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ABSTRACT

One-way functions are central to classical cryptography. They are

necessary for the existence of non-trivial classical cryptosystems,

and also su�cient to realize meaningful primitives including com-

mitments, pseudorandom generators and digital signatures. At the

same time, a mounting body of evidence suggests that assump-

tions even weaker than one-way functions may su�ce for many

cryptographic tasks of interest in a quantum world, including bit

commitments and secure multi-party computation.

Thiswork studies one-way state generators [Morimae-Yamakawa,

CRYPTO 2022], a natural quantum relaxation of one-way functions.

Given a secret key, a one-way state generator outputs a hard to

invert quantum state. A fundamental question is whether this type

of quantum one-wayness su�ces to realize quantum cryptography.

We obtain an a�rmative answer to this question, by proving that

one-way state generators with pure state outputs imply quantum

bit commitments and secure multiparty computation.

Along the way, we use e�cient shadow tomography [Huang et.

al., Nature Physics 2020] to build an intermediate primitive with

classical outputs, which we call a (quantum) one-way puzzle. Our

main technical contribution is a proof that one-way puzzles imply

quantum bit commitments. This proof develops new techniques

for pseudoentropy generation [Hastad et. al., SICOMP 1999] from

arbitrary distributions, which may be of independent interest.
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1 INTRODUCTION

A one-way function is a classically e�ciently computable function

that is hard to invert. This is a fundamental hardness assumption,
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necessary for the existence of much of modern classical cryptogra-

phy [20, 21, 29]. The classical crypto-complexity class “minicrypt”

contains primitives like bit commitments, pseudorandom genera-

tors, pseudorandom functions and symmetric encryption, that are

all equivalent to the existence of one-way functions. On the other

hand, tasks like key exchange and secure multi-party computation

classically require stronger, more structured assumptions [22].

The relationship between computational hardness and cryptog-

raphy appears to be drastically di�erent in a quantum world. Here,

the seminal works of Wiesner [36] and Bennett and Brassard [9]

�rst demonstrated the possibility of unconditional quantum key

distribution (QKD) by exploiting the properties of quantum infor-

mation. Unfortunately, it was also shown that other useful crypto-

graphic primitives like bit commitments and secure computation

cannot exist unconditionally [27, 30], and must necessarily rely on

computational hardness, even in a quantum world. However, our

understanding of computational hardness in a quantumworld is still

in its infancy. For instance, it was only recently understood [8, 15]

that one-way functions su�ce to enable secure multi-party compu-

tation in a quantum world, a task that is believed to be impossible

classically.

Sources of Hardness in a �antum World. Despite being necessary

for classical cryptography, one-way functions may not be necessary

for computational quantum cryptography.

Two recent concurrent works [6, 32] demonstrated that many

cryptographic primitives including quantum bit commitments, (one-

time secure) digital signatures, and multi-party secure computation

can also be based on the existence of pseudorandom state generators

(PRSGs), which were introduced in [23].

Given a secret key, a PRSG e�ciently generates a quantum state,

several copies of which are computationally indistinguishable from

equally many copies of a Haar random state. There is some evidence

that points to PRSGs being a weaker assumption than one-way func-

tions. Speci�cally, PRSGs can exist even if BQP = QMA (relative to a

quantum oracle) [25] or if P = NP (relative to a classical oracle) [26].

This indicates that PRSGs, and all the cryptographic primitives

that they imply, can exist even if all quantum-secure (classical)

cryptographic primitives, including one-way functions, are broken.

Can we base quantum cryptography on assumptions that are

potentially even weaker than the existence of PRSGs? As pointed

out in [31], PRSGs and bit commitments are “decision-type” prim-

itives that rely on the hardness of distinguishing pseudorandom

states from truly (Haar) random ones. On the other hand, there is a

natural, simpler “search-type” assumption that signi�cantly relaxes

the pseudorandomness guarantee of a PRSG to one-wayness.

One-Way State Generators (OWSG). A OWSG [32] is an e�cient

quantum algorithm that given a secret key, generates a hard-to-

invert quantum state.
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Given that one-way functions enable a variety of classical cryp-

tosystems, it is natural to ask whether one-way state generators

play a similar role in quantum cryptography. Namely,

Can we obtain quantum cryptosystems including bit commitments

and MPC, only assuming the existence of one-way state generators?

Our main theorem answers this question in the a�rmative in the

setting where OWSG outputs are pure states.

Theorem 1.1. (Informal) One-way state generators with pure

state outputs imply quantum bit commitments.

By combining with prior work that demonstrates conversions

between various types of commitments [6, 10] and builds secure

multi-party computation from commitments

[6, 8, 15], we also obtain the following corollary.

Corollary 1.1. (Informal) One-way state generators with pure

state outputs imply secure multi-party computation for all quantum

functionalities.

We note that OWSGs were initially de�ned in [32] to only output

pure states; but this de�nition was later generalized in [31] to also

allow mixed states. OWSG with pure state outputs were also stud-

ied in [12], who also showed equivalences between variants (weak,

distributional) of OWSGs. Outputs of random quantum circuits

yield natural candidates for pure OWSG that do not rely on classi-

cal hardness; in fact the output states can even be conjectured to be

pseudorandom [6]. However, only relying on one-wayness intro-

duces the possibility of building cryptography from other natural

candidates: for instance, the (pre-measurement) states generated by

BosonSampling experiments are not indistinguishable from Haar

random [3], but can plausibly be one-way.

Pure OWSGs are also implied by various cryptographic prim-

itives such as digital signatures with pure veri�cation keys and

quantum money with pure banknotes [31]. This, combined with

our theorem, shows that these other primitives also imply quan-

tum bit commitments. In some sense, this establishes commitments

as the leading candidate for a minimal/necessary assumption in

quantum cryptography.

One-Way Puzzles. Enroute to our main theorem, we use e�cient

shadow tomography [19] to prove that OWSG imply an intermedi-

ate cryptographic primitive with entirely classical outputs, that we

call a one-way puzzle. We �nd this implication from a OWSG with

quantum outputs to a simple, cryptographically useful primitive

with classical outputs, noteworthy.

Theorem 1.2. (Informal) One-way state generators with pure

state outputs imply one-way puzzles.

A (quantum) one-way puzzle consists of a pair (Samp,Ver) where
Samp is a quantum polynomial time algorithm and Ver is Boolean

function1. Samp outputs a pair of classical strings – a key and puzzle

(:, B) – satisfying Ver(:, B) = 1. The security guarantee is that given

a “puzzle” B , it is (quantum) computationally infeasible to �nd a key

: such that Ver(:, B) = 1, except with negligible probability.

1In an earlier version, we de�ned Ver to be an unbounded time algorithm. However,
Ver does not even need to be computable, so the de�nition may be relaxed to allow for
arbitrary functions. This was independently noted in [13].

Unlike prior de�nitions of one-way puzzles in the literature, we

do not require veri�cation (Ver) to be e�ciently implementable. As

we will see later, only asking for ine�cient veri�cation turns out to

be necessary for our implication from OWSG. Indeed, if veri�cation

were e�cient, then a QMA oracle would be capable of breaking

one-way puzzles, but such an oracle is unlikely to break OWSG [25].

Somewhat surprisingly, we show that ine�ciently veri�able one-

way puzzles are also su�cient to build quantum bit commitments.

The reader may have observed that one-way puzzles generalize

one-way functions to allow joint, randomized sampling of keys and

outputs. In a classical world, this generalization is unnecessary: one-

way puzzles are equivalent to one-way functions. One direction of

the implication is straightforward, since one-way functions imply

one-way puzzles (almost) immediately by de�nition. In the other

direction, a one-way function can be obtained from a classical

one-way puzzle by “pulling out” the (uniform) randomness A used

by Samp. The one-way function 5 on input A samples (:, B) ←
Samp(1Ĥ, A ) and outputs 5 (A ) = B . It is easy to see that one-wayness
of the puzzle implies one-wayness of 5 .

