarcity of available labeled data to train large scale

models that generalize well to the data distribution. This is

captured under the framework of Few-Shot Learning where

Transfer Learning has emerged as an attractive framework to

address this issue [1]. In transfer learning, one typically has

access to a model trained on some data domain (hereby called

source domain) that can be adapted to the data domain of

interest (target domain). Within this context, a recently proposed

strategy is that of representation transfer learning [2], [3], where

one typically assumes a shared structure between the source and

target learning tasks. The idea is to then learn a feature mapping

for the underlying model (e.g. Neural Network representations)

using the sample rich source domain that can be utilized directly

on the target domain, for e.g, by training a few layers on top of the

obtained network representation. This adaptation utilizes much
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fewer samples than what is required for training the entire model

from scratch, while achieving good generalization performance

which has been empirically observed for various large-scale

machine learning and signal processing applications including

image, speech and language [1], [4], [5], [6] tasks.

A defining factor in the need for representation transfer

methods is that the source and target domains have different

distributions. Learning across different domains has been stud-

ied extensively in the context of Domain Adaptation (see for

e.g. [7], [8]) where it is usually assumed that source and target

domain data can be accessed simultaneously. However, in many

important practical scenarios of interest, the target data samples

(labeled or unlabeled) are not available when training the source

models. Transferring the source dataset to the target deployment

scenario is infeasible for modern large-scale applications and

violates data privacy. Thus there has been an increasing interest

in transferring pre-trained source models to the target domain

for sample efficient learning.

Despite the immense empirical success of representation

transfer learning, development of a theory for understanding

the generalization of representation learning methods and the

sample complexity requirements is still in its infancy. Recent

efforts in this direction have been made in understanding gen-

eralization for the simpler case of linear regression models [9],

[10], [11], [12]. Within these works, [9], [11], [12] consider a

common low-dimensional representation in the data generation

process for the source and target domains, while [10] allows

for the general case of data-generating representations being

different. However, the analysis presented in that work requires

the number of samples at the target to scale with the dimension

of the model (see [10, Theorem 3.1]), which is impractical for

few-shot learning scenarios.

A related line of work for understanding generalization of

large scale models in the small sample regime is through the

lens of benign overfitting. This is inspired by the surprising

(empirical) observation that many large models, even when they

overfit, tend to generalize well on the data distribution [13],

[14]. In this context, [15], [16], [17] study this phenomena

for linear models and analyze the generalization properties of

the min-norm solution, where optimization methods like Gra-

dient Descent are known to converge to in this setting [18],

[19]. Specifically, these works seek to understand how the data

distribution affects the excess population risk of the min-norm

solution relative to the true data-generating linear model.

In this paper, we make efforts to understanding the gener-

alization of linear models while leveraging pre-trained models
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inspired by the notions of representation transfer learning and

benign-overfitting discussed above. These ideas lend themselves

organically to the construction of a sample efficient training

method for the target which we describe below briefly, along

with our contributions.

Key Contributions: Our work provides a method for lever-

aging multiple pre-trained models for linear regression objec-

tives (of dimension d) on a target task of interest in the small

sample regime (samples nT � d). The proposed two-phase

approach leverages representation transfer (Phase 1) and over-

parameterized training (Phase 2) to construct the target model,

and we provide theoretical bounds for the excess risk for each

phase of the training process (Theorems 1 and 2). In particular,

we show that the learned model after the first phase has an

excess risk ofO(q/nT ) + ε, where q is dimension of the subspace

spanned by learned source representations and ε is a constant

that captures the approximation error when utilizing source

representations for the target model (c.f. Assumption 1). This

provides a gain in sample complexity compared to the baseline

O(d/nT ) when learning the target model from scratch when the

given source representations span a subspace of dimension much

smaller than d (i.e. q � d). For the case when all representa-

tions are the same (ε = 0), we recover the result of [9] for a

single common representation. Similarly, for the overall model

obtained after the second phase, we provide conditions on the

target data distribution and the source/target representations that

lead to an excess risk much smaller than O(d/nT ). Thus, we

theoretically demonstrate the benefit of leveraging pre-trained

models for linear regression.

A. Related Work

The problem of learning with few samples has been stud-

ied under the framework of Few-Shot learning, where Meta-

learning– using experiences from previously encountered learn-

ing tasks to adapt to new tasks quickly [20], and Transfer-

learning– transferring model parameters and employing pre-

training or fine-tuning methods [3], are two major approaches.

Theoretical works on Meta-learning algorithms typically as-

sume some relation between the distribution of source and target

tasks, for e.g., being sampled from the same task distribution.

A more general framework is that of Out-of-Domain (OOD)

generalization, where the goal is to learn models in a manner

that generalize well to unseen data domains [21].

Transfer learning, especially, representation transfer learning

has shown empirical success for large-scale machine learn-

ing [2], however, theoretical works on understanding general-

ization in this setting are few; see [12], [22], [23]. A related

line of work is representation learning in context of Domain

Adaptation (DA), see for e.g. [24], [25], [26], [27], [28]. How-

ever, this usually assumes that source and data domains can be

accessed simultaneously. There are deviations from this theme

in Multi-Source DA where the goal is to understand how multiple

source models can be combined to generalize well on a target

domain of interest, although without changing the learned model

based on the target samples [29], [30], [31].

In context of leveraging pre-trained models for linear re-

gression, our work is most closely related to [9], [10] that

theoretically analyze representation transfer for linear models.

In contrast to [9], we allow for the true target representations to

be different among the source models as well as the target, and

introduce a notion of closeness between these representations

(c.f. Assumption 1). Although a similar setting was considered

in [10] where representations are assumed to be close in the

�2 norm, their resulting bound for the fine-tuned model risk

shows that the required number of target samples scale with

the dimension of the learned model for efficient transfer [10,

Theorem 3.1]. In contrast, the proposed method in our work

provides analysis relating these bounds to the properties of the

target data distribution taking inspiration from works on benign

overfitting for linear regression [15], [19], [32]. This enables us

to identify conditions on the target data distribution that allow

the required target samples to be much smaller than the overall

model dimension (see Theorem 2).

B. Paper Organization

We set up the problem and define the notation we use

throughout the paper in Section II. Section III describes our

training method for the target task model when given access

to multiple pre-trained source models. Section IV establishes

excess risk bounds of our proposed scheme, which are proved

in Sections V and VI. Section VII provides numerical results

and some concluding remarks are presented in Section VIII.

II. PROBLEM SETUP AND NOTATION

Notation: We use boldface for vectors and matrices, with

matrices in uppercase. For a matrix A, we denote the projection

matrix onto its column space by PA := A(A�A)†A� where

W† denotes the Moore-Penrose pseudo-inverse of the matrix

W. We defineP⊥
A := I−PA, where I denotes the identity ma-

trix of appropriate dimensions. We denote by C(A) the column

space of a matrix A and by σi(A), λi(A) its ith largest singular

value and eigenvalue, respectively. ‖.‖F denotes the Frobenius

norm. For a vector v, ‖v‖2 denotes the �2 norm, while for a

matrix V, ‖V‖2 denotes the spectral norm. Tr[ . ] denotes the

trace operation. � denotes the inequality sign where we ignore

the constant factors. The notation O is the ‘big-O’ notation and

we define [m] = {1, 2, . . . ,m}.

Setup: We consider m number of source tasks and a single

target task. We denote byX ⊆ Rd the space of inputs andY ⊆ R

the output space. The source and target tasks are associated with

data distributions pi, i ∈ [m] and pT , respectively, over the space

X . We assume a linear relationship between the input and output

pairs for source task i ∈ [m] given by:

yi = x�
i B

∗
iw

∗
i + zi, θ

∗
i := B∗

iw
∗
i (1)

where xi ∈ X denotes an input feature vector drawn from

distribution pi, yi ∈ Y is the output, and zi ∼ N (0, σ2) denotes

Gaussian noise. The associated true task parameter θ∗
i := B∗

iw
∗
i

is comprised of the representation matrix B∗
i ∈ Rd×k which

maps the input to a lower k−dimensional space (where k � d)
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and a head vector w∗
i ∈ Rk mapping the intermediate sam-

ple representation to the output1. The data generation process

for the target task is defined similarly with distribution pT
and associated target task parameter given by θ

∗
T = B∗

Tw
∗
T .

