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Abstract
Generalizing the foundational work of Grove and Searle, the second author proved
upper bounds on the ranks of isometry groups of closed Riemannian manifolds with
positive intermediate Ricci curvature and established some topological rigidity results
in the case of maximal symmetry rank and positive second intermediate Ricci curva-
ture. Here, we recover even stronger topological rigidity, including results for higher
intermediate Ricci curvatures and for manifolds with non-trivial fundamental groups.
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1 Introduction

The study of manifolds with lower curvature bounds goes back to the origins of Rie-
mannian geometry. In dimensions at least 3, there are many notions of lower curvature
bounds, two of the most common being positive sectional curvature and positive Ricci
curvature. For sectional curvature, the classification of positively curved manifolds is
a wide open problem. However, apart from the compact rank one symmetric spaces
Sn ,CPn ,HPn ,OP2, the only dimensions that are known to admit other closed, simply
connected manifolds with positive sectional curvature are 6, 7, 12, 13, and 24; see
[80]. In contrast, for the weaker condition of positive Ricci curvature, there are far
more known examples, including sequences of examples in any fixed dimension ≥ 4
with unbounded total Betti numbers [69]; see also [4, 5, 55, 56, 77].

B Lawrence Mouillé
lawrence.mouille@gmail.com

Lee Kennard
ltkennar@syr.edu

1 Department of Mathematics, Syracuse University, Syracuse, NY, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12220-024-01575-z&domain=pdf
http://orcid.org/0000-0001-6317-8728


129 Page 2 of 24 L. Kennard, L. Mouillé

For positive sectional curvature, the Grove Symmetry Program has resulted in
major classifications such as those in [16, 18, 26, 28, 29, 33, 38, 40, 57, 70, 73, 74],
constructions of new examples of manifolds with lower curvature bounds as in [10,
24, 25, 32, 54], and discoveries of unexpected and fundamental connections between
curvature and topology [62, 75]. The overarching goal of this program, initiated by
Karsten Grove in the 1990s, is to classify positively curved spaces with large isometry
groups. A foundational result in the program is Grove and Searle’s maximal symmetry
rank theorem: Any closed, connected, n-dimensional manifold with positive sectional
curvature has symmetry rank (i.e., rank of the isometry group) bounded above by
� n+1

2 �, and in the case of equality (i.e., maximal symmetry rank), the manifold is
diffeomorphic to Sn ,RPn ,CPn/2, or a lens space [28]. Galaz-García later strengthened
this conclusion to an equivariant diffeomorphism classification [20].

Because of the success of the Grove Symmetry Program, it is natural to ask which
obstructions to positive sectional curvature generalize to weaker curvature conditions
(e.g., positive Ricci curvature, non-negative sectional curvature, quasipositive curva-
ture, almost positive curvature). However, it is typical that tools from the positive
sectional curvature setting do not carry over to weaker curvature conditions. One
exception was established by the second author for positive intermediate Ricci curva-
ture.

Definition Given an n-dimensional Riemannian manifold M and k ∈ {1, . . . , n − 1},
we say M has positive kth-intermediate Ricci curvature (Rick > 0) if, for every set
of orthonormal vectors x, y1, . . . , yk tangent to M , the sum of sectional curvatures∑

i sec(x, yi ) is positive.
1

Note M has Rick > 0 if and only if, for every unit vector x tangent to M , the sum
of any k + 1 eigenvalues of the Jacobi (directional curvature) operator y �→ R(y, x)x
is positive; see [60, Lemma 1.2]. Thus, Ric1 > 0 is equivalent to positive sectional
curvature, Ricn−1 > 0 is equivalent to positive Ricci curvature, and if Rick > 0 for
some k, then Ricl > 0 for all l ≥ k. Because the condition Rick > 0 is vacuous for
dimensions n ≤ k, we use the convention that an assumption of Rick > 0 implies
n ≥ k + 1.

Several results for manifolds with sectional curvature lower bounds have been
extended to intermediate Ricci curvature lower bounds. These include generalizations
of the Synge theorem and Weinstein fixed point theorem [72], the Gromoll-Meyer
theorem, and Cheeger-Gromoll Soul theorem [35, 64], the quarter-pinched sphere the-
orem [36, 63, 79], and the Heintze-Karcher inequality [6]. Also, comparison results
have been established by Guijarro and Wilhelm [34–36], and examples and construc-
tions can be found in [1, 11, 58–61]. For a collection of publications and preprints
concerning intermediate Ricci curvature, see [45].

In [46, 47], the second author shows that closed, connected, n-dimensional mani-
folds with Ric2 > 0 have symmetry rank bounded above by � n+1

2 �, the same bound
Grove and Searle established for positive sectional curvature. Furthermore, the second
author proved the following rigidity statement in the odd-dimensional case:

1 This notion of positive intermediateRicci curvature should not be confusedwith k-positiveRicci curvature
as defined in [76]; see also [8, 78].
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Theorem 1.1 ([47]) If Tn acts effectively by isometries on a closed, simply connected
Riemannian (2n − 1)-manifold M with Ric2 > 0, then M is diffeomorphic to S2n−1.

