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Abstract—We present a new framework to address the non-
convex robust hypothesis testing problem, wherein the goal
is to seek the optimal detector that minimizes the maximum
of worst-case type-I and type-II risk functions. The distribu-
tional uncertainty sets are constructed to center around the
empirical distribution derived from samples based on Sinkhorn
discrepancy. Given that the objective involves non-convex, non-
smooth probabilistic functions that are often intractable to
optimize, existing methods resort to approximations rather than
exact solutions. To tackle the challenge, we introduce an exact
mixed-integer exponential conic reformulation of the problem,
which can be solved into a global optimum with a moderate
amount of input data. Subsequently, we propose a convex
approximation, demonstrating its superiority over current state-
of-the-art methodologies in literature. Furthermore, we establish
connections between robust hypothesis testing and regularized
formulations of non-robust risk functions, offering insightful
interpretations.

I. INTRODUCTION

Hypothesis testing is a fundamental problem in statistics,
whose primary goal is to decide the true hypothesis while
minimizing the risk of wrong decisions. Hypothesis testing
is a building block for various statistical problems such as
change-point detection [1]–[5], model criticism [6]–[8], and
it has applications in broad domains including healthcare [9].
Practically, the underlying true distributions corresponding to
each hypothesis are unknown, and we only have access to a
small amount of data collected for each hypothesis.

Distributionally robust hypothesis testing has emerged as
a popular approach to tackle the challenge of establishing
an optimal decision in the presence of limited sample size,
model misspecification, and adversarial data perturbation. It
formulates the problem as seeking the optimal decision over
uncertainty sets that contain candidate distributions for each
hypothesis. The construction of such distributional uncertainty
sets plays a key role in both computational tractability and
testing performance.

The earlier work of finding a robust detector dates back to
Huber’s seminar work [10], which constructs the uncertainty
sets as total-variation probability balls centered around the
reference distributions. Unfortunately, the computational com-
plexity of seeking the optimal detector within this framework,
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particularly for multivariate distributions, hinders its practi-
cal applications. Two primary approaches have emerged for
constructing uncertainty sets in robust hypothesis testing. The
first involves defining uncertainty sets using descriptive statis-
tics such as moment conditions [11]. The second approach
considers all possible distributions within a pre-specified sta-
tistical divergence from a reference distribution. Commonly
adopted statistical divergences include the KL-divergence [12],
[13], Wasserstein distance [4], [14], [15], entropic regularized
Wasserstein distance (i.e., Sinkhorn discrepancy) [16], and
maximum mean discrepancy [17].

It is noteworthy that distributionally robust optimization
(DRO) with Sinkhorn discrepancy-based uncertainty set has
recently received great attention in the literature [16], [18]–
[23], mainly due to its data-driven nature, computational
tractability, and flexibility to obtain worst-case distributions
yielding satisfactory performance. Considering its empirical
success, we propose a new framework for robust hypothesis
testing, whose distributional uncertainty sets are constructed
using the Sinkhorn discrepancy. Our goal is to seek the
optimal detector to minimize the maximum of worst-case type-
I and type-II error. In contrast to the recent works [14], [16]
considering a special smooth and convex relaxation of the
objective function, we aim to solve the non-convex problem
by (i) either directly optimizing the probabilistic objective, or
(ii) providing a tighter convex relaxation.

Our proposed framework balances the trade-off between
computational efficiency and statistical testing performance.
The contributions are summarized as follows. Proofs and
numerical study for our framework can be found in [24].

1) Under the random feature model, we obtain a finite-
dimensional optimization reformulation for this robust
hypothesis testing problem (Section II). Besides, we
provide a closed-form expression for the worst-case
distributions (Remark 1).

2) We develop novel optimization algorithms for the non-
convex robust testing problem. First, we provide an
exact mixed-integer conic reformulation of the prob-
lem (Section III-A), enabling the attainment of global
optimum even with a moderate data size. Subsequently,
we introduce a convex approximation and illustrate its
superiority as a tighter relaxation compared to the state-
of-the-art (Section III-B).

3) We connect robust hypothesis testing and regularized
formulations of non-robust risk functions under two
hyper-parameter scaling regimes, offering insightful in-
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terpretations of Sinkhorn robust testing (Section IV).
Notations. The base of the logarithm function log is e. For any
positive integer N , define [N ] = {1, . . . , N}. For scalar x 2
R, define (x)+ = max{x, 0}. Let Kexp denote the exponential
cone:

Kexp =
n
(⌫, µ, �) 2 R+ ⇥ R+ ⇥ R : e�/⌫  µ/⌫

o
.

