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Abstract—Structural learning, which aims to learn directed

acyclic graphs (DAGs) from observational data, is foundational

to causal reasoning and scientific discovery. Recent advancements

formulate structural learning into a continuous optimization

problem; however, DAG learning remains a highly non-convex

problem, and there has not been much work on leveraging well-

developed convex optimization techniques for causal structural

learning. We fill this gap by proposing a data-adaptive linear

approach for causal structural learning from time series data,

which can be conveniently cast into a convex optimization

problem using a recently developed monotone operator variational

inequality (VI) formulation. Furthermore, we establish non-

asymptotic recovery guarantee of the VI-based approach and

show the superior performance of our proposed method on

structure recovery over existing methods via extensive numerical

experiments.

Index Terms—Causal Discovery, Convex Optimization, Directed

Acyclic Graph, Structural Learning, Time Series

I. INTRODUCTION

Causal discovery, which aims to capture the interactions
among events of interest using directed acyclic graphs (or
Bayesian networks), is a crucial part of scientific discovery
[1] and has drawn much attention recently. With advanced
data acquisition techniques, we usually observe time series
data in many modern applications, posing both opportunities to
learn a dynamic Bayesian network and challenges in finding an
efficient approach for learning a directed acyclic graph (DAG)
from serially correlated data [2].

However, learning DAGs from observational data, i.e., the
structural learning problem, is NP-hard due to the combinatorial
acyclicity constraint [3], motivating many research efforts in
finding efficient approaches for learning DAGs. Recently, [4]
proposed a continuous differentiable characterization of DAG,
which formulates the DAG learning problem into a constrained
continuous optimization problem; they applied augmented
Lagrangian method to transfer constraint into penalty and
achieved efficient DAG learning. Later on, [5] proposed to treat
the non-convex DAG characterization as penalty and proved
asymptotic recovery guarantee for linear Gaussian models.

On the other hand, recently much work has been done on
causal discovery from time series; notable contributions include

This work is partially supported by NSF CAREER CCF-1650913, and
NSF DMS-2134037, CMMI-2015787, CMMI-2112533, DMS-1938106, DMS-
1830210.

Fourier-transform based time series approach for continuous-
time Hawkes process models [6]. However, existing works
have been mostly focusing on Granger causality, which has
been deemed less useful due to the lack of DAG structure in
the estimated causal graph. To fix this issue, [2] leveraged
the continuous DAG characterization as the constraint in
structural vector autoregressive models for Granger causal
discovery and solved the constrained optimization problem via
augmented Lagrangian method as [4] did. Despite those recent
advancements, DAG learning remains a non-convex problem.
Thus, how to leverage the well-developed convex optimization
techniques to learn a DAG largely remains an open problem.

In this work, we present a generalized linear model (GLM)
based approach for causal discovery from time series data,
while seeking the DAG structure via a novel data-adaptive
linear regularizer. Furthermore, we cast the DAG structural
learning problem into a convex optimization program by a
monotone operator variational inequality (VI) formulation. The
convex formulation enables us to establish non-asymptotic
performance guarantee for a wide range of non-linear link
functions via recent advances in VI-based signal recovery [7],
[8]. We provide extensive numerical experiments to show the
competitive performance of the proposed method and observe
that our approach achieves more performance gain in the
presence of limited data (see Figure 1 for illustration).

A. Literature

Efficient structural learning of a DAG is the heart of scientific
discovery in many fields, e.g., biology [10], genetics [11],
and so on. In particular, in causal reasoning, structural causal
model based causal discovery methods oftentimes boil down to
maximizing a score function within the DAG family [12]. There
is rich literature in DAG learning: [13] proposed to use indicator
function to enumerate and eliminate all possible directed
cycles; to efficiently solve such problem, they used truncate
ω1-function as a continuous surrogate of indicator function and
proposed to use alternating direction method of multipliers
to numerically solve it. [14] transferred indicators into binary
variables and leveraged mixed integer programming to solve
it. There are also dynamic programming based approaches,
e.g., [15], but they are not scalable in high dimensions unless
coupled sparse structure, e.g., A→ Lasso [16]. Another line of
research follows the continuous DAG characterization by [4];
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Fig. 1. Visualization of estimated graphs, where the size of the node
is proportional to the background intensity and the width of the edge is
proportional to the exciting coefficient magnitude. We consider a graph with
d1 = 10 nodes and time horizon T = 500; the data is generated via our GLM
with exponential link. We compare various types of regularization (specified on
top of each panel). The Structural Hamming Distances between the estimated
graph and the ground truth are 39 (no regularization), 7 (proposed), 21 (DAG
regularization [4], [5]), 25 (ω1 regularization) and 12 (adaptive ω1 regularization
[9]), respectively. Our proposed data-adaptive linear regularization achieves
the best graph structure recovery.

in addition to aforementioned developments, notable extensions
along this direction includes a discrete backpropagation method,
exploration of low-rank structure [17] and neural DAG learning
[18], [19], [20]. We refer readers to [21], [22] for systematic
surveys on structural learning and causal discovery.

