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ABSTRACT

One-way functions are central to classical cryptography. They are
necessary for the existence of non-trivial classical cryptosystems,
and also sufficient to realize meaningful primitives including com-
mitments, pseudorandom generators and digital signatures. At the
same time, a mounting body of evidence suggests that assump-
tions even weaker than one-way functions may suffice for many
cryptographic tasks of interest in a quantum world, including bit
commitments and secure multi-party computation.

This work studies one-way state generators [Morimae-Yamakawa,
CRYPTO 2022], a natural quantum relaxation of one-way functions.
Given a secret key, a one-way state generator outputs a hard to
invert quantum state. A fundamental question is whether this type
of quantum one-wayness suffices to realize quantum cryptography.
We obtain an affirmative answer to this question, by proving that
one-way state generators with pure state outputs imply quantum
bit commitments and secure multiparty computation.

Along the way, we use efficient shadow tomography [Huang et.
al., Nature Physics 2020] to build an intermediate primitive with
classical outputs, which we call a (quantum) one-way puzzle. Our
main technical contribution is a proof that one-way puzzles imply
quantum bit commitments. This proof develops new techniques
for pseudoentropy generation [Hastad et. al., SICOMP 1999] from
arbitrary distributions, which may be of independent interest.
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1 INTRODUCTION

A one-way function is a classically efficiently computable function
that is hard to invert. This is a fundamental hardness assumption,
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necessary for the existence of much of modern classical cryptogra-
phy [20, 21, 29]. The classical crypto-complexity class “minicrypt”
contains primitives like bit commitments, pseudorandom genera-
tors, pseudorandom functions and symmetric encryption, that are
all equivalent to the existence of one-way functions. On the other
hand, tasks like key exchange and secure multi-party computation
classically require stronger, more structured assumptions [22].

The relationship between computational hardness and cryptog-
raphy appears to be drastically different in a quantum world. Here,
the seminal works of Wiesner [36] and Bennett and Brassard [9]
first demonstrated the possibility of unconditional quantum key
distribution (QKD) by exploiting the properties of quantum infor-
mation. Unfortunately, it was also shown that other useful crypto-
graphic primitives like bit commitments and secure computation
cannot exist unconditionally [27, 30], and must necessarily rely on
computational hardness, even in a quantum world. However, our
understanding of computational hardness in a quantum world is still
in its infancy. For instance, it was only recently understood [8, 15]
that one-way functions suffice to enable secure multi-party compu-
tation in a quantum world, a task that is believed to be impossible
classically.

Sources of Hardness in a Quantum World. Despite being necessary
for classical cryptography, one-way functions may not be necessary
for computational quantum cryptography.

Two recent concurrent works [6, 32] demonstrated that many
cryptographic primitives including quantum bit commitments, (one-
time secure) digital signatures, and multi-party secure computation
can also be based on the existence of pseudorandom state generators
(PRSGs), which were introduced in [23].

Given a secret key, a PRSG efficiently generates a quantum state,
several copies of which are computationally indistinguishable from
equally many copies of a Haar random state. There is some evidence
that points to PRSGs being a weaker assumption than one-way func-
tions. Specifically, PRSGs can exist even if BQP = QMA (relative to a
quantum oracle) [25] or if P = NP (relative to a classical oracle) [26].
This indicates that PRSGs, and all the cryptographic primitives
that they imply, can exist even if all quantum-secure (classical)
cryptographic primitives, including one-way functions, are broken.

Can we base quantum cryptography on assumptions that are
potentially even weaker than the existence of PRSGs? As pointed
out in [31], PRSGs and bit commitments are “decision-type” prim-
itives that rely on the hardness of distinguishing pseudorandom
states from truly (Haar) random ones. On the other hand, there is a
natural, simpler “search-type” assumption that significantly relaxes
the pseudorandomness guarantee of a PRSG to one-wayness.

One-Way State Generators (OWSG). A OWSG [32] is an efficient
quantum algorithm that given a secret key, generates a hard-to-
invert quantum state.
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Given that one-way functions enable a variety of classical cryp-
tosystems, it is natural to ask whether one-way state generators
play a similar role in quantum cryptography. Namely,

Can we obtain quantum cryptosystems including bit commitments
and MPC, only assuming the existence of one-way state generators?

Our main theorem answers this question in the affirmative in the
setting where OWSG outputs are pure states.

THEOREM 1.1. (Informal) One-way state generators with pure
state outputs imply quantum bit commitments.

By combining with prior work that demonstrates conversions
between various types of commitments [6, 10] and builds secure
multi-party computation from commitments
[6, 8, 15], we also obtain the following corollary.

CoROLLARY 1.1. (Informal) One-way state generators with pure
state outputs imply secure multi-party computation for all quantum
functionalities.

We note that OWSGs were initially defined in [32] to only output
pure states; but this definition was later generalized in [31] to also
allow mixed states. OWSG with pure state outputs were also stud-
ied in [12], who also showed equivalences between variants (weak,
distributional) of OWSGs. Outputs of random quantum circuits
yield natural candidates for pure OWSG that do not rely on classi-
cal hardness; in fact the output states can even be conjectured to be
pseudorandom [6]. However, only relying on one-wayness intro-
duces the possibility of building cryptography from other natural
candidates: for instance, the (pre-measurement) states generated by
BosonSampling experiments are not indistinguishable from Haar
random [3], but can plausibly be one-way.

Pure OWSGs are also implied by various cryptographic prim-
itives such as digital signatures with pure verification keys and
quantum money with pure banknotes [31]. This, combined with
our theorem, shows that these other primitives also imply quan-
tum bit commitments. In some sense, this establishes commitments
as the leading candidate for a minimal/necessary assumption in
quantum cryptography.

One-Way Puzzles. Enroute to our main theorem, we use efficient
shadow tomography [19] to prove that OWSG imply an intermedi-
ate cryptographic primitive with entirely classical outputs, that we
call a one-way puzzle. We find this implication from a OWSG with
quantum outputs to a simple, cryptographically useful primitive
with classical outputs, noteworthy.

THEOREM 1.2. (Informal) One-way state generators with pure
state outputs imply one-way puzzles.

A (quantum) one-way puzzle consists of a pair (Samp, Ver) where
Samp is a quantum polynomial time algorithm and Ver is Boolean
function!. Samp outputs a pair of classical strings — a key and puzzle
(k, s) — satisfying Ver(k, s) = 1. The security guarantee is that given
a “puzzle” s, it is (quantum) computationally infeasible to find a key
k such that Ver(k, s) = 1, except with negligible probability.