For sources i ∈ [m], we define the input covariance matrix

Σi = Exi∼pi
[xix

�
i ] and similarly for the target distribution,

ΣT = ExT∼pT
[xTx

�
T ].

In our scenario of interest, the pre-trained models are trained

‘offline’ on source distributions and are made available to the

target task during deployment. That is, for training the target

task, we have access to only the models learned by the source

tasks and not the source datasets themselves. For learning the

pre-trained source models, we assume nS number of samples

for each of the source tasks (thus, mnS source task samples

in total) denoted by the pair (Xi,yi) for source i ∈ [m] where

Xi ∈ RnS×d contains row-wise input feature vectors and yi ∈
RnS is the vector of corresponding outputs. We similarly have

nT samples (XT ,yT ) for the target task where nT � nS . We

also assume nT � d.

With the data generation process defined above, we now define

the expected population risk on the target distribution for θ̂:

R(θ̂) = Ex∼pT
Ey|x�θ∗

T
[(y − x�

θ̂)2]

Our goal is to learn a model θ̂ for the target task that general-

izes well to the target data distribution. Thus, we want θ̂ that

minimizes the Expected Excess Risk defined by:

EER(θ̂,θ∗
T ) := R(θ̂)−R(θ∗

T ) (2)

Since we are given access to only nT � d target samples, it is

infeasible to learn a predictor from scratch that performs well

for the excess risk defined in (2).

To aid learning on the target, we have access to models learned

on the source tasks. Specifically, the target has access to the

trained source models representations {B̂i}mi=1 that are solutions

of the following empirical minimization problem:

{B̂i, ŵi}mi=1 ← min
{Bi},{wi}

1

mnS

m∑

i=1

‖yi −XiBiwi‖22 (3)

Since we have data rich source domains (nS � d), we expect

the obtained source models B̂iŵi to be close to θ
∗
i for i ∈ [m]

(c.f. (1)). For effective representation transfer, we also want

the learned representations {B̂i} to be close to the true rep-

resentations {B∗
i}, in the sense that they approximately span

the same subspace2. We make this notion precise in Lemma 1

stated with our main results in Section IV. Given access to the

source model representations, our proposed method for training

the target model leverages the representation maps {B̂i}mi=1

to drastically reduce the sample complexity. We describe our

1Our formulation is more general than the one in [9], which considers the same
representation matrices for the source and the target tasks, that is {B∗

i
}m
i=1

=
B

∗
T

= B
∗. The formulation considered in [10] allows for different values of

the B
∗
i

among the source domains, imposing a structure on the representation
matrices: B∗

i
= B+∆i with ||∆i||F ≤ δ0 for i ∈ [m].

2Due to the bi-linear nature of the problem, multiple B̂i and ŵi may satisfy the

product θ̂i = B̂iŵi. We provide a note on this technical aspect of the problem
in Section V.

training method in Section III and provide the excess risk bounds

for the resulting target model in Section IV.

III. LEARNING WITH MULTIPLE PRE-TRAINED MODELS

To leverage source representations for training the target

model, it is instinctive that there should be a notion of closeness

between the true source and target model representation that can

be exploited for target task training. We now make this notion

precise. We first define as V∗ ∈ Rd×l the matrix whose columns

are an orthonormal basis of the set of columns of all the source

representation matrices {B∗
i}mi=1. The individual source models

can thus be represented by θ
∗
i = V∗w̃∗

i for all i ∈ [m]. The

target model θ∗
T = B∗

Tw
∗
T governing the target data generation

is assumed to satisfy the following:

Assumption 1: Consider the projection of the target model

B∗
Tw

∗
T to space C(V∗) given by V∗w̃∗

T for some w̃∗
T ∈ Rl.

Then for some ε > 0, we have:

Ex∼pT

[
x�V∗w̃∗

T − x�B∗
Tw

∗
T

]2 ≤ ε2

The value of ε in Assumption 1 above captures how far away

the output of the true target model is to a model learned using

the true source representations. Note that if the columns of B∗
T

can be constructed by the vectors in V∗, the above is satisfied

for ε = 0. Assumption 1 can also be re-written as:

∥∥∥Σ1/2
T (V∗w̃∗

T −B∗
Tw

∗
T )
∥∥∥
2

2
≤ ε2 (4)

We are given access to nT samples for the target machine given

by (XT ,yT ) and pre-trained models representations from the

sources {B̂i}mi=1 (c.f. (3)). Our proposed training scheme con-

sists of two phases, which we will now describe independently

in the following. We split the available nT target samples into

nT1
, nT2

for the two respective phases. At a high level, in Phase

1, we make use of the available source representations to con-

struct a target representation and adapt it to the target task using

nT1
samples. The obtained model is then used as an initialization

for Phase 2 where we train the entire (over-parameterized)

model, including the representation matrix, using nT2
samples.

We provide the resulting excess risk bounds for the model

obtained after Phase 1 and the final target model after Phase

2 in Section IV.

A. Phase 1: Transferring Source Representation to Target

In the context of utilizing pre-trained models, we will make

use of the empirical source representations {B̂i}mi=1 to learn

the target model. We first construct a matrix V̂ ∈ Rd×q whose

columns are the orthonormal basis of the columns of {B̂i}mi=1

which denotes a dictionary of the learned source representation

matrices3. Note that we have q ≤ mk. Having constructed the

representation, we train a head vector ŵT1
∈ Rq minimizing the

3The construction of V̂ from {B̂i} can be done by the Gram-Schmidt process.
This can be done in the pre-deployment phase after training the source models,

and V̂ can be made available directly to the target task.
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empirical risk on nT1
samples:

ŵT1
← min

wT∈Rq

1

nT1

∥∥∥yT1
−XT1

V̂wT

∥∥∥
2

2
(5)

Here, yT1
∈ RnT1 denotes the first nT1

values of yT and XT1
∈

RnT1
×d the first nT1

rows of XT . We denote the resulting model

at the end of this phase by θPhase1 := V̂ŵT1
. Since we only have

to learn the head vector using the available representation V̂,

the sample complexity requirement is greatly reduced, which is

also evident from our bound for EER(θPhase1 ,θ
∗
T ) provided in

Theorem 1.

B. Phase 2: Fine-Tuning With Initialization

The obtained model θPhase1 from the previous phase utilizes

empirical source representation for its construction. However,

the true target model θ∗
T may not lie in the space spanned by the

source representation and thus θPhase1 lies in a ball centered θ
∗
T

whose radius scales with ε (c.f. Assumption 5). To move towards

the true model θ∗
T , we utilize nT2

number of target samples

(independent from thenT1
samples in the previous phase) to train

the entire linear model using Gradient Descent (GD) withθPhase1

as the initialization. In particular, the GD procedure minimizes

the following starting from θPhase1 :

f(θ) =
1

nT2

‖yT2
−XT2

θ‖22 (6)

Here, yT2
∈ RnT2 and XT2

∈ RnT2
×d are the remaining sam-

ple values from Phase 1. Since nT2
� d, we are in an over-

parameterized regime, for which it is known that GD procedure

optimizing the objective in (6) converges, under appropriate

choice of learning rate, to a solution closest in norm to the

initialization [18], [19], [33], [34]; mathematically:

min
θ

‖θ − θPhase1‖2

s.t. ‖yT2
−XT2

θ‖2 = min
b

‖yT2
−XT2

b‖2 (7)

We denote the solution of the above optimization problem as

θPhase2 , which forms our final target task model. We provide

bounds for EER(θPhase2 ,θ
∗
T ) in Theorem 2.