II. BACKGROUND

A. Problem Set-Up

Consider observing d1 binary time series over time horizon
T , among which there exist lagged mutual-exciting effects and
such effects have a finite memory depth ε ↑ 1. Specifically, we
are given history data {y

(i)
t : t = 1↓ε . . . , 0} and observations

{y
(i)
t : t = 1 . . . , T} for i ↔ {1, . . . , d1}, where y

(i)
t = 1

(or 0) represents type-i event occurrence (or not) at time t.
We adopt the discrete-time Bernoulli process [8] and model
the probability of i-th event’s occurrence at time step t ↔

{1, . . . , T} via the following generalized linear model:

P
(
y
(i)
t = 1|Ht→1

)
= g

(
ϑi +

d1∑

j=1

ω∑

k=1

ϖijky
(j)
t→k

)
, (1)

where Ht→1 denotes all observations up to time t↓ 1. In the
following, we will refer to those events as node variables.
For i-th node, ϑi ↑ 0 reflects the deterministic background
intensity, and ϖijk ↑ 0 represents the magnitude of triggering
effect from the j-th node variable at time lag k. Link function
g : R ↗ [0, 1] can be non-linear, such as sigmoid link function
g(x) = 1/(1 + e

→x) on domain x ↔ R and g(x) = 1 ↓ e
→x

on domain x ↔ [0,↘); also, it can be linear g(x) = x on
domain x ↔ [0, 1], which reduces our GLM to the simple
linear model. The major goal is to recover the mutual-excitation
graphs (which is induced by mutual-excitation matrices Ak =
(ϖijk) ↔ Rd1↑d1 , k ↔ {1, . . . , ε}) over those d1 nodes.

For brevity, we use wt→ω :t→1 to denote the observations
from time t ↓ ε to t ↓ 1 and ϱi ↔ Rd (where d = 1 + εd1

denotes the dimensionality) to denote the problem parameter:

wt→ω :t→1 =
(
1, y(1)t→1, . . . , y

(1)
t→ω , . . . , y

(d1)
t→1 , . . . , y

(d1)
t→ω

)T
,

ϱi = (ϑi,ϖi11, . . . ,ϖi1ω , . . . ,ϖid11, . . . ,ϖid1ω )
T
,

where superscript T denotes vector/matrix transpose. Parameter
ϱi summarizes the influence from all nodes to node i. Now,
we can rewrite (1) into the following compact form:

P
(
y
(i)
t = 1

∣∣∣wt→ω :t→1

)
= g

(
w

T
t→ω :t→1ϱi

)
, ϱi ↔ !, (2)

where ! ≃ Rd
+ = [0,↘)d is the feasible region and depends

on the link function. For example, in the linear link case where
g(x) = x, the feasible region is

! = {ϱ ↔ Rd
+ : 0 ⇐ w

T
t→ω :t→1ϱ ⇐ 1, t = 1, . . . , T}.

B. Decoupled Estimation with Variational Inequality

In this section, we introduce a recently developed technique
[7], [8] to estimate the parameters of the GLM by solving
stochastic monotone variational inequality. For i ↔ {1, . . . , d1}.
we assume the feasible region ! is convex and compact and
use the weak solution to the following variational inequality
as the estimator ϱ̂i (which we will refer to as VI estimator;
see [7] for detailed background on solving VIs):

find ϱ̂i ↔ ! : ⇒F (i)
T (ϱi), ϱi ↓ ϱ̂i⇑ ↑ 0, ⇓ϱi ↔ !, VI[F (i)

T ,!]

where ⇒·⇑ represents the standard inner product in Euclidean
space and F

(i)
T (ϱi) is the empirical vector field and defined as:

F
(i)
T (ϱi) =

1

T

T∑

t=1

wt→ω :t→1

(
g
(
w

T
t→ω :t→1ϱi

)
↓ y

(i)
t

)
. (3)

As we can see, the statistical inference for each node can be
decoupled and therefore we can perform the computation in
parallel and simplify the analysis.

The intuition behind this method is straightforward. Let us
consider the global counterpart of the above vector field, whose
root is the unknown ground truth ϱ

ε
i ,

F
(i)(ϱi) = E(w,y(i))

[
w

(
g(wT

ϱi)↓ y
(i)
)]

= E(w,y(i))[w(g(w
T
ϱi)↓ g(wT

ϱ
ε
i ))].

Although we cannot access this global counterpart, by solving
the empirical one VI[F (i)

T ,!] we could approximate the ground
truth very well. We will show how well this approximation
can be by generalizing the parameter recovery guarantee in [8]
to handle general non-linear link functions in Section IV.

III. PROPOSED METHOD

In our prior work [23], evidence from synthetic and real data
experiments shows that there could exist a DAG structure on
the graphs induced by the (lagged) mutual-excitation matrices.
However, as illustrated in Figure 1, it is difficult to recover
the true graph structure in the presence of limited data without
the help of DAG-inducing regularization. In this section, we
will present our proposed data-adaptive linear regularization to
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encourage the DAG structure and show how to leverage such
constraint (or rather, penalty) in the VI estimator.

A. Data-Adaptive Linear Cycle Elimination Regularization

Consider the graphs induced by the estimated adjacency
matrices Âϑ = (ϖ̂ijϑ) ↔ Rd1↑d1 , ω ↔ {1, . . . , ε}, using
estimator VI[F (i)

T ,!]. In DAG recovery problem, cycles in
those estimated graphs are undesirable and should be removed.

First, let us formally define cycles: for positive integer L ↑ 2,
if there exist ω ↔ {1, . . . , ε} and mutually different indices
i1, . . . , iL ↔ {1, . . . , d1} such that

ϖ̂i1iLϑ > 0, ϖ̂ik+1ikϑ > 0, k ↔ {1, . . . , L↓ 1},

then we say there exists a length-L (directed) cycle in the
directed graphs induced by Âϑ’s. In particular, for L = 1
case, we say there is a length-1 cycle (or lagged self-

exciting component) if there exist ω ↔ {1, . . . , ε} and index
i ↔ {1, . . . , d1} such that ϖ̂iiϑ > 0.

