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Abstract—Matrix data has been applied to a wide variety of
scientific and engineering problems, including image processing,
recommendation systems, and network modeling. Much effort has
been on modeling individual matrix data using optimization and
factorization. However, there has been relatively little research
on modeling sequential and streaming observations for matrix
data. To this end, we propose a novel Bayesian assimilation
approach to model sequential low-rank matrix observations for
online anomaly identification. By exploiting the posterior distri-
butional properties of low-rank matrix subspaces, we track the
subspace evolution and carry out uncertainty quantification with
a computationally efficient procedure. It also enables identifying
the changes in streaming matrices in real-time. We evaluate
the performance of our method via an application of change
identification in piezoresponse force microscopy data for material
science studies.

Index Terms—Streaming data, matrix assimilation, uncertainty
quantification

I. INTRODUCTION

The inference of matrices from partial observations - matrix
completion - has garnered significant interest [1]-[4]. It has
been applied in numerous real-world problems, ranging from
image and video processing [5], recommendation systems [6],
and wireless networks [7]. Many matrix completion methods
adopt optimization techniques to construct low-rank matrix
approximates from incomplete and noisy observations, where
matrix nuclear norm minimization is often utilized as a convex
relaxation for the low-rank constraint [4], [8], [9]. Other works
look into completion via matrix factorization or decomposition
[10], including modeling factor matrices in a Bayesian frame-
work [11], [12]. Such Bayesian frameworks enable uncertainty
quantification (UQ) on the completed matrix. Furthermore,
studying matrix subspaces provides insight into the low-rank
matrix modeled. The singular matrix-variate Gaussian (SMG)
distribution [13] provides a way to parametrize matrix row
and column subspaces. It has been utilized in a Bayesian
framework for low-rank matrix completion [14].

Matrix completion generally focuses on estimating the miss-
ing entries for a single matrix, so modeling and completing
the sequential matrix data calls for dedicated approaches to
streaming matrices. Streaming principal component analysis
(PCA) is proposed to model the streaming matrix data ef-
ficiently in an online setting [15], where a low-dimensional
subspace is obtained to approximate higher-dimensional sam-
ples. See also [16], [17]. Tracking a factor matrix or matrix
subspace in streaming data is proposed by [18], where the

979-8-3503-2574-4/23/$31.00 ©2023 IEEE 920

principal row and column vectors are updated iteratively to
provide completion in streaming matrices. [19] provides a
review of related works. However, these works focus on
modeling the matrix data stream efficiently for completion or
approximation and do not address uncertainty quantification
(UQ) in such estimates that are critical for further analysis,
e.g., anomaly detection. This is related to high-dimensional
sequential change point detection with applications in power
systems [20] and sensor networks [21], [22].

To this end, we propose a sequential low-rank matrix
assimilation framework that can provide both UQ on matrix
subspaces holding feature information and complete the miss-
ing matrix entries. To carry out the assimilation, we extend
the Bayesian framework of [14] using the SMG distribution
to directly model the matrix subspaces in the data stream.
Subsequently, we utilize the UQ provided by the assimilation
framework to construct a local change identification method
via the structure of the low-rank matrix subspace, which is
related to [23]-[25].

II. STREAMING MATRIX DATA

Our objective is to model a series of data matrices sequen-
tially, where each is only partially observed and corrupted by
random noise. Suppose we have a sequence of observations
in matrix data {Y®}_ | = {YM Y®? . YD} where
each element of the set Y(!) € R™1*™2 for t =1,2,...,T,
and m, and ms denote the matrix dimensions. Each matrix
Y ® is a partial and noisy observation of the underlying low-
rank true matrix X(*) of rank 7 < min(m;, ms). For each ma-
trix, the observed entries form an index set ; C [m1] X [ma]
which changes with ¢, i.e., the observed index set changes
between observations. It can then be expressed as follows:

=X+ Gpeat

Here, YZ(;) is the t-th observation at entry (i, j) corrupted by a
Gaussian noise ez(t) We assume ez(t]) ~ N(O, 772), i.e., the noise
in each entry follows an i.i.d. zero-mean Gaussian distribution
with a fixed variance 772. In this work, we assume the row
and column space of the true matrix X(*) does not change (or
only changes gradually) throughout the observed sequence.
This makes streaming data assimilation meaningful, which is
often necessary when the dimension of the matrix is large and
completion/data storage is no longer efficient so the matrix
has to be broken into a sequence. In other words, the low-rank
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subspaces (both row and column subspaces) of the matrix can
be regarded as fixed until the change point. The subsequent
change pattern can be expressed as in Eqn. (2).

X®) — UlD(t)VlT
X)) — UgD(t)Vg

t=1,2,...,T;

) 2)
t>T, (

where Uy, Uy € R™*" and V1, Vo € R™2X" are orthogonal
matrices of rank 7 that denote the column and row subspaces
of the matrix respectively. (U?Ul =1 and VlTV1 =1, and
similarly for U, and Vs.)

The challenges are two-fold. We first need to track the
underlying subspaces of the true matrix X*), which is neces-
sary to recover the missing entries and provide UQ. We then
need to utilize the UQ derived from the matrix subspaces to
identify anomalies in the data stream when the underlying
matrix subspace abruptly changes.

III. SEQUENTIAL BAYESIAN SUBSPACE ASSIMILATION

A. Model specification

The SMG distribution is defined by [13] as follows: let
Z € R™*™2 be a random matrix with each entry following
a Gaussian distribution Z; ; ~ N(0,0?) for each (i,j) €
[m1] X [mz]. Then, a random matrix X follows the singular
matrix-variate Gaussian distribution if X % PuZPy for some
projection matrices P,; = UU? and Py, = VVT, with
orthogonal matrices U € R™*" and V € R™2*",

Suppose matrix X indeed follows the SMG distribution
with independent uniform priors Py ~ U(Gymy—r)s Py ~
U(Gyrmy—r) and fixed o2 and r. (Here Gr.m,—r denotes a
Grassmann manifold, the space of r-planes in R™2.) Let
X = UDVT be the singular value decomposition (SVD) of
X, with singular values diag(D) = (dj)},_, not necessarily in
decreasing order. We find that:

(1) The singular vectors U and V follow von Mises-Fisher
distributions [26], which are denoted by MJF(my,r,0) and
MUF(ma,r,0), respectively.

(2) The singular values diag(D) = (dg)j_, follow the
repulsed normal distribution, with density:

1
s o o) [T o

k=1
k<l

where d;, > 0 for £ = 1,...,r. The first finding enables

a representation of the matrix by row and column subspaces

U and V directly, while the second provides the posterior
distribution for D [27]. Using these properties, we obtain the
BayeSMG model structure in Table I, where we utilize inverse
gamma priors for o2 and n?. It provides us with closed-form
posterior conditional distributions for the matrix subspace U
and V. See [14] for more details.

B. Sequential matrix assimilation

To start with, we assign uniform prior distributions for the
two subspaces projection matrices in the Grassmann manifold
Pu ~ U[Grm,—r] and Py ~ U[Gymy—r]. It is equivalent
to the uniform prior distributions for the two subspaces in

TABLE I
MODEL SPECIFICATION FOR BAYESMG.
Model Distribution
Observations YolX, 7’ Y, ~N(Xi;,17%)
Low-rank matrix X|U,V,0%]: X = UDVT

diag{D} ~ RN(0,02)

Priors

Matrix subspaces [Pul ~U(GR,m,—R)
[PV] ~ u(gR,mz—R)
[02] ~ IG(¢p2,By2)
[772] ~ IG(¢7]2 ’ ﬁ'qQ)

Matrix variance
Noise variance

the Stiefel manifold, U ~ UV, | and V. ~ U[Vi, ]
The sequential matrix assimilation can hence be conducted
iteratively for t = 1,2,...,T. For each observed matrix Y (),
we carry out the following steps:

Step 1: subspace estimation. We conduct the singular value
decomposition (SVD) on the observed matrix Y® after car-
rying out a step of low-rank matrix completion (nuclear-norm
minimization can be used here, for example).

