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Abstract—In this paper, we are interested in the regime where
the common information between two Gaussian random vectors
(X,Y) can be (or can approach) infinity. We ask two main ques-
tions: what is the rate of growth for common information from
a finite to an infinite number of bits, as the dependency between
the variables increases? and how well can we ‘“‘approximately'
simulate a pair of random variables (X, Y") with infinite common
information using a finite number of shared bits? We analytically
prove that the answer to both of these questions depends on the
common information dimension d(X,Y") between X and Y, that
we introduced in our recent work [1]. Our work characterizes in a
closed form the asymptotic behaviors, by building a connection
to singular values associated with the covariance matrix 3 of
(X,Y). We conclude the paper by providing numerical evaluation
results that indicate fast convergence to the asymptotic regime.

I. INTRODUCTION

Quantifying the common information between random vari-
ables is a problem with a long history in information theory
[2]-[6], and has found application in diverse areas including
source coding [7]-[9], cryptography [10]-[12] and learning
[13]-[16]. A popular operational meaning comes from dis-
tributed simulation, where the common information captures
the amount of shared randomness needed to simulate a joint
target distribution [3]. In this paper, we promote our un-
derstanding in the regime where the common information
between random variables can be (or can approach) infinity.

We will illustrate the scope of this paper through an ex-
ample. Let X = [X,V]",Y = [¥1,V]T be two Gaussian
random vectors with X3, Y7,V independent scalar variables.
The common information between X and Y is captured by
V', which is a continuous scalar variable with infinite entropy
- and thus the common information between X and Y, as
calculated for instance in [17], is also infinite. To address
this, in our recent work [1] we introduced the notion of
common information dimension d(X,Y’), and showed that,
for Gaussian variables, d(X,Y") can be calculated as

d(X,Y) = rank(Xx) + rank(Xy ) — rank(X),
where Xy = E(XX "), By = E(YY ") and X is the joint
covariance matrix of the vector [X,Y]T. Note the disconti-
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nuity in the space of common information: if rank(Xx) +
rank(Xy) = rank(X) then d(X,Y) = 0 and the common
information can be described using a finite number of bits;
while if rank(¥x) + rank(Xy) > rank(X) the common
information dimension takes discrete values and the common
information measured in bits becomes infinite (in this second
case, we say that X and Y are jointly singular). In our toy
example, X, Y are jointly singular with d(X,Y) = 1.

In this paper, we ask two questions: (1) How fast does the
common information grow, from a finite to an infinite number
of bits, as the dependency between variables increases? and (2)
Can we “approximately" simulate a pair of random variables
(X,Y) using a finite number of shared bits, even though their
common randomness is infinite? How large is the approximate
common information for a certain approximation error?

We answer these questions for the case of Gaussian random
vectors (of arbitrary dimension). To explore the first question,
we consider a sequence of nearly singular Gaussian pairs with
decreasing distances to a jointly singular target distribution.
We show that the common information of the sequence grows
as $log(1/€)d(X,Y), where d(X,Y) is the common infor-
mation dimension of the target distribution, and ¢ measures
distance to the singular target distribution. For the second
question, we define the e-approximation common information
as the minimum amount of common information between
random variables that approximate a target distribution within
a given error. We prove that, in this case as well, the approxi-
mate common information grows as % log(1/€)d(X,Y’), where
d(X,Y) is the common information dimension of the target
distribution, and € is the approximation error (we comment
on this similarity in Section III). Our proofs build on a
new connection we make between the approximate common
information and singular values associated with the covariance
matrix 3 of (X,Y).