The conversion above is no longer applicable when Samp is

quantum, because there may be no equivalent deterministic, e�-

cient function that on input uniform randomness, outputs (:, B)
distributed according to the output of Samp. Nevertheless, enroute

to proving our main result, we show:

Theorem 1.3. (Informal) One-way puzzles imply quantum bit

commitments.

Theorem 1.3 is the most technically involved part of this work.

In a nutshell, existing techniques for building commitments from

classical one-way primitives (e.g., [17]) crucially only apply when

the preimage distribution of every image of the function is �at

(i.e., uniform over all preimages). This work develops a method to

generate pseudorandomness from one-way puzzles with arbitrary

preimage distributions, which we believe to be of independent

interest.

Local/Hybrid �antum Cryptography and One-Way Puzzles. As an

aside, we observe that one-way puzzles are also implied by quan-

tum cryptography with classical communication. In fact there is a

large body of work that aims to understand the computational hard-

ness yielding quantum cryptography with classical communication,

including protocols for quantum advantage [11, 33, 34], quantum

commitments with classical communication [5], and even black-box

separations for key exchange [7]. Classical communication proto-

cols are desirable as they can be used over the current infrastructure

(e.g., the Internet). In this model, sometimes called the “local” or

“hybrid” or quantum-computation classical-communication (QCCC)

model [7], all the quantum computation is done locally by parties

who exchange only classical messages.

We observe that natural cryptographic primitives such as public-

key encryption and signatures in the QCCC model imply one-way

puzzles. For example, given a public-key encryption scheme, a

one-way puzzle can be de�ned as follows. The one-way puzzle

sampler will output a puzzle consisting of a public key along with

an encryption of a randommessage, and the corresponding solution

will be the (plaintext) message. It is easy to see that an adversary

that breaks one-wayness of the resulting puzzle can be used to break
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CPA security of the encryption scheme. In fact, one can obtain a

one-way puzzle even given any public key encryption with classical

public and secret keys, but quantum ciphertexts. We formalize these

ideas and also show how similar ideas prove that one-way puzzles

are implied by digital signatures, natural bit commitments and

symmetric encryption schemes in the QCCC model2.

Finally, we note that [24] recently discussed a related but stronger

primitive – hard quantum planted problems for NP languages –which

is implied by cryptography with publicly veri�able deletion. A

hard quantum planted problem for a language is speci�ed by a

QPT sampler that samples an instance-witness pair (G,F) for the
language in a way that no adversary can �nd a witness for G with

non-negligible probability. These are like one-way puzzles except

that they admit e�cient veri�cation. By de�nition, hard quantum

planted problems imply one-way puzzles (and therefore by our

work, imply quantum bit commitments).

Conclusion and Future Directions. Prior to this work, bit commit-

ments were known to be implied by pseudorandom state genera-

tors [6, 32] via a construction that roughly parallels the classical

setting [35]. They were also known [31] from a restricted type of

OWSG; namely one with injective, orthogonal outputs. However, as

we discuss in the next section, building commitments from general-

purpose OWSG requires methods that are quite di�erent from

known classical techniques, and which may be broadly applicable

beyond this work.

We also hope that the one-way puzzle abstraction will enable a

better understanding of quantum bit commitments. For example,

some existing attempts to understand the complexity of quantum

commitments [25] build oracles relative to which complexity classes

collapse, but pseudorandom states exist (and thus, one-way puz-

zles exist). Directly establishing the existence of one-way puzzles

relative to these oracles may be easier, and may enable even more

general oracle separations. One-way puzzles may also help better

understand the relationship between quantum cryptography and

quantum notions of Kolmogorov complexity.

Finally, we discuss some open questions related to this work. An

obvious one is whether our results extend to mixed state OWSG.

One avenue towards proving this would be to build one-way puz-

zles from mixed-state OWSG, perhaps via better tomography. In

addition, answering the following questions will shed some more

light on the complexity of quantum cryptography.

(1) Can quantum bit commitments with classical communication

be based on the existence of OWSG or one-way puzzles?

This is plausible because one-way puzzle outputs are classical

after all. Moreover, many other intermediate primitives that

we build in this work also have entirely classical outputs.

(2) En route to building commitments, this work constructs

pseudo-entropy generators from one-way state generators.

Can other pseudorandom primitives, such as pseudorandom

quantum states be obtained fromOWSG or one-way puzzles?

Techniques in this work may serve as a useful starting point

towards addressing this question.

2One may ask whether computational cryptographic primitives in the QCCC model
also imply one-way functions. But it is unclear if this is true; and at the very least this
is challenging to prove, for the same reason as above – namely, we cannot explicitly
pull out the sampling randomness from an arbitrary quantum algorithm.

(3) Do quantum bit commitments imply one-way puzzles? If

not, is there a separation? It is easy to observe that one-

way puzzles can be broken given (quantum) access to an

oracle for a related boolean function 5 . Is this also true for

every quantum bit commitment? This question appears to

be connected with the unitary synthesis problem [1, 4], for

which a recent work [28] gave a general one-query lower

bound.

(4) Is there a quantum analogue to the classical implication from

one-way puzzles to one-way functions? In other words, does

the existence of one-way puzzles with hardness over arbi-

trary distributions imply one-way primitives with hardness

over uniform/�at preimage distributions?

2 TECHNICAL OVERVIEW

We begin this overview by outlining a well-known construction of

classical commitments from any injective one-way function. This

construction relies on hardcore predicates: roughly, a hardcore

predicate for a one-way function 5 is a bit that is easy to compute

given a preimage : but hard to compute given 5 (:). The Goldreich-
Levin theorem [14] shows that the bit ï:, A ð is hard-core for the
function 5 (:) | |A . When 5 is injective, the hardcore bit is uniquely

determined for every element in the image, and gives rise to a

simple commitment scheme, as follows.

A commitment to bit 1 is 5 (:), A , ï:, A ð ·1 for randomly sampled

: and A . This commitment is binding because of the injectivity of

5 , and computationally hides the bit 1 due to ï:, A ð being hardcore.

This construction does not work when 5 is not injective. In this case,

for an image ~, there may exist two preimages :1, :2 ∈ {5 −1 (~)}
such that ï:1, A ð ≠ ï:2, A ð, which will allow the committer to break

binding.

The celebrated work of Hastad et. al. [17] showed how to over-

come the binding issue, and base classical commitments on general

(not necessarily injective) one-way functions. We outline (some

relevant parts of) their technique next.

Pairwise Independent Hashing Reduces the Number of Preimages.

The starting point of the technique in [17] is to append to the image

5 (:) a pairwise-independent hash ℎ(:), thereby reducing the total

number of preimages of 5 (:), ℎ(:). This makes 5 (:), ℎ(:) behave
somewhat like an injective function for carefully chosen output

sizes of ℎ(:).
In more detail, let #ġ denote the number of preimages of 5 (:).

When the output size ℎ(:) is set to (slightly larger than) log#ġ ,

then [17] (roughly) show that:

• ℎ(:) is computationally indistinguishable fromuniform given

5 (:), and
• ℎ(:) is statistically (somewhat) distinguishable from uniform

given 5 (:).