YO — gOPOYOT L O, @)

where both subspace estimates U® and V® are constrained
by the rank 7. The resultant error forms the matrix E®. We
estimate the noise variance 772 from this error matrix directly
by calculating the entry-wise deviation.

Step 2: subspace update. Since the matrix subspaces U, V, the
noise variance 72, and the diagonal matrix D are all estimated
in the first step, we can update the posterior conditional
distribution for the subspace variable U which is a von Mises-
Fisher distribution.

U|Y(1:t), ]f)(l:t)7 V(l:t)

¢ NTG®) 5
exp (trace (Z 77(]? )'U )) ©)
i=1

Similarly, we can derive the updated posterior for V:

V|Y(1:t), ]j(l:t)7 ﬂ(l:t) o

¢ OTHODENTYV®) 6
exp (trace (Z Y UA(_]))2 )V )) ©
77 K3

i=1

This step enables us to obtain the updated distributions for
both subspace variables after seeing a new observation Y ().
It facilitates the assimilation of the streaming matrix as we
only need to store the parameters for the diagonal matrix D®
and two posterior von Mises-Fisher distributions in Eqn. (5)
and (6). They enable tracking the continuous evolution of the
matrix subspace features. Furthermore, the uncertainty of the
subspaces can be obtained by drawing a few samples from the
obtained distributions.

C. Local change identification via UQ

To identify abrupt changes in the matrix subspace structure
in the sequence, we compare the estimated subspace variables
U and V between the first and second steps in the assimilation
procedure. Since we have the assimilated distributions for the
two variables from the previous iterations, we can obtain their
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respective uncertainty via multiple samples of U§-t71) and

V§t_1), where j denotes the index of N realizations drawn
for U and V which can be efficiently sampled [28]. (In
this work N=500.) Comparing the subspaces, we calculate
the Frobenius norms || - ||F, a common distance metric in
Grassmann manifolds [29]. The confidence interval (CI) can
therefore be approximated using the samples. The CI for
U1 as a necessary condition can be expressed as

Pr (O < ||U(t—1)U(t—1)T _ fj(t—l)fj(t—l)T”F < ’y)
= (1—a)x 100%, ()

where v ~ Q(1 — «) over {Ugtil) évzl.

Here @) denotes the quantile function and 0 < o < 1 denotes

the significance level. Same goes with V(*~1)_ The CI is then
treated as the change statistics.

N
1 et o
DD VR VG SR AR
j=1

N ®)

1 _ _ JNPTNDA
N 2 IV OV OT|p <y,

j=1
Both b; and by in Eqn. 8 are thresholds that can be specified.
When either threshold is breached, we declare a change
has taken place with the matrix subspace structure altered
significantly.
IV. NUMERICAL SIMULATION

We first analyze the efficacy of the proposed matrix assim-
ilation framework by applying it to a numerical simulation
experiment. In this simulation example, we look into a se-
quence of 100 matrices of dimension 64 x 64, denoted by
Y ¢ R64%64 where t = 1,2,...,100. Each matrix in the
sequence is generated using the following expression:

YO =X® 4 E® = uDOVT + E®), 9)

where D) is a diagonal matrix with each diagonal entry
drawn uniformly at random, and E® is the noise matrix.
The true matrix at each time step X(® is standardized, while
each entry of E(*) is drawn independently from a Gaussian
distribution N(0,0.05?). However, the subspace variables U
and V are fixed from ¢ = 0 and only change once at the
change point 7 = 76. The subspace variables before and after
the change point are randomly generated as well. We set the
rank of the matrix sequence to R = 5; therefore, both subspace
variables are of size 100 x 5, which is of low rank. Finally,
we mask the matrix observations by removing the observations
of 25% of the matrix entries uniformly at random at each ¢,
precipitating missing entries to the matrix stream.

