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Background: Croton oligandrus Pierre & Hutch is a tropical tree that grows in West and Central Africa, used in ethnomedicine to
treat cancer, diabetes, headaches, convulsions, urinary diseases, and inflammatory diseases. As other Crofon species have been
observed to possess chemical compounds that target HIV latency-reversal, we hypothesized that this species may have similar
properties.

Aim of the Study: The identification of extracts and compounds of this species, which have HIV-1 latency-reversing activity in J-Lat
T cell lines.

Methods: The stem bark was obtained, air-dried, powdered, and extracted using dichloromethane. In vitro flow cytometry was used to
monitor GFP expression, a marker of HIV latency reversal, following treatment of J-Lat T cells with extracts and compounds.
Results: Four extracts were found to reverse HIV latency, the most active extract showing better activity (ie, latency reversal in 69.7 £
7.1% [mean + s.e.m.] of J-Lat 10.6 cells at 1 ng/mL) than control agents prostratin (46.2 + 9.5% at 1.2 ng.mL) and the “Mukungulu”
(Croton megalobotrys) extract (34.9 + 24.2% at 1 pg/mL). Extracts reversed HIV latency through mechanisms over and above protein
kinase C (PKC) activation and distinct from histone deacetylase (HDAC) inhibition. The most active extract also synergized with the
control HDAC inhibitor romidepsin but did not synergize with other extracts. Isolated compounds (B-Stigmasterol and lupeol) had
limited but consistent latency reversal on their own.

Conclusion: The plant extracts and compounds reverse HIV latency through mechanisms additional to PKC activation and/or
synergize with romidepsin in vitro. Extracts and compounds from this plant may enhance the activity of current HIV latency-reversing
agents being assessed in HIV cure studies.
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Introduction

According to the World Health Organization, HIV and AIDS continue to be a major global health problem, being
responsible for ~630,000 deaths and 1.3 million new infections in 2023 alone." While combination antiretroviral therapy
(cART) is widely implemented and has successfully reduced worldwide morbidity and mortality, cCART only inhibits
active HIV replication.” Notably, cART fails to target resting CD4+ T cells containing latent HIV proviruses, or HIV
reservoirs, which can reactivate at any time to produce infectious virus. Identifying and eradicating these latent reservoirs
is necessary to achieve a long-term, cART-free HIV remission or HIV cure.
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To date, the only successful cure strategy is stem cell transplantation using HIV resistant CCR5A32 stem cells.>
However, this approach is not practical for widespread treatment for persons living with HIV, particularly those living in
low- and middle-income countries. In addition to other strategies like HIV vaccines, another experimental strategy
toward achieving cART-free HIV remission or HIV cure involves the use of latency-reversing agents (LRAs) that induce
HIV-1 provirus expression from latent reservoirs.® This HIV reactivation, coupled with immunotherapy support, could
render infected cells “visible” to the host immune system for elimination,”® whereas co-administration of cART would
prevent further seeding of viral reservoirs.””'' This approach, frequently termed “shock-and-kill” or “kick-and-kill”,
could theoretically eliminate an individual’s viral reservoir and/or reduce the viral reservoir to a point that cART-free
remission is achievable, provided that sufficiently effective LRAs and immune enhancers can be identified.

Natural products obtained from plants are diverse chemical compounds and include both HIV-1 inhibitors and novel
LRAs.'? Croton is a large genus of the family Euphorbiaceae, which comprises over 1300 species of trees, shrubs, and
herbs, distributed across tropical and subtropical regions.'> Croton species are widely reported for other bioactivities
including anti-inflammatory, antiulcer, hypolipidemic, hypoglycemic, nephroprotective, myorelaxant, and anticonvulsant
properties.'* While many Croton species have been used traditionally for centuries, they have more recently gained
attention as sources of bioactive compounds against HIV. Notably, several Croton species have been identified to have
both anti-HIV replication and/or HIV latency-reversing properties.'>* In Croton species, HIV latency reversal is driven
in large part by phorbol esters. For example, the natural product prostratin activates viral gene transcription in latently
infected cells by stimulating protein kinase C (PKC) signaling, which results in the nuclear translocation of NF-xB and
initiation of HIV-1 proviral transcription.”**> Furthermore, crude extracts from Crofon megalobotrys Miill Arg.
(“Mukungulu”), used traditionally for HIV/AIDS management in northern Botswana, can induce HIV expression
in vitro and contain phorbol esters called namushens 1 and 2, with structural similarity to prostratin (Figure 1).%*