The fact that 5 (:), ℎ(:) appears to a computationally bounded

adversary to have more entropy than it actually does is formal-

ized by building an object called a weak pseudoentropy generator

(WPEG) [16, 17]. We will now describe this object in more detail.
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2.1 Weak Pseudoentropy Generators (WPEG)

A distribution G0 is a weak pseudoentropy generator (WPEG) if

there exists another, possibly ine�cient simulated distribution G1

whose output is computationally indistinguishable from, and yet

has more Shannon entropy than G0.

For a one-way function 5 and pairwise independent hash ℎ, we

can consider distributions

G0 (1Ĥ) := 5 (:), ℎ, 8, ℎ(:)ğ and

G1 (1Ĥ) :=
{
5 (:), ℎ, 8, ℎ(:)ğ−1, D1 if 8 = +log#ġ , + 1
5 (:), ℎ, 8, ℎ(:)ğ otherwise

where : and the hash key ℎ are sampled uniformly in {0, 1}Ĥ , 8 ←
[=], #ġ denotes the number of preimages of 5 (:), ℎ(:)ğ denotes
ℎ(:) truncated to the �rst 8 bits, andD1 denotes a uniformly random

bit.

Prior works [16, 17] show that the distributions G0 and G1 are

computationally indistinguishable, but G1 has more entropy than

G0. This can be understood as follows.

• Entropy Gap. Roughly, the pairwise independence of ℎ im-

plies that with probability at least 1
2 , 5 (:), ℎ(:)+logĊġ , has

a single preimage, i.e., : . Thus, with probability at least 1
2

the last bit in G0 is a deterministic function of the remaining

bits, and has less entropy than the corresponding (uniform)

bit in G1.

• Computational Indistinguishability. By the Leftover Hash

Lemma, for G sampled from any distribution X with min-

entropy ℓ , the �rst ℓ − 22 log= bits of ℎ(G) are 1
Ĥę statistically

close to uniform, even given ℎ. By setting X to be the (uni-

form) distribution over preimages of 5 (:), this implies that

the �rst ℓ −$ (log#ġ ) bits of ℎ(:) are statistically close to

uniform givenℎ, for ℓ = log#ġ . Then applying theGoldreich-

Levin theorem while guessing the last $ (log=) bits of ℎ(:)
converts a distinguisher between G0 and G1 to an inverter

for 5 3.

Next, we discuss barriers in extending these ideas to quantum one-

way state generators.

A Preliminary Approach that Does Not Work. A natural �rst ap-

proach to building commitments from OWSG could be to replace

the classical string 5 (:) in the distributions above, with the quan-

tum state |kġ ð output by the OWSG.

Then the two WPEG distributions G0 and G1 are replaced by

the following mixed states.

d0 (1Ĥ) :=
∑

ġ,ℎ,ğ

|kġ ð ïkġ | , ℎ, 8, ℎ(:)ğ

and

d1 (1Ĥ) :=



∑
ġ,ℎ,ğ,ī

|kġ ð ïkġ | , ℎ, 8, ℎ(:)ğ−1, D1 if 8 = +log#ġ , + 1
∑

ġ,ℎ,ğ,ī
|kġ ð ïkġ | , ℎ, 8, ℎ(:)ğ otherwise

Unfortunately, classical arguments demonstrating statistical en-

tropy gap and computational indistinguishability do not extend to

the mixed states above, because of barriers that we describe next.

3This step requires the hash to be a speci�c inner-product based function which is
compatible with the Goldreich-Levin technique.

Barrier 1: Non-orthogonality of Outputs, or, What is a Preimage Any-

way? The mixed state d1 above is well-de�ned only when #ġ is as

well. In the classical setting, #ġ denotes the number of pre-images

of 5 (:). But it is unclear how to de�ne “preimages” of a quantum

state under a OWSG. For two keys G and G ′, the corresponding
OWSG output states |kĮ ð and |kĮ ′ ð could have arbitrary overlap.

What overlaps qualify G ′ to be a pre-image of |kĮ ð? One could

consider �xing some inverse polynomial function (say 1
Ĥ ) and say

that G ′ is a pre-image of |kĮ ð whenever ïkĮ |kĮ ′ ð g 1
Ĥ . Unfortu-

nately, setting an arbitrary threshold does not accurately capture

the adversary’s uncertainty about : , given |kġ ð. In fact, such an

approach is fundamentally doomed for the following reason.

It is possible to build one-way state generators that are uncon-

ditionally statistically uninvertible given only a single copy of the

output state |kġ ð. A simple example is the following construction

based on Weisner encodings/BB84 states. On input classical key

: = (\, G) where \, G ← {0, 1}Ĥ , the OWSG outputs pure state |GðĂ .
This OWSG is statistically single-copy secure, because |GðĂ hides

the string \ (over the randomness of the choice of G ).

Since quantum bit commitments cannot be secure against un-

bounded adversaries, this would rule out any possible constructions

of commitments (including the one above) that rely only on the

existence of single-copy (pure) OWSG. Instead, we will crucially

rely on multi-copy security of the OWSG to obtain an intermediate

primitive where for every pair of keys (:1, :2), their images are

either orthogonal or parallel.

Resolving Barrier 1: From �antum to Classical Outputs via Shadow

Tomography. Shadow tomography, introduced in [2], allows one to

estimate a large number of observables by obtaining classical infor-

mation from relatively few copies of an unknown quantum state.

In more detail, shadow tomography is a procedure that applied to

C = poly(=, 1Ċ ) copies of an unknown state |k ð yields a classical

string, the shadow ( . Given ( , it is possible to simultaneously esti-

mate ïk |$ Ġ |k ð upto n error for an exponentially large number of

observables {$ Ġ } Ġ∈[2Ĥ ] .
Applying shadow tomography to a OWSG with pure outputs

yields (at least) a statistical inverter for the OWSG. Given C =

poly(=) copies of some state |kġ ð, an inverter can use shadow to-

mography on |kġ ð¹Ī to (ine�ciently) �nd a :′ such that ïkġ |kġ ′ ð >
1 − 1

Ĥ .

Given a OWSG output state |kġ ð, it may even be tempting to

de�ne its “preimages” as the set of possible keys :′ returned by

this statistical inverter, and try to apply arguments similar to the

classical argument above. Unfortunately this approach breaks down

too. The statistical inverter given |kġ ð¹Ī only �nds a key :′ where
|kġ ′ ð has nontrivial single-copy overlap with |kġ ð. It is possible that
for such :′, ïkġ |kġ ′ ð¹Ī is close to 0. Thus :′ is not even close to

being a preimage of |kġ ð¹Ī , at least for the purposes of arguing

computational indistinguishability.

Thus instead of trying to de�ne preimages of quantum states,

we will crucially use the fact that certain shadow tomography

methods [19] have e�ciently computable classical shadows. We

now outline how this fact turns out to be useful.

Our Main Insight. On input key : , instead of having d0 (and d1)

contain one or more copies of the OWSG state |kġ ð, they will only
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contain a classical shadow (ġ of |kġ ð. Whenever these classical

shadows can be e�ciently computed, the WPEG distribution d0
remains e�ciently sampleable, and even becomes entirely classical!

While OWSG are de�ned to be secure given an arbitrary (un-

bounded) polynomial copies of |kġ ð, computing the shadow (ġ
will require only a �xed linear number of copies. Indeed, our proof

shows that commitments are implied by a weaker variant of OWSG,

where security only holds given a �xed linear number of copies of

|kġ ð.
We point out that the shadow (ġ is a randomized (i.e., not de-

terministic) function of the key : . Moreover, given a shadow (ġ
obtained from |kġ ð, it is computationally infeasible to �nd any key

:′ such that |kġ ð and |kġ ′ ð have non-negligible overlap, as oth-

erwise this would break the OWSG. Indeed, this means that the

(randomized) classical map : → (ġ is e�ciently computable but

computationally uninvertible, assuming OWSG security. However,

given a shadow ( and a candidate key : , it is not possible to e�-

ciently verify whether ( was generated as a shadow of |kġ ð. Indeed,
as discussed before, the resulting primitive necessitates ine�cient

veri�cation. This approach allows us to build a one-way puzzle from

any pure-state OWSG.

