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Abstract

Generalizing the foundational work of Grove and Searle, the second author proved
upper bounds on the ranks of isometry groups of closed Riemannian manifolds with
positive intermediate Ricci curvature and established some topological rigidity results
in the case of maximal symmetry rank and positive second intermediate Ricci curva-
ture. Here, we recover even stronger topological rigidity, including results for higher
intermediate Ricci curvatures and for manifolds with non-trivial fundamental groups.

Keywords Positive curvature - Symmetry rank - Torus action - Intermediate Ricci
curvature - Sectional curvature - Ricci curvature

Mathematics Subject Classification 53C20 (Primary) - 57S15 (Secondary)

1 Introduction

The study of manifolds with lower curvature bounds goes back to the origins of Rie-
mannian geometry. In dimensions at least 3, there are many notions of lower curvature
bounds, two of the most common being positive sectional curvature and positive Ricci
curvature. For sectional curvature, the classification of positively curved manifolds is
a wide open problem. However, apart from the compact rank one symmetric spaces
S CP", HP", OP2, the only dimensions that are known to admit other closed, simply
connected manifolds with positive sectional curvature are 6, 7, 12, 13, and 24; see
[80]. In contrast, for the weaker condition of positive Ricci curvature, there are far
more known examples, including sequences of examples in any fixed dimension > 4
with unbounded total Betti numbers [69]; see also [4, 5, 55, 56, 77].
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For positive sectional curvature, the Grove Symmetry Program has resulted in
major classifications such as those in [16, 18, 26, 28, 29, 33, 38, 40, 57, 70, 73, 74],
constructions of new examples of manifolds with lower curvature bounds as in [10,
24,25, 32, 54], and discoveries of unexpected and fundamental connections between
curvature and topology [62, 75]. The overarching goal of this program, initiated by
Karsten Grove in the 1990s, is to classify positively curved spaces with large isometry
groups. A foundational result in the program is Grove and Searle’s maximal symmetry
rank theorem: Any closed, connected, n-dimensional manifold with positive sectional
curvature has symmetry rank (i.e., rank of the isometry group) bounded above by
L%J, and in the case of equality (i.e., maximal symmetry rank), the manifold is
diffeomorphic to ", RP”, CP"2,oralens space [28]. Galaz-Garcia later strengthened
this conclusion to an equivariant diffeomorphism classification [20].

Because of the success of the Grove Symmetry Program, it is natural to ask which
obstructions to positive sectional curvature generalize to weaker curvature conditions
(e.g., positive Ricci curvature, non-negative sectional curvature, quasipositive curva-
ture, almost positive curvature). However, it is typical that tools from the positive
sectional curvature setting do not carry over to weaker curvature conditions. One
exception was established by the second author for positive intermediate Ricci curva-
ture.

Definition Given an n-dimensional Riemannian manifold M and k € {1, ...,n — 1},
we say M has positive k'"-intermediate Ricci curvature (Ricy > 0) if, for every set
of orthonormal vectors x, yi, ..., y; tangent to M, the sum of sectional curvatures
> sec(x, y;) is positive.!

Note M has Ricy > 0 if and only if, for every unit vector x tangent to M, the sum
of any k + 1 eigenvalues of the Jacobi (directional curvature) operator y — R(y, x)x
is positive; see [60, Lemma 1.2]. Thus, Ric; > 0 is equivalent to positive sectional
curvature, Ric,_; > 0 is equivalent to positive Ricci curvature, and if Ricy > 0 for
some k, then Ric; > 0 for all [ > k. Because the condition Ric; > 0 is vacuous for
dimensions n < k, we use the convention that an assumption of Ricy > 0 implies
n>k+1.

Several results for manifolds with sectional curvature lower bounds have been
extended to intermediate Ricci curvature lower bounds. These include generalizations
of the Synge theorem and Weinstein fixed point theorem [72], the Gromoll-Meyer
theorem, and Cheeger-Gromoll Soul theorem [35, 64], the quarter-pinched sphere the-
orem [36, 63, 79], and the Heintze-Karcher inequality [6]. Also, comparison results
have been established by Guijarro and Wilhelm [34-36], and examples and construc-
tions can be found in [1, 11, 58-61]. For a collection of publications and preprints
concerning intermediate Ricci curvature, see [45].

In [46, 47], the second author shows that closed, connected, n-dimensional mani-
folds with Ric, > 0 have symmetry rank bounded above by L%J, the same bound
Grove and Searle established for positive sectional curvature. Furthermore, the second
author proved the following rigidity statement in the odd-dimensional case:

1 This notion of positive intermediate Ricci curvature should not be confused with k-positive Ricci curvature
as defined in [76]; see also [8, 78].

@ Springer



Positive Intermediate Ricci Curvature with Maximal Symmetry Rank Page3of24 129

Theorem 1.1 ([47]) If T" acts effectively by isometries on a closed, simply connected
Riemannian (2n — 1)-manifold M with Ricy > 0, then M is diffeomorphic to S~

The second author also proved a rigidity statement in even dimensions under the
additional assumptions that the dimension is at least eight and the second Betti number
is at most one. Here, we remove both of these assumptions and prove the following,
our main result:

Theorem A If T" acts effectively by isometries on a closed, simply connected Rieman-
nian (2n)-manifold M with Ricy > 0, then one of the following holds:

(1) M is at least six-dimensional and is diffeomorphic to S%" or homeomorphic to
cpn,

(2) M is six-dimensional and x (M) = 0, or

(3) M is equivariantly diffeomorphic to S* with a linear T>-action or to an equivariant
connected sum CP?*# .. . #CP? with a linear T?-action on each summand.

Since §2" and CP" admit metrics with positive sectional curvature and T" symmetry,
Theorems 1.1 and A may be viewed as providing a complete homeomorphism clas-
sification in dimensions at least seven of manifolds admitting metrics with Ricy > 0
and maximal symmetry rank. As our methods differ from those in Grove-Searle [28],
we do not know whether it is possible to upgrade the rigidity to equivariant diffeo-
morphism as in the case of positive sectional curvature, even in view of the work of
Montgomery and Yang that implies equivariance for a circle subaction but perhaps
not for the torus action itself (see [48] and Theorem 2.8 below).

In dimension six, there is a metric on S3 x §3 with Ric; > 0 and maximal symmetry
rank; see [47, Example 2.3]. We remark that, if additionally M° is 2-connected, then
the conclusion x (M%) = 0 in (2) is sufficient to imply that M® is diffeomorphic to
53 x §3 (see Remark 4.3 below). We do not know if other closed, simply connected 6-
manifolds with x (M) = 0 admit metrics with Ricy > 0. We remark that if a T3-action
M?® has a fixed point, then we prove in Proposition 4.1 below that M° is diffeomorphic
to either S or CP3.

In dimension four, Orlik and Raymond showed that a smooth, simply connected,
closed four-manifold with T? symmetry is equivariantly diffeomorphic to a connected
sum of S* and copies of 52 % 82, CP2, and CP2 (i.e., CP? with the opposite orientation)
[49]. Theorem A shows that if additionally M* admits a T2-invariant metric with
Ricy > 0, then S? x S summands do not appear and moreover that all summands
of CP? come with the same orientation. However, we currently cannot rule out the
cases b > 2, and for these values, it is unknown whether any such manifold admits
Ricy; > 0, much less whether such a metric can be invariant under a T2-action. Finally,
we note that though S% x S? cannot admit a metric with Ricy > 0 and T?-symmetry,
it does admit one with S'-symmetry; see [47, Example 2.3]. In fact, this Ricy > 0
metric on S? x S? is invariant under a cohomogeneity one action by SO(3).