To the best of our knowledge, no study has assessed the sister species C. oligandrus, which is a tropical tree
belonging to the Crotonidaea subfamily that grows up to 10 meters tall and is restricted to West and Central African
forests.?® Pieces of this plant are used in local ethno-medicine for treatment of cancers, diabetes, headache, convulsion,
urinary diseases and inflammatory diseases.'®’ The stem bark of this plant is also used in ethno-medicine by the Pygmy
peoples in Gabon to treat anemia and for colic, stomach disorders, pneumonia and splenomegaly.28 However, subsequent
research on the species collected in Cameroon showed that the primary class of metabolites was clerodane-type
diterpenes.'* The stem bark and leaves collected in the Central region of Cameroon, Nkol-nkoumou, were found to
contain clerodane, labdane and trachylobane diterpenes; crotonoligaketone, crotonadiol, imbricatadiol, crotonzambefuran

B, 7-acetoxy trachiloban-18-oic acid, and 3-O-acetyl aleuritic acid.**>° It was also reported that the stem bark collected

Namushen-1 Namushen-2 Prostratin

Figure | Chemical structures of components of Croton megalobotrys Miill Arg (Namushen-| and Namushen-2), that show close similarity with the reference protein kinase
C activator Prostratin. The substructure of the protein kinase C activator/modulator (prostratin) has been highlighted in the chemical structures of the phorbol esters from
Mukungulu.
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in Bafut, North West region of Cameroon, contained the clerodane diterpenoids crotoliganfuran and 12-epi-
crotocorylifuran, as well as scopoletin, geddic acid, sitosterol, vanillic acid, and stigmastane-3,6-dione.27 However,
chemical compounds that may contribute to HIV latency reversal from this plant have not been determined.

In this study, we report the HIV-1 latency reversing potential of C. oligandrus Pierre & Hutch extracts, their
mechanism of action, synergistic activity of the extracts with control LRAs, and the isolation and latency reversing
activity of single compounds from bioactive extracts.

Materials and Methods

Laboratory Reagents

Prostratin and GO-6983 were purchased from Sigma-Aldrich (St. Louis, MO, USA). Romidepsin was purchased from
Selleck Chemicals (Houston, TX, USA). Resazurin and Trypan blue were purchased from Mediatech, Inc. (Manassas,
VA 20109 USA). Jurkat cells (Clone E6-1) were obtained from the American Type Culture Collection (ATCC; Manassas,
VA, USA). J-Lat Full Length cells (clones 10.6 and 6.3), a Jurkat-derived T cell line model of HIV latency containing
a full-length, envelope-defective, integrated HIV-1 genome that expresses a green fluorescent protein (GFP) reporter
upon activation, were obtained from the NIH AIDS Reagent Program, Division of AIDS, NIAID, NIH (contributed by
Dr. Eric Verdin).*' J-Lat 10.6 and J-Lat 6.3 cells differ in the genomic integration site of the HIV-1 genome; J-Lat 10.6
cells have a weak barrier to viral reactivation while J-Lat 6.3 cells are more resistant to viral reactivation by LRAs.
Betulin, B-stigmasterol, and lupeol were purchased from Sigma-Aldrich (St. Louis, MO, USA).

Jurkat and J-Lat cells were maintained in R10+ medium consisting of RPMI-1640 (Life Technologies, Grand Island,
NY, USA) supplemented with 10% fetal bovine serum (GeminiBio, Sacramento, CA, USA), 1% penicillin/streptomycin
(Mediatech, Manassas, VA, USA), and 1% L-Glutamine (Mediatech). Cultured cells were incubated at 37 °C and 5%
CO,. Extracts and compounds were dissolved in 100% DMSO and stored at —20 °C for further analysis.