The second author also proved a rigidity statement in even dimensions under the
additional assumptions that the dimension is at least eight and the second Betti number
is at most one. Here, we remove both of these assumptions and prove the following,
our main result:

Theorem A If Tn acts effectively by isometries on a closed, simply connected Rieman-
nian (2n)-manifold M with Ric2 > 0, then one of the following holds:

(1) M is at least six-dimensional and is diffeomorphic to S2n or homeomorphic to
CPn,

(2) M is six-dimensional and χ(M) = 0, or
(3) M is equivariantly diffeomorphic to S4 with a linear T2-action or to an equivariant

connected sum CP2# . . . #CP2 with a linear T2-action on each summand.

Since S2n andCPn admitmetricswith positive sectional curvature and Tn symmetry,
Theorems 1.1 and A may be viewed as providing a complete homeomorphism clas-
sification in dimensions at least seven of manifolds admitting metrics with Ric2 > 0
and maximal symmetry rank. As our methods differ from those in Grove-Searle [28],
we do not know whether it is possible to upgrade the rigidity to equivariant diffeo-
morphism as in the case of positive sectional curvature, even in view of the work of
Montgomery and Yang that implies equivariance for a circle subaction but perhaps
not for the torus action itself (see [48] and Theorem 2.8 below).

In dimension six, there is ametric on S3×S3 with Ric2 > 0 andmaximal symmetry
rank; see [47, Example 2.3]. We remark that, if additionally M6 is 2-connected, then
the conclusion χ(M6) = 0 in (2) is sufficient to imply that M6 is diffeomorphic to
S3 × S3 (see Remark 4.3 below). We do not know if other closed, simply connected 6-
manifolds with χ(M) = 0 admit metrics with Ric2 > 0. We remark that if a T3-action
M6 has a fixed point, then we prove in Proposition 4.1 below that M6 is diffeomorphic
to either S6 or CP3.

In dimension four, Orlik and Raymond showed that a smooth, simply connected,
closed four-manifold with T2 symmetry is equivariantly diffeomorphic to a connected
sumof S4 and copies of S2×S2,CP2, andCP2 (i.e.,CP2 with the opposite orientation)
[49]. Theorem A shows that if additionally M4 admits a T2-invariant metric with
Ric2 > 0, then S2 × S2 summands do not appear and moreover that all summands
of CP2 come with the same orientation. However, we currently cannot rule out the
cases b ≥ 2, and for these values, it is unknown whether any such manifold admits
Ric2 > 0, much less whether such a metric can be invariant under a T2-action. Finally,
we note that though S2 × S2 cannot admit a metric with Ric2 > 0 and T2-symmetry,
it does admit one with S1-symmetry; see [47, Example 2.3]. In fact, this Ric2 > 0
metric on S2 × S2 is invariant under a cohomogeneity one action by SO(3).

We remark now on other known generalizations of Grove and Searle’s maximal
symmetry rank theorem. First, in an unpublished manuscript, Wilking extended the
Grove and Searle symmetry rank bound to manifolds that contain a point at which
all sectional curvatures are positive [71]; for the proof, see [20, Theorem 1.3]. Galaz-
García then extended theGrove andSearle classification formaximal symmetry rank to
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manifolds with quasipositive curvature (sectional curvature non-negative everywhere
and positive at a point) in dimensions four and five [20]. The second author established
a generalized version of Wilking’s symmetry rank bound for manifolds which have a
point at which all intermediate Ricci curvatures are positive [46].

Second, for the case of positive weighted sectional curvature, the first author and
Wylie proved the symmetry rank bound is the same as for positive sectional curvature,
and they recover rigidity in the equality case up to homeomorphism; see [42].

Third, for non-negative sectional curvature, Galaz-García and Searle conjectured
a generalization of the maximal symmetry rank theorem [30], which was later refor-
mulated and sharpened by Escher and Searle [14].

Work of Galaz-García and Searle [30], Galaz-García and Kerin [22], and Escher
and Searle [14] confirm this conjecture up to dimension nine and moreover prove the
symmetry rank upper bound in dimensions up to 12.

With the added assumption that the maximal torus action is isotropy-maximal,
the conjecture was shown by Escher and Searle to hold in all dimensions in [14].
Analogously, the conjecture was established up to rational homotopy equivalence by
Galaz-García, Kerin, and Radeschi in [23] in the case where the assumption of non-
negative sectional curvature is replaced with rational ellipticity, which is expected to
follow from non-negative sectional curvature by the Bott-Grove-Halperin ellipticity
conjecture (see [21, 27, 37]).

Finally, for the situation where the torus is replaced by an elementary p-group
for some prime p, Fang and Rong proved the optimal upper bound and obtained
homeomorphism rigidity in the equality case for p larger than a constant depending
only on the manifold dimension [17]. There are two analogs of this result for p = 2
(see [15] and [41, Theorems A and B]).