We remark now on other known generalizations of Grove and Searle’s maximal
symmetry rank theorem. First, in an unpublished manuscript, Wilking extended the
Grove and Searle symmetry rank bound to manifolds that contain a point at which
all sectional curvatures are positive [71]; for the proof, see [20, Theorem 1.3]. Galaz-
Garcia then extended the Grove and Searle classification for maximal symmetry rank to
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manifolds with quasipositive curvature (sectional curvature non-negative everywhere
and positive at a point) in dimensions four and five [20]. The second author established
a generalized version of Wilking’s symmetry rank bound for manifolds which have a
point at which all intermediate Ricci curvatures are positive [46].

Second, for the case of positive weighted sectional curvature, the first author and
Wylie proved the symmetry rank bound is the same as for positive sectional curvature,
and they recover rigidity in the equality case up to homeomorphism; see [42].

Third, for non-negative sectional curvature, Galaz-Garcia and Searle conjectured
a generalization of the maximal symmetry rank theorem [30], which was later refor-
mulated and sharpened by Escher and Searle [14].

Work of Galaz-Garcia and Searle [30], Galaz-Garcia and Kerin [22], and Escher
and Searle [14] confirm this conjecture up to dimension nine and moreover prove the
symmetry rank upper bound in dimensions up to 12.

With the added assumption that the maximal torus action is isotropy-maximal,
the conjecture was shown by Escher and Searle to hold in all dimensions in [14].
Analogously, the conjecture was established up to rational homotopy equivalence by
Galaz-Garcia, Kerin, and Radeschi in [23] in the case where the assumption of non-
negative sectional curvature is replaced with rational ellipticity, which is expected to
follow from non-negative sectional curvature by the Bott-Grove-Halperin ellipticity
conjecture (see [21, 27, 37]).

Finally, for the situation where the torus is replaced by an elementary p-group
for some prime p, Fang and Rong proved the optimal upper bound and obtained
homeomorphism rigidity in the equality case for p larger than a constant depending
only on the manifold dimension [17]. There are two analogs of this result for p = 2
(see [15] and [41, Theorems A and B]).

Our second main result is a rigidity statement for Riemannian manifolds with
Ricy > O for larger values of k. More precisely, given a closed connected n-
dimensional Riemannian manifold M, the second author proved that the symmetry
rank of M" is at most L#J — 1if M" has Ric; > 0 with k > 3 (see [47, Proposition
1.6]). This bound agrees with the classical bound of L%J fork =3 and fork = 4
when 7 is odd. Since the condition Ric; > 0 grows weaker as k increases, the available
tools also grow weaker for manifolds with Ricy > 0, and one should not expect to be
able to prove an analog of Theorem A in this setting without stronger hypotheses. We
prove two results along these lines. The first is based on the model spaces of spheres
and §3 x §3.

Theorem B Fix k > 3, and assume M" is a (k — 1)-connected, closed Riemannian
manifold withn # 7 if k = 3. If M" has Ricy > 0 and admits an isometric T"-action
withr = L#J — 1, then one of the following occurs:

(1) M is diffeomorphic to S™ and k < 4, with equality only if n is odd.
(2) M is diffeomorphic to S* x S3 and k = 3.

The conclusions in (1) and (2) are optimal in the sense that " and $3 x §3 admit
metrics with Ricy > 0 and maximal symmetry rank for all values of k shown. The
second result for large values of k is modeled on complex projective space:
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Theorem C Fixk > 3, andlet M™ be a simply connected, closed Riemannian manifold.
Assume further that M" is an integral cohomology CP up to degree k + 2. If M has
Ricy > 0 and admits an effective, isometric T -action with r = L#J — 1, thenn is

even, M" is homeomorphic to CP?, and k = 3.

~

By the assumption on the cohomology of M, we mean that H'(M;Z) = 0,
H?*(M;Z) = 7, and the map H'(M;Z) — H't?(M;Z) induced by multiplica-
tion by a generator x € H>(M;Z) is surjective for 0 < i < k and injective for
0 < i < k. As with Theorem A, we cannot obtain rigidity up to diffeomorphism, and
we do not know whether any exotic CP? admits Ric3 > 0 and maximal symmetry
rank.

Although Theorems B and C partially generalize Theorem A under stronger topo-
logical assumptions, we note that there are potentially more examples of manifolds
that satisfy Ricy > 0 with £ > 3 than those listed in the conclusions of these results.
For example, under the respective product metrics, S> x 2 has Ric3 > 0 with T2-
symmetry, S3 x S2 has Rics > 0 with T3-symmetry, and $3 x S has Rics > 0 and
T4-symmetry.

Finally, we analyze the case of non-trivial fundamental group:

Theorem D Let M" be a closed, connected Riemannian manifold with Ricy > 0 and
T symmetry withr = L%J If T (M) is non-trivial, then one of the following occurs:

(1) M is homotopy equivalent to RP" or a lens space, or
(2) M has dimension six and, if additionally the universal cover is S3 x 83, then
m(M) E Z; X Ly, for somel,m > 1.

The standard models in (1) can already be realized with positive sectional curvature,
and in the case of maximal symmetry rank and positive sectional curvature, Grove and
Searle’s result recovers rigidity up to diffeomorphism instead of just homotopy, and
Galaz-Garcfa later strengthened this rigidity to equivariant diffeomorphism. Also note
that our result rules out the possibility that the universal cover is homeomorphic to CP?
when M is not simply connected. Finally, we remark that the fundamental groups as in
(2) can be realized by the known metric on §% x §3 with T3 symmetry and Rics > 0.
Indeed, the product of the Hopf actions on the S> factors gives rise to a T2-subaction of
the T>-action. Since this action is free, we obtain products of lens space 3 /Z; x 3/ Z,,
as examples, as well as quotients (S° x S$3)/Z; by possibly diagonal actions, for
example, ($3 x §%) /{x(1, 1)} = SO(4). We also remark that other finite groups act
freely on $3 x §3, including all finite subgroups of Spin(4) = §3 x S and, more
surprisingly, the two-fold product S3 x S3 of the symmetric group on three letters (see
Davis [9] and [39]). Finally, we note that Dominguez-Vazquez, Gonzdilez-Alvaro, and
Rodriguez-Vizquez have determined that the Wallach flag manifold W® = SU(3)/T?
with the normal homogeneous metric has Ricy > 0 [12]. This metric has a free,
isometric S3-action and has T?-symmetry, which is not maximal for Ric; > 0 in
dimension 6.

Regarding the non-simply connected case of Theorems B and C, the conclusions
are the same as in Part (1) of Theorem D under the modification that the cohomology
of the universal cover of M satisfies the topological assumptions stated in Theorems
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B and C. The proof is a straightforward modification of the proof we give for the case
of k = 2, so it is omitted.

The key tool for establishing Theorem A is the Connectedness Lemma (Theorem
2.5). In dimension 4, we use this tool in conjunction with topological results by Orlik
and Raymond [49]; see Sect. 3. In dimension 6, we break the argument into the cases
according to whether the torus has a fixed point; see Sect.4. If the torus has a fixed
point, we employ an argument involving Euler characteristics to rule out connected
sums of complex projective spaces. Curiously, this argument only eliminates such
connected sums in dimensions strictly larger than four. If the torus has no fixed points,
then it follows immediately that y (M) = x(MTS) = 0. For dimensions 8 or greater,
we prove that the torus has a fixed point, and the result then follows by induction using
the Connectedness Lemma, noting in dimension eight that the induced torus action on
the 6-dimensional submanifold involved in the proof has a fixed point; see Sect. 5.