In an earlier version, we defined Ver to be an unbounded time algorithm. However,
Ver does not even need to be computable, so the definition may be relaxed to allow for
arbitrary functions. This was independently noted in [13].
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Unlike prior definitions of one-way puzzles in the literature, we
do not require verification (Ver) to be efficiently implementable. As
we will see later, only asking for inefficient verification turns out to
be necessary for our implication from OWSG. Indeed, if verification
were efficient, then a QMA oracle would be capable of breaking
one-way puzzles, but such an oracle is unlikely to break OWSG [25].
Somewhat surprisingly, we show that inefficiently verifiable one-
way puzzles are also sufficient to build quantum bit commitments.

The reader may have observed that one-way puzzles generalize
one-way functions to allow joint, randomized sampling of keys and
outputs. In a classical world, this generalization is unnecessary: one-
way puzzles are equivalent to one-way functions. One direction of
the implication is straightforward, since one-way functions imply
one-way puzzles (almost) immediately by definition. In the other
direction, a one-way function can be obtained from a classical
one-way puzzle by “pulling out” the (uniform) randomness r used
by Samp. The one-way function f on input r samples (k,s) «
Samp(1™,r) and outputs f(r) = s. It is easy to see that one-wayness
of the puzzle implies one-wayness of f.

The conversion above is no longer applicable when Samp is
quantum, because there may be no equivalent deterministic, effi-
cient function that on input uniform randomness, outputs (k, s)
distributed according to the output of Samp. Nevertheless, enroute
to proving our main result, we show:

THEOREM 1.3. (Informal) One-way puzzles imply quantum bit
commitments.

Theorem 1.3 is the most technically involved part of this work.
In a nutshell, existing techniques for building commitments from
classical one-way primitives (e.g., [17]) crucially only apply when
the preimage distribution of every image of the function is flat
(i.e., uniform over all preimages). This work develops a method to
generate pseudorandomness from one-way puzzles with arbitrary
preimage distributions, which we believe to be of independent
interest.

Local/Hybrid Quantum Cryptography and One-Way Puzzles. As an
aside, we observe that one-way puzzles are also implied by quan-
tum cryptography with classical communication. In fact there is a
large body of work that aims to understand the computational hard-
ness yielding quantum cryptography with classical communication,
including protocols for quantum advantage [11, 33, 34], quantum
commitments with classical communication [5], and even black-box
separations for key exchange [7]. Classical communication proto-
cols are desirable as they can be used over the current infrastructure
(e.g., the Internet). In this model, sometimes called the “local” or
“hybrid” or quantum-computation classical-communication (QCCC)
model [7], all the quantum computation is done locally by parties
who exchange only classical messages.

We observe that natural cryptographic primitives such as public-
key encryption and signatures in the QCCC model imply one-way
puzzles. For example, given a public-key encryption scheme, a
one-way puzzle can be defined as follows. The one-way puzzle
sampler will output a puzzle consisting of a public key along with
an encryption of a random message, and the corresponding solution
will be the (plaintext) message. It is easy to see that an adversary
that breaks one-wayness of the resulting puzzle can be used to break
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CPA security of the encryption scheme. In fact, one can obtain a
one-way puzzle even given any public key encryption with classical
public and secret keys, but quantum ciphertexts. We formalize these
ideas and also show how similar ideas prove that one-way puzzles
are implied by digital signatures, natural bit commitments and
symmetric encryption schemes in the QCCC model?.

Finally, we note that [24] recently discussed a related but stronger
primitive — hard quantum planted problems for NP languages — which
is implied by cryptography with publicly verifiable deletion. A
hard quantum planted problem for a language is specified by a
QPT sampler that samples an instance-witness pair (x, w) for the
language in a way that no adversary can find a witness for x with
non-negligible probability. These are like one-way puzzles except
that they admit efficient verification. By definition, hard quantum
planted problems imply one-way puzzles (and therefore by our
work, imply quantum bit commitments).

Conclusion and Future Directions. Prior to this work, bit commit-
ments were known to be implied by pseudorandom state genera-
tors [6, 32] via a construction that roughly parallels the classical
setting [35]. They were also known [31] from a restricted type of
OWSG; namely one with injective, orthogonal outputs. However, as
we discuss in the next section, building commitments from general-
purpose OWSG requires methods that are quite different from
known classical techniques, and which may be broadly applicable
beyond this work.

We also hope that the one-way puzzle abstraction will enable a
better understanding of quantum bit commitments. For example,
some existing attempts to understand the complexity of quantum
commitments [25] build oracles relative to which complexity classes
collapse, but pseudorandom states exist (and thus, one-way puz-
zles exist). Directly establishing the existence of one-way puzzles
relative to these oracles may be easier, and may enable even more
general oracle separations. One-way puzzles may also help better
understand the relationship between quantum cryptography and
quantum notions of Kolmogorov complexity.

Finally, we discuss some open questions related to this work. An
obvious one is whether our results extend to mixed state OWSG.
One avenue towards proving this would be to build one-way puz-
zles from mixed-state OWSG, perhaps via better tomography. In
addition, answering the following questions will shed some more
light on the complexity of quantum cryptography.

(1) Can quantum bit commitments with classical communication
be based on the existence of OWSG or one-way puzzles?
This is plausible because one-way puzzle outputs are classical
after all. Moreover, many other intermediate primitives that
we build in this work also have entirely classical outputs.

(2) En route to building commitments, this work constructs
pseudo-entropy generators from one-way state generators.
Can other pseudorandom primitives, such as pseudorandom
quantum states be obtained from OWSG or one-way puzzles?
Techniques in this work may serve as a useful starting point
towards addressing this question.

2One may ask whether computational cryptographic primitives in the QCCC model
also imply one-way functions. But it is unclear if this is true; and at the very least this
is challenging to prove, for the same reason as above — namely, we cannot explicitly
pull out the sampling randomness from an arbitrary quantum algorithm.
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(3) Do quantum bit commitments imply one-way puzzles? If
not, is there a separation? It is easy to observe that one-
way puzzles can be broken given (quantum) access to an
oracle for a related boolean function f. Is this also true for
every quantum bit commitment? This question appears to
be connected with the unitary synthesis problem [1, 4], for
which a recent work [28] gave a general one-query lower
bound.

Is there a quantum analogue to the classical implication from
one-way puzzles to one-way functions? In other words, does
the existence of one-way puzzles with hardness over arbi-
trary distributions imply one-way primitives with hardness
over uniform/flat preimage distributions?

—
N
=

2 TECHNICAL OVERVIEW

We begin this overview by outlining a well-known construction of
classical commitments from any injective one-way function. This
construction relies on hardcore predicates: roughly, a hardcore
predicate for a one-way function f is a bit that is easy to compute
given a preimage k but hard to compute given f(k). The Goldreich-
Levin theorem [14] shows that the bit (k, r) is hard-core for the
function f(k)||r. When f is injective, the hardcore bit is uniquely
determined for every element in the image, and gives rise to a
simple commitment scheme, as follows.

