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Abstract—In this paper, we are interested in the regime where
the common information between two Gaussian random vectors
(X,Y ) can be (or can approach) infinity. We ask two main ques-
tions: what is the rate of growth for common information from
a finite to an infinite number of bits, as the dependency between
the variables increases? and how well can we “approximately"
simulate a pair of random variables (X,Y ) with infinite common
information using a finite number of shared bits? We analytically
prove that the answer to both of these questions depends on the
common information dimension d(X,Y ) between X and Y , that
we introduced in our recent work [1]. Our work characterizes in a
closed form the asymptotic behaviors, by building a connection
to singular values associated with the covariance matrix Σ of
(X,Y ). We conclude the paper by providing numerical evaluation
results that indicate fast convergence to the asymptotic regime.

I. INTRODUCTION

Quantifying the common information between random vari-

ables is a problem with a long history in information theory

[2]–[6], and has found application in diverse areas including

source coding [7]–[9], cryptography [10]–[12] and learning

[13]–[16]. A popular operational meaning comes from dis-

tributed simulation, where the common information captures

the amount of shared randomness needed to simulate a joint

target distribution [3]. In this paper, we promote our un-

derstanding in the regime where the common information

between random variables can be (or can approach) infinity.

We will illustrate the scope of this paper through an ex-

ample. Let X = [X1, V ]¦, Y = [Y1, V ]¦ be two Gaussian

random vectors with X1, Y1, V independent scalar variables.

The common information between X and Y is captured by

V , which is a continuous scalar variable with infinite entropy

- and thus the common information between X and Y , as

calculated for instance in [17], is also infinite. To address

this, in our recent work [1] we introduced the notion of

common information dimension d(X,Y ), and showed that,

for Gaussian variables, d(X,Y ) can be calculated as

d(X,Y ) = rank(ΣX) + rank(ΣY )− rank(Σ),

where ΣX = E(XX¦), ΣY = E(Y Y ¦) and Σ is the joint

covariance matrix of the vector [X,Y ]¦. Note the disconti-
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nuity in the space of common information: if rank(ΣX) +
rank(ΣY ) = rank(Σ) then d(X,Y ) = 0 and the common

information can be described using a finite number of bits;

while if rank(ΣX) + rank(ΣY ) > rank(Σ) the common

information dimension takes discrete values and the common

information measured in bits becomes infinite (in this second

case, we say that X and Y are jointly singular). In our toy

example, X , Y are jointly singular with d(X,Y ) = 1.

In this paper, we ask two questions: (1) How fast does the

common information grow, from a finite to an infinite number

of bits, as the dependency between variables increases? and (2)

Can we “approximately" simulate a pair of random variables

(X,Y ) using a finite number of shared bits, even though their

common randomness is infinite? How large is the approximate

common information for a certain approximation error?

We answer these questions for the case of Gaussian random

vectors (of arbitrary dimension). To explore the first question,

we consider a sequence of nearly singular Gaussian pairs with

decreasing distances to a jointly singular target distribution.

We show that the common information of the sequence grows

as 1
2 log(1/ϵ)d(X,Y ), where d(X,Y ) is the common infor-

mation dimension of the target distribution, and ϵ measures

distance to the singular target distribution. For the second

question, we define the ϵ-approximation common information

as the minimum amount of common information between

random variables that approximate a target distribution within

a given error. We prove that, in this case as well, the approxi-

mate common information grows as 1
2 log(1/ϵ)d(X,Y ), where

d(X,Y ) is the common information dimension of the target

distribution, and ϵ is the approximation error (we comment

on this similarity in Section III). Our proofs build on a

new connection we make between the approximate common

information and singular values associated with the covariance

matrix Σ of (X,Y ).
In summary, our results characterize the common informa-

tion of Gaussian vectors in the nearly infinite regime, and

establish a new link between common information and the

common information dimension d(X,Y ). This offers a new

interpretation for d(X,Y ). Our work also helps understand

the quantity of common shared bits needed for a distributed

simulation to achieve a desired level of accuracy. We illustrate

this through numerical evaluations in Section IV, where we
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show for instance that to simulate a target distribution with

d(X,Y ) = 5 (as described in Section IV Example 2), with

accuracy 2−5 we need to share 19 bits, while we can achieve

a (very high) accuracy of 2−20 using around 53 bits.