To remove those cycles, we consider all possible length-1, 2
and 3 cycles in the estimated graphs, whose indices are denoted
as follows: for all ω ↔ {1, . . . , ε},

I1,ϑ =
{
i : ϖ̂iiϑ > 0

}
, I2,ϑ =

{
(i, j) : i ⇔= j, ϖ̂ijϑ, ϖ̂jiϑ > 0

}
,

I3,ϑ =
{
(i, j, k) : i, j, k mutually different,

ϖ̂ijϑ, ϖ̂jkϑ, ϖ̂kiϑ > 0
}
.

Intuitively, in each length-2 (or 3) cycle of those estimated
graphs, the edge with the smallest weight could be caused by
noisy observation, meaning that we should remove such edge
to eliminate the corresponding cycle. To do so, we impose the
following data-adaptive linear cycle elimination constraints,
aiming to shrink the weight of those “least important edges”
in the cycle: for all ω ↔ {1, . . . , ε},

ϖijϑ + ϖjiϑ ⇐ ς2,ϑ(i, j), (i, j) ↔ I2,ϑ,

ϖijϑ + ϖjkϑ + ϖkiϑ ⇐ ς3,ϑ(i, j, k), (i, j, k) ↔ I3,ϑ,
(4)

where the adaptive regularization strength parameters are

ς2,ϑ(i, j) = ϖ̂ijϑ + ϖ̂jiϑ ↓min{ϖ̂ijϑ, ϖ̂jiϑ},

ς3,ϑ(i, j, k) = ϖ̂ijϑ + ϖ̂jkϑ + ϖ̂kiϑ ↓min{ϖ̂ijϑ, ϖ̂jkϑ, ϖ̂kiϑ}.

B. Joint VI Estimator with Penalty

Different from the decoupled learning approach in Sec-
tion II-B, parameters ϱ1, . . . , ϱd1 should be estimated jointly
to account for the desired DAG structure. We concatenate the
parameter and response vectors into matrices as follows:

ϱ = (ϱ1, . . . , ϱd1) ↔ Rd↑d1 , Y = (Y (1)
1:T , . . . , Y

(d1)
1:T ) ↔ RT↑d1 ,

where Y
(i)
1:T = (y(i)1 , . . . , y

(i)
T )T. The feasible region of the

concatenated parameter !̃ is then defined as follows:

!̃ = {ϱ = (ϱ1, . . . , ϱd1) : ϱi ↔ !, i = 1, . . . , d1}.

One natural idea to incorporate the data-adaptive linear
constraints (4) is to directly include them into the feasible
region !̃. Since adding linear constraints into the original
convex feasible region will ensure the new feasible region

is still convex (intersection of convex sets remains convex),
solving VI in the new feasible region remains a convex problem.

In practice, we typically treat the empirical vector field as the
gradient field and perform projected gradient descent (PGD) to
numerically solve for the VI estimator [7]. Thus, adding more
constraints to feasible region will make the projection harder
to implement; one can see a special case on how to use PGD
to solve for VI estimator in Appendix A-B. Alternatively, we
propose a data-adaptive linear penalized VI estimator, which
is the weak solution to the following Variational Inequality:

find ϱ̂ ↔ !̃ : ⇒vec(FAL
T (ϱ)), vec(ϱ ↓ ϱ̂)⇑ ↑ 0, ⇓ϱ ↔ !̃,

where vec(A) is the vector of columns of A stacked one
under the other. The data-adaptive linear penalized vector field
F

AL
T (ϱ) is defined as follows:

F
AL
T (ϱ) = FT (ϱ) + φ

ω∑

ϑ=1

(
∑

i↓I1,ω

efi,ω,de
T
i,d1

ϖ̂iiϑ
(5)

+
∑

i ↔↓I1,ω

efi,ω,de
T
i,d1

”
+

∑

(i,j)↓I2,ω

efj,ω,de
T
i,d1

+ efi,ω,de
T
j,d1

ς2,ϑ(i, j)

+
∑

(i,j,k)↓I3,ω

efj,ω,de
T
i,d1

+ efk,ω,de
T
j,d1

+ efi,ω,de
T
k,d1

ς3,ϑ(i, j, k)

)
,

where the “concatenated empirical vector field” FT (ϱ) is

FT (ϱ) = (F (1)
T (ϱ1), . . . , F

(d1)
T (ϱd1)) ↔ Rd↑d1 , (6)

and the empirical vector field F
(i)
T (ϱi) is defined in (3). Since

vector field is treated as gradient field, we add the derivative
of the linear penalty term to the vector field in (5).

Interpretation of the penalized vector field. In (5), ei,d ↔ Rd is
the standard basis vector with its i-th element being one and
fj,ϑ = 1 + (j ↓ 1)ε + ω, which gives us

e
T
fj,ω,dϱei,d1 = ϖijϑ, ↖ϖ(e

T
fj,ω,dϱei,d1) = efj,ω,de

T
i,d1

.

The penalties at the end of the first line and the beginning of
the second in (5) are very similar to adaptive Lasso [9], aiming
to remove all lagged self-exiting components. Intuitively, the
smaller the adaptive regularization strength parameters are, the
stronger penalties should be applied, which explains why those
regularization strength parameters appear in the denominator.