A commitment to bit b is f(k), r, (k, r) ® b for randomly sampled
k and r. This commitment is binding because of the injectivity of
f, and computationally hides the bit b due to (k, r) being hardcore.
This construction does not work when f is not injective. In this case,
for an image y, there may exist two preimages k1, ks € {f~!(y)}
such that (kq,r) # (k,r), which will allow the committer to break
binding.

The celebrated work of Hastad et. al. [17] showed how to over-
come the binding issue, and base classical commitments on general
(not necessarily injective) one-way functions. We outline (some
relevant parts of) their technique next.

Pairwise Independent Hashing Reduces the Number of Preimages.
The starting point of the technique in [17] is to append to the image
f(k) a pairwise-independent hash h(k), thereby reducing the total
number of preimages of f(k), h(k). This makes f(k), h(k) behave
somewhat like an injective function for carefully chosen output
sizes of h(k).

In more detail, let Nj denote the number of preimages of f(k).
When the output size h(k) is set to (slightly larger than) logNy,
then [17] (roughly) show that:

o h(k) is computationally indistinguishable from uniform given
f(k), and

o h(k) is statistically (somewhat) distinguishable from uniform
given f(k).

The fact that f(k), h(k) appears to a computationally bounded
adversary to have more entropy than it actually does is formal-
ized by building an object called a weak pseudoentropy generator
(WPEG) [16, 17]. We will now describe this object in more detail.
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2.1 Weak Pseudoentropy Generators (WPEG)

A distribution Gy is a weak pseudoentropy generator (WPEG) if
there exists another, possibly inefficient simulated distribution Gq
whose output is computationally indistinguishable from, and yet
has more Shannon entropy than Gy.

For a one-way function f and pairwise independent hash h, we
can consider distributions

Go(1") == (k). h,i, h(k); and

f(k)s h’ I h(k)l'—ls up
f(k), b i, h(k);

where k and the hash key h are sampled uniformly in {0, 1}", i «
[n], Ni denotes the number of preimages of f(k), h(k); denotes
h(k) truncated to the first i bits, and u; denotes a uniformly random
bit.

Prior works [16, 17] show that the distributions Gy and G are
computationally indistinguishable, but G; has more entropy than
Gy. This can be understood as follows.

ifi = [log Nl +1
otherwise

G1(1n) = {

e Entropy Gap. Roughly, the pairwise independence of h im-
plies that with probability at least % f(k), h(k)[log N, ] has
a single preimage, i.e., k. Thus, with probability at least %
the last bit in Gy is a deterministic function of the remaining
bits, and has less entropy than the corresponding (uniform)
bit in Gj.

o Computational Indistinguishability. By the Leftover Hash
Lemma, for x sampled from any distribution X with min-
entropy ¢, the first £ — 2c log n bits of h(x) are # statistically
close to uniform, even given h. By setting X to be the (uni-
form) distribution over preimages of f(k), this implies that
the first £ — O(log Ny.) bits of h(k) are statistically close to
uniform given h, for £ = log Ni.. Then applying the Goldreich-
Levin theorem while guessing the last O(log n) bits of h(k)
converts a distinguisher between G and G4 to an inverter
for f3.

Next, we discuss barriers in extending these ideas to quantum one-
way state generators.

A Preliminary Approach that Does Not Work. A natural first ap-
proach to building commitments from OWSG could be to replace
the classical string f (k) in the distributions above, with the quan-
tum state |¢/;) output by the OWSG.

Then the two WPEG distributions Gy and G are replaced by
the following mixed states.

po(1") = D 1) (Wil i (k)i

k,h,i
and
Z |¢k> <lﬁk|,h, i, h(k)i_l,ul ifi = [logNk] +1
(ln) — k,h,i,u
n ' 2 i) Wil hoi, h(k)i otherwise
k,h,i,u

Unfortunately, classical arguments demonstrating statistical en-
tropy gap and computational indistinguishability do not extend to
the mixed states above, because of barriers that we describe next.

3This step requires the hash to be a specific inner-product based function which is
compatible with the Goldreich-Levin technique.
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Barrier 1: Non-orthogonality of Outputs, or, What is a Preimage Any-
way? The mixed state p; above is well-defined only when Ny is as
well. In the classical setting, Nj. denotes the number of pre-images
of f(k). But it is unclear how to define “preimages” of a quantum
state under a OWSG. For two keys x and x’, the corresponding
OWSG output states |/x) and |{/x/) could have arbitrary overlap.
What overlaps qualify x” to be a pre-image of |/x)? One could
consider fixing some inverse polynomial function (say %) and say
that x” is a pre-image of [¢/x) whenever (x|fy) > % Unfortu-
nately, setting an arbitrary threshold does not accurately capture
the adversary’s uncertainty about k, given | ). In fact, such an
approach is fundamentally doomed for the following reason.

It is possible to build one-way state generators that are uncon-
ditionally statistically uninvertible given only a single copy of the
output state |/ ). A simple example is the following construction
based on Weisner encodings/BB84 states. On input classical key
k = (0, x) where 6, x « {0,1}", the OWSG outputs pure state |x)g.
This OWSG is statistically single-copy secure, because |x)g hides
the string 0 (over the randomness of the choice of x).

Since quantum bit commitments cannot be secure against un-
bounded adversaries, this would rule out any possible constructions
of commitments (including the one above) that rely only on the
existence of single-copy (pure) OWSG. Instead, we will crucially
rely on multi-copy security of the OWSG to obtain an intermediate
primitive where for every pair of keys (ki, k2), their images are
either orthogonal or parallel.

Resolving Barrier 1: From Quantum to Classical Outputs via Shadow
Tomography. Shadow tomography, introduced in [2], allows one to
estimate a large number of observables by obtaining classical infor-
mation from relatively few copies of an unknown quantum state.
In more detail, shadow tomography is a procedure that applied to
t = poly(n, %) copies of an unknown state |¢) yields a classical
string, the shadow S. Given S, it is possible to simultaneously esti-
mate (1/|O;|y) upto € error for an exponentially large number of
observables {Oj} je[an].-

Applying shadow tomography to a OWSG with pure outputs
yields (at least) a statistical inverter for the OWSG. Given ¢
poly(n) copies of some state |/;), an inverter can use shadow to-
mography on | )®? to (inefficiently) find a k” such that (¢ |y ) >
1-1

Grilven a OWSG output state |/ ), it may even be tempting to
define its “preimages” as the set of possible keys k’ returned by
this statistical inverter, and try to apply arguments similar to the
classical argument above. Unfortunately this approach breaks down
too. The statistical inverter given |4 )®? only finds a key k” where
|- ) has nontrivial single-copy overlap with |/ ). It is possible that
for such k’, (Y |¥ )®* is close to 0. Thus k’ is not even close to
being a preimage of |4 )®?, at least for the purposes of arguing
computational indistinguishability.