Our second main result is a rigidity statement for Riemannian manifolds with
Rick > 0 for larger values of k. More precisely, given a closed connected n-
dimensional Riemannian manifold M , the second author proved that the symmetry
rank of Mn is at most

⌊ n+k
2

⌋− 1 if Mn has Rick > 0 with k ≥ 3 (see [47, Proposition
1.6]). This bound agrees with the classical bound of

⌊ n+1
2

⌋
for k = 3 and for k = 4

when n is odd. Since the condition Rick > 0 growsweaker as k increases, the available
tools also grow weaker for manifolds with Rick > 0, and one should not expect to be
able to prove an analog of Theorem A in this setting without stronger hypotheses. We
prove two results along these lines. The first is based on the model spaces of spheres
and S3 × S3.

Theorem B Fix k ≥ 3, and assume Mn is a (k − 1)-connected, closed Riemannian
manifold with n 	= 7 if k = 3. If Mn has Rick > 0 and admits an isometric Tr -action
with r = ⌊ n+k

2

⌋ − 1, then one of the following occurs:

(1) M is diffeomorphic to Sn and k ≤ 4, with equality only if n is odd.
(2) M is diffeomorphic to S3 × S3 and k = 3.

The conclusions in (1) and (2) are optimal in the sense that Sn and S3 × S3 admit
metrics with Rick > 0 and maximal symmetry rank for all values of k shown. The
second result for large values of k is modeled on complex projective space:
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Theorem C Fix k ≥ 3, and let Mn be a simply connected, closedRiemannianmanifold.
Assume further that Mn is an integral cohomology CP up to degree k + 2. If M has
Rick > 0 and admits an effective, isometric Tr -action with r = ⌊ n+k

2

⌋ − 1, then n is

even, Mn is homeomorphic to CP
n
2 , and k = 3.

By the assumption on the cohomology of M , we mean that H1(M;Z) ∼= 0,
H2(M;Z) ∼= Z, and the map Hi (M;Z) → Hi+2(M;Z) induced by multiplica-
tion by a generator x ∈ H2(M;Z) is surjective for 0 ≤ i < k and injective for
0 < i ≤ k. As with Theorem A, we cannot obtain rigidity up to diffeomorphism, and
we do not know whether any exotic CP

n
2 admits Ric3 > 0 and maximal symmetry

rank.
Although Theorems B and C partially generalize Theorem A under stronger topo-

logical assumptions, we note that there are potentially more examples of manifolds
that satisfy Rick > 0 with k ≥ 3 than those listed in the conclusions of these results.
For example, under the respective product metrics, S2 × S2 has Ric3 > 0 with T2-
symmetry, S3 × S2 has Ric4 > 0 with T3-symmetry, and S3 × S3 has Ric4 > 0 and
T4-symmetry.

Finally, we analyze the case of non-trivial fundamental group:

Theorem D Let Mn be a closed, connected Riemannian manifold with Ric2 > 0 and
Tr symmetry with r = ⌊ n+1

2

⌋
. Ifπ1(M) is non-trivial, then one of the following occurs:

(1) M is homotopy equivalent to RPn or a lens space, or
(2) M has dimension six and, if additionally the universal cover is S3 × S3, then

π1(M) ∼= Zl × Zm for some l,m ≥ 1.

The standard models in (1) can already be realized with positive sectional curvature,
and in the case of maximal symmetry rank and positive sectional curvature, Grove and
Searle’s result recovers rigidity up to diffeomorphism instead of just homotopy, and
Galaz-García later strengthened this rigidity to equivariant diffeomorphism. Also note
that our result rules out the possibility that the universal cover is homeomorphic toCP

n
2

when M is not simply connected. Finally, we remark that the fundamental groups as in
(2) can be realized by the known metric on S3 × S3 with T3 symmetry and Ric2 > 0.
Indeed, the product of the Hopf actions on the S3 factors gives rise to a T2-subaction of
the T3-action. Since this action is free, we obtain products of lens space S3/Zl×S3/Zm

as examples, as well as quotients (S3 × S3)/Zl by possibly diagonal actions, for
example, (S3 × S3)/{±(1, 1)} = SO(4). We also remark that other finite groups act
freely on S3 × S3, including all finite subgroups of Spin(4) ∼= S3 × S3 and, more
surprisingly, the two-fold product S3 × S3 of the symmetric group on three letters (see
Davis [9] and [39]). Finally, we note that Domínguez-Vázquez, González-Álvaro, and
Rodríguez-Vázquez have determined that the Wallach flag manifold W 6 = SU(3)/T2

with the normal homogeneous metric has Ric2 > 0 [12]. This metric has a free,
isometric S3-action and has T2-symmetry, which is not maximal for Ric2 > 0 in
dimension 6.

Regarding the non-simply connected case of Theorems B and C, the conclusions
are the same as in Part (1) of Theorem D under the modification that the cohomology
of the universal cover of M satisfies the topological assumptions stated in Theorems
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B and C. The proof is a straightforward modification of the proof we give for the case
of k = 2, so it is omitted.