Selection of regularization strength. Hyperparameters φ and
” are tunable and control the penalty strength. In practice,
hyperparameter ” is usually set to be a small number,
such as 10→3, to ensure there will not exist self-exciting
components, whereas φ is selected based on the continuous
DAG characterization [4]. To be precise, let us consider the
ε = 1 special case in the illustrative example in Figure 1, and
use A = (ϖij) to denote A1 = (ϖij1) for brevity. The DAG
characterization of a graph induced by adjacency matrix A is:

h(A) = tr(eA)↓ d, (7)

where tr(eA) is the trace of matrix exponential of A. For
A ↔ Rd1↑d1

+ , we have h(A) ↑ 0 and h(A) = 0 if and only
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if the directed graph induced by adjacency matrix A is a
DAG. Therefore, h(A) can measure the “DAG-ness” of A.
We study how the performances vary with respect to (w.r.t.)
hyperparameter φ in Figure 2; the performance evaluation
metrics are: (i) matrix F -norm of the mutual-exciting matrix
estimation error (A err.), (ii) the ω2 norm of the background
intensity estimation error (ϑ err.), (iii) “DAG-ness” of estimated
adjacency matrix h(A), and (iv) Structural Hamming Distance
(SHD) between the estimated and the true adjacency matrices.

Fig. 2. Illustration of the hyperparameter selection. We plot the trajectories of
four performance metrics w.r.t. hyperparameter ε for the example in Figure 1.
In our numerical simulation, ε is selected to be the smallest one which satisfies
h(A) → 10→8. The selected ε is marked with a star; in addition, we mark
the ε which minimizes A err. with a dot.

From Figure 2, we can observe that the φ which minimizes
the A err. (marked with a dot) typically does not give the best
structural recovery (i.e., the smallest SHD); A err. cannot be
used to select hyperparameter anyways since its calculation
requires knowledge on the ground truth. Fortunately, we observe
that the SHD converges (to its near optimal value) almost the
same time when the “DAG-ness” measure h(A) converges
to zero. Therefore, we propose to select φ as the smallest

one which satisfies that h(A) ⇐ thres., where thres. is again
user-specified. Later in our numerical experiments, we will
show how hyperparameter thres. controls the balance between
structural recovery (SHD) and weight recovery (A err.).

IV. THEORETICAL ANALYSIS

In this section, we extend the non-asymptotic recovery
guarantee of VI[F (i)

T ,!] for linear link function case in [8] to
general non-linear link function case by imposing the following
assumption:

Assumption 1. The link function g(·) is continuous and
monotone, and the vector field G(ϱ) = Ew[wg(wT

ϱ)] is well
defined (and therefore monotone along with g). Moreover, g is
differentiable and has uniformly bounded first order derivative
mg ⇐ |g

↗
| ⇐ Mg for 0 < mg ⇐ Mg .

Then, the non-asymptotic upper bound on estimation error
is given as follows:

Theorem 1. Under Assumption 1, for i ↔ {1, . . . , d1} and any
↼ ↔ (0, 1), with probability at least 1 ↓ ↼, the ω2 estimation
error of VI[F (i)

T ,!] can be upper bounded as follows:

↙ϱ̂i ↓ ϱ
ε
i ↙2 ⇐

1

mgφ1

√
d log(2d/↼)

T
,

where ϱ
ε
i is the unknown ground truth parameter, and φ1 is the

smallest eigenvalue of W1:T =
T

t=1 wt→ω :t→1w
T
t→ω :t→1/T .

As pointed out in [8], W1:T ↔ Rd↑d will be full rank when
T is sufficiently large, i.e., with high probability, φ1 will be a
positive constant. The complete proof of the above theorem
can be found in Appendix A-A. One pitfall of the theoretical
analysis is the lack of guarantee for the proposed data-adaptive
linear regularizer and we leave this part for future discussion.
In the following, we will use numerical experiments to show
the good performance of our method.
Identifiablility of our proposed estimator. In addition, we can
show the uniqueness, or rather, the identifiablility of the VI
estimator VI[F (i)

T ,!], which comes from the nice property
of the underlying vector field. To be precise, in the proof of
the above theorem, we have shown the vector field F

(i)
T (ϱi)

is monotone modulus mgφ1 under Assumption 1. Then, the
following lemma tells us that our proposed estimator is unique:

Lemma 1 (Lemma 3.1 [7]). Let ! be a convex compact set
and H be a monotone vector field on ! with monotonicity
modulus ↽ > 0, i.e.,

⇓ z, z
↗
↔ !, [H(z)↓H(z↗)]T(z ↓ z

↗) ↑ ↽↙z ↓ z
↗
↙
2
2.

Then, the weak solution z̄ to VI[H,!] exists and is unique. It
satisfies:

H(z)T(z ↓ z̄) ↑ ↽↙z ↓ z̄↙
2
2.

V. NUMERICAL EXPERIMENTS
In this section, we provide more numerical experiments

to show the effectiveness of our proposed method. We will
1) show its competitive performance under various settings
and 2) study the effect regularization strength hyperparameter.
In our numerical simulation, we consider ε = 1 case for
simplicity and choose SHD (for structural recovery) and A err.
(for weight recovery) as the primary performance metrics. We
report the mean and standard deviation of those metrics over
200 independent trials. Complete details, such as random DAG
generation, can be found in Appendix B.