IV. MAIN RESULTS

We now provide theoretical bounds on the excess risk for

the target (c.f. (2)) when leveraging pre-trained source mod-

els. In Section IV-A, we first state excess risk bounds for the

model obtained after Phase 1 (see Section III-A), denoted by

θPhase1 := V̂ŵT , where target representation V̂ is constructed

as a combination of source representations and adapted to the

target data using nT1
amount of target samples by training a

target-specific head vector ŵT . In Section IV-B, we provide our

overall excess risk for the model θPhase2 (c.f. (7)) obtained by

re-training the entire (over-parameterized) model via Gradient

Descent with nT2
number of target samples (independent form

the previously utilized nT1
samples) using θPhase1 as the initial-

ization.

A. Theoretical Results for Representation Transfer: Phase 1

We work with the following assumptions:

Assumption 2 (Subgaussian features): We assume that

Ex∼pj
[x] = 0 for all j ∈ [m] ∪ {T}. We consider p̄j to be the

whitening of pj (for j ∈ [m] ∪ {T}) such that Ex̄∼p̄j
[x] = 0

and Ex̄∼p̄j
[x̄x̄�] = I. We assume there exists ρ > 0 such that

the random vector x̄ ∼ p̄j is ρ2-subgaussian.

Assumption 3 (Covariance Dominance): There exists r > 0
such that Σi � rΣT for all i ∈ [m].

Assumption 4 (Diverse source tasks): Consider the source

models θ
∗
i = V∗w̃∗

i for i ∈ [m]. We assume that the matrix

W̃∗ := [w̃∗
1, . . . , w̃

∗
m] ∈ Rl×m satisfies σ2

l (W̃
∗) ≥ Ω(ml )

Assumption 5 (Distribution of target task): We assume that

w̃∗
T follows a distribution ν such that ‖Ew̃∼ν [w̃w̃�]‖2 is O( 1l ).

We denote Σw̃∗
T
= Ew̃∼ν [w̃w̃�].

Note on Assumptions: Assumption 2 on sub-Gaussian fea-

tures is commonly used in literature to obtain probabilistic tail

bounds [9], [10], [15], [32]. Following [9], Assumption 3 states

the target data covariance matrix is covered by the covariance

matrices of the source data distributions. We remark that this

assumption allows the covariance matrices to be different, in

contrast to works [10], [11] that assume a common covariance

matrix for all the distributions. Assumption 4 (also made in

related works [9], [10], [35]) says that the head vectors cor-

responding to the matrix V∗ for each source model should

span Rl. This effectively allows us to recover the representation

V∗ provided enough source machines (m > l) that individually

capture one or more features of V∗. This assumption is also

central to proving our result in Lemma 1 provided below which

show that the matrices V̂ and V∗, whose columns form an

orthonormal basis for the span of {B̂i} and {B∗
i}, respectively,

span the same subspace for constructing the target model.

Lemma 1: Let matrix V̂ ∈ Rd×q be formed by empirical

source representations {B̂i} obtained from solving (3) and the

matrix V∗ ∈ Rd×l formed from the true representations {B∗
i}.

Under Assumptions 2–4, for any b ∈ Rl such that ‖b‖2 = 1,

ns � ρ4(d+ log(m/δ)) and nT1
� ρ4(max{l, q}+ log(1/δ)),

with probability at-least 1− δ1, we have:

min
u∈Rq

‖XT1
V̂u−XT1

V∗b‖2

≤ σ2nT1

rnS

(
km+ kdm log(κns) + log

(
1

δ1

))

A proof of the lemma above is provided in Section V. We now

state our main result for the excess risk on after Phase 1.

Theorem 1 (Phase 1 training result): Fix a failure probability

δ ∈ (0, 1) and further assume 2k ≤ min{d,m} and the num-

ber of samples in the sources and target satisfy ns � ρ4(d+
log(m/δ)) and nT1

� ρ4(max{l, q}+ log(1/δ)), respectively.

Define κ =
maxi∈[m] λmax(Σi)

mini∈[m] λmin(Σi)
where λmax(Σi) denotes the max-

imum eigenvalue ofΣi. Then with probability at least 1− δ over

the samples, under Assumptions 1–5, the expected excess risk
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of θPhase1 := V̂ŵ satisfies:

E[EER(θPhase1 ,θ
∗
T )] �

σ2

nT1

(q + log(1/δ)) + ε2

+ σ2

[
1

rnsm
log

(
1

δ

)
+

(
kd log(κns) + k

rns

)]

where expectation is taken over w̃∗
T for the target task (c.f.

Assumption 5). We provide proof for Theorem 1 in Section V.

Discussion: The bound in Theorem 1 shows the population

risk of the learned model θPhase1 lies in a ball centered at the

true target model risk R(θ∗
T ) with radius ε2, which represents

the approximation error for using source representations for the

target task (see Assumption 1). Note that the expected excess

risk scales as O(q/nT1
) with respect to the number of target

samples when the representation is learned from the source

representations. This demonstrates a sample gain compared to

the baseline ofO(d/nT1
) for learning the entire model (including

representation) with the target data when q � d, that is, when

the empirical source representations together span a subspace of

dimension much smaller than d. For the case when source and

target representations are all the same, B∗
T = B∗

i = B∗ ∈ Rd×k

for all i ∈ [m], the excess risk scales asO(k/nT1
), which recovers

the result of [9].

B. Theoretical Results for Overall Scheme: Phase1 + Phase2

We require the following additional assumptions:

Assumption 6: The rows of the target data matrix XT are

linearly independent.

Assumption 7: The Gradient Descent procedure to optimize

(6) converges to θPhase2 with f(θPhase2) = 0.

Assumption 6 is typically made in literature for analysis in

the over-parameterized regime for linear regression, see [15],

and can also be relaxed to hold with high probability instead

and incorporated in the analysis [32]. Assumption 7 holds in our

setting as the objective in (6) is strongly convex and smooth for

which GD can converge to the optimum [36].

Theorem 2 (Phase 1 + Phase 2 training result): Consider

obtaining the final target model by using nT1
samples during

Phase 1 for representation transfer and then fine-tuning in Phase

2 withnT2
samples (independently drawn from Phase 1). Denote

the eigenvalues of the covariance matrix of the underlying data

ΣT by {λi}di=1. Then under Assumptions 1–7, the excess risk

of the final parameter θ̂T := θPhase2 is bounded as follows with

probability at least 1− δ:

E[EER(θ̂T ,θ
∗
T )] �

λ1

λd

r0(ΣT )

nT2

(
σ2

nT1

(q + log(1/δ)) + ε2
)

+ rσ2 log

(
1

δ

)(
k∗

nT2

+
nT2

Rk∗(ΣT )

)

+
λ1σ

2

λd

r0(ΣT )

nT2

(
1

rnsm
log

(
1

δ

)
+

(
kd log(κns) + k

rns

))

where rk(ΣT ) =
Σi>kλi

λk+1
, Rk∗(ΣT ) =

(Σi>kλi)
2

Σi>kλ
2
i

. Here, constant

b > 1 and k∗ = min{k ≥ 0 : rk(Σ) ≥ bnT2
}with k∗ ≤ nT2

c1
for

some universal constant c1 > 1.

We provide a proof for Theorem 2 in Section VI.

Discussion: Theorem 2 shows the excess risk of our overall

target model (θ̂T = θPhase2 ) as a function of the number of

samples nS , nT1
, nT2

and parameters depending on the target

data covariance matrix, ΣT . Since we re-train the entire model

(including the representation) withnT2
target samples, the popu-

lation risk of the learned model R(θPhase2) can be made closer to

the true riskR(θ∗
T ) by increasing nT2

, which is in contrast to the

result of Theorem 1 which shows closeness only in an ε2 radius

ball due to using source representation directly to construct the

target model.