For a given event E, define the indicator function 1E(·) such
that 1E(z) = 1 if z 2 E and otherwise 1E(z) = 0. Given
a function � : ⌦ ! R and scalar r 2 [1,1], define the
norm k�kLr =

�R
⌦ �(x)rdx

�1/r. For a non-negative measure
⌫, define the norm k�kLr(⌫) =

�R
⌦ �(x)rd⌫(x)

�1/r.

II. PROBLEM SETUP

Let ⌦ ✓ Rd be the sample space where the observed sam-
ples take their values, and P(⌦) be the set of all distributions
supported on ⌦. Denote by P1,P2 ✓ P(⌦) the uncertainty
sets under hypotheses H1 and H2, respectively. Given two sets
of training samples {xk

1 , . . . , x
k
nk
} generated from Pk 2 Pk

for k = 1, 2, denote the corresponding empirical distributions
as bPk = 1

nk

Pnk

i=1 �xk
i
. For notation simplicity, assume that

n0 = n1 = n, but our formulation can be naturally extended
for unequal sample sizes. Given a new testing sample !, the
goal of composite hypothesis testing is to distinguish between
the null hypothesis H1 : ! ⇠ P1 and the alternative hypothesis
H2 : ! ⇠ P2, where Pk 2 Pk for k = 1, 2. For a detector
T : ⌦! R, it accepts the null hypothesis H1 when T (!) � 0;
otherwise, it accepts the alternative hypothesis H2. Under the
Bayesian setting, we quantify the risk of this detector as the
maximum of the worst-case type-I and type-II errors:

R(T ;P1,P2) = max
k=1,2

sup
Pk⇠Pk

Pk{! : (�1)k+1T (!) < 0}.

In this paper, we aim to find the detector T such that its risk
is minimized:

inf
T : ⌦!R

R(T ;P1,P2). (1)

It is worth noting that there are three major challenges when
solving such a formulation: (i) First, seeking the optimal
detector among all measurable functions is an infinite di-
mensional optimization problem, which is intractable; (ii)
Second, finding the worst-case distributions over ambiguity
sets P1,P2 is also an infinite dimensional optimization, which
is not always tractable; (iii) Finally, the objective involves
probability functions, which are non-smooth and non-convex.
In the following, we provide methodologies to tackle these
difficulties.

A. Random Feature Model
We use the random feature model to address challenges (i).

Consider the following assumption on the space of detectors.

Assumption 1 (Optimal Detector in RKHS). The underlying
true detector T ⇤ : ⌦ ! R belongs to a reproducing kernel
Hilbert space (RKHS) FK equipped with a kernel function
K(x, y) = E!⇠⇡0 [�(x;!)�(y;!)] for some feature map � and

feature distribution ⇡0. Besides, there exists a constant M > 0
such that for ⇡0-almost !, it holds that k�(·;!)kL2 M . |

We highlight that such a restriction does not limit the
generality. Instead, since the RKHS (with universal kernel
choice, such as Gaussian kernel) is dense in the continuous
function space, i.e., it approximates any continuous function
within arbitrarily small error. For commonly used kernels, the
feature map expressions are also easily satisfied. For example,
when considering the kernel function to be continuous, real-
valued, and shift-invariant, by Bochner’s Theorem [25], it
holds that

K(x, y) = E(z,b)[cos(z
Tx+ b) cos(zTy + b)],

where the vector z follows the distribution from the density
function p(!) = 1

2⇡

R
e�ih!,�iK(�)d�, i =

p
�1, and scalar b

follows the uniform distribution supported on [0, 2⇡]. In such
case, Assumption 1 holds by taking �(x;!) := cos(zTx+ b)
with ! := (z, b).

For any detector T 2 FK , there exists a function ✓(·) 2
L2(⇡0) such that

T (x) = E!⇠⇡0 [✓(!)�(x;!)].

Denote the feature vector

�(x) =

✓
1

D
�(x;!1), . . . ,

1

D
�(x;!D)

◆
2 RD,

with {!i}i2[D] being i.i.d. samples generated from ⇡0, and
the vector ✓̄ = (✓(!1), . . . , ✓(!D)). Then, the random feature
model

T̂ (x) = h✓̄,�(x)i = 1

D

X

i2[D]

✓(!i)�(x;!i)

is an unbiased estimator of T (x) with respect to {!i}. This
motivates us to propose

FD =
�
T : x 7! h✓,�(x)i, 9✓ 2 RD

 

as an approximation of FK . The following presents the
approximation theoretical guarantees for FD. Similar results
have also been explored in [26, Theorem 5].