Let us begin with presenting benchmark methods. The
idea of transferring constraint into penalty by adding the
penalty’s derivative to the vector field opens up possibilities to
consider various type of DAG-inducing penalties when using
the VI estimator, e.g., the continuous DAG penalty [4] and the
adaptive Lasso [9]. As mentioned earlier, we use A = (ϖij)
to denote A1 = (ϖij1) for brevity; in addition, we denote
J = (0d1 , Id1) ↔ Rd1↑d such that we have Jϱ = A

T.
Continuous DAG regularization. The DAG characterization (7)
has closed-from derivative as follows:

↖h(A) =
(
e
A
)T
.
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Inspired by [5] who treated the DAG characterization directly
as a penalty, we take advantage of the differentiability of the
DAG penalty and add its derivative to the concatenated field
FT (ϱ) (6), which will later be treated as the gradient field
when we use PGD to solve for the estimator. More precisely,
the DAG-penalized vector field F

DAG
T (·) is defined as follows:

F
DAG
T (ϱ) = FT (ϱ) + φJ

T
↖h(Jϱ) = FT (ϱ) + φJ

T
e
A
.

ω1 regularization. We adopt the ω1 penalty as another bench-
mark method, which will encourage a sparse structure on the
adjacency matrix A and in turn eliminates cycles. To be precise,
the ω1 penalized vector field is defined as follows:

F
ϑ1
T (ϱ) = FT (ϱ) + φJ

T
↖(|Jϱ|1), (8)

where | · |1 is the summation of all entries’ absolute values.
Adaptive Lasso. As a variant of ω1 regularization, adaptive
ω1 regularization, or adaptive Lasso [9], replaces φ|ϖij | with
ϱ
ς̂ij

|ϖij | in (8). In addition, for ϖ̂ij = 0 case, we use a simple
remedy by adding penalty term ϱ

! |ϖij | as in (5) to restrict ϖij

to be zero.
As shown in Figure 1, our proposed data-adaptive lin-

ear approach has superior performance compared with the
aforementioned DAG-inducing penalties. We will give more
numerical evidence to support this in the following.

Experiment 1. First, we show the superior performance
of our proposed method under settings (d1, T ) ↔

{(10, 500), (20, 1000), (300, 1500)}; results are reported in
Figure 3. We observe that our proposed method achieves the
best structural recovery among all methods, especially in higher
dimensions. Besides, ω1 regularization does well in weight
recovery but poorly in structural recovery. As a comparison,
our proposed method achieves comparable weight recovery
accuracy with ω1 regularization but much better structural
recovery accuracy. On the contrary, DAG regularization is
completely dominated by our proposed method, potential due
to the non-convexity incurred by the DAG characterization
(7); adaptive ω1 regularization achieves improved structural
recovery accuracy compared with ω1 regularization, but is
again dominated by our proposed method in most cases. As a
sanity check, we observe the A err.’s are all on the same scale
for different dimension cases — this is because we normalize
each row of A to sum to one to ensure it stays within the
feasible region for linear link function case. For completeness,
we also report the ϑ err. and the “DAG-ness” measure h(A)
in Table I in Appendix B. Those results do not only further
validate our aforementioned observations, but also show ω1

regularization does the best in returning a DAG (even better
than DAG regularization) but cannot return an accurate graph
structure. This agrees with our illustration in Figure 1 — it
does very well in encouraging sparse structure, but may shrink
some important edges’ weights to zeros.

Experiment 2. We now study the effect of the hyperparameter
thres. introduced in Section III-B. We plot the SHD and A

err. in Figure 4 for the exponential link function case; for

Fig. 3. Comparison among different types of regularization in DAG
recovery. We plot the mean (dot) and standard deviation (error bar) of
matrix F -norm of the mutual-exciting matrix estimation error (A err.) and
Structural Hamming Distance over 200 independent trials for various types
of regularization. Hyperparameter ε is selected to be the smallest one which
satisfies h(A) → 10→4. For each regularization, the closer it is to the origin, the
better it is. We can observe that our proposed data-adaptive linear regularization
performs the best (especially in higher dimensional case).

completeness, we report the result for linear link function in
Figure 5 in Appendix B. From both figures, we can observe
that: (i) On one hand, smaller thres. does give better SHD.
(ii) On the other hand, A err. exhibits a U-shape property w.r.t.
thres., which agrees with the U-shape curves for both A err.
and ϑ err. w.r.t. φ in Figure 2 and suggests that there could
exist one optimal hyperparameter in outputting the smallest
A err.; however, it is an open problem on how to select it to
minimize A err. — one possible approach is through the norm
of empirical vector field, since it is treated as the gradient
field in PGD. Nevertheless, we mainly focus on the structural
recovery (i.e., SHD), and it is safe to choose a sufficient small
thres. (e.g., 10→4) in practice.

VI. CONCLUSION

In this work, we go beyond the continuous but non-convex
optimization approach for structural learning [4] and formulate
the DAG learning problem as a general convex optimization
problem. Our theoretical analysis for the VI estimator extends
the recovery guarantee in [8] to the general non-linear monotone
ink function cases and our numerical experiments show our
method’s superior performance over existing methods in
structural learning, opening up possibility for future work to
adopt this method in a wide range of applications.
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Fig. 4. Effect of hyperparameter. We consider the VI estimator with exponential
link function. Regularization strength hyperparameter ε is selected to be the
smallest one which satisfies that h(A) is smaller than a given threshold
(thres.). We plot the mean (dot) and standard deviation (error bar) of A err.
and SHD over 200 independent trials for different choices of this threshold.
We can observe that smaller thres. typically leads to better SHD.