We now provide a baseline comparison to the standard linear

regression scenario where we do no utilize any source models

and instead learn the target task model from scratch using the

available nT = nT1
+ nT2

samples. The excess risk in this set-

ting isO(σ
2d

nT
). If the number of source samples are large enough

(nS � d) to get a good empirical performance on the source

models (c.f. (3)), the bound from Theorem 2 demonstrates a

sample gain compared to the baseline when:

λ1

λd

r0(ΣT )

nT2

(
σ2

nT1

(q + log(1/δ)) + ε2
)

+ cσ2 log

(
1

δ

)(
k∗

nT2

+
nT2

Rk∗(ΣT )

)
� σ2d

nT1
+ nT2

(8)

It can be seen that for the above relation to hold, we require:
� The target data covariance matrix ΣT should be such that

the term Rk∗(ΣT ) is much larger than nT2
, and k∗ � nT2

.

This is satisfied, for e.g., in the case when eigenvalues of

ΣT decay slowly from largest to smallest, and are all larger

than a small constant [15].
� Using the definition of r0(ΣT ) =

∑d
i=1 λi/λ1, the following

provides a sufficient condition the first term on the L.H.S.

of (8):

q
∑d

i=1 λi

nT1
nT2

λd
� d

nT1
+ nT2

This, is turn, imposes the following restriction on q, which

is the dimension of the subspace formed by the source

representations {B̂i}:

q � dλdnT1
nT2

(
∑d

i=1 λi)(nT1
+ nT2

)
(9)

SincenT1
+ nT2

= nT , it is easy to check that the R.H.S. of

(9) is maximized whennT1
= nT2

= n/2. With this optimal

splitting of the target samples for each of the phases, we

require q � dλdnT

2
∑

i=1 λi
for the inequality in (8).

V. PROOF FOR PHASE 1 TRAINING

We now provide the proof for Theorem 1 which establishes a

generalization bound for the learned model formed by leveraging

the pre-trained source models.
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We first comment on the solutions obtained from the opti-

mization problem pertaining ot the source tasks and comment

on their efficacy to the representation transfer setup.

Note on the solutions for Source Training (3):

The solution for the bi-linear optimization problem for the

source training in (3) can allow for any solution of the form

B̂iŵi = θ̂i for i ∈ [m]where multiple B̂i and ŵi may satisfy the

product. Crucial to our transfer process is Assumption 4 which

considers that we have enough source domains to reconstruct the

underlying representation matrix V∗ from the individual source

models.

For the sake of argument, consider the scenario where we

have a large number of source samples for each source do-

main. Then, solving the optimization problem leads to solutions

θ
∗
i = B∗

iw
∗
i . Assume that from solving (3), we obtain Bo

∗

and wo
∗ such that Bo

∗wo
∗ = B∗

iw
∗
i = θ

∗
i . First consider the

matrix V∗
o ∈ Rd×p as the matrix formed by the basis of spans

of the columns of {B∗
oi}mi=1. Then, as per the definition of θ∗

i

there exists W̃o

∗
∈ Rp×m with ith column as w̃o

∗
i satisfying

V∗
ow̃o

∗
i = θ∗i , and thus,V∗

oW̃o

∗
= [θ∗

1,θ
∗
2, . . . ,θ

∗
m] = V∗W̃∗.

From Assumption 4, it follows that C(V∗W̃∗) = C(V∗) and

thus C(V∗
o) ⊇ C(V∗), which implies that we are transferring

the column space of the true underlying representation matrix

to the target domain.

Thus, as long as we solve the problem in (3) yielding the

source representations matrices {B̂i} that contain, in their span,

a good estimate of the true underlying source model θ∗
i , we can

leverage the transferred representation matrix formed from the

matrices {B̂i} to get a good estimate of the target model (c.f.

Assumption 1).

We now note the following results from [9] that will enable

us to prove Theorem 1 later in Section V-B (and Theorem 2 in

Section VI).

Claim 1 (Covariance of Source distribution, Claim A.1 of [9]):

Supposens � ρ4(d+ log(m/δ)) for δ ∈ (0, 1). Then with prob-

ability at least 1− δ
10 over the inputs X1, . . . ,Xm in the source

tasks, for all i ∈ [m] we have

0.9Σi �
1

ns
X�

i Xi � 1.1Σi

Claim 2 (Covariance Target distribution, Claim A.2 of [9]):

Suppose nT � ρ4(k + log(1/δ)) for δ ∈ (0, 1). The for any

given matrix B ∈ Rd×2k that is independent of XT , with prob-

ability at least 1− δ
20 over target data XT , we have

0.9B�ΣTB � 1

nT
B�X�

TXTB � 1.1B�ΣTB

Proposition 1 (Lemma A.7 from [9]): For matrices A1,A2

(with same number of columns) such that A�
1A1 � A�

2A2 and

for matrices B1,B2 of compatible dimensions, we have:

∥∥P⊥
A1B1

A1B2

∥∥2
F
≥
∥∥P⊥

A2B1
A2B2

∥∥2
F

Proposition 2: Consider matrices A ∈ Ra×b and B ∈ Rb×c.

Then for any u ∈ Ra, we have:

‖P⊥
Au‖22 ≤ ‖P⊥

ABu‖22

Proof: For given A ∈ Ra×b and B ∈ Rb×c and u ∈ Ra:

‖P⊥
Au‖22 = min

r∈Rb
‖Ar− u‖22

≤ min
r∈C(B)

‖Ar− u‖22

= min
s∈Rc

‖ABs− u‖22

= ‖P⊥
ABu‖22

A. Some Important Results

We now provide proof of results used to establish the resulting

bound for Phase 1 training provided in Theorem 1, which is

proved later in Section V-B. These results provide guarantees on

empirical training of the source models (c.f. Lemma 2) as well as

the performance of empirically learned source representations

on the target data (c.f. Lemma 1).

These results would also be useful for the proof of Theorem 2

presented later in Section VI.

1) Proof of Lemma 1: We first prove Lemma 1 which estab-

lishes a bound on using the learned empirical representation V̂

on the target data.

[Restating Lemma 1] Consider the matrix V̂ ∈ Rd×q formed

by empirical source representations {B̂i} obtained from solving

(3) and the matrix V∗ ∈ Rd×l formed from the true representa-

tions {B∗
i}. For anyb ∈ Rl such that ‖b‖2 = 1, with probability

at-least 1− δ1, we have:

min
u∈Rq

‖XT V̂u−XTV
∗b‖2

≤ σ2nT

rnS

(
km+ kdm log(κns) + log

(
1

δ1

))

Proof: We first note that:

‖P⊥
XT V̂

XTV
∗b‖2 := min

u∈Rq
‖XT V̂u−XTV

∗b‖2

Using the fact that {w̃i} span the space Rl, we can write b =

W̃∗
α for some α ∈ Rm where α is O(1). We have:

‖P⊥
XT V̂

XTV
∗b‖22 = ‖P⊥

XT V̂
XTV

∗W̃∗
α‖22

� ‖P⊥
XT V̂

XTV
∗W̃∗‖2F

=
m∑

i=1

‖P⊥
XT V̂

XTV
∗w̃∗

i‖22

(a)

� nT

m∑

i=1

‖P⊥
Σ

1/2
T V̂

Σ
1/2
T V∗w̃∗

i‖22

(b)

�
nT

r

m∑

i=1

‖P⊥
Σ

1/2
i V̂

Σ
1/2
i V∗w̃∗

i‖22

(c)

�
nT

rnS

m∑

i=1

‖P⊥
XiV̂

XiV
∗w̃∗

i‖22 (10)

where (a) follows from Claim 2 (with B = [V̂ −V∗]), (b)
follows from Assumption 3 and (c) from Claim 1. We now note

that V∗w̃∗
i = B∗

iw
∗
i . We now note that V̂ is the matrix whose
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columns are an orthonormal basis of the set of columns of the

matrices {B̂i}. Thus for each i ∈ [m], there exists a matrix Ci

such that B̂i = V̂Ci. Now using the result of Proposition 2 we

have:

‖P⊥
XT V̂

XTV
∗b‖22

Prop.˜2

�
nT

rns

m∑

i=1

∥∥∥P⊥
XiB̂i

XiB
∗
iw

∗
i

∥∥∥
2

2

≤ nT

rns

m∑

i=1

∥∥∥PXiB̂i
(XiB

∗
iw

∗
i + zi)−XiB

∗
iw

∗
i

∥∥∥
2

2

=
nT

rns

m∑

i=1

∥∥∥PXiB̂i
yi −XiB

∗
iw

∗
i

∥∥∥
2

2

=
nT

rns

m∑

i=1

∥∥∥XiB̂iŵi −XiB
∗
iw

∗
i

∥∥∥
2

2

The proof can then be concluded by using the result from

Lemma 2 stated below that provides a bound for the trained

empirical source models in (3).