To prove Theorems B and C, we show in most cases that such manifolds must have
a circle action whose fixed-point set contains a component of codimension 2, and then
we apply the Connectedness Lemma (Theorem 2.5); see Sect. 6. The demand for the
additional topological assumptions is a consequence of the fact that the Connectedness
Lemma provides less information about the topology of M as k increases.

Theorem D is proved in Sect.7. It borrows standard and elementary results from
group cohomology that have been used previously in the positive sectional curvature
case together with special arguments in the cases where the universal cover M is
diffeomorphic to S° x 3 or CP?#. .. #CP?.

2 Preliminaries

We begin with a discussion of fixed-point sets. Given an isometric action of a Lie
group G on a Riemannian manifold M, we let M© denote the fixed-point set of the
G-action on M. Given a point p € M, we denote the component of MC that contains
p by MC, and refer to it as a fixed-point component. The following is a foundational
structure result for isometric torus actions.

Lemma 2.1 Let M be a closed Riemannian manifold. Assume a torus T acts iso-
metrically on M, and let H be a closed subgroup of T" whose fixed-point set M" is
non-empty. Then every component of M™ is an embedded, totally geodesic submani-
fold of even codimension in M that is invariant under the action of T /H. Furthermore,
given any fixed-point component M", the following hold:

(1) IfHis a torus and M is orientable, then M;' is also orientable.

(2) If dimH > 2, then there exists a circle subgroup S' C H whose fixed-point
component MIS,1 strictly contains M;'.

(3) If H is disconnected and is the isotropy group at p, and if dimH > 1, then there
exists a non-trivial, finite isotropy group I' C H whose fixed-point component M ;

strictly contains M;’.

For justification for Part (2), see, for example, [53, Proposition 8.3.8], and for Part (3),
see [44, Lemma 1.10].
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The next lemma, which was established by Conner [7], will be especially useful in
establishing Theorem D.

Lemma 2.2 (Betti Number Lemma) If a torus T acts smoothly on a closed, smooth
manifold M, then x (M) = x(M7), Y b 1(M") < 3" byi1(M), and Y by (MT) <
> boi(M).

The two main ways in which our positive curvature assumptions play a role is via the
following two results. The first is a generalization of the Berger-Sugahara fixed-point
theorem, which is stated in the next lemma. Part (1) was established by Berger [2],
the k = 1 case of Part (2) independently by Sugahara [68] and Grove and Searle [28],
and the k > 2 case by the second author [47].

Lemma 2.3 (Isotropy Rank Lemma) Let M be a closed Riemannian manifold with
Ricy > 0 and an isometric action by a torus T.

(1) If k = 1 and n is even, then T has a fixed point.
(2) Foranyk > 1 andr > k, there exists a subtorus T =% that has a fixed point.

We note that analogous conclusions hold if we replace the curvature assumption in
Lemma 2.3 by a topological one. We believe this result is well known, but as we do
not know of a reference, we provide a proof here for completeness.

Lemma 2.4 (Spherical Isotropy Rank Lemma) Let M be a closed manifold with a
smooth action by a torus T with r > 1. If M has the rational homology of a sphere,
then the following hold:

(1) If n is even, then T" has a fixed point.
(2) Ifn is odd, then some T" ! has a fixed point.

Proof Since M and the fixed-point set of M have the same Euler characteristic, which
is non-zero for even-dimensional spheres, the first conclusion follows immediately.

We prove the second conclusion by induction over odd integers n > 1. When
n = 1, M is a circle so the kernel of the action on M contains a T"~! and the result
follows. Assume now that n > 3. The result holds trivially if » = 1, so we assume
r > 2. Smith proved that Z, x Z, cannot act freely on a Z,-homology sphere (see
[66]). It follows that T" cannot act almost freely on M, since otherwise we can find a
prime p sufficiently large so that M is a Z,-homology sphere and so that the subgroup
Z, < T" has trivial intersection with all isotropy groups and hence acts freely. We can
now choose an isotropy group of positive dimension and hence a circle S! € T" with
non-trivial fixed-point set . By another result of Smith, F is a rational sphere (see
[65]). By induction, the induced T"-action on F has a codimension one torus T"~!
with non-trivial fixed-point set F 7! Since FT'' = Fn MTH, this subtorus is the
one we seek. O

The second main tool from positive curvature we use is Wilking’s Connectedness
Lemma (see [73]), which is the k = 1 statement of the following theorem. The
generalization of the first part of (1) and of (2) to the case where k > 2 is stated in
[73, Remark 2.4]. For the second part of (1), the generalization to k > 2 was proved
by the second author (see [47]), building on work of Guijarro and Wilhelm (see [36]).
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Theorem 2.5 (Connectedness Lemma) Let M" be a closed, connected Riemannian
manifold with Ricy > 0.

(1) If N"=? is an embedded totally geodesic submanifold of M", then the inclusion
N" < M"is (n —2d + 2 — k)-connected.

Furthermore, if there is a Lie group G acting on M™ by isometries and fixing N" ¢
pointwise, then the inclusion is (n — 2d + 2 — k + §(GQ))-connected, where §(Q)
is the dimension of the principal orbits of the G-action on M".

(2) If N f_d' and Ng_dz are embedded totally geodesic submanifolds with di < db,

then the intersection N f’fd‘ N N;' ~% s also totally geodesic, and the inclusion
Nn—d1 n—dy n—dy .
1 NN, — N, is(n —dy —dry + 1 — k)-connected.

The Connectedness Lemma forces restrictions at the level of cohomology when com-
bined with the following lemma, which is a topological result about highly connected
inclusions of Poincaré duality spaces that was proved by Wilking [73]:

Lemma 2.6 (Periodicity Lemma) Suppose N n=d <y M"isa(n—d —I)-connected
inclusion of connected, closed, orientable manifolds. If e € H(M"; Z) denotes the
Poincaré dual of the image in H,_q(M"; Z) of the fundamental class of N, then the
homomorphisms Ue : H (M; Z) — H'*(M; Z) given by x — x U e are surjective
forl <i <n—d—1Iandinjective forl <i <n—d — 1.

Of particular importance to us is the case in the Periodicity Lemma when [/ = 1 and
d = 2. Based on whether e is zero or non-zero, if M" is simply connected, we find
that M" has the cohomology of S”, CP?2, or more generally a finite connected sum
CP3#...#CP? with at least two summands. For the first two of these manifolds, it is
well known that homotopy rigidity is automatic. One has some level of rigidity in the
non-simply connected case as well, according to the following (for a proof, see [41,
Theorem 3.4]):

Theorem 2.7 (Cohomology-to-homotopy Lemma) Let M™ be a closed, smooth man-
ifold. The following hold:

(1) If m{ (M) is cyclic (possibly trivial) and the universal cover Misa cohomology
sphere, then M is homotopy equivalent to S", RP", or a lens space.

(2) If 1y (M) is trivial and M is a cohomology CP2, then M is homotopy equivalent
to CP3.

Finally, to upgrade further from homotopy rigidity to homeomorphism or diffeomor-
phism rigidity, we use the following two results. The first is for spheres and was proved
by Montgomery and Yang [48], and the second is for complex projective spaces and
was proved by Fang and Rong [17].