In summary, our results characterize the common informa-
tion of Gaussian vectors in the nearly infinite regime, and
establish a new link between common information and the
common information dimension d(X,Y’). This offers a new
interpretation for d(X,Y’). Our work also helps understand
the quantity of common shared bits needed for a distributed
simulation to achieve a desired level of accuracy. We illustrate
this through numerical evaluations in Section IV, where we
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show for instance that to simulate a target distribution with
d(X,Y) = 5 (as described in Section IV Example 2), with
accuracy 275 we need to share 19 bits, while we can achieve
a (very high) accuracy of 272% using around 53 bits.
Related work. One of the well-known classical notions of
common information is Wyner’s [3]. It is defined as the mini-
mum amount of common randomness (in bits) that enables the
distributed simulation of a pair of discrete random variables.
[8], [18]-[20] generalize Wyner’s common information to
continuous sources. However, because of the complexity of
the problem, the closed-form solution for continuous sources
is only available for Gaussian random variables [8], [9], [17].
These works are useful when the common information only
contains discrete variables (even when the sources are continu-
ous); for scenarios where continuous variables are required for
the distributed simulation, recently, the common information
dimension [1] is defined as the minimum dimension of a
random variable (within a certain class of functions) that
enables distributed simulation of a set of random variables. A
closed-form solution for the Gaussian vector was calculated
based on the rank of the covariance matrices, when the
common variables is a linear function of the sources. Unlike
this work, both Wyner’s notion and the common information
dimension ask for an auxiliary variable that makes a given pair
conditionally independent and they target the exact generation
of a given distribution.

Wyner also describes two natural relaxations in [3]: (i) one

replaces the conditional independence with a bounded condi-
tional mutual information; (ii) the other allows a small distance
between the generated and the target distributions, measured
by Kullback-Leibler (KL) divergence. However, these were
only analyzed in discrete settings. Recently, [9] studies the first
relaxation in the case of Gaussian random variables. However,
this version of the relaxed common information is still infinite
when singular distributions are involved. In a separate study,
[21] explores a related, but different, problem of exchanging a
small number of bits to break/reduce the dependency between
distributed source. On the other hand, this paper considers
relaxation (ii) (with a different distance') which allows an
approximate generation when the sources can be continuous
and the distributions may be singular.
Paper organization. We review preliminary results on the
common information and the common information dimension
of Gaussian vectors and introduce our problem formulations
in Section II. We present our main results on the growth rate
of the common information in Section III. We present the
numerical evaluation in Section IV.

II. PRELIMINARIES AND PROBLEM STATEMENT
A. Notation
We use capital letters to represent (vectors of) random vari-

ables. We use d x to denote the dimension of a random variable

'Note that the KL divergence between any singular and non-singular
distributions is always infinite, it is not suitable for the task of approximating
a singular distribution with a non-singular one.

vector X. Since the quantity we are interested in (common
information) is independent of the choice of mean values, we
assume without loss of generality that all variables have zero
mean. For a pair of zero-mean random variables (X,Y), we
Yx  Biy
Yxy Dy
where ¥x = E(XX ) and ¥y = E(YY ") are the marginal
covariance matrices, and Xxy = E(XYT) is the cross-
covariance matrix. We say that X, Y are jointly singular if

use X = } to denote their covariance matrix,

rank(X) < rank(Xx) + rank(Zy ). (1)

Our proofs show that we can assume without loss of generality
that the marginal covariances are non-singular.

B. Common Information and Common Information Dimension

The (Wyner’s) common information C'(X,Y") between ran-
dom variables X and Y is defined in [3] as

XY):= i I(XY; 2

CX,Y):= min  I(XY;W), ©)

where X — W —Y abbreviates a Markov chain; i.e., X and Y
are conditionally independent given W. The general formula
of common information between Gaussian vectors X € R”
and Y € R” is given in [17] as

1 .
C(X.Y) =3 Zlog _, 3)
where pp,...,p, are the singular values of the nor-
malized cross-covariance matrix E}l/ ) XyE;l/ 2, and
E;(l/ 2, 2;1/ ? are defined using pseudo-inverse when needed.
Observe that when X and Y are jointly singular (i.e., (1) holds
and thus p; = 1 for some ¢ in (3)), the common information
C(X,Y) is infinite. In this case, a real-valued random variable
W is needed to represent the common randomness and its
complexity can be quantified by the common information
dimension [1]. The common information dimension dz(X,Y")
of random variables X, Y with respect to a class of functions
F, is defined as?

dr(X,Y) := min{dw|W € Wr}, “4)

where Wz = {W| 3V,g: R¥ — RW ¢ F, such that
X ULY|(V,W), HV) < oo, W =g(X,Y)}.