Thus instead of trying to define preimages of quantum states,
we will crucially use the fact that certain shadow tomography
methods [19] have efficiently computable classical shadows. We
now outline how this fact turns out to be useful.

Our Main Insight. On input key k, instead of having py (and p1)
contain one or more copies of the OWSG state |i/¢), they will only
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contain a classical shadow S of |¢/4). Whenever these classical
shadows can be efficiently computed, the WPEG distribution pg
remains efficiently sampleable, and even becomes entirely classical!

While OWSG are defined to be secure given an arbitrary (un-
bounded) polynomial copies of |{y), computing the shadow Si
will require only a fixed linear number of copies. Indeed, our proof
shows that commitments are implied by a weaker variant of OWSG,
where security only holds given a fixed linear number of copies of
[Vi)-

We point out that the shadow Sy is a randomized (i.e., not de-
terministic) function of the key k. Moreover, given a shadow Si
obtained from |y ), it is computationally infeasible to find any key
k’ such that |yy) and |¢y/) have non-negligible overlap, as oth-
erwise this would break the OWSG. Indeed, this means that the
(randomized) classical map k — S is efficiently computable but
computationally uninvertible, assuming OWSG security. However,
given a shadow S and a candidate key k, it is not possible to effi-
ciently verify whether S was generated as a shadow of |/} ). Indeed,
as discussed before, the resulting primitive necessitates inefficient
verification. This approach allows us to build a one-way puzzle from
any pure-state OWSG.

This allows us to reduce our problem to building commitments
from one-way puzzles. The latter may at first appear to be easy,
given the HILL technique. But the quantum nature of one-way
puzzles leads to a major technical barrier, that we describe next.

Barrier 2: No Flatness in a Quantum World. Recall that a one-way
puzzle sampler outputs classical (k, s) pairs which satisfy the fol-
lowing: (1) Ver(k,s) = 1 and (2) given s, it is computationally hard
to find a preimage k such that Ver(k, s) = 1. Here, observe that the
distribution on preimage keys k induced by fixing a puzzle output
s is not a “flat” distribution, i.e., it does not necessarily assign equal
probability mass to each preimage key. Why does this matter?

For the following discussion, given any puzzle output string s,
we let K denote the distribution on keys induced by s, 5 denote the
min-entropy of K and Ns = |Supp(Ks)|. Since Kj is an arbitrary
distribution, it can always be the case that £ < [log Ns].

The construction of weak PEGs from one-way functions, dis-
cussed at the beginning of the overview, may seem to extend natu-
rally to one-way puzzles as follows. Consider distributions

Go(1™) := s,h,i,h(k); and

m | s hih(k)io1,u
G >'—{ s.h.i,h(K);

where (k,s) « OWPuzzle.Samp(1"), h « {0,1}",i « [n].

These distributions do differ in entropy, but they may not be
computationally indistinguishable. The leftover hash lemma (LHL)
would imply that for any s, the first £; — 2c log n bits of h(k) are #-
statistically close to uniform given s, where £ is the min-entropy of
Ks. Any subsequent bits may leak information about the preimage
k. However, we note that Gy and Gy differ on the i*" bit of h(k)
for i = [log Ns] + 1 and [log Ns] > #. But it is possible that all
remaining bits of h(k), i.e., h(k)[log N> computationally leak the
entire key k. This would make the distributions Gy and G easily
computationally distinguishable.

The argument above describes why modifying G on i = [log Ns]+
1 doesn’t work. What if we instead modified G1 on i = £5+1 instead,

ifi = [log Ng| +1
otherwise
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where #; is the min-entropy in K. That is, consider changing G; to
the following distribution

roany | ShA(K) -1, u
Gra )"{ s b i, h(k);

In this case, the distributions Gg and G; become computationally
indistinguishable, but the last bit in Gy corresponding to i = #5 + 1
could also be statistically close to uniform. As a result, Gy and G¢’
could end up being (almost) identical, with no entropy gap at all!

This problem does not arise in the classical setting, because flat
preimages can be assumed without loss of generality by “pulling
out” the (uniform) randomness from any classical algorithm. Let-
ting r denote the randomness used to sample k, one can always
define a (one-way) function that uses its uniform input r to sample
k and finally outputs y = f (k). This ensures that £ = log N, above,
enabling simultaneous arguments for both computational indistin-
guishability and statistical entropy gap. Unfortunately, this type
of flattening is no longer possible when the sampler is a quantum
circuit, because the randomness comes from a quantum process
and we do not know how to explicitly pull it out.

At this point, it is natural to wonder whether there is some index
i for every key k such that changing the i* h bit of h(k) in Gy yields
a distribution that is computationally indistinguishable from Gg
but has a statistical entropy gap. For example, perhaps one could
consider modifying G; at the first i for which the statistical distance
between Gy and Gy jumps from a value that is negligible at i — 1 to
a value that is not negligible at i. But there exist distributions for
which there never is a clear cut “jump”; for example, if the statistical

ifi=t+1
otherwise

distance between Gy and G increases proportionally to 2= (n=i),

To overcome this issue, we will further modify G;. Our starting
idea will be to fix for every puzzle s, a “good set” Gs of preimage
keys which is almost flat. We set the distribution G to differ from
Gy only when the key k that is output by Samp belongs to the set Gs.
Making this approach work requires several additional ideas, and
we provide a detailed overview of these below.

Resolving Barrier 2: Pseudoentropy or “HILL” for Quantumly Sampled
Distributions. Our goal is to prove that the distribution

Go(1™) = s, h, i, h(k);

is a weak pseudoentropy generator, where (k,s) < Samp(1™),h «—
{0,1}" and i « [n]. Recall that this means we must demonstrate
the existence of a different distribution which is computationally
close to but has more entropy than Go.

We already outlined why setting G identically to the case of
one-way functions creates issues with proving either computational
indistinguishability or statistical entropy gap. Instead, we observe
that for every puzzle s and corresponding preimage distribution K,
there is a “good” subset G; of preimages k such that?:

(1) The set Gs is dense enough in K, that is, for every s,
1
Prik, [k € Gs] = —, and
n

(2) For every pair of preimages (ki, k2) € Gg,
0.5Prg, [ko] < Prg, [k1] < 2Prg; [k2]

4We use numbers like % below for simplicity. In our main section, we use slightly
different fractions than the ones depicted here, for various technical reasons.
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The observation above essentially follows from a pigeonhole argu-
ment over the preimages of s.

We can now consider a different simulated distribution Gy as
follows.

s, h i, h(k)i—1,u;
s, h, i, h(k);

n ifi =log|Gs| + 1 and k € Gs

G (17 = { otherwise

where (k,s) « Samp(1™),h « {0,1}",i « [n], and Gy is the good
slice of preimages defined above. Computational indistinguishabil-
ity between Go and G follows by noting that any distinguishing
advantage can only exist when k € Gs. Because we are reducing to a
search problem, it is still possible to apply the Leftover Hash Lemma
and the Goldreich-Levin theorem to convert any distinguisher into
an inverter for the one-way puzzle.