Plant Material

The stem bark of C. oligandrus Pierre & Hutch (Euphorbiaceae) was harvested in Nkol-Nkoumou, Centre Region of
Cameroon, in October 2019. The plant was identified by Mr. Victor Nana, of the National Herbarium, Yaoundé,
Cameroon, where a voucher specimen (No. 6687/SRF/Cam) has been deposited. The bark of Croton megalobotrys
(“Mukungulu™) was obtained and prepared as described previously.?

Extraction and Isolation

The air-dried powdered (2.2 kg) stem bark of C. oligandrus was extracted with dichloromethane three times for 72 h at
room temperature. Filtration and concentration of the crude extract on a rotary evaporator led to 24.4 g of a dark brown
crude extract. The crude extract was subjected to silica gel normal phase open column chromatography and eluted with
a gradient system of EtOAc in hexane (5:95 to 100 EtOAc) followed by 100% dichloromethane to afford 75 fractions,
which were combined into nine pooled fractions (A—I) based on thin-layer chromatography (TLC) profiles. Column
chromatography was carried out with glass columns using Merck 60 (60-200 um) silica gel as stationary phase. Size-
exclusion chromatography was performed with Sephadex LH-20 (Sigma Aldrich). Analytical TLC was performed on
Merck F254 aluminum sheets pre-coated with silica gel. Zones on these plates were visualized under UVGL-58 lamps at
254/365 nm. The 'H and '>C NMR spectra were recorded in CDCl; at 400 and 100 MHz respectively, with TMS as the
internal reference. The chemical shifts () of carbon and proton are in parts per million (ppm), with TMS as reference
(Tables S1-S3).

HIV Latency Reversal Assays

HIV latency reversal assays were performed as described previously.”® Briefly, J-Lat 10.6 or 6.3 cells were resuspended
in fresh R10+ medium to a concentration of 1 million cells/mL. 2x10° cells (ie cells in a volume of 200 uL) were seeded
into each well of a 96-well sterile, flat-bottom plate (Corning, USA) with extracts or compounds at concentrations
presented in Figures and/or 0.1% DMSO vehicle control in duplicate. For each experiment, positive controls included
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established LRAs (prostratin — PKC activator and romidepsin — HCAC inhibitor) and/or Mukungulu extract. Cells were
incubated at 37 °C and 5% CO, for 24 hours. Cell cultures were then assessed for GFP expression by flow cytometry
using a FACSCelesta Flow Cytometer (BD Bioscience, Franklin Lakes, NJ, USA). Flow cytometry data were analyzed
using FlowJo v. 10.10.0 software (FlowJo LLC, Ashland, OR, USA). Gating of live cells and percent HIV latency for
each well were obtained as described previously.”>*! For dose-response curves and synergism studies, results are
reported as the mean + s.e.m. from at least 3 independent experiments. Studies using GO-6983 reflect the mean = SD
from 2 independent experiments.

Cell Viability Assays

Jurkat cells were resuspended in fresh R10+ to a concentration of 10° cells/mL, and 2x10° cells were seeded in 96-well
plates with extracts or compounds at concentrations presented in Figures and/or 0.1% DMSO vehicle control in
duplicate. Mukungulu extract was used as a control. Cells were incubated at 37 °C and 5% CO, for 24 hours. Cells
were then treated with 0.2 mg/mL resazurin and incubated for an additional 4 hours, and resorufin production was
measured using an Infinity M200 multimode plate reader (Tecan Life Sciences; Morrisville, NC, USA). The average
background fluorescence of media-only controls was subtracted from the fluorescence obtained from each well. The
fluorescence from each well was then normalized to the average fluorescence of cells treated with 0.1% DMSO vehicle
control in duplicate such that, for a given test agent, 100% denotes viability equal to viability of untreated cells (ie treated
only with 0.1% DMSO vehicle control), and 0% denotes complete cell death. Results are reported as the mean + s.e.m.
from at least 3 independent experiments.

Cytokine Detection Assays

Five million Jurkat cells were diluted in 1 mL of R10+ and incubated with extracts for 24 hours. Cell culture supernatants
were then tested for the presence of cytokines (IL-2 and IL-6) using the ab270883—Human IL-2 SimpleStep ELISA® Kit
and the ab178013 human IL-6 SimpleStep ELISA® Kit (Abcam, Cambridge, MA, USA) as directed by the manufacturer.
Prostratin and Mukungulu were used as positive controls. Results were normalized to cells treated with 0.1% DMSO
vehicle control and reported as the mean + s.e.m. from 4 independent experiments.