Related work. One of the well-known classical notions of

common information is Wyner’s [3]. It is defined as the mini-

mum amount of common randomness (in bits) that enables the

distributed simulation of a pair of discrete random variables.

[8], [18]–[20] generalize Wyner’s common information to

continuous sources. However, because of the complexity of

the problem, the closed-form solution for continuous sources

is only available for Gaussian random variables [8], [9], [17].

These works are useful when the common information only

contains discrete variables (even when the sources are continu-

ous); for scenarios where continuous variables are required for

the distributed simulation, recently, the common information

dimension [1] is defined as the minimum dimension of a

random variable (within a certain class of functions) that

enables distributed simulation of a set of random variables. A

closed-form solution for the Gaussian vector was calculated

based on the rank of the covariance matrices, when the

common variables is a linear function of the sources. Unlike

this work, both Wyner’s notion and the common information

dimension ask for an auxiliary variable that makes a given pair

conditionally independent and they target the exact generation

of a given distribution.

Wyner also describes two natural relaxations in [3]: (i) one

replaces the conditional independence with a bounded condi-

tional mutual information; (ii) the other allows a small distance

between the generated and the target distributions, measured

by Kullback–Leibler (KL) divergence. However, these were

only analyzed in discrete settings. Recently, [9] studies the first

relaxation in the case of Gaussian random variables. However,

this version of the relaxed common information is still infinite

when singular distributions are involved. In a separate study,

[21] explores a related, but different, problem of exchanging a

small number of bits to break/reduce the dependency between

distributed source. On the other hand, this paper considers

relaxation (ii) (with a different distance1) which allows an

approximate generation when the sources can be continuous

and the distributions may be singular.

Paper organization. We review preliminary results on the

common information and the common information dimension

of Gaussian vectors and introduce our problem formulations

in Section II. We present our main results on the growth rate

of the common information in Section III. We present the

numerical evaluation in Section IV.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Notation

We use capital letters to represent (vectors of) random vari-

ables. We use dX to denote the dimension of a random variable

1Note that the KL divergence between any singular and non-singular
distributions is always infinite, it is not suitable for the task of approximating
a singular distribution with a non-singular one.

vector X . Since the quantity we are interested in (common

information) is independent of the choice of mean values, we

assume without loss of generality that all variables have zero

mean. For a pair of zero-mean random variables (X,Y ), we

use Σ =

[

ΣX Σ
¦
XY

ΣXY ΣY

]

to denote their covariance matrix,

where ΣX = E(XX¦) and ΣY = E(Y Y ¦) are the marginal

covariance matrices, and ΣXY = E(XY ¦) is the cross-

covariance matrix. We say that X , Y are jointly singular if

rank(Σ) < rank(ΣX) + rank(ΣY ). (1)

Our proofs show that we can assume without loss of generality

that the marginal covariances are non-singular.

B. Common Information and Common Information Dimension

The (Wyner’s) common information C(X,Y ) between ran-

dom variables X and Y is defined in [3] as

C(X,Y ) := min
X−W−Y

I(X Y ;W ), (2)

where X−W −Y abbreviates a Markov chain; i.e., X and Y
are conditionally independent given W . The general formula

of common information between Gaussian vectors X ∈ R
n

and Y ∈ R
n is given in [17] as

C(X,Y ) =
1

2

n
∑

i=1

log
1 + Äi
1− Äi

, (3)

where Ä1, . . . , Än are the singular values of the nor-

malized cross-covariance matrix Σ
−1/2
X ΣXY Σ

−1/2
Y , and

Σ
−1/2
X ,Σ

−1/2
Y are defined using pseudo-inverse when needed.