Moreover, conditioned on k € Gg, G obviously has more en-
tropy than Gy (and when k ¢ Gg, the two distributions are identi-
cal)®. This unfortunately does not imply that G; has more entropy
than Gy overall. The reason can best be explained with the follow-
ing toy examples.

Example 1: There is a (hidden) event B that occurs with probability
%, and distributions (Ag, A1) such that

e Distribution Ay outputs 0 when B occurs, and 1 when B
doesn’t occur.

e Distribution A; outputs a uniform bit when B occurs, and 1
when B doesn’t.

A1 has more entropy than Ay conditioned on B, and the distributions
are identical when B doesn’t occur — but the overall entropy in Ay
is equal to that of A;! Similarly, while G; has more entropy than
Gy when k € Gg, and the distributions are identical otherwise, the
overall entropy in Gy could end up being equal to that in G.

Consider, however, the following example where both distribu-
tions Ag and A are uniform when B doesn’t occur, i.e.,

Example 2: There is a (hidden) event B that occurs with probability
%, and distributions (Ag, A1) such that

e Distribution A outputs 0 when B occurs, and a uniform bit
when B doesn’t occur.

e Distribution A; outputs a uniform bit when B occurs, and a
uniform bit when B doesn’t.

A1 has more entropy than Ay conditioned on B. Moreover, since Ag
and A; are uniform when B doesn’t occur, then A; having higher
entropy than Ay conditioned on B does imply that A; has higher
entropy overall.

We could hope to apply a similar argument to Gy and Gy if
somehow it were the case that for k ¢ Gg, the last bit of Gy (and
also G1) is close to uniform given the remaining bits s, h, i, h(k);—1.
But why would this even be the case?

5Tt may appear that we are close: we seem to have a pair of distributions that are
statistically far but computationally close. Unfortunately, to obtain a commitment, we
also need these distributions to be efficiently sampleable, which is something we will
address in a later subsection. At this point, sampling from G; requires knowing is
and G which are not necessarily efficiently computable functions of (k, s). But for
now, we only aim to prove that Gy is a weak PEG, for which we only need Gy to be
efficiently sampleable, and to prove that Gy has more entropy than Gg.
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Establishing an Entropy Gap. Inspired by the insight above, we will
modify G to provably obtain an entropy gap. For every s, the two
distributions are identical when i # log |G| + 1, therefore, we only
focus on the case where i = log |G| + 1.

In this case, ideally we want the bias in the i’ h bit of h(k) when
k ¢ Gs to not cancel out the bias that arises when k € Gg, in the
distribution Gg. This would hold if the i*" bit of h(k) when k ¢ G
were uniform (even given the remaining bits output by Go). But
we do not know if this is the case, or even what the distribution of
keys when k ¢ G; looks like.

To resolve this, let us first try to ensure that for most k € Gy, all
preimages (besides k) of (s, h(k);—1) have extremely low sampling
probability in K. (Recall that K; is the distribution induced on
preimages of s.) This can be achieved by modifying G as follows,
where iy = (log |Gs| + 600 log n):

s,hi h(k)i—1,u1
s, h, i, h(k);

ifi =i and k € Gg

otherwise

G1(1") = {

In the modified distribution G, pairwise independence of h en-
sures that for most k € Gy, all preimages (besides k) of (s, A(k)i-1)
are sampled with probability less than ﬁ in K, for i = (log |G|+
6001og n). For this overview, we assume that this holds for all
k € G,°.

We will now consider the following two cases.

(1) Preimages (besides k) of (s, h(k);-1) are sampled with total
probability < % in K.

In this case, since the unique k € G; has probability mass at
least 1 — % the bias in the " bit of h(k) from keys outside
G barely stacks up against the bias that arises from k € Gs.
Preimages (besides k) of s, h(k);i—1 are sampled with total prob-
ability > % in K.

In this case, the individual probability mass of every preim-
age (besides k) is very low, but their total probability mass is
high. This means that the overall distribution of pre-images
(besides k) of (s, h(k);—1) necessarily has high entropy. Then
by the Leftover Hash Lemma, the i* b bit of h(k) when k ¢ Gg
will be close to uniform, which is what we desired.

In both cases, we conclude that the overall Shannon entropy in
G is larger than that in Gg by a (fixed) inverse polynomial value:
which means that G is indeed a WPEG.

Furthermore, the proof of computational indistinguishability
between Gy and G goes through as before, with the leftover hash
lemma guaranteeing that all but the last O(log n) bits of h(k) are
statistically indistinguishable from uniform. With this guarantee,
the Goldreich-Levin inverter simply needs to guess the last O(log n)
bits of h(k), which it can do with inverse polynomial probability.

At this point, we have a WPEG. However, because G cannot be
efficiently sampled, we cannot use it directly to build commitments.
Indeed, obtaining a full-fledged commitment requires additional
steps, which we outline next.

®In the technical sections, we further modify G; to account for the fact that for a few
choices of h and a few k € Gg, there are multiple preimages of (h, h(k)) that are
each sampled with probability much higher than —}
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2.2 Pseudoentropy Generators (PEG)

Our next step follows a similar technique as [17] to (1) amplify
the entropy gap between real and simulated distributions and (2)
bring the min-entropy of the real distribution close to its Shannon
entropy, all while maintaining computational indistinguishability.

This is done by taking a product distribution of the outputs of the
weak PEG. In more detail, we sample g(n) = poly(n) (for a large
enough polynomial poly(-)) random keys ki, ..., kq along with
q(n) independent (A, i) values. We use these to generate q(n) sam-
ples from distribution Gy, and we append these samples together as
our PEG output. This also has the effect of “concentrating” the en-
tropy to an expected value independent of the choice of k (whereas
in weak PEG this entropy would necessarily depend on k via is).
In the PEG, we have that for every choice of security parameter n,
there is a single value En that corresponds to the Shannon-entropy
in the output of the PEG, and this value is smaller than the min-
entropy in the corresponding simulated product distribution by n¢,
for some ¢ > 1.

2.3 Imbalanced EFI Pairs

An EFl is a pair of efficiently sampleable distributions that are statis-
tically far but computationally indistinguishable. Such distributions
have been shown [10, 37] to be equivalent to quantum bit commit-
ments.

Let us consider hashing the output of our PEG to approximately
Ry + n bits. That is, the size of hash outcome is larger than the
actual Shannon entropy in the PEG output, making the resulting
distribution statistically distinguishable from uniform. At the same,
since the PEG outputs are computationally indistinguishable from
a distribution with (much) more than En + n bits of min-entropy,
the resulting hash output is still computationally indistinguishable
from uniform. It may now seem like we have an EFI pair: consider
distributions

e h(PEG(n)) truncated to E(n) + n bits

. Uﬁ(n)+n which is uniform over h(n) + n bits

While these distributions are computationally close but statistically
far, they cannot be sampled efficiently without non-uniform advice,
i.e., the value E(n) for every n.