The key tool for establishing Theorem A is the Connectedness Lemma (Theorem
2.5). In dimension 4, we use this tool in conjunction with topological results by Orlik
and Raymond [49]; see Sect. 3. In dimension 6, we break the argument into the cases
according to whether the torus has a fixed point; see Sect. 4. If the torus has a fixed
point, we employ an argument involving Euler characteristics to rule out connected
sums of complex projective spaces. Curiously, this argument only eliminates such
connected sums in dimensions strictly larger than four. If the torus has no fixed points,
then it follows immediately that χ(M) = χ(MT3) = 0. For dimensions 8 or greater,
we prove that the torus has a fixed point, and the result then follows by induction using
the Connectedness Lemma, noting in dimension eight that the induced torus action on
the 6-dimensional submanifold involved in the proof has a fixed point; see Sect. 5.

To prove Theorems B and C, we show in most cases that such manifolds must have
a circle action whose fixed-point set contains a component of codimension 2, and then
we apply the Connectedness Lemma (Theorem 2.5); see Sect. 6. The demand for the
additional topological assumptions is a consequence of the fact that the Connectedness
Lemma provides less information about the topology of M as k increases.

Theorem D is proved in Sect. 7. It borrows standard and elementary results from
group cohomology that have been used previously in the positive sectional curvature
case together with special arguments in the cases where the universal cover M̃ is
diffeomorphic to S3 × S3 or CP2# . . . #CP2.

2 Preliminaries

We begin with a discussion of fixed-point sets. Given an isometric action of a Lie
group G on a Riemannian manifold M , we let MG denote the fixed-point set of the
G-action on M . Given a point p ∈ MG, we denote the component of MG that contains
p by MG

p , and refer to it as a fixed-point component. The following is a foundational
structure result for isometric torus actions.

Lemma 2.1 Let M be a closed Riemannian manifold. Assume a torus Tr acts iso-
metrically on M, and let H be a closed subgroup of Tr whose fixed-point set MH is
non-empty. Then every component of MH is an embedded, totally geodesic submani-
fold of even codimension in M that is invariant under the action of Tr/H. Furthermore,
given any fixed-point component MH

p , the following hold:

(1) If H is a torus and M is orientable, then MH
p is also orientable.

(2) If dimH ≥ 2, then there exists a circle subgroup S1 ⊂ H whose fixed-point
component MS1

p strictly contains MH
p .

(3) If H is disconnected and is the isotropy group at p, and if dimH ≥ 1, then there
exists a non-trivial, finite isotropy group � ⊆ H whose fixed-point component M�

p

strictly contains MH
p .

For justification for Part (2), see, for example, [53, Proposition 8.3.8], and for Part (3),
see [44, Lemma 1.10].
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The next lemma, which was established by Conner [7], will be especially useful in
establishing Theorem D.

Lemma 2.2 (Betti Number Lemma) If a torus T acts smoothly on a closed, smooth
manifold M, then χ(M) = χ(MT),

∑
b2i+1(MT) ≤ ∑

b2i+1(M), and
∑

b2i (MT) ≤∑
b2i (M).

The two main ways in which our positive curvature assumptions play a role is via the
following two results. The first is a generalization of the Berger-Sugahara fixed-point
theorem, which is stated in the next lemma. Part (1) was established by Berger [2],
the k = 1 case of Part (2) independently by Sugahara [68] and Grove and Searle [28],
and the k ≥ 2 case by the second author [47].

Lemma 2.3 (Isotropy Rank Lemma) Let M be a closed Riemannian manifold with
Rick > 0 and an isometric action by a torus Tr .

(1) If k = 1 and n is even, then Tr has a fixed point.
(2) For any k ≥ 1 and r ≥ k, there exists a subtorus Tr−k that has a fixed point.

We note that analogous conclusions hold if we replace the curvature assumption in
Lemma 2.3 by a topological one. We believe this result is well known, but as we do
not know of a reference, we provide a proof here for completeness.

Lemma 2.4 (Spherical Isotropy Rank Lemma) Let M be a closed manifold with a
smooth action by a torus Tr with r ≥ 1. If M has the rational homology of a sphere,
then the following hold:

(1) If n is even, then Tr has a fixed point.
(2) If n is odd, then some Tr−1 has a fixed point.

Proof Since M and the fixed-point set of M have the same Euler characteristic, which
is non-zero for even-dimensional spheres, the first conclusion follows immediately.

We prove the second conclusion by induction over odd integers n ≥ 1. When
n = 1, M is a circle so the kernel of the action on M contains a Tr−1 and the result
follows. Assume now that n ≥ 3. The result holds trivially if r = 1, so we assume
r ≥ 2. Smith proved that Zp × Zp cannot act freely on a Zp-homology sphere (see
[66]). It follows that Tr cannot act almost freely on M , since otherwise we can find a
prime p sufficiently large so that M is aZp-homology sphere and so that the subgroup
Z
r
p ⊆ Tr has trivial intersection with all isotropy groups and hence acts freely. We can

now choose an isotropy group of positive dimension and hence a circle S1 ⊆ Tr with
non-trivial fixed-point set F . By another result of Smith, F is a rational sphere (see
[65]). By induction, the induced Tr -action on F has a codimension one torus Tr−1

with non-trivial fixed-point set FTr−1
. Since FTr−1 = F ∩ MTr−1

, this subtorus is the
one we seek. ��

The second main tool from positive curvature we use is Wilking’s Connectedness
Lemma (see [73]), which is the k = 1 statement of the following theorem. The
generalization of the first part of (1) and of (2) to the case where k ≥ 2 is stated in
[73, Remark 2.4]. For the second part of (1), the generalization to k ≥ 2 was proved
by the second author (see [47]), building on work of Guijarro and Wilhelm (see [36]).
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Theorem 2.5 (Connectedness Lemma) Let Mn be a closed, connected Riemannian
manifold with Rick > 0.