Observe that when X and Y are jointly singular (i.e., (1) holds

and thus Äi = 1 for some i in (3)), the common information

C(X,Y ) is infinite. In this case, a real-valued random variable

W is needed to represent the common randomness and its

complexity can be quantified by the common information

dimension [1]. The common information dimension dF (X,Y )
of random variables X,Y with respect to a class of functions

F , is defined as2

dF (X,Y ) := min{dW |W ∈ WF}, (4)

where WF = {W | ∃ V, g : R
dX → R

dW ∈ F , such that

X §§ Y |(V,W ), H(V ) < ∞, W = g(X,Y )}.

That is, dF (X,Y ) measures the minimum dimension of an

auxiliary random variable W that can break the dependency

between X and Y, thus enabling distributed simulation. For

Gaussian variables X,Y and with respect to the class of linear

function, we can calculate it in closed form as [1]:

d(X,Y ) = rank(ΣX) + rank(ΣY )− rank(Σ). (5)

Remark 1. There are two variants of the common information

dimension, the Wyner and the Gács-Körner (GK) version,

2W is restricted to be from a class of functions to avoid considering
bijections between R

n and R which are unstable and not implementable [22].
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which share the same solution in the case of two Gaussian

variables and the class of linear functions. Details can be

found in [1]. In this paper, we do not consider the GK-

version of the approximation problem since the GK common

information has an inherent discontinuity. In particular, it is

easy to see that if the Gaussian sources are singular, then

the GK common information is infinite (as is the case for

the Wyner as well), however, if they are approximated by

any non-singular Gaussian distribution, then the GK common

information of the approximate distribution is zero. Hence, the

GK version of the common information is not suitable for such

approximations. Thus in this paper, we exclusively focus on

the Wyner version.

C. Problem Statement

In this paper we ask the following two questions.

1) Common information of nearly singular sources: This

formulation aims to study the growth rate of the common

information for a sequence of pairs of random variables that

approach joint singularity. In particular, let X,Y be Gaussian

random variables with rank(Σ) < rank(ΣX)+ rank(ΣY ), and

hence, d(X,Y ) g 1 and C(X,Y ) = ∞. Let {(Xϵ, Yϵ)}ϵ>0

be a sequence of Gaussian random variables satisfying

ΣXϵ
= ΣX ,ΣYϵ

= ΣY , and ∀ i, |Äi(ϵ)− Ãi| = ϵ, (6)

where {Ãi} and {Äi(ϵ)} are the singular values of

Σ
−1/2
X ΣXY Σ

−1/2
Y and Σ

−1/2
Xϵ

ΣXϵYϵ
Σ

−1/2
Yϵ

respectively, in a

decreasing order. These requirements ensure that (Xϵ, Yϵ) re-

main non-singular (and thus have finite common information),

while the joint distribution of (Xϵ, Yϵ) converges to that of

X,Y as ϵ ³ 0.

Remark 2. The conditions in (6) force each singular value of

Σ
−1/2
Xϵ

ΣXϵYϵ
Σ

−1/2
Yϵ

to go to the corresponding singular value

of Σ
−1/2
X ΣXY Σ

−1/2
Y at an identical rate ϵ. This enables us to

study how the common information increases as a function of

ϵ. It is easy to show that, the same results we prove also hold

when considering different convergence rates for each singular

value, provided that these rates are of the same order, meaning

they differ only by multiplicative constants.

Recall that from (3), the common information is infinite

when Ãi = 1 for some i. Consider a sequence of covariance

matrices that have singular values satisfying (6) when Ãi = 1
and share the same singular values with the target distribution

for all other indices, i.e., Äi = Ãi when Ãi ̸= 1. It is easy to

see that the same results we establish assuming the condition

in (6) holds, also extend for the described sequence as well.