This allows us to reduce our problem to building commitments

from one-way puzzles. The latter may at �rst appear to be easy,

given the HILL technique. But the quantum nature of one-way

puzzles leads to a major technical barrier, that we describe next.

Barrier 2: No Flatness in a �antum World. Recall that a one-way

puzzle sampler outputs classical (:, B) pairs which satisfy the fol-

lowing: (1) Ver(:, B) = 1 and (2) given B , it is computationally hard

to �nd a preimage : such that Ver(:, B) = 1. Here, observe that the

distribution on preimage keys : induced by �xing a puzzle output

B is not a “�at” distribution, i.e., it does not necessarily assign equal

probability mass to each preimage key. Why does this matter?

For the following discussion, given any puzzle output string B ,

we let ĩ denote the distribution on keys induced by B , ℓĩ denote the

min-entropy of  ĩ and #ĩ = |Supp( ĩ ) |. Since  ĩ is an arbitrary

distribution, it can always be the case that ℓĩ j +log#ĩ ,.
The construction of weak PEGs from one-way functions, dis-

cussed at the beginning of the overview, may seem to extend natu-

rally to one-way puzzles as follows. Consider distributions

G0 (1Ĥ) := B, ℎ, 8, ℎ(:)ğ and

G1 (1Ĥ) :=
{
B, ℎ, 8, ℎ(:)ğ−1, D1 if 8 = +log#ĩ , + 1
B, ℎ, 8, ℎ(:)ğ otherwise

where (:, B) ← OWPuzzle.Samp(1Ĥ), ℎ ← {0, 1}Ĥ , 8 ← [=].
These distributions do di�er in entropy, but they may not be

computationally indistinguishable. The leftover hash lemma (LHL)

would imply that for any B , the �rst ℓĩ − 22 log= bits of ℎ(:) are 1
Ĥę -

statistically close to uniform given B , where ℓĩ is the min-entropy of

 ĩ . Any subsequent bits may leak information about the preimage

: . However, we note that G0 and G1 di�er on the 8Īℎ bit of ℎ(:)
for 8 = +log#ĩ , + 1 and +log#ĩ , k ℓĩ . But it is possible that all

remaining bits of ℎ(:), i.e., ℎ(:)+logĊĩ , , computationally leak the

entire key : . This would make the distributions G0 and G1 easily

computationally distinguishable.

The argument above describeswhymodifyingG1 on 8 = +log#ĩ ,+
1 doesn’t work. What if we instead modi�edG1 on 8 = ℓĩ +1 instead,

where ℓĩ is the min-entropy in  ĩ . That is, consider changing G1 to

the following distribution

G1
′ (1Ĥ) :=

{
B, ℎ, 8, ℎ(:)ğ−1, D1 if 8 = ℓĩ + 1
B, ℎ, 8, ℎ(:)ğ otherwise

In this case, the distributions G0 and G1 become computationally

indistinguishable, but the last bit in G0 corresponding to 8 = ℓĩ + 1
could also be statistically close to uniform. As a result, G0 and G1

′

could end up being (almost) identical, with no entropy gap at all!

This problem does not arise in the classical setting, because �at

preimages can be assumed without loss of generality by “pulling

out” the (uniform) randomness from any classical algorithm. Let-

ting A denote the randomness used to sample : , one can always

de�ne a (one-way) function that uses its uniform input A to sample

: and �nally outputs ~ = 5 (:). This ensures that ℓĩ = log#ĩ above,

enabling simultaneous arguments for both computational indistin-

guishability and statistical entropy gap. Unfortunately, this type

of �attening is no longer possible when the sampler is a quantum

circuit, because the randomness comes from a quantum process

and we do not know how to explicitly pull it out.

At this point, it is natural to wonder whether there is some index

8 for every key : such that changing the 8Īℎ bit of ℎ(:) in G1 yields

a distribution that is computationally indistinguishable from G0

but has a statistical entropy gap. For example, perhaps one could

consider modifyingG1 at the �rst 8 for which the statistical distance

between G0 and G1 jumps from a value that is negligible at 8 − 1 to
a value that is not negligible at 8 . But there exist distributions for

which there never is a clear cut “jump”; for example, if the statistical

distance between G0 and G1 increases proportionally to 2−(Ĥ−ğ ) .
To overcome this issue, we will further modify G1. Our starting

idea will be to �x for every puzzle B , a “good set” Gĩ of preimage

keys which is almost �at. We set the distribution G1 to di�er from

G0 only when the key : that is output by Samp belongs to the set Gĩ .

Making this approach work requires several additional ideas, and

we provide a detailed overview of these below.

Resolving Barrier 2: Pseudoentropy or “HILL” for�antumly Sampled

Distributions. Our goal is to prove that the distribution

G0 (1Ĥ) := B, ℎ, 8, ℎ(:)ğ
is a weak pseudoentropy generator, where (:, B) ← Samp(1Ĥ),ℎ ←
{0, 1}Ĥ and 8 ← [=]. Recall that this means we must demonstrate

the existence of a di�erent distribution which is computationally

close to but has more entropy than G0.

We already outlined why setting G1 identically to the case of

one-way functions creates issues with proving either computational

indistinguishability or statistical entropy gap. Instead, we observe

that for every puzzle B and corresponding preimage distribution  ĩ ,

there is a “good” subset Gĩ of preimages : such that4:

(1) The set Gĩ is dense enough in  ĩ , that is, for every B ,

Prġ←ćĩ
[: ∈ Gĩ ] g

1

=
, and

(2) For every pair of preimages (:1, :2) ∈ Gĩ ,
0.5Prćĩ

[:2] f Prćĩ
[:1] f 2Prćĩ

[:2]
4We use numbers like 1

Ĥ
below for simplicity. In our main section, we use slightly

di�erent fractions than the ones depicted here, for various technical reasons.
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The observation above essentially follows from a pigeonhole argu-

ment over the preimages of B .

We can now consider a di�erent simulated distribution G1 as

follows.

G1 (1Ĥ) :=
{
B, ℎ, 8, ℎ(:)ğ−1, D1 if 8 = log |Gĩ | + 1 and : ∈ Gĩ
B, ℎ, 8, ℎ(:)ğ otherwise

where (:, B) ← Samp(1Ĥ),ℎ ← {0, 1}Ĥ , 8 ← [=], andGĩ is the good
slice of preimages de�ned above. Computational indistinguishabil-

ity between G0 and G1 follows by noting that any distinguishing

advantage can only exist when: ∈ Gĩ . Because we are reducing to a
search problem, it is still possible to apply the Leftover Hash Lemma

and the Goldreich-Levin theorem to convert any distinguisher into

an inverter for the one-way puzzle.

Moreover, conditioned on : ∈ Gĩ , G1 obviously has more en-

tropy than G0 (and when : ∉ Gĩ , the two distributions are identi-

cal)5. This unfortunately does not imply that G1 has more entropy

than G0 overall. The reason can best be explained with the follow-

ing toy examples.

Example 1: There is a (hidden) event � that occurs with probability
2
3 , and distributions (�0, �1) such that

• Distribution �0 outputs 0 when � occurs, and 1 when �

doesn’t occur.

• Distribution �1 outputs a uniform bit when � occurs, and 1

when � doesn’t.