(1) If Nn−d is an embedded totally geodesic submanifold of Mn, then the inclusion

Nn−d ↪→ Mn is (n − 2d + 2 − k)-connected.

Furthermore, if there is a Lie group G acting on Mn by isometries and fixing Nn−d

pointwise, then the inclusion is (n − 2d + 2 − k + δ(G))-connected, where δ(G)

is the dimension of the principal orbits of the G-action on Mn.
(2) If Nn−d1

1 and Nn−d2
2 are embedded totally geodesic submanifolds with d1 ≤ d2,

then the intersection Nn−d1
1 ∩ Nn−d2

2 is also totally geodesic, and the inclusion

Nn−d1
1 ∩ Nn−d2

2 ↪→ Nn−d2
2 is (n − d1 − d2 + 1 − k)-connected.

The Connectedness Lemma forces restrictions at the level of cohomology when com-
bined with the following lemma, which is a topological result about highly connected
inclusions of Poincaré duality spaces that was proved by Wilking [73]:

Lemma 2.6 (Periodicity Lemma) Suppose Nn−d ↪→ Mn is a (n − d − l)-connected
inclusion of connected, closed, orientable manifolds. If e ∈ Hd(Mn;Z) denotes the
Poincaré dual of the image in Hn−d(Mn;Z) of the fundamental class of N , then the
homomorphisms ∪e : Hi (M;Z) → Hi+d(M;Z) given by x �→ x ∪ e are surjective
for l ≤ i < n − d − l and injective for l < i ≤ n − d − l.

Of particular importance to us is the case in the Periodicity Lemma when l = 1 and
d = 2. Based on whether e is zero or non-zero, if Mn is simply connected, we find
that Mn has the cohomology of Sn , CP

n
2 , or more generally a finite connected sum

CP
n
2 # . . . #CP

n
2 with at least two summands. For the first two of these manifolds, it is

well known that homotopy rigidity is automatic. One has some level of rigidity in the
non-simply connected case as well, according to the following (for a proof, see [41,
Theorem 3.4]):

Theorem 2.7 (Cohomology-to-homotopy Lemma) Let Mn be a closed, smooth man-
ifold. The following hold:

(1) If π1(M) is cyclic (possibly trivial) and the universal cover M̃ is a cohomology
sphere, then M is homotopy equivalent to Sn, RPn, or a lens space.

(2) If π1(M) is trivial and M is a cohomology CP
n
2 , then M is homotopy equivalent

to CP
n
2 .

Finally, to upgrade further from homotopy rigidity to homeomorphism or diffeomor-
phism rigidity, we use the following two results. The first is for spheres andwas proved
by Montgomery and Yang [48], and the second is for complex projective spaces and
was proved by Fang and Rong [17].

Theorem 2.8 (Diffeomorphism rigidity for spheres) Suppose M is a homotopy sphere,
and assume the circle S1 acts smoothly on M such that the fixed-point set N is simply
connected and of codimension 2. Then M is diffeomorphic to the standard sphere Sn

such that the S1-action on M is smoothly equivalent to a linear circle action on Sn.
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Fig. 1 Weighted orbit space of
closed simply connected
4-dimensional T2-manifold

Theorem 2.9 (Homeomorphism rigidity for complex projective spaces) Suppose M is
a homotopy CPn, and assume a submanifold N of codimension 2 is homeomorphic to
CPn−1. If the inclusionmap N ↪→ M is at least 3-connected, then M is homeomorphic
to CPn.

3 Maximal Symmetry Rank for Ric2 > 0 in Dimension 4

In this section, we establish the four-dimensional case of Theorem A. First, we survey
the topology of the spaces in question without curvature considerations.

Throughout this section, let M be a closed, 4-dimensional, simply connected, T2-
manifold, and let M∗ denote the orbit space M/T2. The orbit structure of such spaces
were studied by Orlik and Raymond in [49], which we will summarize here. For
the manifolds M under consideration, the isotropy groups are connected, meaning
possible isotropy groups are either trivial or isomorphic to S1 or T2; see Lemma 5.2
in [49]. The orbit space M∗ is homeomorphic to a closed 2-dimensional disk, and the
boundary ∂M∗ consists of a cycle (graph)with the number of vertices equal to theEuler
characteristic of M . We will assume an orientation on M∗, and hence on ∂M∗, and we
will accordingly fix an enumeration for the vertices of ∂M∗: f ∗

0 , f ∗
1 , . . . , f ∗

t−1, where
t = χ(M). Each vertex f ∗

i in ∂M∗ corresponds to an isolated fixed point fi ∈ M of
the T2-action. Let �∗

i denote the edge connecting f ∗
i to f ∗

i+1 (counting mod t). Points
along�∗

i correspond to 1-dimensional orbits inM , all of which have the same isotropy
group, which is isomorphic to S1. In other words, �∗

i corresponds to a 2-dimensional
sphere �i in M that is fixed by a circle subgroup of T2. Fixing a parametrization
(z1, z2) of T2 = R

2/Z2, each S1 isotropy is equal to {(z1, z2) : mz1 + nz2 = 0} for
some relatively prime integers m and n. For a given S1 isotropy, the associated vector
(m, n) ∈ Z

2 is unique up to sign. Given an edge �∗
i of ∂M∗, we will call the vector

(mi , ni ) that corresponds to the S1 isotropy of the edge the weight of �∗
i ; see Fig. 1.