Histone Deacetylase Assays

Histone deacetylase (HDAC) activity was examined using the HDAC-Glo I/IT Assay Kit (Promega; Madison, WI, USA)
as per manufacturer’s instructions. Briefly, HDAC reactions were performed in white 384-well plates with 20 pL final
volume/well. Extracts were diluted to desired concentrations in the provided buffer and added to wells. Jurkat cells were
then resuspended in Phenol-Red- and FBS-free RPMI 1640 and seeded into wells at 3,000 cells/well. Cells treated with
0.1% DMSO served as a baseline HDAC activity control, while wells containing only media were included to control for
signal background. Romidepsin was used as a positive control. Following incubation at 37 °C for 90 min, 20 puL of
HDAC-Glo I/II Reagent plus 1% Triton-X100 (prepared as per manufacturer’s instructions) was added to each well.
Plates were mixed for 30s, then incubated at room temperature for 30 min. Luminescence was detected by an Infinity
M200 multimode plate reader (Tecan Life Sciences; Morrisville, NC, USA). Resulting data were then normalized to the
no-inhibitor control following background subtraction. Results are reported as the mean + SD from 2 independent
experiments.

Results and Discussion

Croton oligandrus Extracts Reverse HIV Latency in vitro

A total of 6 extracts (UB/CA8 — 13) were obtained from C. oligandrus as described in Materials and Methods. To assess
the HIV latency-reversing potential of these extracts, we first made use of J-Lat 10.6 cells, which are derived from the
Jurkat T cell line but contain a latent, non-infectious HIV clone with a frameshift mutation in env (envelope glycopro-
tein). This latent provirus also carries an integrated, but transcriptionally latent HIV proviruses with a green fluorescent
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protein (GFP) reporter instead of nef accessory gene.’' As a result, HIV latency reversal can be monitored using GFP
expression by flow cytometry.

Consistent with published data,?*~*7>*

the control LRA prostratin, which reverses HIV latency through PKC
activation, exhibited dose-dependent expression of GFP across multiple concentrations in J-Lat 10.6 cells after
24 hours of incubation, and where 10 uM (11.6 pg/mL) induced GFP expression in 75.2 + 1.8% of cells (Figure 2A).
Similarly, a crude extract of “Mukungulu”, isolated from Croton megalobotrys, a related species found in Botswana and
used locally and traditionally for HIV/AIDS management,** also showed a dose-dependent expression of GFP in J-Lat
cells where, for example, 10 pg/mL Mukungulu reversed HIV latency in 76.3 £ 8.2% of cells (Figure 2A). Assuming
a maximum induction of 75% GFP-positive cells in this model, we calculated half-maximal effective concentrations
(ECs08) of 1.1 pg/mL for both prostratin and Mukungulu.

Using this assay, we found that 4 of 6 extracts obtained from Croton oligandrus also reversed latency, in some cases
with more activity than prostratin and Mukungulu (Figure 2A). For example, the most potent extract, UB/CA12, induced
69.7 + 7.1% GFP expression at only 1 pg/mL, corresponding to an ECso of 0.2 pg/mL. Extracts UB/CAS, 11, and 13 also
reversed HIV latency, albeit at higher concentrations corresponding to ECsos of 2.9, 1.2, and 3.2 pg/mL, respectively