�1 hasmore entropy than�0 conditioned on�, and the distributions

are identical when � doesn’t occur – but the overall entropy in �0

is equal to that of �1! Similarly, while G1 has more entropy than

G0 when : ∈ Gĩ , and the distributions are identical otherwise, the

overall entropy in G0 could end up being equal to that in G1.

Consider, however, the following example where both distribu-

tions �0 and �1 are uniform when � doesn’t occur, i.e.,

Example 2: There is a (hidden) event � that occurs with probability
2
3 , and distributions (�0, �1) such that

• Distribution �0 outputs 0 when � occurs, and a uniform bit

when � doesn’t occur.

• Distribution �1 outputs a uniform bit when � occurs, and a

uniform bit when � doesn’t.

�1 has more entropy than�0 conditioned on �. Moreover, since�0

and �1 are uniform when � doesn’t occur, then �1 having higher

entropy than �0 conditioned on � does imply that �1 has higher

entropy overall.

We could hope to apply a similar argument to G0 and G1 if

somehow it were the case that for : ∉ Gĩ , the last bit of G0 (and

also G1) is close to uniform given the remaining bits B, ℎ, 8, ℎ(:)ğ−1.
But why would this even be the case?

5It may appear that we are close: we seem to have a pair of distributions that are
statistically far but computationally close. Unfortunately, to obtain a commitment, we
also need these distributions to be e�ciently sampleable, which is something we will
address in a later subsection. At this point, sampling from G1 requires knowing ğĩ
and Gĩ which are not necessarily e�ciently computable functions of (ġ, ĩ ) . But for
now, we only aim to prove that G0 is a weak PEG, for which we only need G0 to be
e�ciently sampleable, and to prove that G1 has more entropy than G0 .

Establishing an Entropy Gap. Inspired by the insight above, we will

modify G1 to provably obtain an entropy gap. For every B , the two

distributions are identical when 8 ≠ log |Gĩ | + 1, therefore, we only
focus on the case where 8 = log |Gĩ | + 1.

In this case, ideally we want the bias in the 8Īℎ bit of ℎ(:) when
: ∉ Gĩ to not cancel out the bias that arises when : ∈ Gĩ , in the

distribution G0. This would hold if the 8Īℎ bit of ℎ(:) when : ∉ Gĩ

were uniform (even given the remaining bits output by G0). But

we do not know if this is the case, or even what the distribution of

keys when : ∉ Gĩ looks like.

To resolve this, let us �rst try to ensure that for most : ∈ Gĩ , all
preimages (besides :) of (B, ℎ(:)ğ−1) have extremely low sampling

probability in  ĩ . (Recall that  ĩ is the distribution induced on

preimages of B .) This can be achieved by modifying G1 as follows,

where 8∗ĩ = (log |Gĩ | + 600 log=):

G1 (1Ĥ) :=
{
B, ℎ, 8, ℎ(:)ğ−1, D1 if 8 = 8∗ĩ and : ∈ Gĩ
B, ℎ, 8, ℎ(:)ğ otherwise

In the modi�ed distribution G1, pairwise independence of ℎ en-

sures that for most : ∈ Gĩ , all preimages (besides :) of (B, ℎ(:)ğ−1)
are sampled with probability less than 1

Ĥ600
in  ĩ , for 8 = (log |Gĩ | +

600 log=). For this overview, we assume that this holds for all

: ∈ Gĩ 6.
We will now consider the following two cases.

(1) Preimages (besides :) of (B, ℎ(:)ğ−1) are sampled with total

probability f 1
Ĥ in  ĩ .

In this case, since the unique : ∈ Gĩ has probability mass at

least 1 − 1
Ĥ , the bias in the 8Īℎ bit of ℎ(:) from keys outside

Gĩ barely stacks up against the bias that arises from : ∈ Gĩ .
(2) Preimages (besides :) of B, ℎ(:)ğ−1 are sampled with total prob-

ability >
1
Ĥ in  ĩ .

In this case, the individual probability mass of every preim-

age (besides :) is very low, but their total probability mass is

high. This means that the overall distribution of pre-images

(besides :) of (B, ℎ(:)ğ−1) necessarily has high entropy. Then
by the Leftover Hash Lemma, the 8Īℎ bit ofℎ(:) when : ∉ Gĩ

will be close to uniform, which is what we desired.

In both cases, we conclude that the overall Shannon entropy in

G1 is larger than that in G0 by a (�xed) inverse polynomial value:

which means that G0 is indeed a WPEG.

Furthermore, the proof of computational indistinguishability

between G0 and G1 goes through as before, with the leftover hash

lemma guaranteeing that all but the last $ (log=) bits of ℎ(:) are
statistically indistinguishable from uniform. With this guarantee,

the Goldreich-Levin inverter simply needs to guess the last$ (log=)
bits of ℎ(:), which it can do with inverse polynomial probability.

At this point, we have a WPEG. However, because G1 cannot be

e�ciently sampled, we cannot use it directly to build commitments.

Indeed, obtaining a full-�edged commitment requires additional

steps, which we outline next.

6In the technical sections, we further modify G1 to account for the fact that for a few
choices of ℎ and a few ġ ∈ Gĩ , there are multiple preimages of (ℎ,ℎ (ġ ) ) that are
each sampled with probability much higher than 1

Ĥ600
.
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2.2 Pseudoentropy Generators (PEG)

Our next step follows a similar technique as [17] to (1) amplify

the entropy gap between real and simulated distributions and (2)

bring the min-entropy of the real distribution close to its Shannon

entropy, all while maintaining computational indistinguishability.

This is done by taking a product distribution of the outputs of the

weak PEG. In more detail, we sample @(=) = poly(=) (for a large
enough polynomial poly(·)) random keys :1, . . . , :ħ along with

@(=) independent (ℎ, 8) values. We use these to generate @(=) sam-

ples from distribution G0, and we append these samples together as

our PEG output. This also has the e�ect of “concentrating” the en-

tropy to an expected value independent of the choice of : (whereas

in weak PEG this entropy would necessarily depend on : via 8ĩ ).

In the PEG, we have that for every choice of security parameter =,

there is a single value ℎ̂Ĥ that corresponds to the Shannon-entropy

in the output of the PEG, and this value is smaller than the min-

entropy in the corresponding simulated product distribution by =ę ,

for some 2 > 1.

2.3 Imbalanced EFI Pairs

An EFI is a pair of e�ciently sampleable distributions that are statis-

tically far but computationally indistinguishable. Such distributions

have been shown [10, 37] to be equivalent to quantum bit commit-

ments.

Let us consider hashing the output of our PEG to approximately

ℎ̂Ĥ + = bits. That is, the size of hash outcome is larger than the

actual Shannon entropy in the PEG output, making the resulting

distribution statistically distinguishable from uniform. At the same,

since the PEG outputs are computationally indistinguishable from

a distribution with (much) more than ℎ̂Ĥ + = bits of min-entropy,

the resulting hash output is still computationally indistinguishable

from uniform. It may now seem like we have an EFI pair: consider

distributions

• ℎ(PEG(=)) truncated to ℎ̂(=) + = bits

• *
ℎ̂ (Ĥ)+Ĥ which is uniform over ℎ̂(=) + = bits

While these distributions are computationally close but statistically

far, they cannot be sampled e�ciently without non-uniform advice,

i.e., the value ℎ̂(=) for every =.
In fact, observe that truncating the hash output to any less than

ℎ̂Ĥ + = bits would still preserve computational indistinguishability,

and truncating to any more would still ensure statistical distance,

but the two can simultaneously be guaranteed only when truncating

to exactly ℎ̂(=) + = bits. This is why we call the resulting object an

imbalanced EFI.