That is, d=(X,Y) measures the minimum dimension of an
auxiliary random variable W that can break the dependency
between X and Y, thus enabling distributed simulation. For
Gaussian variables X, Y and with respect to the class of linear
function, we can calculate it in closed form as [1]:

d(X,Y) = rank(X x ) + rank(Xy ) — rank(3X). 5)

Remark 1. There are two variants of the common information
dimension, the Wyner and the Gdacs-Korner (GK) version,

2V is restricted to be from a class of functions to avoid considering
bijections between R™ and R which are unstable and not implementable [22].
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which share the same solution in the case of two Gaussian
variables and the class of linear functions. Details can be
found in [1]. In this paper, we do not consider the GK-
version of the approximation problem since the GK common
information has an inherent discontinuity. In particular, it is
easy to see that if the Gaussian sources are singular, then
the GK common information is infinite (as is the case for
the Wyner as well), however, if they are approximated by
any non-singular Gaussian distribution, then the GK common
information of the approximate distribution is zero. Hence, the
GK version of the common information is not suitable for such
approximations. Thus in this paper, we exclusively focus on
the Wyner version.

C. Problem Statement

In this paper we ask the following two questions.

1) Common information of nearly singular sources: This
formulation aims to study the growth rate of the common
information for a sequence of pairs of random variables that
approach joint singularity. In particular, let X, Y be Gaussian
random variables with rank(X) < rank(Xx)+rank(Xy ), and
hence, d(X,Y) > 1 and C(X,Y) = oo. Let {(X¢,Y)}es0
be a sequence of Gaussian random variables satisfying

lpi(e) —oi]l =€, (6)

where {o;} and {pi(e )} are the singular values of
2_1/ EXyE % and Xy 1/2 Xx.v. 2y respectlvely, in a
decreasmg order. These requirements ensure that (X, Y,) re-
main non-singular (and thus have finite common information),
while the joint distribution of (X,,Y;) converges to that of
X, Y aselO.

Remark 2. The conditions in (6) force each singular value of
E_l/ > X.v. 2Dy t0 go to the corresponding singular value

of E 125 yZ % at an identical rate e. This enables us to
study how the common information increases as a function of
€. It is easy to show that, the same results we prove also hold
when considering different convergence rates for each singular
value, provided that these rates are of the same order, meaning
they differ only by multiplicative constants.

Recall that from (3), the common information is infinite
when o; = 1 for some i. Consider a sequence of covariance
matrices that have singular values satisfying (6) when o; =1
and share the same singular values with the target distribution
for all other indices, i.e., p; = o; when o; # 1. It is easy to
see that the same results we establish assuming the condition
in (6) holds, also extend for the described sequence as well.

EX‘ = Zx,zye = zy, andVi,

2) e-approximation common information: This formulation
looks at approximating a pair of Gaussian random variables
X, Y that are jointly singular (C(X,Y’) = co) with Gaussian
random variables X, Y that (i) are non- singular (C(X Y) is
finite) and (ii) have a distribution close to the distribution of
X,Y. In other words, we ask, if we are restricted to using a
finite number of bits as common information, how well can
we (approximately) simulate X, Y.

We use the Frobenius-norm between covariance matrices to
measure how close two Gaussian distributions are. For some
€ > 0, we define the e-approximation common information as

Ce(X,Y) = C(X,Y), (7)

min
[Z-3]r<e
where the optimization is over all pairs (X, Y") with covariance
matrix 3 and || - || is the Frobenius norm of a matrix.

Remark 3. The feasible solution set of (7) includes a special
instance’: X = X + U X7Y Y + Uy, where Ux and Uy
are independent Gaussian perturbations with small variance §;,

such that \/Zf)‘+dy 62 <e.

Remark 4. The results on C.(X,Y) extend if we replace the
Frobenius norm with any distribution distance dist(XY, XY")
that satisfies a||X — 2||p < dist(XY, XY) < b||= — 3| for
all Gaussian variables XY, XY and some constants a and b.