We now provide Lemma 2 which establishes guarantees on

the learned empirical source models.

Lemma 2 (Multi-Source training guarantee): With probabil-

ity at least 1− δ
5 , we have:

m∑

i=1

∥∥∥Xi(B̂iŵi −B∗
iw

∗
i )
∥∥∥
2

2

≤ σ2

(
km+ kdm log(κns) + log

(
1

δ

))

Proof: First we instantiate Claim 1, which happens with prob-

ability atleast 1− δ
10 . For the given source datasets and matrix

A ∈ Rd×m with columns {ai}, we define the map X (A) as

X (A) = [X1a1 X2a2 . . . Xmam]. Now consider the matrix

∆ ∈ Rd×m whose columns are given by {B̂iŵi −B∗
iw

∗
i}mi=1.

For convenience of notation, we define X (∆) := [X1(B̂1ŵ1 −
B∗

1w
∗
1) . . . Xm(B̂mŵm −B∗

mw∗
m)]. We are interested in

providing a bound for the quantity ‖X (∆)‖2F . The ith column

of the matrix ∆ can be decomposed as Riri where Ri ∈ Od×2k

(set of tall orthonormal matrices in d× 2k) and ri ∈ R2k.

∆ = [R1r1 R2r2 . . . Rmrm]

For each i ∈ [m], we now decompose XiRi = UiQi (where

Ui ∈ Ons×2k and Q ∈ R2k×2k). Since {B̂i, ŵi}mi=1 are the

optimal solutions for the source regression problems, we

have
∑m

i=1 ‖yi −XiB̂iŵi‖22 ≤∑m
i=1 ‖yi −XiB

∗
iw

∗
i‖22. Sub-

stituting yi = XiB
∗
iw

∗
i + zi for i ∈ [m], we get ‖X (∆)‖2F ≤

2 〈Z,X (∆)〉 (where the inner product of matrices is trace of

their product) and we denote the matrix of noise vectors as

Z := [z1 z2 . . . zm] ∈ Rns×m. Now:

〈Z,X (∆)〉 =

m∑

i=1

z�i XiRiri =

m∑

i=1

z�i UiQiri (11)

≤
m∑

i=1

∥∥U�
i zi
∥∥
2
‖Qiri‖2

≤
√∑m

i=1

∥∥U�
i zi
∥∥
2

√∑m

i=1
‖UiQiri‖2

=

√∑m

i=1

∥∥U�
i zi
∥∥
2
‖X (∆)‖F (12)

We will now provide a bound for the first term in the prod-

uct on the R.H.S. of (12). Since Ui depends on Ri, it also

depends on the value of Z. To provide a bound, we use an

ε-net argument to cover all possible values of {Ri}mi=1. We

first consider a fixed set of matrices {R̄i}mi=1 ⊂ Om
d×2k. For

these given matrices, we can find decompose XiR̄i = ŪiQi

for i ∈ [m], where {Ūi}mi=1 ⊂ Om
nT×2k do not depend on Z.

Thus we have 1
σ2

∑m
i=1 ‖U�

i zi‖2 ∼ χ2(2 km). Thus w.p at least

1− δ′, we have:

m∑

i=1

∥∥U�
i zi
∥∥
2
� σ2

(
km+ log

(
1

δ′

))
(13)

Hence for the given {R̄i}mi=1, using the result from (13) in (12),

we have:

〈
Z,X (∆̄)

〉
� σ2

(
km+ log

(
1

δ′

))
‖X (∆̄)‖F

where ∆̄ = [R̄1r1 R̄2r2 . . . R̄mrm]. Now we consider an
ε
m -net of Om

d×2k denoted by N of size |N | ≤ ( 6m
√
2k

ε )2kdm.
Using the union bound, with probability at least 1− |N |δ′:
〈
Z,X (∆̄)

〉
�σ2

(
km+ log

(
1

δ′

))
‖X (∆̄)‖F , ∀{R̄i}mi=1 ⊂ N

(14)

Choose δ′ = δ

20( 6m
√
2k

ε )2kdm
, then the above holds with probabil-

ity at least 1− δ
20 . We will now use the results from the following

claim, which is proved in Section V-A2 below.

Claim 3: Under the assumptions of Theorem 1, the following

hold:

1) W.p at least 1− δ
20 , ‖Z‖2F � σ2(nsm+ log( 1δ ))

2) If the result in 1) holds and Claim 1 holds, then ‖∆‖2F �
σ2(nsm+log( 1

δ ))

nsλlow
where λlow = mini∈[m] λmin(Σi)

3) If the results in 1), 2) above hold and Claim 1 holds,

then ‖X ([R1r1 . . .Rmrm]− [R̄1r1 . . . R̄mrm])‖ �
κε2

m2 σ
2(nsm+ log( 1δ )) for some {R̄i} ⊂ N where κ =

maxi∈[m] λmin(Σi)

mini∈[m] λmin(Σi)

We now use the results of the Claim 3 to complete the proof of

the lemma. We note that there exists some ∆̄with {R̄i}mi=1 ⊂ N
such that:

1

2
‖X (∆)‖2F ≤ 〈Z,X (∆)〉

=
〈
Z,X (∆̄)

〉
+
〈
Z,X (∆− ∆̄)

〉

(a)

� σ

√(
km+ log

(
1

δ′

))
.‖X (∆̄)‖2F + ‖Z‖F ‖X (∆−∆̄)‖F

(b)

≤ σ

√(
km+ log

(
1

δ′

))
.
(
‖X (∆)‖F + ‖X (∆−∆̄)‖F

)
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+ σ

√(
nsm+ log

(
1

δ

))
‖X (∆− ∆̄)‖F

(c)

� σ‖X (∆)‖F

√(
km+ log

(
1

δ′

))

+

√
κε

m
σ2

(
nsm+ log

(
1

δ′

))

where (a) follows from (14) w.p ≥ 1− δ
20 , (b) from 1) in

Claim 3); w.p.≥ 1− δ
20 and (c)uses the fact that δ′ < δ, k ≤ ns,

and 3) in Claim 3. Since the above result gives an inequality

in terms of ‖X (∆)‖2F and ‖X (∆)‖F , we can conclude the

following:

‖X (∆)‖F � max

{
σ

√(
km+ log

(
1

δ′

))
,

σ

√√
κε

m

(
nsm+ log

(
1

δ′

))}

We choose ε = km
ns

√
κ

, and note that nS � k, which gives:

‖X (∆)‖F ≤ σ

√(
km+ log

(
1

δ′

))

Substituting the value of δ′ = δ

20( 6m
√
2k

ε )2kdm
and ε = km

ns
√
κ

:

‖X (∆)‖F � σ

√
km+ kdm log

(
mk

ε

)
+ log

(
1

δ

)

≤ σ

√
km+ kdm log (nsκ) + log

(
1

δ

)

Hence the following holds with probability at least 1 - ( δ
10 +

δ
20 + δ

20 ):

‖X (∆)‖2F � σ2

[
km+ kdm log (nsκ) + log

(
1

δ

)]

2) Proof of Claim 3:

1) This follows from the fact that 1
σ2 ‖Z‖2F ∼ χ(nsm)

2)

‖X (∆)‖2F =

m∑

i=1

‖Xi(B̂iŵi0 −B∗
iw

∗
i )‖22

=
m∑

i=1

(B̂iŵi0 −B∗
iw

∗
i )

�X�
i Xi(B̂iŵi0 −B∗

iw
∗
i )