Proposition 1 (Direct Approximation Theorem). Fix the error
probability ↵ 2 (0, 1). Suppose Assumption 1 holds and define

kT ⇤k1 := inf
✓(·)

�
k✓(·)kL1(⇡0) : T ⇤(x) = E⇡0 [✓(!)�(x;!)]

 
.

Then there exists a function T in FD such that with probability
at least 1� ↵, it holds that

kT ⇤ � TkL2  Mp
D

 
kT ⇤kFK +

r
2kTk21 log

1

↵

!
. }

By Proposition 1, the number of samples D = ⌦( 1
✏2 log

1
↵ )

is enough to control the approximation error within ✏ with
probability at least 1�↵, which is data dimension independent.
This justifies that the random feature model is a suitable choice
for approximate detectors, especially for high-dimensional
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scenarios. As a consequence, we obtain the finite-dimensional
reformulation of Problem (1):

min
✓2RD,s�0

s

s.t. sup
Pk2Pk

Pk{! : (�1)k+1h✓,�(!)i < 0}  s, k = 1, 2.

(2)
From the above, we find ✓ is optimal implies ↵✓ is also optimal
for any ↵ 2 R+. To make the solution ✓ well-conditioned, we
additionally add the constraint k✓k2  1 when solving (2).

B. Preliminaries on Sinkhorn DRO
In the following, we specify uncertainty sets Pk, k = 1, 2

using Sinkhorn discrepancy and discuss the corresponding
tractable reformulation.

Assumption 2 (Sinkhorn Uncertainty Sets). For k = 1, 2, we
specify the uncertainty set

Pk =
n
P : W"k(P, bPk)  ⇢k

o
, (3)

where the Sinkhorn discrepancy W"(·, ·) is defined as

W"(P,Q) = inf
�2�(P,Q)

�
E(x,y)⇠� [c(x, y)] + "H(�)

 
.

Here �(P,Q) denotes the set of joint distributions whose first
and second marginal distributions are P and Q respectively,
c(x, y) denotes the transport cost, and H(�) denotes the
relative entropy of � with respect to product measure P⌦ ⇤,
where ⇤(·) denotes the Lebesgue measure on ⌦:

H(�) = E(x,y)⇠�


log

✓
d�(x, y)

dP(x)dy

◆�
. |

Subsequently from Assumption 2, we define the radii

⇢k , ⇢k + Ex⇠bP

h
"k log

Z
e�c(x,z)/"kdz

i
, k = 1, 2. (4)

With a measurable variable f : ⌦! R, we associate value

V = sup
P2P

EP[f ], (5)

where the ambiguity set P is in the form of (3). Define the
dual problem of (5) as

VD = inf
��0

n
�⇢̄+ Ex⇠bP

h
�" logEz⇠Qx,"

⇥
ef(z)/(�")

⇤io
, (6)

where we define the constant

⇢ = ⇢+ Ex⇠bP

h
" log

Z
e�c(x,z)/"dz

i
(7)

and Qx," as the kernel probability distribution with density

dQx,"(z)

dz
/ e�c(x,z)/". (8)

For example, when considering the optimal transport cost
function c(x, z) = 1

2kx � zk22, Qx," reduces to the Gaussian
distribution N (x, "ID). By [18, Theorem 1], VD defined in
(6) is the dual reformulation of Problem (5). This observation
indicates the computational tractability when using Sinkhorn
uncertainty sets: solving the worst-case expectation problem in

(5) is always tractable when solving its one-dimensional dual
problem in (6) using the random sampling approach developed
in [18, Section 4]. Besides, we usually tune the radius ⇢ that
appeared in dual formulation instead of the original radius ⇢.
Proposition 2 (Reformulation of Sinkhorn DRO). Suppose
that

R
e�c(x,z)/"dz < 1 for bP-almost every x and ⇢ � 0,

then it holds that V = VD. }

Remark 1 (Recovery of Worst-case Distributions). After
solving Problem (2) to obtain (near-)optimal solution (✓⇤, s⇤),
one can recover the worst-case distributions corresponding to
hypothesis H1 and H2 based on [18, Remark 4], denoted as
P⇤
k, k 2 {1, 2}. Assume the optimal Lagrangian multipliers