APPENDIX A
ADDITIONAL TECHNICAL DETAILS

A. Proofs

We begin with defining an auxiliary vector field

F̃
(i)
T (ϱi) =

1

T

T∑

t=1

wt→ω :t→1(g(w
T
t→ω :t→1ϱi)↓ g(wT

t→ω :t→1ϱ
ε
i )),

where ϱ
ε
i is the unknown ground truth. This vector field

has a nice property that its unique root/weak solution to
corresponding VI is ϱ

ε
i , whereas the VI estimator ϱ̂i is the root

of F (i)
T (ϱi). Next, we bound the difference between ϱ̂i and ϱ

ε
i

by bounding the difference between the empirical vector field
F

(i)
T (ϱi) and the auxiliary vector field F̃

(i)
T (ϱi), i.e.,

#(i) = F
(i)
T (ϱi)↓ F̃

(i)
T (ϱi) = F

(i)
T (ϱεi ).

Proposition 1. Under Assumption 1, for i ↔ {1, . . . , d1} and
any ↼ ↔ (0, 1), with probability at least 1 ↓ ↼, the following
holds:

↙#(i)
↙↘ ⇐


log(2d/↼)/T . (9)

Moreover, this implies

↙#(i)
↙2 ⇐


dlog(2d/↼)/T . (10)

Proof. Denote random vector

⇀t = wt→ω :t→1

(
g
(
w

T
t→ω :t→1ϱ

ε
i

)
↓ y

(i)
t

)
.

We can re-write #(i) =
T

t=1 ⇀t/T. Define ⇁-field Ft =
⇁(Ht), and F0 ≃ F1 ≃ · · · FT form a filtration. We can show

E[(⇀t)k|Ft→1] = 0,

Var((⇀t)k|Ft→1) ⇐ g
(
w

T
t→ω :t→1ϱi

)(
1↓ g

(
w

T
t→ω :t→1ϱi

))
⇐ 1/4,

where the subscript k represents the corresponding k-th entry
of the vector, and the bound on the variance comes from
the property of a Bernoulli distribution. This means ⇀t, t ↔

{1, . . . , T}, is a Martingale Difference Sequence; additionally,
its infinity norm is upper bounded by one since it only consists
of binary elements. Therefore, Azuma’s inequality gives us:

P
(
|#(i)

k | > u

)
⇐ 2 exp


↓
Tu

2

2


, k = 1, . . . , d, ⇓ u > 0,

where #(i)
k is the k-th entry of vector #(i). By union bound,

P
(
|#(i)

k | > u, k = 1, . . . , d
)
⇐ 2d exp


↓
Tu

2

2


, ⇓ u > 0.

Setting the RHS of above inequality to ↼ and solving for u, we
prove (9); notice that ↙#↙2 ⇐

∝
d↙#↙↘, we prove (10).

The proof of Proposition 1 leverages the concentration
property of martingales. By this proposition, we can now prove
the non-asymptotic estimation error bound as follows:

Proof of Theorem 1. Under Assumption 1, the vector field
F

(i)
T (ϱi) is monotone modulus mgφ1, since
(
F

(i)
T (ϱ)↓ F

(i)
T (ϱ↗)

)T

(ϱ ↓ ϱ
↗)

=
1

T

T∑

t=1

w
T
t→ω :t→1(ϱ ↓ ϱ

↗)
(
g
(
w

T
t→ω :t→1ϱ

)
↓ g

(
w

T
t→ω :t→1ϱ

↗))

↑ mg
1

T

T∑

t=1

↙w
T
t→ω :t→1(ϱ ↓ ϱ

↗)↙22

= mg(ϱ ↓ ϱ
↗)T

1

T

T∑

t=1

wt→ω :t→1w
T
t→ω :t→1(ϱ ↓ ϱ

↗)

↑ mgφ1↙ϱ ↓ ϱ
↗
↙
2
2.

In particular, we have:
(
F

(i)
T (ϱ̂i)↓ F

(i)
T (ϱεi )

)T

(ϱ̂i ↓ ϱ
ε
i ) ↑ mgφ1↙ϱ̂i ↓ ϱ

ε
i ↙

2
2.

Notice that our weak solution ϱ̂i is also a strong solution to
the VI since the empirical vector field is continuous (cf. [7]),
which gives us

(
F

(i)
T (ϱ̂i)

)T

(ϱ̂i ↓ ϱ
ε
i ) ⇐ 0.

By Cauchy Schwartz inequality, we also have

↓

(
F

(i)
T (ϱεi )

)T

(ϱ̂i↓ ϱ
ε
i ) = ↓#T

i (ϱ̂i↓ ϱ
ε
i ) ⇐ ↙#i↙2↙ϱ̂i↓ ϱ

ε
i ↙2.

Together with (10) in Proposition 1, we complete the proof.
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B. A Special Example

Decoupled Estimation. We consider a special case where
g(x) = x. To ensure the model (2) can return a meaningful
probability, we require the parameter ϱi to take value in
! = {ϱi ↔ Rd

+ : 0 ⇐ w
T
t→ω :t→1ϱi ⇐ 1, t = 1, . . . , T}. In

this special case, the empirical vector field (3) becomes

F
(i)
T (ϱi) =

1

T

T∑

t=1

wt→ω :t→1w
T
t→ω :t→1ϱi ↓

1

T

T∑

t=1

wt→ω :t→1y
(i)
t

= W1:T ϱi ↓
1

T

T∑

t=1

wt→ω :t→1y
(i)
t ,

where

w1:T = (w1→ω :0, . . . , wT→ω :T→1) ↔ Rd↑T
,

W1:T =
1

T
w1:Tw

T
1:T =

1

T

T∑

t=1

wt→ω :t→1w
T
t→ω :t→1 ↔ Rd↑d

.