Theorem 2.8 (Diffeomorphism rigidity for spheres) Suppose M is a homotopy sphere,
and assume the circle S' acts smoothly on M such that the fixed-point set N is simply
connected and of codimension 2. Then M is diffeomorphic to the standard sphere S"
such that the S'-action on M is smoothly equivalent to a linear circle action on S™.
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Fig.1 Weighted orbit space of fl* (mo, m0) fa‘
closed simply connected
4-dimensional T2-manifold (ma, ) (My—1,n1-1)

*
t—1

J i* (mi, i) f, i*+1

Theorem 2.9 (Homeomorphism rigidity for complex projective spaces) Suppose M is
a homotopy CP", and assume a submanifold N of codimension 2 is homeomorphic to
CP"~ . Ifthe inclusionmap N < M is at least 3-connected, then M is homeomorphic
to CP™.

3 Maximal Symmetry Rank for Ric; > 0 in Dimension 4

In this section, we establish the four-dimensional case of Theorem A. First, we survey
the topology of the spaces in question without curvature considerations.

Throughout this section, let M be a closed, 4-dimensional, simply connected, T2.
manifold, and let M* denote the orbit space M /T2. The orbit structure of such spaces
were studied by Orlik and Raymond in [49], which we will summarize here. For
the manifolds M under consideration, the isotropy groups are connected, meaning
possible isotropy groups are either trivial or isomorphic to S! or T?; see Lemma 5.2
in [49]. The orbit space M* is homeomorphic to a closed 2-dimensional disk, and the
boundary d M* consists of a cycle (graph) with the number of vertices equal to the Euler
characteristic of M. We will assume an orientation on M*, and hence on 0 M*, and we
will accordingly fix an enumeration for the vertices of IM™: f, f[, ..., f;*,, where
t = x(M). Each vertex f;*in dM* corresponds to an isolated fixed point f; € M of
the T?-action. Let %} denote the edge connecting f;* to f;* | (counting mod ). Points
along X7 correspond to 1-dimensional orbits in M, all of which have the same isotropy
group, which is isomorphic to S!. In other words, X} corresponds to a 2-dimensional
sphere X; in M that is fixed by a circle subgroup of T2. Fixing a parametrization
(z1,22) of T2 = R2/Zz, each S! isotropy is equal to {(z1, z2) : mz1 + nzp = 0} for
some relatively prime integers m and n. For a given S! isotropy, the associated vector
(m,n) € Z? is unique up to sign. Given an edge %* of 9M™, we will call the vector
(m;, n;) that corresponds to the S! isotropy of the edge the weight of X} see Fig. 1.

Given two adjacent edges X | and X}, the common vertex f* corresponds to
a point of intersection f; between the two spheres X;_; and ¥; in M. Define the
determinant of the weights of these edges
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Table 1 Equivariant diffeomorphism classes of simply connected 4-dimensional T2_manifolds with Euler
characteristic t < 4

t M Condition
2 s
3 Cp? —gpe16p = +1
cp2 —gper1en = —1
4 CP2#Cp? —epe16263 = +1,and ry 3 € {e263, 26063}
CP2#CP2 —epe16263 = +1,and ry 3 € {—epe3, —2&263}
52 x §2 —&p€1€2¢3 = —1, and both g 5 and ry 3 are even (at least one is 0)
CPz#@ —&p€1€2€3 = —1, and either g 5 or rq 3 is odd (the other one is 0)
g = det |:m,'_1 m,':| .
nj—1 n

Because the S! isotropies of these spheres must generate the homology of T2, it follows
that the determinant of the weights must satisfy &; = £1.

More generally, given (not necessarily adjacent) edges X* and E;f indM*, we will
denote the determinant of their weights by

m; m;
V,'jizdet R
! ni nj

Notice that r;_1; = & = %1 for all i (counting mod ¢) and that ; ; = 0 for some i
and j if and only if the corresponding spheres X; and X; in M are fixed by the same
circle subgroup of T2.

For the next few remarks, the isomorphisms mentioned are in the category of equiv-
ariant diffeomorphisms. If the number of fixed points r = 2, then M = §*.Ifr = 3 and
—eoe1&2 = 1 (resp. —1),then M = Cp? (resp. CP2). Note, when a parametrization of
T2 is specified, an orientation of M* determines an orientation of M, and vice versa.
For the case t = 4, M = CP2#CP?, CP2#CP2, §? x §2, or CP*#CP? depending on
the values of g, €1, €2, €3, 10,2, and r 3. The conditions on &; and r; ; that determine
M fort < 4 are given in Table 1 (see [49, page 552]):

For the cases when ¢ > 5, M is equivariantly diffeomorphic to a connected sum of
finitely many copies of $? x §2, CP?, and CP2. In particular, for every pair of adjacent
edges X7 | and X7 in 9 M*, there exists a third distinct edge E;f such that

(1) rj,; ==+l and E;‘ is not adjacent to X, or
(2) ri—1,j =+l and E;f is not adjacent to X*_,.

In the case of (1), one can connect an interior point of edge X to an interior point of
edge Zj.‘ using a simple curve L* through the interior of M*. This curve L* separates

M* into two disjoint regions, the closures of which we will denote by X 1 and X7.
For k = 1 or 2, consider N} := X /{L* ~ pt.}, i.e., the disk obtained from X} by
identifying the portion of its boundary containing L* to a point. The edges of d N}’
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(mj,n;)

(M1 mj51) (mj-1,m5-1)
(mji1,mj41) (mj_1,mj_1)
(myj, nj) (mj,n;)

#

(mi, m;) (mi,n;)

1%

(mi—1,mi-1) (miy1,mi41)

(mi-1,mi-1) (Miz1,ni41)
(mi,n;)

Fig.2 Decomposing the orbit space of a simply connected 4-dimensional T2-manifold with Euler charac-
teristic > 5

inherit weights from corresponding edges on 0 M*; see Fig. 2. Then N;’ corresponds to
the orbit space Ny /T? of some closed, simply connected, 4-dimensional T2-manifold
with3 < x(Ng) < x(M)—1.The curve L* in M* corresponds to an invariant 3-sphere
L in M. In particular, M is equivariantly diffeomorphic to the connected sum N{#N,
where the gluing occurs along L. Case (2) above leads similarly to a decomposition
of M into a connected sum N{#N; for some N; with 3 < x(N;) < x(M) — 1.
Notice that in N7, the e-value for the edges that meet at the point corresponding
to L* (namely X and E;‘) will be negative of the e-value at L* in N3 Note that this

type of decomposition of M can also be carried out if M = CP?#CP? or CP2#CP2,
but not for $2 x §2 or CP2#CP2; c.f. Remark 5.10 in [49]. Therefore, if x (M) > 5,
then by repeating the procedure outlined above, M* can always be partitioned into
finitely many pieces, each corresponding to CP?, CP2, or §? x §2. Furthermore, in
such a decomposition M = Ni#... Ny, given a pair N;, Nj41 for 1 <i <m — 1, the
decomposition is done in such a way that the vertices on dN; and 9 N;*_| at which the
gluing N;#N;41 occurs have opposite signs for €.

Now we establish curvature obstructions for the above spaces. In particular, our
key observation is the following:

Lemma 3.1 Let M be a compact, connected, 4-dimensional Riemannian manifold
with Ricy > 0. If S' acts effectively and by isometries on M and fixes a 2-dimensional
submanifold N pointwise, then N must be connected.