Due to the equivalence between EFI and commitment, we can

equivalently claim to have statistically binding, computationally

hiding quantum bit commitments [10, 37] – albeit dependent on

non-uniform advice I (=). When I (=) f ℎ̂(=) +=, the commitments

are hiding, and when I (=) g ℎ̂(=) + =, these commitments are

binding. We call this an imbalanced commitment scheme. The next

few steps discuss how to remove this imbalanced drawback by

appropriately combining variants of these commitments7.

7This upcoming part diverges from techniques in [17] which build uniform pseudoran-
dom generators by appropriately stretching the output of a nonuniform PRG. These
techniques break down in our setting because there is no clear way to run a puzzle on

2.4 Always Binding, Non-Uniform Hiding
Commitments

In the next step, we rely on prior work in �avor conversion of

quantum commitments [18] to convert our statistically hiding, com-

putationally binding EFI pairs/commitments to commitments with

the reverse property: namely, where for I (=) g ℎ̂(=) + =, the com-

mitments are hiding, and when I (=) f ℎ̂(=) +=, these commitments

are binding. Next, given these two types of complementary commit-

ments, we combine them by using both to commit to the same bit 1:

note that for every choice of advice I (=) (i.e. length to which we

truncate the hash outcome), at least one of the two commitments

is necessarily binding. This allows us to show that the resulting

combined commitment is always binding (for every choice of I (=))
and hiding whenever I (=) = ℎ̂(=) + =. We call this a non-uniform

hiding commitment.

2.5 Standard (Uniform) Commitments

Finally, we observe that for each =, the number of possible ℎ̂(=)
values is bounded by a �xed polynomial C (=). Thus, we can repeat

the above construction for every possible value of ℎ̂(=), obtaining
a sequence of commitments where for every =, at least one com-

mitment in the sequence is hiding (and all are binding). By secret

sharing the committed bit between various commitments, we can

show that the overall commitment scheme satis�es both hiding and

binding. Thus, we have removed dependence on the advice string

I (=), yielding a uniform construction of commitments.

�ick Detour: An Alternative Template. We brie�y note an alter-

native technique [32] using quantum information to sidestep the

use of the hardcore bit. While this was developed to build com-

mitments from a strong “injective” variant of OWSG, for simplic-

ity, we describe it as applied to injective one-way functions. Very

roughly (and ignoring some garbage registers), a commitment to 0

is
∑
ġ |:ðC |:, 5 (:)ðD and a commitment to 1 is

∑
ġ |:ðC |0, 5 (:)ðD;

whereC is the commit register andD the decommit register. Statisti-

cal hiding follows because tracing out theD register leaves identical

mixtures on C in both cases. Computational binding follows by

the hardness of �nding : given 5 (:) for a random : . Our methods,

including hashing preimages to appropriate lengths and slicing,

will also similarly apply to this template. We do not �nd any one of

these templates to be simpler than the other, but we focus on the

Goldreich-Levin template because it yields interesting intermediate

primitives with entirely classical outputs.

QCCC Cryptography implies One-Way Puzzles. Finally, we provide

evidence that one-way puzzles are a necessary assumption for

quantum cryptography with classical communication by showing

that central QCCC cryptographic primitives imply one-way puzzles.

3 PURE OWSG IMPLY ONE-WAY PUZZLES

In this section, we show how to use shadow tomography to build

one-way puzzles (with ine�cient veri�cation) from any OWSG

with pure state outputs.

its own output, and thus to achieve signi�cant “stretch” in a puzzle-based PRG-type
object.
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Definition 3.1 (C (=)-Copy Secure One-Way State Genera-

tors). [32] A one-way state generator (OWSG) is a set of QPT

algorithms (KeyGen, StateGen,Ver) where:
• KeyGen(1Ĥ): On input the security parameter =, output a

classical key string : ∈ {0, 1}Ĥ .
• StateGen(:): On input key : ∈ {0, 1}Ĥ , output an <-qubit

quantum state |kġ ð.
• Ver(:, |k ð) : On input key : ∈ {0, 1}Ĥ and<-qubit quantum

state |k ð, output ¦ or §.
These algorithms satisfy the following properties.

• Correctness. For every = ∈ N,

Pr
ġ←KeyGen(1Ĥ )
|ćġ ð←StateGen(ġ )

[¦ ← Ver(:, |kġ ð)] g 1 − negl(=)

• C (=)-Copy Security. For every quantum polynomial-sized ad-

versary A = {AĤ}Ĥ∈N and = ∈ N,

Pr
[
¦ ← Ver

(
AĤ (( |kġ ð)¹Ī (Ĥ) ), |kġ ð

)]
f negl(=)

where : ← KeyGen(1Ĥ) and |kġ ð ← StateGen(:)

This de�nition was later generalized in [31] to allow StateGen

outputs to be mixed states. Furthermore, existing de�nitions of

OWSG [32] require C (=)-copy security for every (a-priori unbounded)
polynomial C (·). In this work, we only need to consider 2=-copy

security for a large enough, a-priori �xed, constant 2 . We will show

that even this weaker variant implies commitments, thus obtaining

a stronger result.

Definition 3.2 (One-way Puzzles). A one-way puzzle consists

of a pair (Samp,Ver) with the following syntax.

• Samp(1Ĥ) → (:, B), outputs a pair of classical strings (:, B).
We refer to B as the puzzle and : as its key. Without loss of

generality we may assume that : ∈ {0, 1}Ĥ .
• Ver(:, B) → ¦ or §, is a Boolean function that maps any pair

of classical strings (:, B) to either ¦ or §.
These satisfy the following properties.

• Correctness. Outputs of the sampler pass veri�cation with over-

whelming probability, i.e.,

Pr
(ġ,ĩ )←Samp(1Ĥ )

[Ver(:, B) = ¦] = 1 − negl(=)

• Security. Given B , it is (quantum) computationally infeasible

to �nd : satisfying Ver(:, B) = ¦, i.e., for every quantum

polynomial-sized adversary A,

Pr
(ġ,ĩ )←Samp(1Ĥ )

[Ver(A(B), B) = ¦] = negl(=)

Note that since puzzles are e�ciently sampleable, there exists a poly-

nomial ? (·) such that |B | f ? (=).

We will rely on the following theorem on shadow tomography

from [19].
Theorem 3.1. [19] (Rephrased, following [38]) Fix any n, X > 0.

There exists a polynomial ? (·) and QPT algorithm ShadowGen that,

given) = $ (log(1/X)/n2) copies of an unknown state |k ð generates a
classical string (called the “shadow”) ( of size ? (=) with the following

property:

For some C ∈ N, let {"ğ }ğ∈[Ī ] be a set of observables such that

Tr("2
ğ ) f 1. Then there exists an “estimator” function � such that:

Pr
[
∀8 ∈ [C],

��� ((,"ğ ) − ïk |"ğ |k ð
�� f n

]
g 1 − CX

where ( ← ShadowGen( |k¹Đ ð
We now proceed to state our main theorem for this section.

Theorem 3.2. There exists a constant 2 > 0 such that any 2=-copy

secure one-way state generator with pure state outputs (De�nition

3.1) implies a one-way puzzle (De�nition 3.2).

Proof. (of Theorem 3.2) Let (KeyGen, StateGen) be a one-way
state generator (OWSG) with pure state outputs and let |kġ ð repre-
sent the output of StateGen(:).

To build a puzzle from this OWSG, we will apply shadow tomog-

raphy to the output states of the OWSG. In fact, the one-way puzzle

will simply sample a OWSG key : , compute |kġ ð ← StateGen(:),
and �nally compute Bġ as a classical shadow of |kġ ð. It will output
Bġ as the puzzle, with solution : . In what follows, we formalize this

construction and de�ne an (ine�cient) veri�cation algorithm for

the one-way puzzle.