(Figure 2A). These results demonstrate that, like other Croton species,'®*

extracts from C. oligandrus also reverse HIV
latency in vitro.
We next assessed whether these extracts could reverse HIV latency in J-Lat 6.3 cells, where the provirus is located at

a different genomic integration site and is less likely to undergo latency reversal.’' In these cells, we observed that both
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Figure 2 C. oligandrus Pierre & Hutch extracts reverse HIV latency in vitro. (A and B), Dose—response curves of control LRAs prostratin and Mukungulu extract in addition
to C. oligandrus extracts in J-Lat 10.6 (A) and J-Lat 6.3 (B) cells. Values indicate percent GFP-positive cells for each condition. (C), Dose-response profiles of control LRAs
and C. oligandrus extracts on Jurkat cell viability. Values indicate viability relative to cells treated with 0.1% DMSO vehicle control.
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prostratin and Mukungulu maintained the ability to reverse HIV latency, where 10 uM and 10 pg/mL induced GFP
expression in 10.8 + 3.1% and 10.0 + 2.6% of cells, respectively (Figure 2B). Assuming a maximum 11% GFP induction
in this model, the ECs¢s for prostratin and Mukungulu were calculated as 1.2 and 4.9 pg/mL. Also as observed
previously, UB/CA12 remained the most active, with 12.5 + 2.4% latency reversal at 1 pg/mL and a calculated ECs
of 0.5 pg/mL (Figure 2B). We also observed weaker but consistent activity for UB/CA8 (2.9 + 1.3% at 10 ug/mL), UB/
CAl1l (3.7 £ 1.5% at 3 pg/mL), and UB/CA13 (1.9 + 1.8% at 3 pg/mL; Figure 2B). While these activities were
insufficient to accurately calculate ECsgs, they demonstrate that extracts from C. oligandrus promote latency reversal
in vitro independent of proviral integration site.

Notably, higher concentrations of each extract (eg > 10 pg/mL) resulted in lower GFP expression in cell cultures (not
shown), indicating the potential for cytotoxicity at these concentrations. To test this rigorously, we next treated Jurkat
cells, the parental cell line of J-Lat cells, in the presence of each extract and control for 24 hours and measured cell
viability by resazurin stain (Figure 2C). While no toxicity was observed with Mukungulu except at 30 pg/mL (ie, 67.9 +
15.8% wiability relative to cells treated with 0.1% DMSO vehicle control), all 4 extracts exhibited dose-dependent
toxicity, with calculated half-maximal cytotoxic concentrations (CCsgs) of 7.1, 9.9, 0.9, and 9.2 ug/mL for extracts UB/
CAS, 11, 12 and 13, respectively (Figure 2C), indicating that the bioactive chemical components of C. oligandrus found
in these extracts likely differ from those of Mukungulu.

Extracts Reverse HIV Latency in Part Through PKC Activation

To investigate the mechanisms of latency reversal induced by C. oligandrus extracts, we first assessed whether they
elicited T cell activation. We therefore treated Jurkat cells with extracts or control LRAs for 24 hours and assessed culture
supernatants for IL-2 and IL-6 production. In this assay, we observed that 10 uM prostratin induced a 57.2 £ 9.4%
increase in IL-2 and a 41.9 + 5.7% increase in IL-6, while 3 ng/mL Mukungulu induced 33.0 + 18.8 and 9.5 + 12.5%
increases in these cytokines (Figure 3A). Similarly, all four tested extracts also induced IL-2 and IL-6 production, most
notably by 3 pug/mL of UB/CA12 which induced a 59.5 £ 0.2% increase in IL-2 and 9.7 + 9.7% increase in IL-6
(Figure 3A). These results indicate that, like known PKC activators prostratin and Mukungulu, these extracts also
promote T cell activation in vitro.

We next asked whether these extracts may reverse HIV latency through HDAC inhibition, a common and well-
established pharmacological mechanism of latency reversal.>> To test this, we used a previously described HDAC-glo
assay to measure HDAC activity in Jurkat cells.’” In this assay, 0.1 uM of the control HDAC inhibitor romidepsin
inhibited 35.6 + 8.0% of HDAC activity in Jurkat cells (Figure 3B). In contrast, neither 10 pM prostratin nor 3 pug/mL
Mukungulu inhibited HDAC activity (maximum 7.1 + 1.4% inhibition), consistent with their functions as PKC activators
(Figure 3B). Similarly, no inhibition was observed with any C. oligandrus extract (Figure 3B), indicating that these
extracts are unlikely to function as HDAC inhibitors to reverse HIV latency.