Proof Since S' acts effectively on M, the principal orbits are 1-dimensional. By The-
orem 2.5, the inclusion N < M is 1-connected. In particular, N is connected since
M is. O

Corollary 3.2 Let M be a compact, simply connected, 4-dimensional Riemannian man-
ifold with Ricy > 0. If T? acts effectively and by isometries on M, and if (m;, n;) and
(mj,nj) are weights for non-adjacent edges of 0M*, then r; j # 0. In particular,
neither S x §2 nor CP2#CP2 admit a metric with Rica > 0 that is invariant under a
T2-action.
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Proof If some r; ; = 0, then the weight vectors at the corresponding edges of d M* are
parallel, the circle isotropy groups associated with these edges agree, and hence this
circle has fixed-point setin M consisting of at least two two-dimensional components, a
contradiction to Lemma 3.1. From Table 1, the orbit structure of S% x S2 and CP2#CP2
require thatr; ; = Ofor (i, j) = (0, 2) or (1, 3). Thus, these manifolds cannot support
a metric with Ricy > 0 that is invariant under a T2-action. O

We can now establish the four-dimensional case of Theorem A.

Theorem 3.3 Let M be a closed, simply connected, 4-dimensional Riemannian man-
ifold with Ricy > 0. If T acts effectively and by isometries on M, then M is
equivariantly diffeomorphic to #f’: l(CP2 for some b > 0.

Proof Fix a parametrization of T2 and an orientation of M, which then fixes an orien-
tation of M*. If x (M) < 4, then the only candidates are 4 CP2, §2 x §2, CP2#CP2,
or CP2#CP2, up to a change in orientation. However, by Corollary 3.2, neither 52 x §2
nor CP2#CP2 can admit an invariant metric with Ricy > 0.

If x (M) > 5, then following the procedure outlined in the beginning of this section,
there exist non-adjacent edges of the boundary d M* of the orbit space whose respective
weights have determinant 1. The orbit space M* can then be separated along a curve
joining these two edges, and accordingly, M decomposes as N1#N, for some closed,
simply connected, 4-dimensional T2-manifolds Ny with 3 < X(Ny) < x(M) — 1,
for k = 1, 2. The weights of the edges of the boundaries d N;* are inherited from the
corresponding edges in d M*, along with the orientations of their boundaries. This
process can be repeated until M is written as a connected sum N#...#N,, such that
each Ny if equivariantly diffeomorphic to CP?, CP2, or §% x S2.

Because the weights of the edges of the boundaries d N;" are inherited from edges
of dM*, if ON;’ has non-adjacent edges whose weights have determinant zero for
some k, then so does d M*. Thus, by Corollary 3.2, each space Ny must be a complex
projective space, and furthermore, they all have the same orientation. O

4 Maximal Symmetry Rank for Ric; > 0 in dimension 6

In this section, we establish the six-dimensional case of Theorem A. In contrast to the
case of positive sectional curvature (Ric; > 0), the T3-action on M° need not have a
fixed point. Additionally, it does not follow immediately from the Connectedness and
Periodicity Lemmas that the second Betti number satisfies by (M) < 1 as it does in
the positive sectional curvature case. The following is the case in which we can argue
that bp(M) < 1:

Proposition 4.1 Let M be a 6-dimensional, closed, simply connected Riemannian
manifold with Ricy > 0. Suppose T acts effectively and by isometries on M. If
the T3-action has a fixed point, then M is diffeomorphic to S® or CP.

Proof Suppose p is a fixed point for the T3-action on M. Because the T>-action on
M is effective, the isotropy representation of T> on the normal space to p is faithful
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and hence has complex dimension at least three. In other words, p is an isolated

fixed point. At p, the isotropy representation T> — U(3) C O(6) is of the form

(z1, 22, 23) +— diag(z1, 22,23) € U(3) for some choice of parametrization of T3

and basis in T, M. For each i € {1, 2, 3}, define Sil C T3 to be the circle subgroup

parametrized by z; in this representation, and let N; denote the four-dimensional fixed-
1

point component MIS,’ .

By Theorem 2.5, the inclusions Nl.4 <> M® are 3-connected. This implies that
N; is simply connected since M is, that H2(N,-; 7)) = HZ(M; 7,) for all i, and that
H3(M®; Z) = 0 since it injects into H(N; Z), which is zero by Poincaré duality. In
particular, defining b = by (M®), we have x (M®) = 2 + 2b and X(Nf') =2+ b for
alli.

Furthermore, by Theorem 2.5, the inclusions N; N N; < N; are 1-connected, and
in particular, N; N N; is connected for all i # j. Also, each 2-dimensional intersection
N; N Nj is orientable by Lemma 2.1 and has an effective S! action with non-empty
fixed-point set that contains p. Thus, each N; N N is a 2-sphere, and x (N; N N;) = 2
forall i # j.

Because (N1 U N U N3)T3 - MTS, by Lemma 2.2 we have

X (M) > x (N1 UNyU N3)
=Y x(N) =Y x(Ni N Nj) + x(Ni 0 N2 N N3)

i i<j

=32+b) —3@2)+ x(N1 NNy N N3).

Since x (M) = 2 + 2b and N1 N N> N N3 is a non-empty collection of isolated fixed
points for the T3-action on M, we have

by(M)=b <2—x(N1NN2NN3) <1.

It follows that M has the homology groups of S or CP3, and moreover by Lemma
2.6, M has the cohomology of one of these spaces. Finally, Theorems 2.7, 2.8, and
2.9 along with the classification of closed, simply connected 6-manifolds imply that
M is diffeomorphic to S or CP3. O

To finish the proof of Theorem A in dimension six, it suffices to consider the case
where the torus action does not have a fixed point. We seek to show that x (M 6) =0
and, moreover, that M© is diffeomorphic to S 3 % §3 if the second Betti number of M
vanishes. In the interest of potentially proving M is diffeomorphic to $3 x §3 without
the assumption that b, (M) vanishes, we present the following partial progress:

Proposition4.2 Let M be a 6-dimensional, closed, simply connected Riemannian
manifold with Ricy > 0. Suppose T> acts effectively and by isometries on M. If
the T3-action has no fixed points, then y (M) = 0.

Moreover; the T>-action is not free, all non-trivial isotropy groups are isomorphic
to S, and the singular T3-orbits are isolated and diffeomorphic to T2. In particular,
the orbit space M* = M /T? is homeomorphic to S>.
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Proof The conclusion x (M) = 0 follows immediately from the equality x (M) =

x(M T3) from Lemma 2.2. First, we claim that all isotropy groups must be connected.
Otherwise, suppose I' C T3 is a finite isotropy group at a point p € M. Then the
torus T3/ I = T acts effectively and by isometries on the totally geodesic fixed-point
component N = M;. Because the action is effective, 3 < dim(N) < 5. Since N is
totally geodesicin M, N hasRic, > 0. Then by the symmetry rank bound for Ric, > 0,
we have 3 < L%J , which implies that dim(N) = 5. Then by Theorem 2.5, the
inclusion N < M is4-connected. Because M is simply connected, so is N, and hence
N is orientable. Thus by Lemma 2.6, H3(M;7Z) = H*(M;7) = H'(M;7) = 0.
Hence, it follows from Poincaré duality and the Universal Coefficients theorem that
x (M) > 0, which contradicts the hypothesis that the T3-action on M has no fixed
points. Therefore, all isotropy groups must be connected.