Given two adjacent edges �∗
i−1 and �∗

i , the common vertex f ∗
i corresponds to

a point of intersection fi between the two spheres �i−1 and �i in M . Define the
determinant of the weights of these edges
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Table 1 Equivariant diffeomorphism classes of simply connected 4-dimensional T2-manifolds with Euler
characteristic t ≤ 4

t M Condition

2 S4

3 CP2 −ε0ε1ε2 = +1

CP2 −ε0ε1ε2 = −1

4 CP2#CP2 −ε0ε1ε2ε3 = +1, and r1,3 ∈ {ε2ε3, 2ε2ε3}
CP2#CP2 −ε0ε1ε2ε3 = +1, and r1,3 ∈ {−ε2ε3, −2ε2ε3}
S2 × S2 −ε0ε1ε2ε3 = −1, and both r0,2 and r1,3 are even (at least one is 0)

CP2#CP2 −ε0ε1ε2ε3 = −1, and either r0,2 or r1,3 is odd (the other one is 0)

εi
..= det

[
mi−1 mi

ni−1 ni

]

.

Because the S1 isotropies of these spheresmust generate the homology of T2, it follows
that the determinant of the weights must satisfy εi = ±1.

More generally, given (not necessarily adjacent) edges �∗
i and �∗

j in ∂M∗, we will
denote the determinant of their weights by

ri, j ..= det

[
mi m j

ni n j

]

.

Notice that ri−1,i = εi = ±1 for all i (counting mod t) and that ri, j = 0 for some i
and j if and only if the corresponding spheres �i and � j in M are fixed by the same
circle subgroup of T2.

For the next few remarks, the isomorphismsmentioned are in the category of equiv-
ariant diffeomorphisms. If the number of fixed points t = 2, thenM ∼= S4. If t = 3 and
−ε0ε1ε2 = 1 (resp.−1), then M ∼= CP2 (resp.CP2). Note, when a parametrization of
T2 is specified, an orientation of M∗ determines an orientation of M , and vice versa.
For the case t = 4, M ∼= CP2#CP2, CP2#CP2, S2 × S2, or CP2#CP2 depending on
the values of ε0, ε1, ε2, ε3, r0,2, and r1,3. The conditions on εi and ri, j that determine
M for t ≤ 4 are given in Table 1 (see [49, page 552]):

For the cases when t ≥ 5, M is equivariantly diffeomorphic to a connected sum of
finitely many copies of S2× S2,CP2, andCP2. In particular, for every pair of adjacent
edges �∗

i−1 and �∗
i in ∂M∗, there exists a third distinct edge �∗

j such that

(1) ri, j = ±1 and �∗
j is not adjacent to �∗

i , or
(2) ri−1, j = ±1 and �∗

j is not adjacent to �∗
i−1.

In the case of (1), one can connect an interior point of edge �∗
i to an interior point of

edge �∗
j using a simple curve L∗ through the interior of M∗. This curve L∗ separates

M∗ into two disjoint regions, the closures of which we will denote by X∗
1 and X∗

2 .
For k = 1 or 2, consider N∗

k
..= X∗

k/{L∗ ∼ pt.}, i.e., the disk obtained from X∗
k by

identifying the portion of its boundary containing L∗ to a point. The edges of ∂N∗
k
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Fig. 2 Decomposing the orbit space of a simply connected 4-dimensional T2-manifold with Euler charac-
teristic ≥ 5

inherit weights from corresponding edges on ∂M∗; see Fig. 2. Then N∗
k corresponds to

the orbit space Nk/T2 of some closed, simply connected, 4-dimensional T2-manifold
with 3 ≤ χ(Nk) ≤ χ(M)−1. The curve L∗ inM∗ corresponds to an invariant 3-sphere
L in M . In particular, M is equivariantly diffeomorphic to the connected sum N1#N2,
where the gluing occurs along L . Case (2) above leads similarly to a decomposition
of M into a connected sum N ′

1#N
′
2 for some N ′

k with 3 ≤ χ(N ′
k) ≤ χ(M) − 1.