2) ϵ-approximation common information: This formulation

looks at approximating a pair of Gaussian random variables

X,Y that are jointly singular (C(X,Y ) = ∞) with Gaussian

random variables X̂, Ŷ that (i) are non-singular (C(X̂, Ŷ ) is

finite) and (ii) have a distribution close to the distribution of

X,Y . In other words, we ask, if we are restricted to using a

finite number of bits as common information, how well can

we (approximately) simulate X,Y .

We use the Frobenius-norm between covariance matrices to

measure how close two Gaussian distributions are. For some

ϵ > 0, we define the ϵ-approximation common information as

Cϵ(X,Y ) := min
∥Σ−Σ̂∥Ffϵ

C(X̂, Ŷ ), (7)

where the optimization is over all pairs (X̂, Ŷ ) with covariance

matrix Σ̂ and ∥ · ∥F is the Frobenius norm of a matrix.

Remark 3. The feasible solution set of (7) includes a special

instance3: X̂ = X + UX , Ŷ = Y + UY , where UX and UY

are independent Gaussian perturbations with small variance ¶i,

such that

√

∑dX+dY

i ¶2i f ϵ.

Remark 4. The results on Cϵ(X,Y ) extend if we replace the

Frobenius norm with any distribution distance dist(XY, X̂Ŷ )
that satisfies a∥Σ− Σ̂∥F f dist(XY, X̂Ŷ ) f b∥Σ− Σ̂∥F for

all Gaussian variables XY, X̂Ŷ and some constants a and b.

Remark 5. Note that formulation 1 in (6) studies a more

restricted set of sequences than the sequences included in the

feasible set of the optimization problem in (7). However, the

result we show for formulation 1 is stronger as it holds for

all sequences that satisfy the condition in (6). In contrast,

the results in formulation 2 only hold for the sequence with

the minimum common information (that achieves the optimal

value of the minimization problem). It can be easily shown

that there exist sequences in the feasible set of formulation 2

that have different asymptotics. For example, if some singu-

lar values of the approximation matrix take the value 1 or

approach 1 at a rate different from Θ(ϵ)(e.g., ϵ2 or 2ϵ).

III. MAIN RESULTS

In this section, we present our main results and proof

outlines for the two formulations described in Section II-C.

The detailed proofs are provided in Appendices D, E, and F

in [23].

Before stating our main results, we present two properties of

covariance matrices and the common information dimension,

which are important to Theorems 1 and 2. As stated in (3)

the common information is determined by the singular values

of the normalized cross-covariance matrix Σ
−1/2
X ΣXY Σ

−1/2
Y .

Lemma 1 proves a bound on these singular values.

Lemma 1: Let X ∈ R
dX and Y ∈ R

dY be jointly Gaus-

sian variables with covariance matrix Σ =

[

ΣX Σ
¦
XY

ΣXY ΣY

]

,

and d = min{dX , dY }. Then the singular values of

Σ
−1/2
X ΣXY Σ

−1/2
Y , denoted as {Ãi}

d
i=1, satisfy

0 f Ãi f 1, ∀i ∈ [d] (8)

The following lemma shows the relationship between the

common information dimension and the singular values of

Σ
−1/2
X ΣXY Σ

−1/2
Y , which will enable us to connect the

quantities C(Xϵ, Yϵ), Cϵ(X,Y ) with the common information

dimension d(X,Y ).

3Another way of approximation, that quantizes X and Y into discrete
variables, is studied in our extended work [23].
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Lemma 2: Assume X ∈ R
dX , Y ∈ R

dY are jointly Gaus-

sian variables with covariance matrix Σ =

[

ΣX Σ
¦
XY

ΣXY ΣY

]

,

and {Ãi} are the singular values of Σ
−1/2
X ΣXY Σ

−1/2
Y . Then

the common information dimension between X and Y , with

respect to linear functions, satisfies

d(X,Y ) =

min{dX ,dY }
∑

i=1

1{Ãi = 1} (9)

A. Common information of nearly singular sources

We consider a sequence of pairs of Gaussian random vari-

ables {(Xϵ, Yϵ)}ϵ>0 satisfying (6). The following result shows

that the growth rate of the common information C(Xϵ, Yϵ) is

determined by the common information dimension d(X,Y )
with respect to linear functions.