In fact, observe that truncating the hash output to any less than
Ry + n bits would still preserve computational indistinguishability,
and truncating to any more would still ensure statistical distance,
but the two can simultaneously be guaranteed only when truncating
to exactly h(n) + n bits. This is why we call the resulting object an
imbalanced EFL.

Due to the equivalence between EFI and commitment, we can
equivalently claim to have statistically binding, computationally
hiding quantum bit commitments [10, 37] — albeit dependent on
non-uniform advice z(n). When z(n) < ﬁ(n) + n, the commitments
are hiding, and when z(n) > E(n) + n, these commitments are
binding. We call this an imbalanced commitment scheme. The next
few steps discuss how to remove this imbalanced drawback by
appropriately combining variants of these commitments’.

"This upcoming part diverges from techniques in [17] which build uniform pseudoran-
dom generators by appropriately stretching the output of a nonuniform PRG. These
techniques break down in our setting because there is no clear way to run a puzzle on
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2.4 Always Binding, Non-Uniform Hiding
Commitments

In the next step, we rely on prior work in flavor conversion of
quantum commitments [18] to convert our statistically hiding, com-
putationally binding EFI pairs/commitments to commitments with
the reverse property: namely, where for z(n) > E(n) + n, the com-
mitments are hiding, and when z(n) < E(n) +n, these commitments
are binding. Next, given these two types of complementary commit-
ments, we combine them by using both to commit to the same bit b:
note that for every choice of advice z(n) (i.e. length to which we
truncate the hash outcome), at least one of the two commitments
is necessarily binding. This allows us to show that the resulting
combined commitment is always binding (for every choice of z(n))
and hiding whenever z(n) = ﬁ(n) + n. We call this a non-uniform
hiding commitment.

2.5 Standard (Uniform) Commitments

Finally, we observe that for each n, the number of possible fAl(n)
values is bounded by a fixed polynomial ¢(n). Thus, we can repeat
the above construction for every possible value of E(n), obtaining
a sequence of commitments where for every n, at least one com-
mitment in the sequence is hiding (and all are binding). By secret
sharing the committed bit between various commitments, we can
show that the overall commitment scheme satisfies both hiding and
binding. Thus, we have removed dependence on the advice string
z(n), yielding a uniform construction of commitments.

Quick Detour: An Alternative Template. We briefly note an alter-
native technique [32] using quantum information to sidestep the
use of the hardcore bit. While this was developed to build com-
mitments from a strong “injective” variant of OWSG, for simplic-
ity, we describe it as applied to injective one-way functions. Very
roughly (and ignoring some garbage registers), a commitment to 0
is X k)¢ |k, f(k))p and a commitment to 1is 2 |k)c [0, f(k))p;
where C is the commit register and D the decommit register. Statisti-
cal hiding follows because tracing out the D register leaves identical
mixtures on C in both cases. Computational binding follows by
the hardness of finding k given f(k) for a random k. Our methods,
including hashing preimages to appropriate lengths and slicing,
will also similarly apply to this template. We do not find any one of
these templates to be simpler than the other, but we focus on the
Goldreich-Levin template because it yields interesting intermediate
primitives with entirely classical outputs.

QCCC Cryptography implies One-Way Puzzles. Finally, we provide
evidence that one-way puzzles are a necessary assumption for
quantum cryptography with classical communication by showing
that central QCCC cryptographic primitives imply one-way puzzles.

3 PURE OWSG IMPLY ONE-WAY PUZZLES

In this section, we show how to use shadow tomography to build
one-way puzzles (with inefficient verification) from any OWSG
with pure state outputs.

its own output, and thus to achieve significant “stretch” in a puzzle-based PRG-type
object.
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DEFINITION 3.1 (¢(n)-CoPY SECURE ONE-WAY STATE GENERA-
TORS). [32] A one-way state generator (OWSG) is a set of QPT
algorithms (KeyGen, StateGen, Ver) where:

o KeyGen(1™): On input the security parameter n, output a
classical key string k € {0,1}".
o StateGen(k): On input key k € {0, 1}", output an m-qubit
quantum state |.).
o Ver(k,|y)) : On input key k € {0,1}" and m-qubit quantum
state ), output T or L.
These algorithms satisfy the following properties.

o Correctness. For everyn € N,

Pr
k—KeyGen(1™)
| i ) «<—StateGen (k)

[T « Ver(k, |yx))] = 1 — negl(n)

o t(n)-Copy Security. For every quantum polynomial-sized ad-
versary A = {Anp}nen andn € N,

Pr [T = Ver (Aa((193) ™) 1910 | < negi(n)
where k — KeyGen(1") and |yy) « StateGen(k)

This definition was later generalized in [31] to allow StateGen
outputs to be mixed states. Furthermore, existing definitions of
OWSG [32] require ¢(n)-copy security for every (a-priori unbounded)
polynomial ¢(-). In this work, we only need to consider cn-copy
security for a large enough, a-priori fixed, constant c. We will show
that even this weaker variant implies commitments, thus obtaining
a stronger result.

DEFINITION 3.2 (ONE-WAY PUzZLES). A one-way puzzle consists
of a pair (Samp, Ver) with the following syntax.
e Samp(1™) — (k,s), outputs a pair of classical strings (k,s).
We refer to s as the puzzle and k as its key. Without loss of
generality we may assume that k € {0,1}".
e Ver(k,s) — T or L, is a Boolean function that maps any pair
of classical strings (k, s) to either T or L.

These satisfy the following properties.
o Correctness. Outputs of the sampler pass verification with over-
whelming probability, i.e.,
Pr Ver(k,s) = T] =1 - negl(n
(k,s)<—Samp(1")[ (k. ) ] & ()

o Security. Given s, it is (quantum) computationally infeasible
to find k satisfying Ver(k,s) = T, ie., for every quantum
polynomial-sized adversary A,

Pr Ver(A(s),s) = T] = negl(n
(k,s)(—Samp(l")[ (A(s),s) = T] = negl(n)
Note that since puzzles are efficiently sampleable, there exists a poly-
nomial p(-) such that |s| < p(n).

We will rely on the following theorem on shadow tomography
from [19].

THEOREM 3.1. [19] (Rephrased, following [38]) Fix any €, > 0.
There exists a polynomial p(-) and QPT algorithm ShadowGen that,
givenT = O(log(1/68)/€%) copies of an unknown state |1y generates a
classical string (called the “shadow”) S of size p(n) with the following

property:

975

Dakshita Khurana and Kabir Tomer

For some t € N, let {M;};c[s] be a set of observables such that
Tr(MiZ) < 1. Then there exists an “estimator” function E such that:

Pr [Vi € [1], [E(S, M) — (y] M; )| < e] >1-18

where S «— ShadowGen(|y®T)
We now proceed to state our main theorem for this section.