� ns

m∑

i=1

(B̂iŵi0 −B∗
iw

∗
i )

�Σi(B̂iŵi0 −B∗
iw

∗
i )

≥ ns

m∑

i=1

λmin(Σi)‖(B̂iŵi0 −B∗
iw

∗
i )‖22

≥ nsλlow‖∆‖2F

where λlow := mini∈[m] λmin(Σi). Since ‖X (∆)‖2F ≤
2 〈Z,X (∆)〉 ≤ 2‖Z‖F ‖X (∆)‖F , we have ‖X (∆)‖F ≤
2‖Z‖F . Using the result from part 1. of the claim statement

combined with the upper bound derived above, we have:

‖∆‖2F �
σ2

nsλlow

(
nsm+ log

(
1

δ

))

3) For some {R̄i} ⊂ N we have
∑m

i=1 ‖Ri − R̄i‖F ≤∑m
i=1

ε
m = ε. Therefore:

‖X (∆−∆̄)‖2F =
m∑

i=1

‖Xi(Ri − R̄i)ri‖22

≤
m∑

i=1

‖Xi‖22‖Ri − R̄i‖2F ‖ri‖22

�
nsε

2

m2

m∑

i=1

‖Σi‖22‖ri‖22

�
nsε

2
λhigh

m2

m∑

i=1

‖ri‖22

(a)
=

nsε
2
λhigh

m2
‖∆‖2F

(b)

�
nsε

2
λhigh

m2

σ2(nsm+ log( 1δ ))

nsλlow

=
κε2λhighσ

2

m2λlow

(
nsm+ log

(
1

δ

))

Here, λhigh := maxi∈[m] λmax(Σi)where to arrive at (a),
we have used the fact that {Ri} have orthonormal columns

and used the definition of ∆, and (b) follows from using

2) from the claim statement.

B. Proof of Theorem 1

Having established the helper results above, we now provide

a proof for Theorem 1.

[Restating Theorem 1] Fix a failure probability δ ∈ (0, 1)
and further assume 2k ≤ min{d,m} and the number of sam-

ples in the sources and target satisfy ns � ρ4(d+ log(m/δ))
and nT1

� ρ4(max{l, q}+ log(1/δ)), respectively. Define κ =
maxi∈[m] λmax(Σi)

mini∈[m] λmin(Σi)
where λmax(Σi) denotes the maximum eigen-

value of Σi. Then with probability at least 1− δ over the

samples, under Assumptions 1–5, the expected excess risk of the

learned predictor ŵT on the target (x → x�V̂ŵT ) for Phase 1

satisfies:

E[EER(θPhase1 ,θ
∗
T )] �

σ2

nT1

(q + log(1/δ)) + ε2

+ σ2

[
1

rnsm
log

(
1

δ

)
+

(
kd log(κns) + k

rns

)]

Proof: We will first instantiate Lemma 1. We then instantiate

Lemma 2 twice, once with [V̂ −V∗] and the other time with

[B∗
T −V∗]. Then we assume that the result from Lemma 2

holds. All these events happen together with probability at least
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1− 2δ
5 . The expected error for the target distribution is given

by:

EER(θPhase1 ,θ
∗
T ) = Ex∼pT

[
x�B∗

Tw
∗
T − x�V̂ŵT

]2

=
∥∥∥Σ1/2

T

(
V̂ŵT −B∗

Tw
∗
T

)∥∥∥
2

2

�
∥∥∥Σ1/2

T

(
V̂ŵT −V∗w̃∗

T

)∥∥∥
2

2
+
∥∥∥Σ1/2

T (B∗
Tw

∗
T −V∗w̃∗

T )
∥∥∥
2

2

(a)

≤
∥∥∥Σ1/2

T

(
V̂ŵT −V∗w̃∗

T

)∥∥∥
2

2
+ ε2

(b)

�
1

nT

∥∥∥XT

(
V̂ŵT −V∗w̃∗

T

)∥∥∥
2

2
+ ε2

=
1

nT

∥∥∥PXT V̂
yT −XTV

∗w̃∗
T

∥∥∥
2

2
+ ε2

�
1

nT

∥∥∥PXT V̂
(XTV

∗w̃∗
T + zT )−XTV

∗w̃∗
T )
∥∥∥
2

2

+
1

nT

∥∥∥PXT V̂
(XTB

∗
Tw

∗
T −XTV

∗w̃∗
T )
∥∥∥
2

2
+ ε2

where (a) follows from Assumption 1 and (b) uses Claim 2.

Using the fact that ‖P
XT V̂

‖2 ≤ 1 (since P
XT V̂

is a projection

matrix) and using Claim 2, we have:

�
1

nT

∥∥∥PXT V̂
(XTV

∗w̃∗
T + zT )−XTV

∗w̃∗
T )
∥∥∥
2

2
+ ε2

�
1

nT

∥∥∥P⊥
XT V̂

XTV
∗w̃∗

T

∥∥∥
2

2
+ ε2 +

1

nT

∥∥∥PXT V̂
zT

∥∥∥
2

2

where the first inequality follows from Assumption 1 and

Claim 2. We can take the expectation over the distribution of

w∗
T and use Assumption 5 to yield:

Ew̃∗
T
[EER(θPhase1 ,θ

∗
T )] �

1

nT l

∥∥∥P⊥
XT V̂

XTV
∗
∥∥∥
2

F

+ ε2 +
1

nT

∥∥∥PXT V̂
zT

∥∥∥
2

2
(15)

We now make use of the following lemma, which is proved

below in Section V-B1 that provides a bound for the first term

in (15).

Lemma 3 (Target Training Guarantee): Assuming the results

in Claim 1, Claim 2 (with B = [V̂ −V∗]) and Lemma 2 hold,

we then have:
∥∥∥P⊥

XT V̂
XTV

∗
∥∥∥
2

F
�

nTσ
2

rnsσ2
l (W̃

∗)

×
(
km+kdm log(κns)+ log

(
1

δ

))

Substituting the result from Lemma 3 in (15) and using

σ2
l (W̃

∗) ≥ m
l , the following bound holds with probability at

least 1− 2δ
5 :

Ew̃∗
T
[EER(θPhase1 ,θ

∗
T )] �

1

nT

∥∥∥PXT V̂
zT

∥∥∥
2

2
+ ε2

+
1

rnsm
σ2

(
km+ kdm log(κns) + log

(
1

δ

))

Finally, the last term in above can be bounded by us-

ing a concentration inequality for χ2-squared distribution.

In particular, with probability at least 1− 3δ
5 we have

‖P
XT V̂

zT ‖22 � σ2(q + log(1/δ)). Thus the following bound

holds on Ew∗
T
[Err(B̂S ,w

∗
T )] with probability at least 1− δ:

Ew∗
T
[EER(θPhase1 ,θ

∗
T )] � ε2 +

1

nT
σ2(q + log(1/δ))

+
1

rnsm
σ2

(
km+ kdm log(κns) + log

(
1

δ

))

= σ2

[
1

rnsm
log

(
1

δ

)
+

(
kd log(κns) + k

rns

)]

+
σ2

nT
(q + log(1/δ))+ε2

1) Proof of Lemma 3: We start the proof by using Proposi-

tion 1 and Claim 2:

σ2
l (W̃

∗)‖P⊥
XT V̂

XTV
∗‖2F � σ2

l (W̃
∗)nT

∥∥∥∥P
⊥
Σ

1/2
T V̂

Σ
1/2
T V∗

∥∥∥∥
2

F

≤ nT

m∑

i=1

∥∥∥∥P
⊥
Σ

1/2
T V̂

Σ
1/2
T V∗w̃∗

i

∥∥∥∥
2

2

The proof now follows the same procedure as in Proof of

Lemma 1 starting from (10) and following it up with Lemma 2.

VI. PROOF FOR PHASE 2 TRAINING

We now provide a proof for our bound in Theorem 2 which

establishes excess generalization risk for the model obtained

after combined Phase 1 and Phase 2 training.