(11)

Most importantly, this vector field is indeed the gradient field
of the least square objective, meaning that the weak solution
to the corresponding VI is the following LS estimator [8]:

min
ϖi

1
2T ↙w

T
1:T ϱi ↓ Y

(i)
1:T ↙

2
2,

subject to ϱi ↑ 0T , 1T ↓wT
1:T ϱi ↑ 0T ,

(12)

where Y
(i)
1:T = (y(i)1 , . . . , y

(i)
T )T, 0T and 1T are the column

vectors of all zeros and ones in RT , respectively, and ↙ · ↙p

denotes the vector ωp norm.
Note that the equivalence between our proposed estimatorand

LS estimator will only hold for linear link function, since the
gradient field of LS objective with general link function is:

1

T

T∑

t=1

wt→ω :t→1g
↗(
w

T
t→ω :t→1ϱi

)(
g
(
w

T
t→ω :t→1ϱi

)
↓ y

(i)
t

)
.

One approach to solve (12) is to leverage the well-developed
optimization tools, such as Mosek [24]. An alternative
approach is through projected gradient descent, where the
empirical vector field (3) is treated as the gradient. To be
precise, we introduce dual variables η1 = (η1,1, . . . , η1,T )T,
η2 = (η2,1, . . . , η2,d)T and the Lagrangian is as follows:

L(ϱi, η1, η2) =
1

2T
↙wT

1:T ϱi ↓ Y
(i)
1:T ↙

2
2

+ η
T
1 (w

T
1:T ϱi ↓ 1T )↓ η

T
2 ϱi.

The Lagrangian dual function is minϖi L(ϱi, η1, η2). As we
can see, the Lagrangian above is convex w.r.t. ϱi. By setting
the derivative of L(ϱi, η1, η2) w.r.t. ϱi to zero, we have

ϱ̂i =
1

T
W→1

1:T

(
w1:TY

(i)
1:T /T ↓ η1

)
+ η2,

which minimizes the Lagrangian dual function. As pointed
out in [8], W1:T ↔ Rd↑d will be full rank with high
probability when T is sufficiently large, and therefore W→1

1:T

exists. By plugging ϱ̂i into the Lagrangian dual function

minϖi L(ϱi, η1, η2), we give the dual problem as follows:

max
φ1,φ2

L(ϱ̂i, η1, η2), subject to η1, η2 ↑ 0T .

As we can see, this dual problem can be easily solved by PGD.

Joint Estimation. Now let us consider the joint estimation,
where the vector field FT (ϱ) (6) can be expressed as follows:

FT (ϱ) =
1

T
w1:Tw

T
1:T ϱ ↓

1

T
w1:TY = W1:T ϱ ↓

1

T
w1:TY,

where w1:T ↔ Rd↑T is defined in 11. Similar to the example in
decoupled estimation, the above vector field is the gradient field
of the least square objective, and our proposed estimator boils
down to LS estimator, which solves the following penalized
optimization problem:

min
ϖ↓”̃

1

2T
↙wT

1:T ϱ ↓ Y ↙
2
F + φ

ω∑

ϑ=1

(
∑

i↓I1,ω

e
T
fi,ω,d

ϱei,d1

ϖ̂iiϑ

+
∑

i ↔↓I1,ω

e
T
fi,ω,d

ϱei,d1

”
+

∑

(i,j)↓I2,ω

e
T
fj,ω,d

ϱei,d1 + e
T
fi,ω,d

ϱej,d1

ς2,ϑ(i, j)

+
∑

(i,j,k)↓I3,ω

e
T
fj,ω,d

ϱei,d1 + e
T
fk,ω,d

ϱej,d1 + e
T
fi,ω,d

ϱek,d1

ς3,ϑ(i, j, k)

)
,

where ↙ · ↙F is the matrix F -norm. Therefore, the above
optimization problem can be solved efficiently using PGD,
where at each iteration the update rule is as follows:

ϱ̂ ′ ϱ̂ ↓ ηF
AL
T (ϱ̂),

where η is the step size/learning rate hyperparameter and
F

AL
T (·) is the penalized empirical field (5). Since the prediction

of the i-th event at time t is determined by the estimated
probability w

T
t→ω :t→1ϱi and a cut-off/threshold selected using

the validation dataset, we can further relax the constraint
wT

1:T ϱi ⇐ 1T and treat it as “score” instead of probability.
Therefore, after the above update in each iteration, the projec-
tion onto the (relaxed) feasible region can be simply done by
replacing all negative entries in ϱ̂ with zeros.

APPENDIX B
ADDITIONAL NUMERICAL EXPERIMENTS

We randomly generate ϑ and A using standard uniform
distribution. Next, to ensure A stays in the feasible region
! for the linear function case, we normalize each row to
ensure it sums up to one. To be precise, we just update each
entry in the row by dividing it with the row summation. To
ensure A is DAG, we (i) first “sparse-ify” it by setting all
entries smaller than the 95% percentile to zeros and (ii) next
minimize the DAG characterization h(A) using vanilla gradient
descent (learning rate is 0.5 and we consider in total 5000
iterations). The reason of applying (i) is the highly non-convex
optimization in (ii) — if we do not input a highly sparse graph,
then we cannot shrink the DAG characterization to exactly
zero with high probability. As for PGD approach to solve for
VI estimator, we use 5∞ 10→3 as the initial learning rate and
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decrease it by half every 2000 iterations (in total there are 6000
iterations). Here, we report additional results for completeness
purpose. In particular, we report all four aforementioned metrics
for Experiment 1 in Table I, and plot the results for linear
link function for Experiment 2 in Figure 5; please see the
interpretation of those results in Section V.