Next we claim that the components of the fixed-point set of any non-trivial isotropy
group must be 2-dimensional. Otherwise, there exists a connected isotropy group T?,
that fixes a connected submanifold F of dimension O or 4. If dim(F) = 0, then the
induced action of T3 on F is trivial, and hence the T3-action on M has a fixed point,
which is again a contradiction. If dim(F) = 4, then because F is fixed by T3, which
is isomorphic to S! or T2, the inclusion F <> M is at least 3-connected. Thus, F
is simply connected, and by Poincaré duality, has x (F) > 0. Hence, T> has a fixed
point in F C M, which again is a contradiction. Therefore, the components of the
fixed-point set of any non-trivial isotropy group must indeed be 2-dimensional.

It then follows from Part (2) of Lemma 2.1 that each non-trivial isotropy group
is isomorphic to S'. Thus, each singular orbit of the T3-action is diffeomorphic to
T2 and coincides with a component of the fixed-point set of some S! isotropy group.
Furthermore, given a point p on a singular orbit, because circles are the only possible
isotropy groups and components of their fixed-point sets are only 2-dimensional,
T2 := T3/S! must act freely on the normal space to the singular orbit at p. In particular,
the singular orbits are isolated.

Since M is simply connected and all T3-orbits are connected, the orbit space
M* = M/T? is a simply connected 3-manifold (see [3, Corollary 1V.4.7]). Because
the T-action on M only has S! isotropy groups whose fixed-point components are
2-dimensional and isolated, it follows that M* has no boundary, and by the resolution
to the Poincaré conjecture [S0-52], we have that M* is homeomorphic to S3. O

We remark that Galaz-Garcia and Searle show if M" is closed, simply connected,
and has T"~3-symmetry, if the orbit space M* = M" /T"~3 is homeomorphic to S3,
and if all non-trivial isotropy groups are isomorphic to S!, then o (M") = Z5~"+2,
where s is the number of isolated singular orbits [31, Proposition 4.5]. It then follows
from [33, Lemma 2-6] thatif n = 6 and M' 6 has non-negative sectional curvature, then
s < 4, and hence m (M 6) = 0 (see [13, Proposition 4.12]). Escher and Searle then
use these observations to prove such a manifold M® must be diffeomorphic to §3 x §3
[13, Proposition 4.13]. Their conclusion relies on the fact that M* has non-negative
curvature in the sense of Alexandrov geometry. Since our condition of Ricy > 0
allows for some negative sectional curvatures, we do not know whether it is possible
to establish an upper bound on s in our case. This leaves us with the following:
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Remark 4.3 If M is a manifold as in Proposition 4.2, then by [31, Proposition 4.5],
(M) =78 —4 where s is the number of isolated singular orbits. If one could show
that s = 4, then it would follow as in the proof of [13, Proposition 4.13] that M is
diffeomorphic to §3 x $3. Such aresult, along with those established here, would imply
that the only closed, simply connected 6-manifolds with Rico > 0 and T3-symmetry
are S°, CP3, and S x $3.

Finally, we include the following observation, as it is used in the proof of Theorem
D on the non-simply connected case.

Corollary 4.4 If S3 x S is equipped with a metric having Ricy > 0 that is invariant
under an effective T3-action, then every non-trivial isotropy group is isomorphic to
S!, and the fixed-point set of any such S is connected and diffeomorphic to T>.

Proof In Proposition 4.2, we established that every non-trivial isotropy group is iso-
morphic to S!, and the components of the fixed-point sets of of these S! isotropies
must be isolated and diffeomorphic to T>. Now given an arbitrary S' isotropy group,
by Lemma 2.2, we have

3 b ((53 x 53)51) < b8P x 8% =4

1 . .
Therefore, (S x $3)°> must consist of a single torus T2. O

5 Maximal Symmetry Rank for Ric; > 0 in Dimensions 2n > 8

In this section, we finish the proof of Theorem A by induction. The result in dimension
six is used to prove dimension eight, and this result is then used as our base for higher
dimensions.

Theorem 5.1 Let M be closed, simply connected Riemannian manifold of even dimen-
sion 2n > 8 with Ricy > 0. If T" acts effectively and by isometries on M, then M is
either diffeomorphic to S*" or homeomorphic to CP".

Proof We induct over the dimension 2n > 8, and we prove the base case and the
induction step simultaneously.

First, we claim that there exists a simply connected fixed-point component N of
a circle subgroup in T” such that N has codimension two and such that the induced
torus action on N has a fixed point. All of this follows from Lemma 7.8 in [47], but we
include a direct argument here for completeness. Because n > 4, by Lemma 2.3, there
exist circle subgroups of T"” whose fixed-point sets are non-empty. Among all the circle
subgroups and all components of their fixed-point sets, choose a subgroup S' and a
component N of its fixed-point set such that N has maximal dimension. By Lemma
2.1, N is invariant under the action of T"~! = T" / S! and because N was chosen to be
maximal, the T"~!-action on N must be almost effective. Thus dim N > n — 1 > 3.
On the other hand, because N is t'otally geodesic, it has Rico > 0, and hence the
symmetry rank of N is at most L%J Because dim M = 2n and N has even
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codimension in M (Lemma 2.1), it follows that dim N = 2n — 2. Thus by Theorem
2.5, the inclusion N < M is (2n — 3)-connected, and thus N is simply connected.
Note moreover that the odd Betti numbers of M vanish by the Periodicity Lemma,
and hence the odd Betti numbers of N vanish by Lemma 2.2. In particular, x (N) > 0
and hence the T~ !-action on N has a fixed point.

In summary, N is a closed, (2rn — 2)-dimensional, simply connected manifold with
Ric, > 0 and maximal symmetry rank, and the induced T"~!-action on N has a fixed
point. For the base case 2n = 8, it follows from Proposition 4.1 that N is diffeomorphic
to S® or CP>. In the cases 21 > 10, it follows from the induction hypothesis that N is
diffeomorphic to $>"~2 or homeomorphic to CP"~!. Because N < M is (2n — 3)-
connected, M has the cohomology of $" or CP" up to degree 2n — 3, and it follows
from Poincaré duality that M is a cohomology S or CP" (see [43, Lemma 4.8.(1)]).
Because M is simply connected, M is either a homotopy S2* or CP" by Theorem 2.7,
and it follows from Theorems 2.8 and 2.9 that M is either diffeomorphic to $*" or
homeomorphic to CP".

O

6 Maximal Symmetry Rank for Ricy > 0 withk > 3

In this section, we prove Theorems B and C. First, we establish general results for
manifolds with Ricy > 0 for k > 3 that have maximal symmetry rank. The second
author shows in [47] that any closed, connected, n-dimensional Riemannian manifold
with Ricy > 0 for some k € {3,...,n — 1} has symmetry rank bounded above by
| 2% | — 1. Notice if k = 3, orif k = 4 and n is odd, then this upper bound is equal to
L%J , which is the same bound as for positive sectional curvature or Ricp > 0. Our
first lemma applies the Isotropy Rank Lemma to show that manifolds with Ricy > 0
and maximal symmetry rank often have circle actions with codimension-2 fixed-point
components. We will also need an analogous topological statement for rational spheres.
These results are contained in the following:

Lemma 6.1 Let M be a closed, n-dimensional Riemannian manifold equipped with
an effective, isometric action by T". Assume one of the following:

(a) M hasRicy >0with3 <k <n—5Sandr = L#J_l'

(b) M is a rational homology sphere withn > 2 and r > L%J

Then there exists a circle S' C T" whose fixed-point set contains a component of
codimension 2 in M. In addition, the lower bound on r in (b) is an equality.