To evaluate the proposed method, we compare the proposed
change identification scheme against two other methods. The
first baseline carries out change detection utilizing principal
component analysis (PCA), which is commonly used when
dealing with matrix data. For every matrix in the sequence,
PCA is applied to decompose the matrix after imputing 0’s
to the missing entries, if any, expressed as Y = WHT(®),

where T(*) denotes the principal directions and W) denotes
the weights. The computation is done via singular value
decomposition. We then truncate T(*) to obtain the first R
principal directions denoted T® e R™*R The change of
estimated T(9) is tracked and treated as the test statistic. The
rule can be expressed as

”T(t)T(t)T _ T(t—l)T(t—l)THF < bpca. (10)

When the principal directions change significantly in an abrupt
manner, we report there is a pattern change in the data stream.

The second baseline carries out change identification by
looking into the change of matrix entries between steps. When
observing the matrix at each time step ¢, we compare the
entries of the current step against those in the last step which
are observed in both steps. We then calculate the percentage
change of the entry values and subsequently mark the entries
that have changed more than 90% between the two steps. We
use the proportion of the number of entries marked against
the total number of matrix entries as the test statistic. We
call this scheme Absolute Entry Difference (AED) change
identification with the threshold denoted as b g p in a similar
manner to (10).

In this simulation and the experiments that follow, we
compare the proposed method against these two baselines by
evaluating their accuracy in detecting the actual change in the
sequence as in mean absolute error (MAE) between the true
change point 7 and their estimates 7 over 25 replications of
the whole procedure, i.e., |7 — 7.

TABLE 11
RESULTS FOR NUMERICAL SIMULATION
Error Metric | Assimilation | PCA | AED
MAE 0.28 0.92 0.92

For this simulation, we set the threshold variables by look-
ing at the collection of test statistics as the matrix sequences
are analyzed. For by, b, bpoa, and bapp, we set them as
the sum of the running mean of the test statistics (denoted by
1) and three times the running deviation (denoted by §). In
other words, for each method, if the new test statistic exceeds
1+ 30 of all previous test statistics already obtained, a change
of pattern is declared. The results over 25 replications are
obtained as in Table II. We can see the errors in detection
are quite small for all three methods, however, the MAE by
the proposed method is much smaller than the other two by
roughly 70%, which is significant. It can be concluded that the
matrix assimilation method is quicker to identify a subspace
change in the noisy and partially observed matrix stream.

V. APPLICATION: IMAGE CHANGE DETECTION

Subsequently, we apply the proposed matrix assimilation
framework to streaming image data. The intensity values
of the pixels of gray-scale images are treated as values of
individual matrix entries, so a series of sequential images can
be approached as streaming matrices. In this experiment, we
utilize our sequential subspace assimilation method to identify
underlying changes in images. Additionally, all matrix entries
are observed with noise in this particular application.
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We look into a series of images taken to track the activity
of the sun. The image stream contains 300 screens of pictures
taken, which happen to have captured the occurrence of a solar
flare incident as shown in Fig. 1. Each image can be converted
to a 232 x 232 matrix, while the solar flare incident takes place
at 7 = 42 by visual inspection. The incident led to a significant
change in the visual observation of the sun. Since human eyes
are less susceptible to high-frequency components in images,
we need only track the lower frequency features, which leads
to the matrix being low rank and our selecting R = 10. The
images are corrupted with a Gaussian noise A/ (0,0.052) after
standardization.

We carry out the analysis using the assimilation method
for ten replications and obtain the MAE as the error metric,
with results shown in Table III. The average errors/detection
delays by our proposed method are smaller than the other two
baselines by approximately 60%. This suggests that the matrix
assimilation method can efficiently tell the change in the image
subspace in a consistent manner.

Image before solar flare incident Image after solar flare incident

20 40 60 80 100 120 140 160 180 200 220 20

40 60 80 100 120 140 160 180 200 220

Fig. 1. Illustration of the images before and after the solar flare incident.