THEOREM 3.2. There exists a constant ¢ > 0 such that any cn-copy
secure one-way state generator with pure state outputs (Definition
3.1) implies a one-way puzzle (Definition 3.2).

PRroOF. (of Theorem 3.2) Let (KeyGen, StateGen) be a one-way
state generator (OWSG) with pure state outputs and let |/ ) repre-
sent the output of StateGen (k).

To build a puzzle from this OWSG, we will apply shadow tomog-
raphy to the output states of the OWSG. In fact, the one-way puzzle
will simply sample a OWSG key k, compute |/) < StateGen(k),
and finally compute s as a classical shadow of |/ ). It will output
sk as the puzzle, with solution k. In what follows, we formalize this
construction and define an (inefficient) verification algorithm for
the one-way puzzle.

Defining Preimage Keys of a Classical Shadow. First, it will be useful
to define an (inefficient) algorithm £ that obtains a classical shadow
and outputs a list of keys, roughly corresponding to possible preim-
ages of the shadow.

Set e = 1/10 and for n € N, set § = §(n) = 272" For all k €
Supp(KeyGen(1")), define My := |{) (Jx|. Note that these satisfy
Tr(Mli) = 1. Let ShadowGen and E be algorithms as defined by
Theorem 3.1 applied to &, € and { M }xesupp(KeyGen(17))- Let T =
T(n) = O(n) be the required number of copies, and let t = t(n) :=

’{Mk}kESupp(KeyGen(l”)) ‘ < |Supp(KeyGen(l”))| <2

Define the (inefficient) deterministic algorithm £ that takes a
shadow s as input and outputs a list of keys such that the estimated
overlap of the shadow with each key in the list is at least 1 — ¢, i.e.

L(s) = {k : (k € Supp(KeyGen(l"))) /\ (E(s, M) >21- e)}

The following claim about the algorithm £ states that for any
key k, with high probability over sampling a corresponding shadow
sg of [Yr), (1) the key k appears in L(s;) and (2) for all j € L(sg),
the (pure) states |fx) and |¢/;) have high overlap. The proof of
this claim follows from the correctness of shadow tomography
(Theorem 3.1).

Cram 3.1. For large enoughn € N, for all
k € Supp(KeyGen(1")):
1) PrskHShadowGen(ll,//k)QaT) (ke Llsp)]z1-27"
(2) Py, shadowGen(|yy®) [V7 € L(sk), Krly)I? = 1-2¢] >
1-27"

Proor. For any large enough n € N and any
k € Supp(KeyGen(1™)), applying Theorem 3.1 on §, t, € set as above,
we have:

Pr[Vj € Supp(KeyGen(1")),

E(s Mj) = [Welyi) 1P| < €]
>1-t6>1-27"

1)
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where s « ShadowGen(|;)®7). Setting j = k, we have:
Pr[E(sp, M) > 1—-¢€] 21-27"

By definition of £, this implies
Prlk € L(sp)] =21-27"

which is the first part of the claim.
Again, fix any k € Supp(KeyGen(1")). If we restrict j to L(sg),
then by equation (1), we have

Pr[Vj € L(sg), |E(sk Mj) = [lyj)?| < el >1-27"

But j € L(sg) & E(sg,M;j) = 1 — e. Substituting in the above
equation gives:

Pr[Vj € L(sp) [l > 1-2¢] >1-27"

which is the second part of the claim. O

Before describing our puzzle, we will define the set C of keys that
have low correctness error, as follows:

C:= {k € {0,1}" such that Pr[Ver(k,|¢g)) =T] = 1— 1/100}

Observe that with overwhelming probability, the OWSG KeyGen
algorithm outputs keys in the set C (otherwise, this would contra-
dict correctness of the one-way puzzle). Looking ahead, our puzzle
verification algorithm will reject keys that are not in C. We can
now formally describe the puzzle.

Constructing the One-Way Puzzle. Define a one-way puzzle as
follows.

e Puzz.Samp(17?) :
- Sample k « KeyGen(1™).
— Compute s « ShadowGen(|1,//k)®T)
— Return (k, s)
e Puzz.Ver(k,s) :
- Ifk e L(s)and k € C, return T

— Else return L
Cram 3.2. (Puzz.Samp, Puzz.Ver) satisfies Definition 3.2.
Correctness. By Claim 3.1 part 1, for large enough n € N and all
k € Supp(KeyGen(1"))

Pr

[keL(s)]21-27"
s—ShadowGen (|1 )®7)

Since the OWSG must have negligible correctness error, a Markov
argument applied to Definition 3.1 shows that

P k¢C] < I
k&KeyC{en(l")[ # ] nes (fl)

Putting these together,
Pr [k € L(s)andk € C] > 1-27" — negl(n)
k—KeyGen(1™)
s«—ShadowGen(h//k)@T)

which by the definition of Puzz.Ver implies

p T « Puzz.Ver(k,s)] > 1—27" — negl
(k,s)<—PuzszSamp(1”)[  Puzz.Ver(k.s)] negl(n)

Security. We prove one-wayness by contradiction. Suppose there
exists a quantum polynomial-sized adversary (A that breaks the
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one-wayness of the puzzle, i.e. there exists a polynomial g(-) such
that for infinitely many n € N,
Pr [T « Puzz.Ver(A(s),s)] = 1/q(n)
(k,s)—Puzz.Samp(17)
We build a reduction that breaks the one-wayness of the OWSG.
First, by the definition of Puzz.Ver and Puzz.Samp, for infinitely
many n € N,

[A(s) € (L(s)NO)] 2 1/q(n)  (2)

Pr
k—KeyGen(1™)
seShadowGen (¢ )®T)

By Claim 3.1, for all n € N and all k € Supp(KeyGen(1")),

Pr (VK" € L(s), [Ylvn)? 2 4/5] z1-27"
s<—ShadowGen(\1//k)®T)
(3)

For any events A and B, Pr[A A B] > Pr[A] — Pr[-B]. Therefore,
from equations (2) and (3), for infinitely many n € N,

Pr [(ﬂ(s) € (L(5)NC)) A (VK" € L(s), [Wlp)? > 4/5)]
>1/q(n)-27" (4)

where k « KeyGen(1") and s « ShadowGen(|¢k)®T), which
can be simplified to say that for infinitely many n € N,

pr (K €C) A (GIIE 2 4/5)| 2 1/g(m) - 27"

k' —A(s)
where k < KeyGen(1") and s « ShadowGen(Wk)@T).
If [ (Y [ )|? = 4/5 then the success probabilities of Ver(k’, [/ ))

and Ver(k’, |{)) differ by at most \/Lg Since Yk’ € C, Ver(k', [Y))

succeeds with probability atleast 1 — ﬁ, for infinitely many n € N,

P T « Ver(k’,
k<—Key(§en(l") [T e Verle, )
s—ShadowGen ( |y )®T)
k' —A(s)
1
> (1-1/100 — 1/V5) - (1/g(n) —27") >
( / /V5) - (1/q(n) ) 2q(n)