The data for Phase 2 training is given by (XT2
,yT2

)
where yT2

= XT2
B∗

Tw
∗
T + zT2

. Here θ
∗
T := B∗

Tw
∗ denotes

the true data generating target model. We define P‖ =
X�

T2
(XT2

X�
T2
)−1XT2

as projection matrix on the row-space of

matrix XT2
and P⊥ = I−P‖.

We first note the following result that establishes where the

Gradient Descent solution converges to, the proof of which is

given in Section VI-A1 below.

Lemma 4: Under the assumptions of Theorem 2, performing

gradient descent on the objective (6) with the initialization

θ
(0) := θPhase1 and learning rate η, yields the solution:

θGD := θ
(∞) = P‖θ

∗
T +P⊥θPhase1 +X�

T2
(XT2

X�
T2
)−1z

where P‖ = X�
T2
(XT2

X�
T2
)−1XT2

is the projection matrix on

the row-space of matrix XT2
and P⊥ = I−P‖.

A. Proof of Theorem 2

We now use the solution of the gradient descent θ̂T := θGD

derived in Lemma 4 and find the excess population risk. The

excess risk is given by:

EER(θ̂T ,θ
∗
T ) = EXT2

∼pT
(X�

T2
θ
∗
T −X�

T2
θGD)2

= EXT2
∼pT

Tr[(θ∗
T−θGD)�XT2

X�
T2
(θ∗

T−θGD)]

= ‖Σ1/2
T (θ∗

T − θGD)‖22
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Substituting the value of θGD from Lemma 4 we get:

EER(θ̂T ,θ
∗
T ) ≤ 2‖Σ1/2

T P⊥(θ
∗
T − θT0

)‖22
+ 2‖Σ1/2

T X�
T2
(XT2

X�
T2
)−1z‖22 (16)

We focus on the first term for now. We have:

‖Σ1/2
T P⊥(θ

∗
T − θT0

)‖22 = (θ∗
T − θT0

)�P�
⊥ΣTP⊥(θ

∗
T − θT0

)

= (θ∗
T − θT0

)�P�
⊥

(
ΣT − 1

nT
X�

T2
XT2

)
P⊥(θ

∗
T − θT0

)

=

∥∥∥∥∥

(
ΣT − 1

nT
X�

T2
XT2

)1/2

P⊥(θ
∗
T − θT0

)

∥∥∥∥∥

2

2

≤
∥∥∥∥ΣT − 1

nT
X�

T2
XT2

∥∥∥∥
2

‖P⊥(θ
∗
T − θT0

)‖22 (17)

The second term in (17) can be bounded by ‖P⊥(θ
∗
T −

θT0
)‖22 ≤ ‖(θ∗

T − θT0
)‖22 by noting that ‖P⊥‖2 ≤ 1. We thus

finally get the bound:

EER(θ̂T ,θ
∗
T ) ≤ 2

∥∥∥∥ΣT − 1

nT
X�

T2
XT2

∥∥∥∥
2

‖(θ∗
T − θT0

)‖22

+ 2‖Σ1/2
T X�

T2
(XT2

X�
T2
)−1z‖22 (18)

We now provide a bound for the second term in (18). Note:

‖Σ1/2
T X�

T2
(XT2

X�
T2
)−1z‖22 =

z�(XT2
X�

T2
)−1XT2

ΣTX
�
T2
(XT2

X�
T2
)−1z

From [15, Lemma 9], we can get a high probability bound

(probability > 1− e−t) on this term for some t > 0 as

‖Σ1/2
T X�

T2
(XT2

X�
T2
)−1z‖22

≤ (4t+ 2)σ2Tr
(
(XT2

X�
T2
)−1XT2

ΣTX
�
T2
(XT2

X�
T2
)−1
)

To bound the trace term, we use [15, Lemma 13, 18]: For uni-

versal constant b, c ≥ 1 and k∗ := min{k ≥ 0 : rk(ΣT ) ≥ bn},

we have

Tr
(
(XT2

X�
T2
)−1XT2

ΣTX
�
T2
(XT2

X�
T2
)−1
)

≤ c

(
k∗

bn
+

bn

Rk∗(ΣT )

)

where rk(ΣT ) =
Σi>kλi

λk+1
, Rk∗(ΣT ) =

(Σi>kλi)
2

Σi>kλ
2
i

. Substituting

the value of t = log( 2δ ) Plugging the resulting bound in (18),

we can finally claim that the following holds with probability at

least 1− δ
2 :

EER(θ̂T ,θ
∗
T ) �

∥∥∥∥ΣT − 1

nT
X�

T2
XT2

∥∥∥∥
2

‖(θ∗
T − θT0

)‖22

+ cσ2 log

(
1

δ

)(
k∗

bn
+

bn

Rk∗(ΣT )

)

The covariance approximation error in the first term of above

can be bounded by the result in [37, Theorem 9]. This yields the

following bound on the approximation with probability at least

1− e−δ1 over the choice of data matrix XT2
for some constant

u > 0 and δ1 > 1

∥∥∥∥ΣT−
1

nT
X�

T2
XT2

∥∥∥∥
2

≤ uλ1 max

§
¨
©

√∑d
i=1 λi

nTλ1
,

∑d
i=1 λi

nTλ1
,

√
δ1
nT

,
δ1
nT

«
¬
­

Substituting δ1 = log( 2δ ), with probability at least 1− δ
2 ,

∥∥∥∥ΣT − 1

nT
X�

T2
XT2

∥∥∥∥
2

≤ uλ1 max

§
¨
©

√∑d
i=1 λi

nTλ1
,

∑d
i=1 λi

nTλ1
,

√
1

nT
log

(
1

δ

)
,
1

nT
log

(
1

δ

)}
(19)

Denote the eigenvalues of covariance matrix of the target data

as {λi}di=1, with λ1 ≥ . . . λd, we then have:

EER(θ̂T ,θ
∗
T ) �

∥∥∥∥ΣT − 1

nT2

X�
T2
XT2

∥∥∥∥
2

1

λd
‖ΣT (θ

∗
T − θT0

)‖22

+ cσ2 log

(
1

δ

)(
k∗

bnT2

+
bnT2

Rk∗(ΣT )

)

where rk(ΣT ) =
Σi>kλi

λk+1
, Rk∗(ΣT ) =

(Σi>kλi)
2

Σi>kλ
2
i

.

Here, constant b > 1 and k∗ = min{k ≥ 0 :
rk(Σ) ≥ bn} and the covariance estimation term

can be bounded by ‖ΣT − 1
nT2

X�
T2
XT2

‖2 ≤

uλ1 max{
√∑d

i=1 λi

nT2
λ1

,
∑d

i=1 λi

nT2
λ1

,
√

1
nT2

log( 1δ ),
1

nT2
log( 1δ )}

with probability at least 1− δ
2 . We now substitute the value of

‖ΣT (θ
∗
T − θT0

)‖22 from Theorem 1 (as θT0
= V̂ŵT which

was obtained by using nT1
target samples). Thus the final bound

after Phase 1 and Phase 2 training, after taking the expectation

w.r.t the target model θ∗
T , is given by:

E[EER(θ̂T ,θ
∗
T )]

�

∥∥∥∥ΣT − 1

nT2

X�
T2
XT2

∥∥∥∥
2

σ2

λd

1

rnsm
log

(
1

δ

)

+

∥∥∥∥ΣT − 1

nT2

X�
T2
XT2

∥∥∥∥
2

σ2

λd

(
kd log(κns) + k

rns

)

+

∥∥∥∥ΣT −
1

nT2

X�
T2
XT2

∥∥∥∥
2

1

λd

(
σ2

[
1

nT1

(q + log(1/δ))

]
+ ε2
)

+ cσ2 log

(
1

δ

)(
k∗

bnT2

+
bnT2

Rk∗(ΣT )

)

where u, c are universal constants. We now substitute the bound

for the covariance estimate from (19) and simplfy the expression

by assuming
r0(ΣT )
nT2

≥ 1
nT2

log( 1δ ) ≥ 1 since we have a few

target samples:

E[EER(θ̂T ,θ
∗
T )] ≤

uλ1

λd

r0(ΣT )

nT2

(
σ2

nT1

(q + log(1/δ)) + ε2
)
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+
uλ1σ

2

λd

r0(ΣT )

nT2

(
1

rnsm
log

(
1

δ

)
+

(
kd log(κns) + k

rns

))

+ cσ2 log

(
1

δ

)(
k∗

bnT2

+
bnT2

Rk∗(ΣT )

)

1) Proof of Lemma 4: For any time step t of the gradient

descent process, the gradient of the objective in (6) evaluated at

θ
(t) is given by:

∇f(θ(t)) =
2

nT
X�

T2
(XT2

θ
(t) − yT2

)

The gradient update step using step size η is given by:

θ
(t+1) = θ

(t) − 2η

nT
X�

T2
(XT2

θ
(t) − yT2

)

= θT0
+X�

T2
a(t)

where a is some vector in RnT . In the limit, the gradient descent

convergence to a solution of the form:

θ
(∞) = θT0

+X�
T2
a (20)

Since the problem in (6) is over-parameterized, there exists a

value θ
∗ such that f(θ∗) = 0. This follows from the fact that

XT2
has full row rank. The gradient descent solution, under an

appropriate choice of the learning rate, thus converges to this

value while yield a zero loss, implying:

XT2
θ
(∞) = yT2

= XT2
θ
∗
T + zT2

⇒ XT2
(θT0

+X�
T2
a) = XT2

θ
∗
T + zT2

⇒ a = (XT2
X�

T2
)−1(XT2

(θ∗
T − θT0

) + zT2
)

Substituting this in (20), we get

θGD := θ
(∞)

= θT0
+X�

T2
(XT2

X�
T2
)−1(XT2

(θ∗
T − θT0

) + zT2
)

= P‖θ
∗
T +P⊥θT0

+X�
T2
(XT2

X�
T2
)−1zT2

VII. NUMERICAL RESULTS

We now provide numerical simulations for our proposed

scheme for optimizing linear regression objectives in a data

scarce regime. To demonstrate the effectiveness of leveraging

pre-trained representations and fine-tuning, we consider the case

where we have access to the true representation matrix V∗

formed by the source representations. We compare the perfor-

mance of models obtained after Phase 1 and Phase 2 training

for different parameters of interest and discuss their sample

complexity requirements.

A. Setup

We generate the d× q matrix V∗ matrix with entries sam-

pled from the standard normal distribution, with d = 1000 and

q = 50. We generate nT1
∈ {100, 200, 300, 1000} number of

samples for the target data for Phase 1 to form the matrix XT1
,

which is generated with i.i.d Gaussian entries with mean 0 and

covariance matrix ΣT . To simulate slowly decaying eigenvalues

of ΣT , we set them as λj = e
−j
τ + ε for j ∈ [d], where τ = 1

is the decay factor and ε = 0.0001. The true target model θ∗
T

is generated as u+ v where u ∈ Rd lies in the span of V∗

and v is Gaussian vector with covariance matrix Iσ2
T and zero

mean. We call the expected ratio of u to v as the in-out mixture

representation ratio.4 The target output vector yT is generated

as yT1
= XTθ

∗
T + zT1

, with zT1
being a Gaussian noise vector.

Phase 1 training thus seeks to minimize the objective in (5)

(with V̂ replaced by V∗, since we assume access to complete

source representations) and we denote the output model θPhase1 .

For Phase 2 training, we optimize the objective in (6) using

newnT2
∈ {100, 200, 300, 1000}number of target samples with

θPhase1 as initialization to obtain the final model θPhase2 . We

compare the performance of θPhase1 and θPhase2 on 500 test

samples generated from the target data. As a baseline, we also

consider the performance of the scheme which takes nT1
+ nT2

number of target samples and trains the model from scratch, i.e.,

without leveraging the source representationsV∗. We denote the

model obtained form this scheme as θ0.

B. Results

The results from Phase 1 and Phase 2 training for different

splits for the number of phase target samples and ε values5 are

shown in Table I. The numerical values, which are averaged

over 10 independent runs, denote the ratio of the error obtained

by the learned model after the respective phase and the error

of the underlying true data generation model θ∗
T for the target

data on a test dataset. In a data-scarce regime, (nT1
, nT2

) ∈
{(100, 100), (200, 200), (300, 300)}, the performance of the

model learned from scratch (without leveraging source repre-

sentations; denoted by column Scratch) can be unsatisfactory.

As expected, even pre-training (Phase 1) and fine-tuning (Phase

2) in low data regimes does not yield good performance if

the source models are not useful for the target data, which

is the case when the in-representation mixture to out-mixture

ratio for θ∗
T is small, as shown by the performance for values

5dB, 1dB in Table I. However, utilizing source representations

gives significantly better performance relative to training from

scratch in cases when θ
∗
T doesn’t lie far off from V∗ as can be

seen by comparing the values of Phase 2 and Scratch training

results for in-out signal mixture ratio of 50 dB, 20 dB, 10 dB.

Thus leveraging source representations for target training can

be beneficial in scare-data regimes when source representation

are useful for the target task and thus representation transfer is

practical. It can be seen that training from scratch could perform

well for a data-rich regime, (nT1
, nT2

) = (1000, 1000). Here,

the performance of the learned model after Phase 1 degrades

4The parameter σ2

T
indirectly enables us simulate the value of ε in Assump-

tion 1, with larger values of σ2

T
implying that θ∗

T
lies farther away from the

subspace spanned by the columns of V∗. A higher σ2

T
values thus yields a small

value for the in-out representation mixture ratio.
5The values in the ‘In-Out Representation Mixture Ratio’ column in Table I

correspond to the ratio of the signal in the subspace spanned by columns of V∗

and the added out of subspace signal (of variance σ
2

T
) added to it to generate

the true target model θ∗
T

. Lower values of this ratio correspond to higher values

of σ2

T
.
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TABLE I
PERFORMANCE COMPARISON FOR LEARNED MODELS AFTER PHASE 1 (PRE-TRAINING), PHASE 2 (FINE-TUNING) AND LEARNING FROM SCRATCH

with decreasing in-out representation mixture ratio as the source

representations become less useful to learn θ
∗
T . Meanwhile,

performing fine-tuning in addition to utilizing source representa-

tions, as in Phase 2, yields much better performance of the overall

learned model with relative errors much less than after Phase 1.

Thus, fine-tuning on target data (Phase 2) can be essential in

addition to leveraging source models directly by pre-training

(Phase 1) when the true model θ∗
T lies farther away from the

subspace spanned by the source representations.

VIII. CONCLUSION

In this work, we proposed a method for training linear regres-

sion models via representation transfer learning in the limited

sample regime, when given access to multiple pre-trained linear

models trained on data domains (sources) different form the

target of interest. We established excess risk bounds for the

learned target model when (i) source representations are used

directly to construct a target representation and adapted to the

target task, and (ii) when the entire resulting model is fine-tuned

in the over-parameterized regime using target task samples. Our

bounds showed a gain in target sample complexity compared to

the baseline case of learning without access to the pre-trained

models, thus demonstrating the benefit of transfer learning for

better generalization in the limited sample regime. Our provided

numerical results corroborated this fact and showed superior

performance of our proposed scheme compared to learning from

scratch in data-scare regimes.

As future extensions to this work, it is of interest to see

how non-linear activation functions can be introduced in the

model to analyze more complicated architectures like Neural

Networks (NNs). Analyzing representation transfer learning

with multiple NNs and utilizing recently developed results in

benign over-fitting for this setting [38] is an interesting next step.

In many scenarios of interest, for training the source task models,

unlabeled data from the target distribution might be available.

While there are empirical works utilizing unlabeled samples in

the context of semi-supervised adaptation [27], [39], [40], theo-

retical results on understanding generalization of representation

transfer learning methods (with pre-training/fine-tuning) and

their sample complexity requirements are missing and would

be an interesting direction to pursue.
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