TABLE I
COMPARISON OF THE MEAN (AND STANDARD DEVIATION) OF VARIOUS
PERFORMANCE METRICS OVER 200 TRIALS FOR DIFFERENT TYPES OF

REGULARIZATION. WE REPORT THE MATRIX F -NORM OF THE ADJACENCY
MATRIX ESTIMATION ERROR (A ERR.), THE ω2 NORM OF THE BACKGROUND
INTENSITY ESTIMATION ERROR (ϑ ERR.), THE “DAG-NESS” MEASURED BY

h(A) AND THE STRUCTURAL HAMMING DISTANCE (SHD).
LINEAR LINK.

DIMENSION d1 = 10, TIME HORIZON T = 500.

PENALTY NONE PROPOSED DAG ω1 ADA. ω1
A ERR. 0.3379(0.0988) 0.2347(0.0698) 0.3214(0.1009) 0.2172(0.0674) 0.2246(0.0872)
ε ERR. 0.0970(0.0307) 0.0661(0.0213) 0.0822(0.0266) 0.0636(0.0208) 0.0584(0.0170)
h(A) 0.0311(0.0163) 0.0002(0.0011) 0.0053(0.0041) 0.0000(0.0000) 0.0000(0.0000)
SHD 44.3(5.24) 12.74(4.73) 32.7(6.34) 31.77(5.48) 26.22(6.32)

DIMENSION d1 = 20, TIME HORIZON T = 1000.

PENALTY NONE PROPOSED DAG ω1 ADA. ω1
A ERR. 0.3764(0.0737) 0.2035(0.0348) 0.3382(0.0783) 0.1820(0.0357) 0.1819(0.0401)
ε ERR. 0.1729(0.0329) 0.0969(0.0253) 0.1403(0.0259) 0.0834(0.0225) 0.0735(0.0170)
h(A) 0.0573(0.0132) 0.0000(0.0000) 0.0086(0.0012) 0.0000(0.0000) 0.0000(0.0000)
SHD 183.28(10.70) 32.99(8.65) 139.79(8.19) 123.64(14.34) 91.24(15.07)

DIMENSION d1 = 30, TIME HORIZON T = 1500.

PENALTY NONE PROPOSED DAG ω1 ADA. ω1
A ERR. 0.4116(0.0448) 0.1782(0.0239) 0.3549(0.0491) 0.1676(0.0213) 0.1727(0.0226)
ε ERR. 0.2486(0.0334) 0.1104(0.0210) 0.1995(0.0262) 0.1013(0.0187) 0.0987(0.0190)
h(A) 0.0774(0.0113) 0.0000(0.0000) 0.0089(0.0011) 0.0000(0.0000) 0.0000(0.0000)
SHD 411.81(12.18) 73.43(11.03) 306.52(11.69) 277.25(19.99) 199.15(26.89)

EXPONENTIAL LINK.
DIMENSION d1 = 10, TIME HORIZON T = 500.

PENALTY NONE PROPOSED DAG ω1 ADA. ω1
A ERR. 0.4495(0.1457) 0.2797(0.0914) 0.4233(0.1452) 0.2417(0.0620) 0.2925(0.1167)
ε ERR. 0.1061(0.0336) 0.0720(0.0225) 0.0889(0.0285) 0.0666(0.0208) 0.0644(0.0196)
h(A) 0.0439(0.0243) 0.0001(0.0006) 0.0046(0.0039) 0.0000(0.0000) 0.0000(0.0000)
SHD 43.75(5.00) 12.96(5.11) 30.77(5.71) 31.66(5.28) 24.7(6.44)

DIMENSION d1 = 20, TIME HORIZON T = 1000.

PENALTY NONE PROPOSED DAG ω1 ADA. ω1
A ERR. 0.4731(0.0844) 0.2118(0.0360) 0.4206(0.0911) 0.1898(0.0310) 0.2136(0.0496)
ε ERR. 0.1897(0.0385) 0.0948(0.0201) 0.1511(0.0298) 0.0840(0.0187) 0.0813(0.0174)
h(A) 0.0799(0.0191) 0.0002(0.0011) 0.0087(0.001) 0.0000(0.0000) 0.0000(0.0000)
SHD 183.83(10.18) 34.59(10.79) 134.53(7.80) 125.7(12.75) 90.8(17.29)

DIMENSION d1 = 30, TIME HORIZON T = 1500.

PENALTY NONE PROPOSED DAG ω1 ADA. ω1
A ERR. 0.5048(0.0507) 0.1841(0.0225) 0.4277(0.0559) 0.1738(0.0205) 0.1888(0.0250)
ε ERR. 0.2743(0.0361) 0.1090(0.0170) 0.2148(0.0274) 0.1022(0.0168) 0.1032(0.0162)
h(A) 0.1090(0.0151) 0.0000(0.0000) 0.0089(0.0010) 0.0000(0.0000) 0.0000(0.0000)
SHD 414.17(13.44) 73.75(10.52) 294.5(11.44) 277.14(19.12) 198.52(26.61)

Fig. 5. Effect of hyperparameter (continued). We consider the VI estimator
with linear link function for completeness in this figure. We can observe
similar patterns with Figure 4.
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