Then, letting B be the algorithm that on input |i/;)®T outputs
ﬂ(ShadowGen(Wk}@T)), we have that for infinitely many n € N,

3
P T « Ver(K’, > ——
k<—KeyGren(1"),[ = Ver(k% i)l 5¢(n)
K —B(1¢)°T)
Since ShadowGen and A are quantum polynomial-sized circuits,

this contradicts O(n)-copy security of the OWSG. m]

4 ONE-WAY PUZZLES IMPLY QUANTUM
COMMITMENTS

Here, we show that (inefficiently verifiable) one-way puzzles imply
quantum weak pseudoentropy generators, defined below.

DEFINITION 4.1 (QUANTUM WEAK PSEUDOENTROPY GENERATOR).
A Quantum Weak Pseudoentropy Generator consists of an ensemble
of distributions {Go(n), G1(n) }nen over classical strings :
o Efficiency. There exists a QPT algorithm G where for alln € N,
G (1) returns a sample from Go(n).
e Bounded Length. There exists a polynomial p(-) such that for
alln € N, forallzg € Supp(Go(n)), forallz; € Supp(G1(n)),
|20 = |z1] < p(n).
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o (Shannon) Entropy Gap. There exists an explicit constant ¢ > 0
such that for all sufficiently largen € N,
1
H(G1(m) = H(Go(m) 2 —
o Indistinguishability. There exists a negligible function y such
that for all quantum polynomial-sized adversaries A, for all
large enough n € N:

Pr

z—Go(n)

[A(z) =1]- Pr

zGq(n)

[A(z) = 1]| < p(n)

THEOREM 4.1. One-way puzzles (Definition 3.2) imply quantum
weak pseudoentropy generators (Definition 4.1).

In this section, we show that a parallel repetition of quantum
weak PEGs yields a strong pseudoentropy property, which we for-
malize into a quantum PEG, defined below.

DEFINITION 4.2 (QUANTUM PSEUDOENTROPY GENERATOR). A
Quantum Pseudoentropy Generator consists of an ensemble of distri-
butions {Go(n), G1(n) }nen over classical strings such that:

o Bounded Length. There exists a polynomial p(-) such that for
alln € N, for all zy € Supp(Go(n)), forallz; € Supp(Gi(n)),
lzol = 21| < p(n).

o Efficiency. There exists some QPT algorithm that for alln € N,
on input 1", returns a sample from Go(n).

o Indistinguishability. There exists a negligible function y such
that for all quantum polynomial-sized adversaries A, for all
large enoughn € N,

Pr

2Gy(n)

Pr
zGi(n)

[A(z) =1] - [A(z) = 1]| < p(n)

o Entropy Gap. Here, we work with min and max entropies, as
opposed to Shannon entropy. We require the min-entropy of
G to be higher than the max-entropy of Go. Formally, there
is some explicit constant ¢ > 0 and some negligible function e
such that for all sufficiently largen € N,

HE (G (n)) - HE® (Co(n)) = n

min
THEOREM 4.2. Quantum weak pseudoentropy generators (Defini-
tion 4.1) imply quantum pseudoentropy generators (Definition 4.2).

Next, we show that quantum pseudoentropy generators imply a
(non-uniform) variant of EFI, that we define below. This definition
modifies the standard definition (Definition 4.4) of EFI to allow the
algorithm to depend on a nonuniform parameter s, and requires
the existence of a function s*(n) such that computational indistin-
guishability (resp. statistical distance) holds when s < s*(n) (resp.
s > s*(n)).

DEFINITION 4.3 (s*-IMBALANCED EFI). Lets*(-) denote a positive
integer-valued function. An s*-non-uniform EF| is a QPT algorithm
EFIs(1™,b) — pyp, that obtains classical parameter-dependent advice
string s, and on input b € {0, 1} and security parameter n, outputs a
(potentially mixed) quantum state such that:

(1) Computational Indistinguishability. There exists a negligible

function u(-) such that for all quantum polynomial-sized cir-
cuits A, for large enough n € N and every s < s*(n),

[Pr[1  A(EFI5(1",0))] = Pr[1 « A(EFIs(1", 1)]] < p(n)

977

Dakshita Khurana and Kabir Tomer

(2) Statistical Distance. There exists a negligible function 5(-) such
for large enough n € N and every s > s*(n),

TD(EFIg(1",0), EFIg(1™,1)) > 1 - 6(n)

THEOREM 4.3. There exists a positive integer-valued function s*(-)
such that

o There exists a polynomial p such that for alln € N, |s*(n)| <
log p(n) and

e Quantum pseudoentropy generators (Definition 4.2) imply s*-
imbalanced EF| (Definition 4.3).

Finally, we show that s*-imbalanced EFI (Definition 4.3) imply
EFI pairs, defined below.

DEFINITION 4.4 (EFI PAIRS). [10] An EFI pair is a QPT algorithm
EFI(1™,b) — pp that on input b € {0, 1} and the security parame-

ter n, outputs a (potentially mixed) quantum state py, such that the
following hold:
(1) Computational Indistinguishability. There exists a negligible
function p(-) such that for every quantum polynomial-sized
adversary A, for large enoughn € N,

[Pr[1 « A(EFI(1",0))] - Pr[1 « A(EFI(1",1))]| < p(n)

(2) Statistical Binding. There exists a negligible function §(-) such
that for large enoughn € N,

TD(EFI(1%,0), EFI(1",1)) > 1 - 8(n)

THEOREM 4.4. s*-imbalanced EF| (Definition 4.3) imply EF| pairs
(Definition 4.4).

Putting them all together we obtain the following theorem.

THEOREM 4.5. There exists a constant ¢ > 0 such that cn copy
secure one-way state generators with pure state outputs (Definition 3.1)
imply EFI pairs (Definition 4.4)

EFI pairs are known to imply secure computation for all classical
and quantum functionalities [6, 8, 10, 15]. We therefore also have
the following corollary.

COROLLARY 4.1. There exists a constant ¢ > 0 such that cn copy
secure one-way state generators with pure state outputs imply secure
computation for all quantum functionalities.

QCCC Cryptography. Finally, we show that one-way puzzles are
essential for QCCC cryptography.

THEOREM 4.6. In the QCCC setting, the existence of public key
encryption, digital signatures, bit commitments, or symmetric encryp-
tion with classical keys implies one-way puzzles.

Complete proofs can be found in the full version of the paper.
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