Notice that in N∗
1 , the ε-value for the edges that meet at the point corresponding

to L∗ (namely �∗
i and �∗

j ) will be negative of the ε-value at L∗ in N∗
2 . Note that this

type of decomposition of M can also be carried out if M ∼= CP2#CP2 or CP2#CP2,
but not for S2 × S2 or CP2#CP2; c.f. Remark 5.10 in [49]. Therefore, if χ(M) ≥ 5,
then by repeating the procedure outlined above, M∗ can always be partitioned into
finitely many pieces, each corresponding to CP2, CP2, or S2 × S2. Furthermore, in
such a decomposition M ∼= N1# . . . Nm , given a pair Ni , Ni+1 for 1 ≤ i ≤ m − 1, the
decomposition is done in such a way that the vertices on ∂N∗

i and ∂N∗
i+1 at which the

gluing Ni#Ni+1 occurs have opposite signs for ε.
Now we establish curvature obstructions for the above spaces. In particular, our

key observation is the following:

Lemma 3.1 Let M be a compact, connected, 4-dimensional Riemannian manifold
with Ric2 > 0. If S1 acts effectively and by isometries on M and fixes a 2-dimensional
submanifold N pointwise, then N must be connected.

Proof Since S1 acts effectively on M , the principal orbits are 1-dimensional. By The-
orem 2.5, the inclusion N ↪→ M is 1-connected. In particular, N is connected since
M is. ��
Corollary 3.2 Let M be a compact, simply connected, 4-dimensional Riemannianman-
ifold with Ric2 > 0. If T2 acts effectively and by isometries on M, and if (mi , ni ) and
(m j , n j ) are weights for non-adjacent edges of ∂M∗, then ri, j 	= 0. In particular,

neither S2 × S2 nor CP2#CP2 admit a metric with Ric2 > 0 that is invariant under a
T2-action.
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Proof If some ri, j = 0, then the weight vectors at the corresponding edges of ∂M∗ are
parallel, the circle isotropy groups associated with these edges agree, and hence this
circle hasfixed-point set inM consisting of at least two two-dimensional components, a
contradiction to Lemma 3.1. FromTable 1, the orbit structure of S2×S2 andCP2#CP2

require that ri, j = 0 for (i, j) = (0, 2) or (1, 3). Thus, these manifolds cannot support
a metric with Ric2 > 0 that is invariant under a T2-action. ��

We can now establish the four-dimensional case of Theorem A.

Theorem 3.3 Let M be a closed, simply connected, 4-dimensional Riemannian man-
ifold with Ric2 > 0. If T2 acts effectively and by isometries on M, then M is
equivariantly diffeomorphic to #bi=1CP

2 for some b ≥ 0.

Proof Fix a parametrization of T2 and an orientation of M , which then fixes an orien-
tation of M∗. If χ(M) ≤ 4, then the only candidates are S4, CP2, S2 × S2, CP2#CP2,
orCP2#CP2, up to a change in orientation. However, by Corollary 3.2, neither S2×S2

nor CP2#CP2 can admit an invariant metric with Ric2 > 0.
If χ(M) ≥ 5, then following the procedure outlined in the beginning of this section,

there exist non-adjacent edges of the boundary ∂M∗ of the orbit spacewhose respective
weights have determinant±1. The orbit space M∗ can then be separated along a curve
joining these two edges, and accordingly, M decomposes as N1#N2 for some closed,
simply connected, 4-dimensional T2-manifolds Nk with 3 ≤ χ(Nk) ≤ χ(M) − 1,
for k = 1, 2. The weights of the edges of the boundaries ∂N∗

k are inherited from the
corresponding edges in ∂M∗, along with the orientations of their boundaries. This
process can be repeated until M is written as a connected sum N1# . . . #Nm such that
each Nk if equivariantly diffeomorphic to CP2, CP2, or S2 × S2.

Because the weights of the edges of the boundaries ∂N∗
k are inherited from edges

of ∂M∗, if ∂N∗
k has non-adjacent edges whose weights have determinant zero for

some k, then so does ∂M∗. Thus, by Corollary 3.2, each space Nk must be a complex
projective space, and furthermore, they all have the same orientation. ��

4 Maximal Symmetry Rank for Ric2 > 0 in dimension 6

In this section, we establish the six-dimensional case of Theorem A. In contrast to the
case of positive sectional curvature (Ric1 > 0), the T3-action on M6 need not have a
fixed point. Additionally, it does not follow immediately from the Connectedness and
Periodicity Lemmas that the second Betti number satisfies b2(M) ≤ 1 as it does in
the positive sectional curvature case. The following is the case in which we can argue
that b2(M) ≤ 1:

Proposition 4.1 Let M be a 6-dimensional, closed, simply connected Riemannian
manifold with Ric2 > 0. Suppose T3 acts effectively and by isometries on M. If
the T3-action has a fixed point, then M is diffeomorphic to S6 or CP3.

Proof Suppose p is a fixed point for the T3-action on M . Because the T3-action on
M is effective, the isotropy representation of T3 on the normal space to p is faithful
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and hence has complex dimension at least three. In other words, p is an isolated
fixed point. At p, the isotropy representation T3 → U(3) ⊂ O(6) is of the form
(z1, z2, z3) �→ diag(z1, z2, z3) ∈ U(3) for some choice of parametrization of T3

and basis in TpM . For each i ∈ {1, 2, 3}, define S1i ⊂ T3 to be the circle subgroup
parametrized by zi in this representation, and let Ni denote the four-dimensional fixed-

point component M
S1i
p .