Theorem 1: Let X ∈ R
dX and Y ∈ R

dY be a pair of jointly

Gaussian random variables, and {(Xϵ, Yϵ)}ϵ>0 be a sequence

as defined in (6). Then the common information C(Xϵ, Yϵ)
satisfies

lim
ϵ³0

C(Xϵ, Yϵ)
1
2 log(

1
ϵ )

= d(X,Y ) (10)

Proof Outline. The main technical challenge in proving

Theorem 1 is the fact that there exist multiple sequences of

random variables Xϵ, Yϵ, with different values of C(Xϵ, Yϵ),
that satisfy the constraints in (6). To address this issue, we

prove the result by deriving an upper and a lower bound on

C(Xϵ, Yϵ) that have the same asymptotic behavior.

The proof focuses on showing that limϵ³0
C(Xϵ,Yϵ)
1

2
log( 1

ϵ
)

=
∑min{dX ,dY }

i 1{Ãi = 1}, where {Ãi} are the singular values

of the matrix Σ
−1/2
X ΣXY Σ

−1/2
Y . We prove this by providing

an upper and lower bound on
C(Xϵ,Yϵ)
1

2
log( 1

ϵ
)

that have the same

limit when ϵ ³ 0. Then we relate
∑min{dX ,dY }

i 1{Ãi = 1} to

the common information dimension d(X,Y ) using Lemma 2.

B. Approximate simulation

The following result shows that the ϵ-approximation com-

mon information Cϵ(X,Y ), defined in (7), for Gaussian vari-

ables grows at a rate determined by the common information

dimension d(X,Y ) with respect to linear functions.

Theorem 2: Let X ∈ R
dX and Y ∈ R

dY be a pair of jointly

Gaussian random variables, then

lim
ϵ³0

Cϵ(X,Y )
1
2 log(1/ϵ)

= d(X,Y ) (11)

Proof Outline. The main technical challenge in proving

Theorem 2 is the difficulty in finding a closed form solution

of the optimization problem defining Cϵ(X,Y ). To address

this issue, we follow a similar approach as in Theorem 1 by

deriving an upper and a lower bound on Cϵ that have the same

asymptotics. However, it turns out that finding upper and lower

bounds that have the same asymptotics is more involved than

in the case of Theorem 1.

The proof uses the upper and lower bounds, de-

rived as described next, to show that limϵ³0
C(Xϵ,Yϵ)
1

2
log( 1

ϵ
)

=

∑min{dX ,dY }
i 1{Ãi = 1}, where {Ãi} are the singular val-

ues of the matrix Σ
−1/2
X ΣXY Σ

−1/2
Y . From Lemma 2, this

concludes the proof of Theorem 2.

Upper Bound. As Cϵ(X,Y ) is the optimal value of

a minimization problem, any feasible solution provides an

upper bound. To find a feasible solution we use ΣX̂ =
ΣX ,ΣŶ = ΣY . Then, we design the singular values of

Σ
−1/2

X̂
ΣX̂Ŷ Σ

−1/2

Ŷ
, denoted as {Äi}, as follows. We set Äi =

Ãi when Ãi ̸= 1. Recall that choosing a singular value to be 1
results in an infinite value for the common information. Hence,

when Ãi = 1 we choose Äi = 1−¶ where ¶ is the largest value

that does not violate the constraint ∥Σ− Σ̂∥F f ϵ.
Lower Bound. To find a lower bound, we relax the con-

straints set ∥Σ − Σ̂∥F f ϵ, resulting in a smaller optimal

value, to make it possible to find a closed form solution of the

problem. The proof of the lower bound hinges on showing

that ∥Σ− Σ̂∥F f ϵ implies

∥Λ− Λ̂∥F f cϵ, (12)

where Λ = diag(Ãi), Λ̂ = diag(Äi) are matrices containing

the singular values of Σ
−1/2
X ΣXY Σ

−1/2
Y ,Σ

−1/2

X̂
ΣX̂Ŷ Σ

−1/2

Ŷ
respectively, and c is a constant that may depend on ΣX ,ΣY .