(�⇤
k)k=1,2 to Problem (2) is positive, then the density of the

worst-case distribution, denoted as dP⇤
k(z)/dz, becomes

Ex⇠bPk

h
↵x ·exp

✓
1{(�1)k+1h✓⇤,�(z)i < 0}� �⇤

kc(x, z)

�⇤
k"k

◆i
,

where ↵x is a normalizing constant. ⇤

III. OPTIMIZATION METHODOLOGY

In this section, we first discuss how to solve the formulation
(2) directly based on mixed-integer conic programming and
then talk about how to solve its convex relaxation using the
CVaR approximation approach.

A. A Mixed-Integer Conic Formulation
According to the definition of ambiguity sets Pk, k = 1, 2

and Proposition 2, as probabilistic constraints can always be
written as expectations of indicator functions, Problem (2) can
be reformulated as

#⇤ = min
k✓k21,s�0,

�1,�2�0

n
s : Fk(✓,�k)  s, k = 1, 2

o
, (9)

where the function Fk is defined as

Fk(✓,�k) , �k⇢k + Ex⇠bPk

h
�k"k·

logEy⇠Qx,"k

h
exp

n1{(�1)k+1h✓,�(y)i < 0}
�k"k

oii
.

Here, the radii ⇢k and distribution Qx,"k are defined in (4) and
(8), respectively. Next, we adopt the idea of sample average
approximation (SAA) to approximate those two constraints
in (9). Recall that bPk = 1

n

Pn
i=1 �xk

i
, k 2 {1, 2}. For each

sample xk
i , we generate m i.i.d. sample points yki,j following

distribution Qxk
i

for j 2 [m]. Hence, we obtain the sample
estimates of functions Fk for k = 1, 2:

eFk(✓,�k) = �k⇢k+

�k⇢k
n

X

i2[n]

log

2

4 1

m

X

j2[m]

e
1{(�1)k+1h✓,�(yk

i,j)i<0}
�k"k

3

5 .

Consequently, the sample estimate of the optimal value #⇤

defined in (9) is given by

b#⇤ = min
k✓k21,s�0,

�1,�2�0

n
s : eFk(✓,�k)  s, k = 1, 2

o
. (10)
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We present a consistency result between b#⇤ and #⇤ below.

Proposition 3 (Consistency of b#⇤). Assume the radii ⇢k >
0 for k = 1, 2, and there exists an optimal solution
(✓⇤, s⇤,�⇤

1,�
⇤
2) to (9) such that for any � > 0, there exists

(✓, s,�1,�2) with k✓k2  1, s � 0,�1 � 0,�2 � 0,
k(✓, s,�1,�2)�(✓⇤, s⇤,�⇤

1,�
⇤
2)k  � and Fk(✓,�k) < s⇤, k =

1, 2. As a consequence, b#⇤ ! #⇤. }

The assumptions in Proposition 3 are essential. The first is
to ensure the optimal multipliers �1,�2 exist and are bounded.
For the second, assume on the contrary that there exists a case
where Fk(✓,�k)  s⇤ only defines one feasible point (✓̄, �̄k)
such that Fk(✓̄, �̄k) = s⇤. Then arbitrarily small perturbations
regarding the constraint eFk(✓,�k)  s⇤ may cause the SAA
problem (10) infeasible to solve.

Besides, the SAA problem (10) admits a finite-dimensional
mixed-integer exponential conic program (MIECP) reformu-
lation. Consequently, the moderate-sized instances of such a
formulation could be handled by state-of-the-art solvers [27]–
[29] in a reasonable amount of time.

Theorem 1 (MIECP Reformulation of (10)). Assume there
exist constants for i 2 [n], j 2 [m], k 2 {1, 2}:

Mk
i,j = max

k✓k21
(�1)k+1h✓,�(yki,j)i.

Then, Problem (10) is equivalent to

Minimize s

s.t.