Remark 5. Note that formulation 1 in (6) studies a more
restricted set of sequences than the sequences included in the
feasible set of the optimization problem in (7). However, the
result we show for formulation 1 is stronger as it holds for
all sequences that satisfy the condition in (6). In contrast,
the results in formulation 2 only hold for the sequence with
the minimum common information (that achieves the optimal
value of the minimization problem). It can be easily shown
that there exist sequences in the feasible set of formulation 2
that have different asymptotics. For example, if some singu-
lar values of the approximation matrix take the value 1 or
approach 1 at a rate different from O(e)(e.g., €2 or 2°).

IIT. MAIN RESULTS

In this section, we present our main results and proof
outlines for the two formulations described in Section II-C.
The detailed proofs are provided in Appendices D, E, and F
in [23].

Before stating our main results, we present two properties of
covariance matrices and the common information dimension,
which are important to Theorems 1 and 2. As stated in (3)
the common information is determined by the singular values
of the normalized cross-covariance matrix X 2oy E;,l/ %,
Lemma 1 proves a bound on these singular values.

Lemma 1: Let X € R and Y € R?% be jointly (%aus-
sian variables with covariance matrix ¥ = Zix EXY},

Yxy Xy
and d = min{dx,dy}. Then the singular values of
2)_(1/22)(3/2;1/2, denoted as {o;}% ;, satisfy

0<o; <1,Vield (8)

The following lemma shows the relationship between the
common information dimension and the singular values of
2)_{1/ 22xy2;1/ 2, which will enable us to connect the
quantities C'(X,Y.), Cc(X,Y") with the common information
dimension d(X,Y).

3 Another way of approximation, that quantizes X and Y into discrete
variables, is studied in our extended work [23].
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Lemma 2: Assume X € R?¥x, Y € R are jointly Gaus-

Sy E}Y}
Yxy Xy |’
and {o;} are the singular values of 2)_(1/22)(}/2;1/2. Then
the common information dimension between X and Y, with
respect to linear functions, satisfies

sian variables with covariance matrix X =

min{dx,dy }

D

i=1

d(X,Y) = 1{o; = 1} 9)

A. Common information of nearly singular sources

We consider a sequence of pairs of Gaussian random vari-
ables {(X, Y¢)}eso satisfying (6). The following result shows
that the growth rate of the common information C'(X,Y;) is
determined by the common information dimension d(X,Y)
with respect to linear functions.

Theorem 1: Let X € R and Y € R%¥ be a pair of jointly
Gaussian random variables, and {(X, Y.)}c~o be a sequence
as defined in (6). Then the common information C'(X,,Y;)
satisfies

C(X,,Ye)

=d(X,Y
elﬁ)l %log(%) (X,Y)

(10)

Proof Outline. The main technical challenge in proving
Theorem 1 is the fact that there exist multiple sequences of
random variables X, Y, with different values of C(X,,Y;),
that satisfy the constraints in (6). To address this issue, we
prove the result by deriving an upper and a lower bound on
C(X,,Y.) that have the same asymptotic behavior.

The proof focuses on showing that lim g C%(lf ;’(lf))
somin{dxodvd 5 — 1}, where {0} are the singular values
of the matrix E}l ’Sxy 2;,1/ %, We prove this by providing

an upper and lower bound on CI(X“EIE)
3 IOg(z)

limit when € | 0. Then we relate ™%} 1(5. = 1} 1o

3
the common information dimension d(X,Y") using Lemma 2.

that have the same

B. Approximate simulation

The following result shows that the e-approximation com-
mon information C(X,Y"), defined in (7), for Gaussian vari-
ables grows at a rate determined by the common information
dimension d(X,Y") with respect to linear functions.

Theorem 2: Let X € R and Y € R%" be a pair of jointly
Gaussian random variables, then

C(X,Y)
im ———=
clo 5 log(1/e)

Proof Outline. The main technical challenge in proving
Theorem 2 is the difficulty in finding a closed form solution
of the optimization problem defining C.(X,Y"). To address
this issue, we follow a similar approach as in Theorem 1 by
deriving an upper and a lower bound on C, that have the same
asymptotics. However, it turns out that finding upper and lower
bounds that have the same asymptotics is more involved than
in the case of Theorem 1.