Proof First we prove the lemma under the assumption of (a). Because n > k + 5, it
follows from the equation r = L#J — 1 that r > k + 1. Thus by Lemma 2.3, there
exists a circle subgroup of T" with non-empty fixed-point set in M. Now among all the
components of fixed-point sets for all circle subgroups of T", choose a component F/
whose dimension f is maximal, and let S! denote a circle that fixes F. Because the
T" action on M is effective, and since the codimension of F is even (Lemma 2.1), we
must have f < n —2. By Lemma 2.1, since the dimension of F is maximal, the action
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of T 1= T’/S1 on F must be almost effective. Thus, f >r — 1 = L#J —2.In
particular, since n > k+5, we have f > L#J -2 > LL;SJ —2 =k.Nowif f =k,
then the constraints |_"+kj L@J andn > k+Simply thatn =k +5= f + 5,
which contradicts the fact that F has even codimension in M. Hence, we must have
f = k + 1, and because F is totally geodesic in M, F has RICk > 0. Then by the
Maximal Symmetry Rank bound appliedto F, wehaver —1 < L J — 1. Combining

this with the assumption r = | % | — 1 impliesn +k < f + k + 3. Therefore,
because n = f mod 2 and f < n — 2, it follows that f =n — 2.

Now we prove the lemma under the assumption of (b). By Lemma 2.4, there exists a
subgroup T"~% with non-empty fixed-point set, where § is zero if n is even and one if n is
odd. Let F be a fixed-point component of T" %, Since the action is effective, the isotropy
representation at a normal space v, F to F is faithful. Hence r — § < é codim F. In

n—HJ

addition, 4 3 codlm F <%= a by Lemma 2.1. By the assumption r > L it follows

thatr —8 = 5 codim F = 5 .In particular, r = L'Hz'l |. In addition, there are exactly
r — ¢ irreducible subrepresentations, and the representation is equivalent to the map
sending (z1,...,2,—s) € T3 1o diag(z1,...,2,—s) € U(r —68) C SO(v,F). As
in the proof of Proposition 4.1, we can intersect the kernels of any r — § — 1 of the
irreducible subrepresentations to obtain the desired circle. O

Next, we establish a rigidity result for highly connected manifolds with Ricy > 0
that have a codimension-two circle fixed-point component.

Proposition 6.2 Let M be a closed, n-dimensional Riemannian manifold with Ricy >
0. Assume that 3 < k < n — 3 and moreover that k is odd if k = % IfMis (k—1)-
connected, and if S' acts effectively and by isometries on M such that its fixed-point
set contains a component N of codimension 2 in M, then M is diffeomorphic to S".

Proof Firstassume 3 < k < "— By the Connectedness Lemma, the inclusion N —

M is (n—k—1)-connected. In partlcular N is simply connected sincen—k—1 > 2. We
claim that M" is a cohomology sphere. Given the claim, Theorems 2.7 and 2.8 imply
that M is diffeomorphic to S”. To prove the claim, we apply the Periodicity Lemma to
the inclusion N < M, which has codimension two and is (n — k — 1)-connected. We
then have e € H?(M) that induces periodicity from degree k — 1 to degree n — (k — 1).
That is, the map H'(M) — H'*t?(M) induced by multiplication by e is surjective
fork—1<i<n—(k—1)—2andinjectivefork —1 <i <n—(k—1) —2.
Because M is (k — 1)-connected and k > 3, we have e = 0, so combining with the
injectivity property implies that H/(M) = 0 forall 0 < i < n — (k — 1) — 2. Since
n—k—-1)—-2=> %, Poincaré duality implies that M is cohomology sphere, as
claimed.

Second assume 1+ 2 < k < n—3.The condition that M is (k—1)-connected implies
that M is ahomology sphere by Poincaré duality. Since M is simply connected, we see
as in the previous case that N is simply connected and hence that M is diffeomorphic
to S” by Theorems 2.7 and 2.8.

Finally assume k = 5 and that k is odd. By the Connectedness Lemma, N < M
is (k — 1)-connected, and hence N is (k — 2)-connected. Thus by Poincaré duality,
X (N) =2+br_1(N).Because M is (k— 1)-connected, it follows from the estimate on
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the sum of even Betti numbers (Lemma 2.2) that N is the only connected component
of M5 and by_1(N) = 0. Thus, 2 = x(N) = x(MS') = x(M) = 2 — be(M),
and hence by (M) = 0. Therefore, M and N are both simply connected cohomology
spheres, and by Theorems 2.7 and 2.8, M is diffeomorphic to S”. O

Now we prove our second main result:

Theorem 6.3 (Theorem B) Ler M" be a (k — 1)-connected, closed Riemannian man-
ifold with Ricy > 0 for some k > 3. If n # 7 and if M" admits an effective, isometric
T -action with r = L#J — 1, then one of the following occurs:

(1) M is diffeomorphic to S" and k < 4, with equality only if n is odd.
(2) M is diffeomorphic to S* x S3 and k = 3.

Proof The claim on k in (1) follows as soon as we know that M is a rational sphere
by combining the assumption r = L#J — 1 with the upper bound r < L%J from
Lemma 6.1. The claim on k in (2) follows from the assumption that M is (k — 1)-
connected. It suffices to prove the diffeomorphism claims.

First, assume k < 5. Sincen > 2k +1 > 7and n # 7, we have k < n — 5. Hence
Lemma 6.1 implies the existence of a circle S' with fixed-point set of codimension
two, and Proposition 6.2 implies M is diffeomorphic to S”.

Second, assume k > 5. By the assumption that M is (k— 1)-connected and Poincaré
duality, we see that M is a homology sphere.

Since k > 3, the assumption on r implies r > L%J By Lemma 6.1, there exists
a subgroup S! having a fixed-point component N with codimension two. Ifk < n —3,
then Proposition 6.2 implies again that M is diffeomorphic to S”. If k > n —2, then we
apply Lemma 6.1 once more to conclude that r = L%J and hence that n < 6. In this
range, simply connected homology spheres are diffeomorphic to standard spheres, so
again M is diffeomorphic to S”.

Third, assume that k = 7 and that the fixed-point set of T" is non-empty. For
any fixed-point component F/ and any p € F/, the isotropy representation T" —

SO(v, F /) on the normal space to F /" is faithful since the action on M is effective.
Hence r < % Since f > 0, the lower bound on r implies k = 3 and r = 3. Asin
the proof of Proposition 4.1, there exists a circle S! with a fixed-point component N*
of codimension two. By Proposition 6.2, M is diffeomorphic to S°.

Finally, assume that k = % and that fixed-point set of T" is empty. Hence x (M) =
x(M™) = 0. On the other hand, x (M) = 2 + (—1)¥bp(M) since M?** is (k — 1)-
connected. So it follows that k is odd and by (M) = 2. If k > 5, then Lemma 6.1
applies since n = 2k > k + 5, and we get a circle S' whose fixed-point set has a
component N2¥=2 of codimension two. But then Proposition 6.2 implies that M is a
sphere, which contradicts the fact that by (M) = 2, so we must have k = 3. Corollary
2.6 in [13] now implies that M is diffeomorphic to 3 x §3. o

Nextwe apply Lemma 6.1 to prove our third main result. Recall that M being an integral
cohomology CP up to degree k 4+ 2 means that H! (M;7Z) = 0, HZ(M; 7) = 7,
and the map H'(M;Z) — H'*?(M; Z) induced by multiplication by a generator
X € HZ(M; Z) is surjective for 0 < i < k and injective for 0 < i < k.
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Theorem 6.4 (Theorem C) Fix k > 3, and let M" be a simply connected, closed
Riemannian manifold. Assume further that M" is an integral cohomology CP up to
degree k 4+ 2. If M has Ricy > 0 and admits an effective, isometric T"-action with
r= I_#J — 1, then n is even, M" is homeomorphic to (CP%, and k = 3.