(
k✓k2  1

(�1)k+1h✓,�(yki,j)i Mk
i,j(1� zki,j)8

>>>>>>>>><

>>>>>>>>>:

�k⇢k +
1

n

X

i2[n]

tki  s

�k"k �
1

m

X

j2[m]

aki,j

(�k"k, a
k
i,j , z

k
i,j � tki ) 2 Kexp,

i 2 [n], j 2 [m], k 2 {1, 2}

(11)

subject to the following decision variables

s 2 [0, 1], ✓ 2 RD,�1,�2 2 R+, {tki }i,k 2 Rn⇥2,

{zki,j}i,j,k 2 {0, 1}n⇥m⇥2, {aki,j}i,j,k 2 Rn⇥m⇥2.
}

Although Problem (11) can be directly handled by off-the-
shelf Mosek solver [30], we do not implement in this way
because it involves 2nm binary variables and 2nm exponential
conic constraints, which incurs heavy computational cost.
Instead, we solve it using the outer approximation algorithm
developed in [28], which iteratively solves the subproblem of
(11) for fixed values of binary variables {zki,j}i,j,k and then
update them using the cutting plane algorithm.

B. Convex Approximation
Since the probabilistic constraints in Problem (2) make

it intractable to solve, an alternative approach to solving
this problem is to construct convex approximations of those

constraints. The most popular approach is to replace the prob-
abilistic constraints with the conditional value-at-risk (CVaR)
approximation [31], since the following relation holds for any
random variable Z and probability level ✏:

inf
�0

n
✏� + E[Z � �]+

o
 0 =) P{Z > 0}  ✏.

Inspired by this approach, we replace two constraints in
Problem (2) using the CVaR approximation:

min
k✓k21,s�0

s (12a)

s.t. sup
Pk2Pk

inf
�k0

n
s�k + EPk [(�1)kh✓,�(!)i � �k]+

o
 0, 8k.

(12b)

Remark 2 (Superior Performance of CVaR Approximation).
Recall references [14], [16] used the generating function
approach for convex approximation, which can be viewed as
a special case of our formulation by specifying �k = �1, 8k
in (12b). In such cases, this constraint becomes

sup
Pk2Pk

EPk

h
` �
⇣
(�1)kh✓,�(!)i

⌘i
 s, k = 1, 2,

with the generating function `(x) = (x + 1)+ that leads to
the tightest theoretical approximation ratio proposed in [14,
Theorem 1]. Their approaches can be strengthened by taking
the optimization over �k into account. ⇤

Assume the sample space ⌦ is compact. By Prohorov’s
Theorem (see, e.g., [32, Theorem 2.4]), the ambiguity sets
Pk, k = 1, 2 are compact as well, which ensures that one
can apply Sion’s minimax Theorem [33] to exchange the sup
and inf operators in those two constraints of the problem
above. Next, one can leverage the strong duality result in
Proposition 2 to obtain its equivalent formulation:

min
k✓k21,s�0,

�k0,�k�0,k=1,2

n
s : Gk(s,�k,�k)  0, k = 1, 2

o
, (13)

where the function Gk is defined as

Gk(s,�k,�k) = s�k +
n
�k⇢k+

Ex⇠bPk

h
�k"k logEy⇠Qx,"k

h
e[(�1)kh✓,�(y)i��k]+/(�k"k)

iio
.

Here, the radii ⇢k and distributions Qx,"k are defined in (4)
and (8), respectively. It is worth noting that Problem (13) does
not preserve convexity due to the bilinear structure of (s,�k)
for k = 1, 2 in two constraints. Fortunately, we can apply the
bisection search method outlined in Algorithm 1 that finds the
global optimum solution efficiently.
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Algorithm 1 Bisection Search for Solving Problem (13)
Require: Interval [slb, sub], precision level ⌥.

1: while sub � slb < ⌥ do
2: s 1

2 (s
lb + sub).

3: Compute
T (s) = min

✓2RD,k✓k21,�k0,
�k�0,k=1,2

⇢
max

k
Gk(s,�k,�k)

�
.

(14)
4: Update sub  s if T (s)  0 and otherwise slb  s.
5: end while

Return s

The most computationally expansive step in Algorithm 1 is
to solve the subproblem (14). One can apply the projected
stochastic subgradient method [34] to obtain its optimal solu-
tion with a negligible optimality gap. The main difficulty is
obtaining unbiased gradient estimates of Gk since the objective
function involves nonlinear operators of expectations. Instead,
one can follow the approach outlined in [35]–[37] to efficiently
generate biased gradient estimates with controlled gradient
bias and variance. Consequently, one can still obtain the
optimal solution with convergence guarantees. We leave the
complexity analysis of this method for future study.