To further simplify the problem, we remove from the objective

function the terms corresponding to Ãi < 1, and also remove

the value log(1 + Äi) from each term (recall the common

information in (3)). We note that each term in the objective

function is non-negative, and hence, removing terms will not

increase the optimal solution value. Furthermore, we expect

the asymptotics of the common information to be influenced

by the singular values corresponding to Ãi = 1. This results

in the following optimization problem

min
Ä

1

2

∑

i:Ãi=1

log
1

1− Äi

s.t.
∑

i:Ãi=1

(Ãi − Äi)
2 f ϵ2, 0 f Äi f 1,

(13)

which can be solved in a closed form using symmetry and

concavity of the log function.

Remark 6. We note that we can efficiently construct random

variables for each ϵ with common information that has the

asymptotic behavior in Theorem 2 (and thus can be used to

approximate the target singular distribution with (nearly) the

smallest common information). A possible choice is ΣX̂ =

ΣX ,ΣŶ = ΣY ,Σ
−1/2

X̂
ΣX̂Ŷ Σ

−1/2

Ŷ
= U Λ̂V , where U, V are

orthonormal matrices of the singular value decomposition of

Σ
−1/2
X ΣXY Σ

−1/2
Y , and Λ̂ can be obtained using the solution

of problem (13) (refer to Appendix F in [23] for details).

Remark 7. Why do these two theorems have the same

bound? It may seem at first surprising that even though

C(Xϵ, Yϵ) and Cϵ(X,Y ) have different definitions, they both

grow (nearly) as 1
2d(X,Y ) log(1/ϵ). Indeed, as we observed

in Remark 5 the feasible set defining Cϵ(X,Y ) in (7) contains

different sequences of random variables than those satisfying

the conditions in (6). However, the proof of Theorem 2 shows
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that the random variables which minimize the common infor-

mation satisfy a constraint similar to (6); namely, the singular

values Äi corresponding to Ãi = 1 have the same distance to 1,

where Ãi and Äi are the singular value of Σ
−1/2
X ΣXY Σ

−1/2
Y

and Σ
−1/2

X̂
ΣX̂Ŷ Σ

−1/2

Ŷ
respectively. Intuitively, to minimize

the common information in (3), we need Äi to be as far as

possible from the value 1, however, the distance constraint

in (7) restricts us from choosing Äi too far from 1 whenever

Ãi = 1. If one Äi is very close to 1, it will dominate the

summation in (3) resulting in large common information.

Hence, a good solution to (7) distributes the distance budget

ϵ evenly across the Äi’s corresponding to Ãi = 1.

IV. NUMERICAL EVALUATION

In this section, we numerically evaluate the growth rate of

Cϵ(X,Y ) and C(Xϵ, Yϵ), as a function of the approximation

error ϵ. Next, we present two examples.

Example 1. We let X ∈ R
4 and Y ∈ R

4 be jointly Gaussian

vectors with zero means and covariance matrices

ΣX ,ΣY =









1 0.5 0 0
0.5 1 0 0
0 0 1 0
0 0 0 1









,ΣXY =









1 0.5 0 0
0.5 1 0 0
0 0 1 0
0 0 0 0.3









.

It is evident that X1 = Y1, X2 = Y2 almost surely, and

rank(Σ) = 5 < rank(ΣX) + rank(ΣY ), thus, X and Y are

jointly singular.