Proof First, we claim it suffices to prove that M has the cohomology of CP3 in all
degrees by Theorems 2.7 and 2.9. Indeed, if M is a cohomology CP2, it follows

that x (M) > 0, that T" has a fixed point, and hence that r < % From the equation

r= L%J —1,sincenisevenandk > 3, wehavek = 3andr = 4. As in the proof of
Proposition 4.1, the isotropy representation T" — U(r) at a fixed point of the T"-action
is of the form (zy,...,z) — diag(zy, ..., z,) for a certain choice of coordinates.
Foreach j e {1,...,r}, letS i C T" denote the circle subgroup parametrized by z;,

and let N; denote the fixed-point set of S}., which is (n — 2)-dimensional. Defining

F% = ﬂ;;il Njforeachi € {2,...,r — 1}, we have a chain of inclusions
F*CcFlc...cF'"2cM".

Because each space F2 is a fixed-point component of a circle action on the subsequent
space in the chain, it follows from [67] that each F? is a cohomology CP%, and
the generator of H 2(F%, 7) restricts to a generator of H 2(F%=2.7) for all i. In
particular, each inclusion induces isomorphisms on cohomology in all degrees less
than the dimension of the submanifold. By the universal coefficients theorem and
Hurewicz’s theorem, it follows that each inclusion is 3-connected. Now F? is then
homeomorphic to CP? by Freedman’s classification in dimension four, so we can
apply Theorems 2.7 and 2.9 to conclude that M" is homeomorphic to CP3.

We now proceed to the proof that M has the cohomology of CP? in all degrees.
Since we already know the integral cohomology is correct in degrees up to k + 2,
the rest follows by Poincaré duality if k + 2 > # (for proof of a similar fact in

rational cohomology, see [43, Lemma 4.8.(1)]). We may therefore assume k < %

In particular, we have n > 2k 4+ 2 > 8, and hence k < % < n — 4. Lemma
6.1 therefore implies the existence of a circle S! containing a fixed-point component
N"~2 of codimension two. By Theorem 2.5, the inclusion N < M is (n — k — 1)-
connected, and by Lemma 2.6, there exists e € H 2(M ) such that the homomorphism
Ue : H'(M) — H't?(M) is surjective for k — 1 < i < n — k — 1 and injective
fork — 1 <i <n—k— 1. Because M is an integral cohomology CP up to degree
k+2>5,ifx € H*(M) = Z denotes a generator, then ¢ = Ax for some A € Z. We
will show that A = +£1.

Define [ := L%J. Then taking i = 2/ above, we have that U(Ax) : HY* (M) -
HZ+2(M) is an isomorphism if k is even and an epimorphism if k is odd. However,
because M is an integral cohomology CP up to degree k + 2, it follows that this map is
in fact an isomorphism Z — Z in either case. Thus, since x/ and x/*! are a generators
of H*!(M) and H?!*2(M), respectively, it follows that Ax/*! = £x/*!1 and hence
, = #1. Therefore, M has the cohomology of CP"/?, and the result follows. O
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7 Fundamental Groups for Maximal Symmetry Rank

In this section, we prove our last main result, which deals with fundamental groups of
manifolds with Ricy > 0 and maximal symmetry rank:

Theorem 7.1 (Theorem D) Let M" be a closed, connected Riemannian manifold with
Ricy > 0 and T" symmetry with r = L%J If m1 (M) is non-trivial, then one of the
following occurs:

(1) M is homotopy equivalent to RP" or a lens space, or
(2) M has dimension six and, if additionally the universal cover is S° x S3, then
(M) Z Z; X Ly, for somel,m > 1.

Proof We may assume n > 3, since otherwise the condition Ric, > 0 is vacuous. We
set ' = w (M) and pullback the metric and the torus action to the universal cover
M. We get a T"-action on M that commutes with the free action of I" on M by deck
transformations. Note that I is finite by Myers’ theorem.

Following the proofs of Theorem 1.1 in [47] and Theorem A in the simply connected
case, we arrive at one of the following situations:

(i) There exists S! € T" such that the fixed-point set M5 has a unique component
N"=2 with codimension two. Moreover, M is a cohomology S" or CP3.
(ii) The universal cover is S° x S, and the torus T3 contains a circle S! whose
fixed-point set is connected and diffeomorphic to T2.
(iii) The universal cover is CP%#...#CP2, and the torus T2 contains t = x (M)
distinct isotropy groups S!,..., S,1 whose fixed-point sets have a unique $°
component.

Indeed, Lemma 6.2 in [47] implies that (i) holds in the odd-dimensional case. For the
even-dimensional case, if the T" action has no fixed point, then (ii) holds by Corollary
4.4. If instead the T" action has a fixed point, then the existence statements of (i) and
(iii) were established in the proofs of the simply connected cases and the uniqueness
statements follow from the generalizations of Frankel’s theorem provided by Part 2 of
Theorem 2.5 and Lemma 3.1, respectively.

Suppose first we are in Case (i) and that M is a cohomology S”, then N is a
cohomology $”~2 by the sum of Betti numbers estimate (Lemma 2.2). Since the
actions by I' and T" commute, I acts freely on both S” and $"~2. It follows that I is
cyclic (see [19, Lemma 1.8]) in general and moreover Z; if n is even. By [41, Theorem
3.4], it follows that M is homotopy equivalent to real projective space or a lens space,
as required.

Next suppose we are in Case (i) and that Misa cohomology CP3. By [67, Theorem
7.2], N is acohomology CP3~'. Once again, I" acts freely on both of these manifolds.
In particular, the order of I divides both of their Euler characteristics. Since these
differ by one, I" is trivial, a contradiction.

Next suppose we are in Case (ii). Let S! be a non-trivial isotropy group in T> whose
fixed-point set F' := M S' consists of a unique 2-dimensional torus. Fix any x € F, and
consider the diffeomorphism T2 := T3/S! — F givenby g — g - x. Using the inverse
of this map, we obtain another a map I' — T? denoted by y > gy and determined

@ Springer



Positive Intermediate Ricci Curvature with Maximal Symmetry Rank Page210f24 129

by the property that y - x = g,, - x. We claim that I' — T2 is a group homomorphism.
Given «, B € I', we find that

ap-x=(af) - x=a-(B-x)=a-(gp-x)
=gp-(a-x)=gp (8o X) = (8ugp) " X,

where we have used that T? is abelian and that the T?- and '-actions commute. By the
injectivity of the map T2 — F, we find that 8up = 8a8p,and hence the map I' — T?
is indeed a group homomorphism. Since I acts freely, this map is an injection. Hence
I" may be regarded as a subgroup of T2, and it follows then that I is either cyclic or a
two-fold product of cyclic groups.

Finally, suppose we are in Case (iii). It suffices to prove that x (M) = 2, since
then M = S* and we are in the situation of (i). We suppose then that x (M) > 3
and seek a contradiction. After possibly relabeling, we may assume that the first two
circles, S{ and S%, have the property that their respective S fixed-point components
contain { fo, f1} and { f1, f>}, respectively, where fy, f1, and f> are distinct isolated
fixed points of the T2-action (see Sect. 3). Since the free I'-action commutes with the
T2_action, T acts freely on both of the sets { fo, f1} and { fi, f>}, which contradicts the
assumption that I" is non-trivial. O
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