It is also noteworthy that CVaR approximation has been
used to solve the Sinkhorn robust chance-constrained program
in literature [21]. Unlike their algorithm idea that solves a
large-scale convex program using interior-point methods, we
provide a first-order method that enables us to solve such
problem more efficiently.

IV. REGULARIZATION EFFECTS OF ROBUST TESTING

Recall we have used Sinkhorn ambiguity sets to robustify
the probabilistic constraints in (1). In this section, we provide
interpretations of such robustness by showing that the robust
risk of a detector can be approximated by the non-robust risk
with certain regularizations, called the regularization effects.

To begin with, we study the worst-case 0-1 loss function
for a generic event E and a general nominal distribution bP:

sup
P: W"(P,bP)⇢

P(E). (15)

We assume hyper-parameters ⇢ defined in (7) and regulariza-
tion parameter " both converges to 0, and we consider two
scaling regimes between ⇢ and ": either ⇢/"! 0 or "/⇢! 0.
Case 1: ⇢/"! 0. In this case, the decaying rate of the radius ⇢
is faster than that of the regularization parameter ". Define the
variance regularizer �2(E; bP, ") = Ex⇠bP

h
Varz⇠Qx," [1E(z)]

i
.

The following proposition shows Problem (15) is asymptoti-
cally equivalent to variance regularized 0-1 loss, whose proof
follows a similar argument from [38].

Proposition 4. For any b0 > 0, the following holds for
all " > 0 and Borel probability measures bP satisfying
inf">0 �2(E; bP, ") � b0:

sup
P: W"(P,bP)⇢

P(E)�
⇣
Ex⇠bP[Qx,"(E)]

+ (2⇢/")1/2�(E; bP, ")
⌘
= o((⇢/")1/2).

}

Based on Proposition 4, the objective in Problem (1) can be
viewed as the variance-regularized non-robust testing problem
with residual error O(maxk=1,2 ⇢k/"k):

max
k=1,2

 
bPk(Ek) + (2⇢k/"k)

1/2�(Ek; bPk, "k)

!
,

where E1 = {! : T (!) < 0}, E2 = Ec
1.

Case 2: "/⇢ ! 0. Next, we consider the case where the
convergence rate of the entropic regularization " is faster than
that of ⇢. To simplify the analysis, we consider the quadratic
transport cost function c(x, z) = 1

2kx � zk22 for Sinkhorn
discrepancy defined in Assumption 2. In such a case, we show
Problem 15 is well approximated by the Wasserstein robust
loss, whose proof is mainly based on Laplace’s method [39].

Proposition 5. For any measurable subset E ✓ ⌦,

sup
P: W"(P,bP)⇢

P(E) = sup
P: W0(P,bP)⇢

P(E) +O("/⇢), (16)

where W0(·, ·) denotes the standard optimal transport distance
with quadratic transport cost function. }

We additionally assume that bP is an empirical distribution
constructed from n i.i.d. samples from the underlying true
distribution P⇤, and specify the radius ⇢ = O(n�b) for some
b 2 (0, 1]. Based on Proposition 5 and a recent study [40]
that provides the regularization effect analysis on Wasserstein
DRO with 0-1 loss, we further expand Problem (15) as

sup
P: W"(P,bP)⇢

P(E) = bP(E) +O(1) · g(0)2/3⇢2/3 +O("/⇢),

where the density g(0) := lims#0
1
sP⇤{! : dEc(!) 2 (0, s)}.

Based on the argument above, the objective in Problem (1)
can be viewed as the following density-regularized non-robust
testing problem with residual error O("/⇢):

max
k=1,2

 
bPk(Ek) +O(1) · gk(0)2/3⇢2/3k

!
,

where events Ek = {! : (�1)k+1h✓,�(!)i < 0}, and density

gk(0) = lim
s#0

1

s
Pk{! 2 Ek : dEc

k
(!) 2 (0, s)}, k = 1, 2.

A large value of gk(0) means the detector has a small empirical
margin around the decision boundary. Hence, the robust testing
in the regime "/⇢ ! 0 tends to penalize this density to
penalize detectors with a small margin.

V. CONCLUDING REMARKS

Our proposed framework opens avenues for further study.
First, it is of research interest to develop more scalable opti-
mization algorithms for solving the MIECP formulation (11)
and consider enhanced convex approximations. Second, there
is potential for relaxing the assumptions when showing the
regularization effects for robust hypothesis testing. Finally,
we are curious to explore guarantees for choosing the hyper-
parameters of the robust testing model, including the radii and
regularization parameters.
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