TABLE III
RESULTS FOR SOLAR FLARE IMAGE EXAMPLE
Error Metric | Assimilation | PCA | AED
MAE 6.1 15.0 15.0

VI. APPLICATION: POLARIZATION SWITCHING IN PFM

Finally, we apply our proposed matrix assimilation frame-
work to a sequence of piezoresponse force microscopy mea-
surement (PFM) data. PFM is a scanning probe microscopy
technique used to study the nanoscale characteristics of ferro-
electric materials [30]. It is a powerful tool for high-resolution
imaging, manipulation, and spectroscopic measurements [31].
Although PFM is effective in characterizing ferroelectric ma-
terials, it is not without challenges. Some of the frequency
response signals are of low signal-to-noise ratio (SNR). It is
known this leads to poor physical interpretation, as they are
deemed unreliable and cannot be used. Moreover, low SNR is
more likely to take place during polarization switching, which
is of vital interest to study changes in material electromechan-
ical properties.

Using PFM, we obtain the amplitude components of the
spectral response within a fixed range of frequencies (250
probing frequency values within a 20 kHz range). A scan is
done with a set of different electric field inputs applied to the
material surface by PFM as illustrated in Figure 2. The spectral
response across different inputs can then be stacked together to
form a data matrix. The electric fields change their magnitude

and direction gradually between each scanning, giving us a
series of matrices. The frequency response is of low SNR
when the electrical field is weak, causing unreliable matrix
entries that need to be discarded. This gives us matrices with
missing entries. Additionally, polarization switching refers
to the magnitude of the electric field approaching zero and
changing direction. It leads to more missing entries while
the data matrix abruptly changes its structure as the material
property alters. We aim to both recover the missing entries
before polarization switching and identify the switching when
it takes place.

From the PFM experiment, 145 data matrices are obtained,
each of which has dimension 100 x 250, reflecting the spectral
response from 250 probing frequencies and over 100 different
electric field input settings. Polarization switching takes place
during the latter half of the experiment, which we aim to detect
using our proposed framework. The data matrices before and
after the change point are shown in Fig 3. When approaching
polarization switching, almost entire rows of the matrix are
declared missing, which causes trouble for direct completion
for an individual matrix. However, the underlying matrix
subspace does not change significantly until the switching,
enabling us to utilize the proposed assimilation procedure to
estimate matrix subspaces for carrying out completion and
change identification.

Again, we compare our proposed strategy to the two base-
lines. For efficiency, we set R = 3 for the assimilation method.
We replicate the three methods on the data 20 times and
calculate the MAE in detecting the polarization switching. The
results are shown in Table IV.

TABLE IV
RESULTS FOR PFM APPLICATION
Error Metric | Assimilation | PCA | AED
MAE 8.7 23.8 28.0

The results clearly show our proposed method performs
much better than the other two baselines. Note the SNR is
very low when approaching the change point and coincides
with many missing entries present in the data stream, so it
is expected to be challenging to capture the change swiftly.
This led to a slower detection for all three methods compared
to the previous application, but the assimilation method still
achieved a 60-70% lower detection error.

VII. CONCLUSIONS

We have in this work proposed a novel sequential Bayesian
matrix assimilation approach to model sequential low-rank
matrix observations and provide uncertainty quantification
for the underlying subspace features in the streaming data.
Furthermore, it utilizes the UQ to carry out local anomaly
identification. Through the numerical experiment and the two
scientific applications, we have demonstrated the clear poten-
tial and better performance of the proposed sequential matrix
assimilation framework in both efficiently modeling streaming
matrix data and carrying out robust change identification over
the comparison methods. It is empowered by uncertainty
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quantification for streaming matrix data without having to
conduct computationally intensive procedures such as MCMC.

The limitation of the assimilation method is on the computa-
tional expenditure in sampling matrix subspaces, which grows
with matrix rank and dimension. For future work, we intend
to improve this by investigating efficient matrix subspace
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