Defining Preimage Keys of a Classical Shadow. First, it will be useful

to de�ne an (ine�cient) algorithmL that obtains a classical shadow

and outputs a list of keys, roughly corresponding to possible preim-

ages of the shadow.

Set n = 1/10 and for = ∈ N, set X = X (=) = 2−2Ĥ . For all : ∈
Supp(KeyGen(1Ĥ)), de�ne"ġ := |kġ ð ïkġ |. Note that these satisfy
Tr("2

ġ
) = 1. Let ShadowGen and � be algorithms as de�ned by

Theorem 3.1 applied to X, n and {"ġ }ġ∈Supp(KeyGen(1Ĥ ) ) . Let ) =

) (=) = $ (=) be the required number of copies, and let C = C (=) :=���{"ġ }ġ∈Supp(KeyGen(1Ĥ ) )
��� f |Supp(KeyGen(1Ĥ)) | f 2Ĥ .

De�ne the (ine�cient) deterministic algorithm L that takes a

shadow B as input and outputs a list of keys such that the estimated

overlap of the shadow with each key in the list is at least 1 − n , i.e.

L(B) =
{
: :

(
: ∈ Supp(KeyGen(1Ĥ))

) ∧ (
� (B, "ġ ) g 1 − n

)}

The following claim about the algorithm L states that for any

key : , with high probability over sampling a corresponding shadow

Bġ of |kġ ð, (1) the key : appears in L(Bġ ) and (2) for all 9 ∈ L(Bġ ),
the (pure) states |kġ ð and |k Ġ ð have high overlap. The proof of

this claim follows from the correctness of shadow tomography

(Theorem 3.1).

Claim 3.1. For large enough = ∈ N, for all
: ∈ Supp(KeyGen(1Ĥ)):

(1) Pr
ĩġ←ShadowGen( |ćġ ð¹Đ ) [: ∈ L(Bġ )] g 1 − 2−Ĥ

(2) Pr
ĩġ←ShadowGen( |ćġ ð¹Đ ) [∀9 ∈ L(Bġ ), |ïkġ |k Ġ ð|

2 g 1−2n] g
1 − 2−Ĥ

Proof. For any large enough = ∈ N and any

: ∈ Supp(KeyGen(1Ĥ)), applying Theorem 3.1 onX, C, n set as above,

we have:

Pr[∀9 ∈ Supp(KeyGen(1Ĥ)),
��� (Bġ , "Ġ ) − |ïkġ |k Ġ ð|2

�� f n]

g 1 − CX g 1 − 2−Ĥ (1)
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where Bġ ← ShadowGen( |kġ ð¹Đ ). Setting 9 = : , we have:
Pr[� (Bġ , "ġ ) g 1 − n] g 1 − 2−Ĥ

By de�nition of L, this implies

Pr[: ∈ L(Bġ )] g 1 − 2−Ĥ

which is the �rst part of the claim.

Again, �x any : ∈ Supp(KeyGen(1Ĥ)). If we restrict 9 to L(Bġ ),
then by equation (1), we have

Pr[∀9 ∈ L(Bġ ),
��� (Bġ , "Ġ ) − |ïkġ |k Ġ ð|2

�� f n] g 1 − 2−Ĥ

But 9 ∈ L(Bġ ) ⇐⇒ � (Bġ , "Ġ ) g 1 − n . Substituting in the above

equation gives:

Pr[∀9 ∈ L(Bġ ), |ïkġ |k Ġ ð|2 g 1 − 2n] g 1 − 2−Ĥ

which is the second part of the claim. □

Before describing our puzzle, we will de�ne the set C of keys that

have low correctness error, as follows:

C :=
{
: ∈ {0, 1}Ĥ such that Pr[Ver(:, |qġ ð) = ¦] g 1 − 1/100

}

Observe that with overwhelming probability, the OWSG KeyGen

algorithm outputs keys in the set C (otherwise, this would contra-

dict correctness of the one-way puzzle). Looking ahead, our puzzle

veri�cation algorithm will reject keys that are not in C. We can

now formally describe the puzzle.

Constructing the One-Way Puzzle. De�ne a one-way puzzle as

follows.

• Puzz.Samp(1Ĥ) :
– Sample : ← KeyGen(1Ĥ).
– Compute B ← ShadowGen( |kġ ð¹Đ )
– Return (:, B)
• Puzz.Ver(:, B) :
– If : ∈ L(B) and : ∈ C, return ¦
– Else return §

Claim 3.2. (Puzz.Samp, Puzz.Ver) satis�es De�nition 3.2.

Correctness. By Claim 3.1 part 1, for large enough = ∈ N and all

: ∈ Supp(KeyGen(1Ĥ))
Pr

ĩ←ShadowGen( |ćġ ð¹Đ )
[: ∈ L(B)] g 1 − 2−Ĥ

Since the OWSG must have negligible correctness error, a Markov

argument applied to De�nition 3.1 shows that

Pr
ġ←KeyGen(1Ĥ )

[: ∉ C] f negl(=)

Putting these together,

Pr
ġ←KeyGen(1Ĥ )

ĩ←ShadowGen( |ćġ ð¹Đ )

[: ∈ L(B) and : ∈ C] g 1 − 2−Ĥ − negl(=)

which by the de�nition of Puzz.Ver implies

Pr
(ġ,ĩ )←Puzz.Samp(1Ĥ )

[¦ ← Puzz.Ver(:, B)] g 1 − 2−Ĥ − negl(=)

Security.We prove one-wayness by contradiction. Suppose there

exists a quantum polynomial-sized adversary A that breaks the

one-wayness of the puzzle, i.e. there exists a polynomial @(·) such
that for in�nitely many = ∈ N,

Pr
(ġ,ĩ )←Puzz.Samp(1Ĥ )

[¦ ← Puzz.Ver(A(B), B)] g 1/@(=)

We build a reduction that breaks the one-wayness of the OWSG.

First, by the de�nition of Puzz.Ver and Puzz.Samp, for in�nitely

many = ∈ N,
Pr

ġ←KeyGen(1Ĥ )
ĩ←ShadowGen( |ćġ ð¹Đ )

[A(B) ∈ (L(B) ∩ C)] g 1/@(=) (2)

By Claim 3.1, for all = ∈ N and all : ∈ Supp(KeyGen(1Ĥ)),
Pr

ĩ←ShadowGen( |ćġ ð¹Đ )
[∀:′ ∈ L(B), |ïkġ |kġ ′ ð|2 g 4/5] g 1 − 2−Ĥ

(3)

For any events � and �, Pr[� ' �] g Pr[�] − Pr[¬�]. Therefore,
from equations (2) and (3), for in�nitely many = ∈ N,

Pr
[ (
A(B) ∈ (L(B) ∩ C)

)
'
(
∀:′ ∈ L(B), |ïkġ |kġ ′ ð|2 g 4/5

) ]

g 1/@(=) − 2−Ĥ (4)

where : ← KeyGen(1Ĥ) and B ← ShadowGen( |kġ ð¹Đ ), which
can be simpli�ed to say that for in�nitely many = ∈ N,

Pr
ġ ′←A(ĩ )

[ (
:′ ∈ C

)
'
(
|ïkġ |kġ ′ ð|2 g 4/5

) ]
g 1/@(=) − 2−Ĥ

where : ← KeyGen(1Ĥ) and B ← ShadowGen( |kġ ð¹Đ ).
If |ïkġ |kġ ′ ð|2 g 4/5 then the success probabilities of Ver(:′, |kġ ′ ð)
and Ver(:′, |kġ ð) di�er by at most 1√