The proof uses the upper and lower bounds,

rived as described next, to show that lim.)o C;(l)s ;’()f))
2 €

=d(X,Y) 11

de-

Z?ﬁn{dx’d”} 1{o; = 1}, where {o;} are the singular val-

ues of the matrix E;(l/QEXyE;l/Q. From Lemma 2, this
concludes the proof of Theorem 2.

Upper Bound. As C.(X,Y) is the optimal value of
a minimization problem, any feasible solution provides an
upper bound. To find a feasible solution we use ¥y =
Yx,3y = Xy. Then, we design the singular values of
2;{1/22)3?2;1/2, denoted as {p;}, as follows. We set p; =
o; when o; # 1. Recall that choosing a singular value to be 1
results in an infinite value for the common information. Hence,
when o; = 1 we choose p; = 1—4§ where 4 is the largest value
that does not violate the constraint ||X — 3|z < e.

Lower Bound. To find a lower bound, we relax the con-
straints set |X — 2|z < ¢, resulting in a smaller optimal
value, to make it possible to find a closed form solution of the
problem. The proof of the lower bound hinges on showing
that |2 — 3| p < e implies

A= Allp < ce, (12)

where A = diag(o;), A = diag(p;) are matrices containing
the singular values of £3'/* xy 5,2, 2;/ 2> Wz;l”
respectively, and c is a constant that may depend on X x, 3y.
To further simplify the problem, we remove from the objective
function the terms corresponding to o; < 1, and also remove
the value log(l + p;) from each term (recall the common
information in (3)). We note that each term in the objective
function is non-negative, and hence, removing terms will not
increase the optimal solution value. Furthermore, we expect
the asymptotics of the common information to be influenced
by the singular values corresponding to o; = 1. This results
in the following optimization problem

~, 1=pi
VIi= (13)
st Y (oi—p) <€, 0<p <1,
i:0,=1

which can be solved in a closed form using symmetry and
concavity of the log function.

Remark 6. We note that we can efficiently construct random
variables for each e with common information that has the
asymptotic behavior in Theorem 2 (and thus can be used to
approximate the target singular distribution with (nearly) the
smallest common information). A possible choice is ¥ =
Sx, By = By, B P8y 302 = UAV, where U,V are
orthonormal matrices of the singular value decomposition of
2)_(1/22)(3/2;1/2, and A can be obtained using the solution
of problem (13) (refer to Appendix F in [23] for details).

Remark 7. Why do these two theorems have the same
bound? It may seem at first surprising that even though
C(X,,Ye) and C.(X,Y) have different definitions, they both
grow (nearly) as 1d(X,Y)log(1/€). Indeed, as we observed
in Remark 5 the feasible set defining C..(X,Y") in (7) contains
different sequences of random variables than those satisfying
the conditions in (6). However, the proof of Theorem 2 shows
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that the random variables which minimize the common infor-
mation satisfy a constraint similar to (6); namely, the singular
values p; corresponding to o; = 1 have the same distance to 1,
where o; and p; are the singular value of 2)_(1/ ) XyE;,l/ 2
and E;/ > X};E;l/ 2 respectively. Intuitively, to minimize
the common information in (3), we need p; to be as far as
possible from the value 1, however, the distance constraint
in (7) restricts us from choosing p; too far from 1 whenever
o; = 1. If one p; is very close to 1, it will dominate the
summation in (3) resulting in large common information.
Hence, a good solution to (7) distributes the distance budget
€ evenly across the p;’s corresponding to o; = 1.

IV. NUMERICAL EVALUATION

In this section, we numerically evaluate the growth rate of
C(X,Y) and C(X,,Y:), as a function of the approximation
error e. Next, we present two examples.