Figure 1 illustrates the normalized common information
Cϵ(X,Y )
1

2
log(1/ϵ)

and
C(Xϵ,Yϵ)
1

2
log(1/ϵ)

for both formulations 1, 2 in Sec-

tion II-C plotted against the approximation error ϵ. To cal-

culate C(Xϵ, Yϵ), note that there exist multiple sequences4

{(Xϵ, Yϵ)}ϵ>0 that satisfy the requirements in (6). Here, we

choose two representative sequences and plot the results for

both: {(Xϵ, Y ϵ)} which has the minimum common informa-

tion among such sequences for all ϵ > 0, and {(Xϵ, Y ϵ)}
which has the maximum common information. We calculate

the C((Xϵ, Y ϵ)) and C(Xϵ, Y ϵ) using the closed-form so-

lution in (3) [17]. To calculate the ϵ-approximation common

information Cϵ(X,Y ) we solve the optimization problem in

(7) numerically using SciPy [24].

We observe in Figure 1 that both
Cϵ(X,Y )
1

2
log(1/ϵ)

and
C(Xϵ,Yϵ)
1

2
log(1/ϵ)

converge to d(X,Y ) = rank(ΣX)+ rank(ΣY )− rank(Σ) = 3
as ϵ approaches 0. Moreover, they reach a value that is close to

d(X,Y ) (e.g., a value < 4) quickly, even with relatively large

values of ϵ. The trade-off between ϵ-approximate common in-

formation Cϵ(X,Y ) and error ϵ also indicates that the common

information dimension d(X,Y ) provides a theoretical limit on

the maximum achievable accuracy given a finite number of

bits to represent the common randomness; or equivalently, the

minimum number of bits required for the shared randomness

to achieve a target simulation accuracy.

Example 2. In this example, we use X ∈ R
7 and Y ∈

R
7 with ΣX = ΣY = I7, while we choose the cross-

covariance matrices to be a diagonal matrix with d(X,Y )

4Note that there are at most 2min{dX ,dY } (Xϵ, Yϵ) that satisfy (6), for
each ϵ.
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Fig. 1. Growth rate of Cϵ(X,Y ) and C(Xϵ, Yϵ).

diagonal elements set to be 1 and the rest to be 0.5. In

Figure 2, we plot the minimum number of bits required to

approximate X,Y versus the different common information

dimensions d(X,Y ). We use two different levels of accuracy:

ϵ = 2−5 and ϵ = 2−20. We observe from Figure 2, that

the approximate common information grows linearly with the

common information dimension d(X,Y ), where the slope is

given by 1
2 log(1/ϵ), as we also proved in Theorem 2. In

addition, this plot provides a guide on the minimum number

of bits that need to be shared to perform the distribution

simulation within a given error. For instance, to simulate a

target distribution with d(X,Y ) = 5, we need to share 19 bits

to achieve a relatively low 2−5 accuracy, or 53 bits to achieve

a relatively high 2−20 accuracy.
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Fig. 2. The approximate common information Cϵ(X,Y ) vs common
information dimension d(X,Y ).

V. CONCLUSION

In this paper, we studied how the common information be-

tween a pair of random variables increases as their distance ϵ to

jointly singular Gaussian random variables (X,Y ) decreases.

We also studied the minimum amount of common information

required to approximately simulate jointly singular Gaussian

random variables X,Y with at most ϵ error. We proved

that in both scenarios, the common information grows as
1
2d(X,Y ) log(1/ϵ), where d(X,Y ) is the common informa-

tion dimension of (X,Y ) with respect to linear functions.

Our results give an interpretation of the common information

dimension in the context of approximate simulation and finite

common information. It is interesting to note that the common

information dimension restricted to linear functions determines

the scaling behavior even when we do not impose any linearity

constraints on the common information extraction. Future

directions include generalizing the results to other distance

measures and beyond Gaussian distributions.
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