To determine whether these extracts may reverse HIV latency through PKC activation, we next treated J-Lat cells in
the presence of 1 uM of the pan-PKC inhibitor GO-6983. As expected, latency reversal induced by both 10 pM prostratin
and 3 pg/mL Mukungulu were inhibited in the presence of GO-6983 by 87.0 + 5.0% and 87.5 + 4.0%, respectively
(Figure 3C). Conversely, latency reversal induced by 0.1 uM romidepsin remained unaffected by co-administration of
GO-6983 and as expected for a histone deacetylase inhibitor (1.4 £ 1.4% inhibition). Interestingly, GO-6983 inhibited
only ~55% of latency reversal induced by 3 ng/mL of UB/CAS, 11, and 13 and 11.0 + 22.3% of latency reversal induced
by UB/CA12 (Figure 3C). These results indicate that the active components of these extracts likely contain PKC
activators, but that other mechanisms of latency reversal may also be present.

A Subset of Extracts Synergize with Romidepsin but Do Not Synergize with Each
Other

Treatment of cell-line models of HIV latency with combinations of LRAs acting through different mechanisms tends to
result in synergistic responses, while treatment with combinations of LRAs with similar mechanisms tends to yield only
additive responses.’*? To investigate whether latency reversal by C. oligandrus extracts also have synergistic activity,
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J-Lat 10.6 cells were treated with sub-maximal concentrations of UB/CAS, 11, 12, or 13 in the presence of control LRAs

romidepsin (ie, HDAC inhibitor) and prostratin (ie, PKC activator; Figure 4). Using this approach, we observed that

0.1 pg/mL of UB/CA12, when combined with 0.03 pM romidepsin, resulted in greater latency reversal that what would
be expected due to strictly additive effects (Figure 4B). For example, we observed that 0.1 pg/mL of UB/CA12 and
0.03 uM romidepsin on their own reversed latency in 11.6 £ 2.0% and 14.3 = 1.6% of cells, respectively (Figure 4A),
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Figure 4 Combinatorial effects of C. oligandrus Pierre & Hutch extracts. (A), Effects of control LRAs and C. oligandrus extracts at sub-optimal concentrations. (B—D), Effects
of extracts in combination with 0.03 pM romidepsin (B), 0.1 uM prostratin (C), and in combination with each other (D). For (B-D), black bars denote predicted additive
activities based on results in (A), while gray bars denote observed activities.

suggesting an additive activity of ~25.9% GFP expression (Figure 4B, black bar). In contrast, co-administration of these
LRAs resulted in 39.8 + 10.3% GFP expression, or ~1.5-fold more than expected by additive effects (Figure 4B, gray
bar). While these results did not reach statistical significance according to the Bliss Independence model,*® they are
consistent with UB/CA12 acting via mechanism(s) distinct from HDAC inhibitors (ie, Figure 3B). In contrast, results
consistent with additive effects were observed for all extracts when combined with 0.1 uM prostratin (Figure 4C), which
is also consistent with at least some of the extracts’ activities due to PKC activation (ie, Figure 3C). Finally, when
extracts were tested in respective combinations, we only observed additive effects (Figure 4D), suggesting that the
compounds in these extracts are likely to be functionally similar. We want to emphasize that this study includes an initial
effort to isolate bioactive compounds from C. oligandrus extracts. The isolated compounds are likely those which are
more abundant and relatively easy to isolate. We also prioritized these as they were commercially available. Clerodane
diterpenoids and phorbol esters are probably also present, but they represent more complex structures and rarer species

which will require more involved techniques.
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Figure 5 Compounds isolated from C. oligandrus Pierre & Hutch extracts reverse HIV latency. (A) Chemical structures of isolated compounds. (B), Dose—response curves
of compounds in J-Lat 10.6 cells. (C), Effects of compounds in J-Lat 10.6 cells in the presence of pan-PKC inhibitor GO-6983. (D), Effects of compounds in combination with
0.01 uM romidepsin, where black bars denote predicted additive effects, and gray bars denote observed activities.