Example 1. We let X € R* and Y € R* be jointly Gaussian
vectors with zero means and covariance matrices

1 05 0 0 1 05 0 0
05 1 0 0 05 1 0 0
oIy =1y g 1 oY =10 0 1 0
0 0 0 1 0 0 0 03

It is evident that X; = Y;,X, = Y, almost surely, and
rank(X) = 5 < rank(Xx) + rank(Xy ), thus, X and Y are
jointly singular.

Figure 1 illustrates the normalized common information
f 15;?1}//3) and fl(j;(f;e)) for both formulations 1, 2 in Sec-
tion II-C plotte?i against the approximation error €. To cal-
culate C(X,,Y;), note that there exist multiple sequences*
{(Xe,Y:)}eso that satisfy the requirements in (6). Here, we
choose two representative sequences and plot the results for
both: {(X,.,Y )} which has the minimum common informa-
tion among such sequences for all ¢ > 0, and {(X.,Y.)}
which has the maximum common information. We calculate
the C((X.,Y,)) and C(X.,Y.) using the closed-form so-
lution in (3) [17]. To calculate the e-approximation common
information C(X,Y’) we solve the optimization problem in
(7) numerically using SciPy [24].

We observe in Figure 1 that both ff(X’Y) and f(X“YE)

3 log(1/€) 3 log(1/€)
converge to d(X,Y) = rank(X x ) +rank(Xy ) —rank(X) = 3
as € approaches 0. Moreover, they reach a value that is close to
d(X,Y) (e.g., a value < 4) quickly, even with relatively large
values of e. The trade-off between e-approximate common in-
formation C,(X,Y") and error € also indicates that the common
information dimension d(X,Y") provides a theoretical limit on
the maximum achievable accuracy given a finite number of
bits to represent the common randomness; or equivalently, the
minimum number of bits required for the shared randomness
to achieve a target simulation accuracy.

Example 2. In this example, we use X € R” and YV €
R” with ¥y = Xy = I;, while we choose the cross-
covariance matrices to be a diagonal matrix with d(X,Y)

4Note that there are at most 2™in{dx.dy'} (X Y;) that satisfy (6), for
each e.

(X.Y)
Tlog(1/0)
CX.Y)
Tlog, (1/0)
)
Tlog, (1/0)

0 5 10 15 2
logy(1/€)
Fig. 1. Growth rate of Cc(X,Y’) and C(X, Ye).

diagonal elements set to be 1 and the rest to be 0.5. In
Figure 2, we plot the minimum number of bits required to
approximate X,Y versus the different common information
dimensions d(X,Y"). We use two different levels of accuracy:
e = 27% and € = 2729, We observe from Figure 2, that
the approximate common information grows linearly with the
common information dimension d(X,Y’), where the slope is
given by $log(1/e€), as we also proved in Theorem 2. In
addition, this plot provides a guide on the minimum number
of bits that need to be shared to perform the distribution
simulation within a given error. For instance, to simulate a
target distribution with d(X,Y’) = 5, we need to share 19 bits
to achieve a relatively low 27° accuracy, or 53 bits to achieve
a relatively high 2720 accuracy.

01 e ¢— o5
60 e=27%

50

< 40
T g4
20
10
T T T T T
1 2 3 4 5 6 7
d(X,Y)

Fig. 2. The approximate common information C¢(X,Y’) vs common
information dimension d(X,Y").

V. CONCLUSION

In this paper, we studied how the common information be-
tween a pair of random variables increases as their distance ¢ to
jointly singular Gaussian random variables (X,Y") decreases.
We also studied the minimum amount of common information
required to approximately simulate jointly singular Gaussian
random variables XY with at most e error. We proved
that in both scenarios, the common information grows as
$d(X,Y)log(1/e), where d(X,Y) is the common informa-
tion dimension of (X,Y) with respect to linear functions.
Our results give an interpretation of the common information
dimension in the context of approximate simulation and finite
common information. It is interesting to note that the common
information dimension restricted to linear functions determines
the scaling behavior even when we do not impose any linearity
constraints on the common information extraction. Future
directions include generalizing the results to other distance
measures and beyond Gaussian distributions.
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