5
. Since ∀:′ ∈ C, Ver(:′, |kġ ′ ð)

succeeds with probability atleast 1− 1
100 , for in�nitely many = ∈ N,

Pr
ġ←KeyGen(1Ĥ )

ĩ←ShadowGen( |ćġ ð¹Đ )
ġ ′←A(ĩ )

[¦ ← Ver(:′, |kġ ð)]

g (1 − 1/100 − 1/
√
5) · (1/@(=) − 2−Ĥ) > 1

2@(=)
Then, letting B be the algorithm that on input |kġ ð¹Đ outputs

A(ShadowGen( |kġ ð¹Đ )), we have that for in�nitely many = ∈ N,

Pr
ġ←KeyGen(1Ĥ ),
ġ ′←B(|ćġ ð¹Đ )

[¦ ← Ver(:′, |kġ ð)] >
3

5@(=)

Since ShadowGen and A are quantum polynomial-sized circuits,

this contradicts $ (=)-copy security of the OWSG. □

4 ONE-WAY PUZZLES IMPLY QUANTUM
COMMITMENTS

Here, we show that (ine�ciently veri�able) one-way puzzles imply

quantum weak pseudoentropy generators, de�ned below.

Definition 4.1 (�antum Weak Pseudoentropy Generator).

A Quantum Weak Pseudoentropy Generator consists of an ensemble

of distributions {G0 (=),G1 (=)}Ĥ∈N over classical strings :

• E�ciency. There exists a QPT algorithm G where for all = ∈ N,
G(1Ĥ) returns a sample from G0 (=).
• Bounded Length. There exists a polynomial ? (·) such that for

all= ∈ N, for all I0 ∈ Supp(G0 (=)), for all I1 ∈ Supp(G1 (=)),
|I0 | = |I1 | f ? (=).
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• (Shannon) Entropy Gap. There exists an explicit constant 2 > 0

such that for all su�ciently large = ∈ N,

H(G1 (=)) − H(G0 (=)) g
1

=ę

• Indistinguishability. There exists a negligible function ` such

that for all quantum polynomial-sized adversaries A, for all

large enough = ∈ N:
���� Pr
İ←G0 (Ĥ)

[A(I) = 1] − Pr
İ←G1 (Ĥ)

[A(I) = 1]
���� f ` (=)

Theorem 4.1. One-way puzzles (De�nition 3.2) imply quantum

weak pseudoentropy generators (De�nition 4.1).

In this section, we show that a parallel repetition of quantum

weak PEGs yields a strong pseudoentropy property, which we for-

malize into a quantum PEG, de�ned below.

Definition 4.2 (�antum Pseudoentropy Generator). A

Quantum Pseudoentropy Generator consists of an ensemble of distri-

butions {G0 (=),G1 (=)}Ĥ∈N over classical strings such that:

• Bounded Length. There exists a polynomial ? (·) such that for

all= ∈ N, for all I0 ∈ Supp(G0 (=)), for all I1 ∈ Supp(G1 (=)),
|I0 | = |I1 | f ? (=).
• E�ciency. There exists some QPT algorithm that for all = ∈ N,
on input 1Ĥ , returns a sample from G0 (=).
• Indistinguishability. There exists a negligible function ` such

that for all quantum polynomial-sized adversaries A, for all

large enough = ∈ N,
����� Pr
İ←G0 (Ĥ)

[A(I) = 1] − Pr
İ←G1 (Ĥ)

[A(I) = 1]
����� f ` (=)

• Entropy Gap. Here, we work with min and max entropies, as

opposed to Shannon entropy. We require the min-entropy of

G1 to be higher than the max-entropy of G0. Formally, there

is some explicit constant 2 > 0 and some negligible function n

such that for all su�ciently large = ∈ N,

H
Ċ (Ĥ)
min
(G1 (=)) − HĊ (Ĥ)max (G0 (=)) g =ę

Theorem 4.2. Quantum weak pseudoentropy generators (De�ni-

tion 4.1) imply quantum pseudoentropy generators (De�nition 4.2).

Next, we show that quantum pseudoentropy generators imply a

(non-uniform) variant of EFI, that we de�ne below. This de�nition

modi�es the standard de�nition (De�nition 4.4) of EFI to allow the

algorithm to depend on a nonuniform parameter B , and requires

the existence of a function B∗ (=) such that computational indistin-

guishability (resp. statistical distance) holds when B f B∗ (=) (resp.
B g B∗ (=)).

Definition 4.3 (B∗-Imbalanced EFI). Let B∗ (·) denote a positive
integer-valued function. An B∗-non-uniform EFI is a QPT algorithm

EFIĩ (1Ĥ, 1) → dĘ that obtains classical parameter-dependent advice

string B , and on input 1 ∈ {0, 1} and security parameter =, outputs a

(potentially mixed) quantum state such that:

(1) Computational Indistinguishability. There exists a negligible

function ` (·) such that for all quantum polynomial-sized cir-

cuits A, for large enough = ∈ N and every B f B∗ (=),
��Pr[1← A(EFIĩ (1Ĥ, 0))] − Pr[1← A(EFIĩ (1Ĥ, 1))]

�� f ` (=)

(2) Statistical Distance. There exists a negligible function X (·) such
for large enough = ∈ N and every B g B∗ (=),

TD(EFIĩ (1Ĥ, 0), EFIĩ (1Ĥ, 1)) g 1 − X (=)

Theorem 4.3. There exists a positive integer-valued function B∗ (·)
such that

• There exists a polynomial ? such that for all = ∈ N, |B∗ (=) | f
log? (=) and
• Quantum pseudoentropy generators (De�nition 4.2) imply B∗-
imbalanced EFI (De�nition 4.3).

Finally, we show that B∗-imbalanced EFI (De�nition 4.3) imply

EFI pairs, de�ned below.

Definition 4.4 (EFI pairs). [10] An EFI pair is a QPT algorithm

EFI(1Ĥ, 1) → dĘ that on input 1 ∈ {0, 1} and the security parame-

ter =, outputs a (potentially mixed) quantum state dĘ such that the

following hold:

(1) Computational Indistinguishability. There exists a negligible

function ` (·) such that for every quantum polynomial-sized

adversary A, for large enough = ∈ N,
��Pr[1← A(EFI(1Ĥ, 0))] − Pr[1← A(EFI(1Ĥ, 1))]

�� f ` (=)
(2) Statistical Binding. There exists a negligible function X (·) such

that for large enough = ∈ N,
TD(EFI(1Ĥ, 0), EFI(1Ĥ, 1)) g 1 − X (=)

Theorem 4.4. B∗-imbalanced EFI (De�nition 4.3) imply EFI pairs

(De�nition 4.4).

Putting them all together we obtain the following theorem.

Theorem 4.5. There exists a constant 2 > 0 such that 2= copy

secure one-way state generators with pure state outputs (De�nition 3.1)

imply EFI pairs (De�nition 4.4)

EFI pairs are known to imply secure computation for all classical

and quantum functionalities [6, 8, 10, 15]. We therefore also have

the following corollary.

Corollary 4.1. There exists a constant 2 > 0 such that 2= copy

secure one-way state generators with pure state outputs imply secure

computation for all quantum functionalities.

QCCC Cryptography. Finally, we show that one-way puzzles are

essential for QCCC cryptography.

Theorem 4.6. In the QCCC setting, the existence of public key

encryption, digital signatures, bit commitments, or symmetric encryp-

tion with classical keys implies one-way puzzles.

Complete proofs can be found in the full version of the paper.
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