Isolation and Identification of Compounds with LRA Properties

In an initial effort to identify bioactive compounds, the crude dichloromethane extract of C. oligandrus was
subjected to silica gel column chromatography and eluted with a gradient of ethyl acetate in hexane. Repeated
column chromatography through Sephadex LH-20 and TLC yielded the known phytosterols lupeol (CO1), betulin
(C0O2), and B-stigmasterol (CO3), with their masses 200.0 mg, 45.0 mg, and 23.0 mg respectively, from fraction
B after further purification (Figure 5A). The compounds were obtained as white, amorphous powders and generated
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positive reactions for phytosterols.*” The structures of the CO1*' C02** and CO3* were established based on
NMR analyses as well as by comparison with published data (see Figures S1-S6 and Tables S1-S3).

Interestingly, when commercially available and pure versions of these compounds were assessed for latency
reversal in J-Lat 10.6 cells, we saw weak but consistent activity for B-stigmasterol, where 2.5 pg/mL (6.0 uM)
induced GFP expression in 9.6 + 3.8% (Mean + SD) of J-Lat 10.6 cells (Figure 5B). Unfortunately, higher
concentrations could not be assessed due to solubility limitations. In contrast, minimal activity was observed with
30 pg/mL of betulin (67.6 uM; average 2.1 £ 0.2% GFP-positive cells) and lupeol (70.3 uM; average 2.9 + 0.4%
GFP-positive cells; Figure 5B). However, the activities of B-stigmasterol and lupeol were only minimally inhibited by
co-administration with 1 uM of GO-6983 (18.5 + 12.6 and 20.8 + 11.3% inhibition, respectively; Figure 5C),
indicating that these compounds are unlikely to act primarily as PKC activators. Additionally, co-administration of
70.3 uM lupeol with 0.01 uM romidepsin induced 8.6 + 0.6% GFP expression, or a 1.4-fold increase over what would
be expected by strictly additive effects (ie, 6.2% GFP expression, or 2.8 + 0.4% due to 70.3 uM lupeol + 3.4 + 0.5%
due to 0.01 uM romidepsin; Figure 5D). In contrast, co-administration of 2 pM p-stigmasterol with 0.01 puM
romidepsin resulted in 5.2 £ 0.6% GFP expression, which was more consistent with activity due to additive effects
(Figure 5D). Taken together, these results indicate that isolated compounds have a limited but consistent ability to
reverse HIV latency in vitro with mechanisms consistent with what is observed in bioactive extracts.

Conclusion

Taken together, these results show that enriched fractions from C. oligandrus Pierre & Hutch, like those from other
Croton species such as Croton megalobotrys (“Mukungulu”), can reverse HIV latency in vitro. However, C. oligandrus
extracts differ from Mukungulu in that they induce more cellular toxicity and that latency reversal is less affected by
PKC inhibition, suggesting the presence of distinct mechanisms of action to reverse HIV latency. We also observed that
extract UB/CA12 exhibited synergistic activity when co-treated with the HDAC inhibitor romidepsin; as such, com-
pounds isolated from this extract may be useful for enhancing the activity of current HIV LRAs like romidepsin being
assessed in the clinic. Of three isolated compounds, B-stigmasterol had good activity in J-Lat 10.6 cells at 6 pM (9.6 +
3.8% latency reversal), while betulin and lupeol had weak but detectable latency reversal above background signal
(Figure 5B). Notably, these compounds were not largely affected by PKC inhibition and/or exhibited synergism with
romidepsin, supporting distinct mechanisms of action from HDAC inhibitors and PKC activators. We note that other
compounds including clerodane diterpenoids and/or phorbol esters are likely to be present in C. oligandrus extracts.
Future studies should isolate and test these for latency reversing activity as they are more likely to represent the primary
latency reversing activities seen here, as opposed to the compounds identified here which may function as “enhancers” of
primary LRAs. Nevertheless, additional phytosterols and other compounds present in C. oligandrus, as well as synthetic
derivatives of these compounds, should also be assessed using in vitro HIV latency as well as primary CD4+ T cell
models to more closely monitor cytotoxicity, identify compounds with maximal activity, and investigate how their
mechanisms of latency reversal differ from more established LRAs, which in turn would inform future in vivo studies.

Abbreviations
cART, combination antiretroviral therapy; HDAC, histone deacetylase; HIV, human immunodeficiency virus; LRA,
latency-reversing agent; PKC, protein kinase C.
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