By Theorem 2.5, the inclusions N 4
i ↪→ M6 are 3-connected. This implies that

Ni is simply connected since M is, that H2(Ni ;Z) ∼= H2(M;Z) for all i , and that
H3(M6;Z) = 0 since it injects into H3(N 4

i ;Z), which is zero by Poincaré duality. In
particular, defining b = b2(M6), we have χ(M6) = 2 + 2b and χ(N 4

i ) = 2 + b for
all i .

Furthermore, by Theorem 2.5, the inclusions Ni ∩ N j ↪→ N j are 1-connected, and
in particular, Ni ∩N j is connected for all i 	= j . Also, each 2-dimensional intersection
Ni ∩ N j is orientable by Lemma 2.1 and has an effective S1 action with non-empty
fixed-point set that contains p. Thus, each Ni ∩ N j is a 2-sphere, and χ(Ni ∩ N j ) = 2
for all i 	= j .

Because (N1 ∪ N2 ∪ N3)
T3 ⊆ MT3 , by Lemma 2.2 we have

χ(M) ≥ χ(N1 ∪ N2 ∪ N3)

=
∑

i

χ(Ni ) −
∑

i< j

χ(Ni ∩ N j ) + χ(N1 ∩ N2 ∩ N3)

= 3(2 + b) − 3(2) + χ(N1 ∩ N2 ∩ N3).

Since χ(M) = 2 + 2b and N1 ∩ N2 ∩ N3 is a non-empty collection of isolated fixed
points for the T3-action on M , we have

b2(M) = b ≤ 2 − χ(N1 ∩ N2 ∩ N3) ≤ 1.

It follows that M has the homology groups of S6 or CP3, and moreover by Lemma
2.6, M has the cohomology of one of these spaces. Finally, Theorems 2.7, 2.8, and
2.9 along with the classification of closed, simply connected 6-manifolds imply that
M is diffeomorphic to S6 or CP3. ��
To finish the proof of Theorem A in dimension six, it suffices to consider the case
where the torus action does not have a fixed point. We seek to show that χ(M6) = 0
and, moreover, that M6 is diffeomorphic to S3 × S3 if the second Betti number of M
vanishes. In the interest of potentially proving M is diffeomorphic to S3 × S3 without
the assumption that b2(M) vanishes, we present the following partial progress:

Proposition 4.2 Let M be a 6-dimensional, closed, simply connected Riemannian
manifold with Ric2 > 0. Suppose T3 acts effectively and by isometries on M. If
the T3-action has no fixed points, then χ(M) = 0.

Moreover, the T3-action is not free, all non-trivial isotropy groups are isomorphic
to S1, and the singular T3-orbits are isolated and diffeomorphic to T2. In particular,
the orbit space M∗ = M/T3 is homeomorphic to S3.
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Proof The conclusion χ(M) = 0 follows immediately from the equality χ(M) =
χ(MT3) from Lemma 2.2. First, we claim that all isotropy groups must be connected.
Otherwise, suppose � ⊂ T3 is a finite isotropy group at a point p ∈ M . Then the
torus T3/� ∼= T3 acts effectively and by isometries on the totally geodesic fixed-point
component N = M�

p . Because the action is effective, 3 ≤ dim(N ) ≤ 5. Since N is
totally geodesic inM , N hasRic2 > 0.Thenby the symmetry rankbound forRic2 > 0,
we have 3 ≤ � dim(N )+1

2 �, which implies that dim(N ) = 5. Then by Theorem 2.5, the
inclusion N ↪→ M is 4-connected. BecauseM is simply connected, so is N , and hence
N is orientable. Thus by Lemma 2.6, H3(M;Z) ∼= H2(M;Z) ∼= H1(M;Z) ∼= 0.
Hence, it follows from Poincaré duality and the Universal Coefficients theorem that
χ(M) > 0, which contradicts the hypothesis that the T3-action on M has no fixed
points. Therefore, all isotropy groups must be connected.

Next we claim that the components of the fixed-point set of any non-trivial isotropy
group must be 2-dimensional. Otherwise, there exists a connected isotropy group T3p
that fixes a connected submanifold F of dimension 0 or 4. If dim(F) = 0, then the
induced action of T3 on F is trivial, and hence the T3-action on M has a fixed point,
which is again a contradiction. If dim(F) = 4, then because F is fixed by T3p, which
is isomorphic to S1 or T2, the inclusion F ↪→ M is at least 3-connected. Thus, F
is simply connected, and by Poincaré duality, has χ(F) > 0. Hence, T3 has a fixed
point in F ⊂ M , which again is a contradiction. Therefore, the components of the
fixed-point set of any non-trivial isotropy group must indeed be 2-dimensional.

It then follows from Part (2) of Lemma 2.1 that each non-trivial isotropy group
is isomorphic to S1. Thus, each singular orbit of the T3-action is diffeomorphic to
T2 and coincides with a component of the fixed-point set of some S1 isotropy group.
Furthermore, given a point p on a singular orbit, because circles are the only possible
isotropy groups and components of their fixed-point sets are only 2-dimensional,
T2 ..= T3/S1 must act freely on the normal space to the singular orbit at p. In particular,
the singular orbits are isolated.

Since M is simply connected and all T3-orbits are connected, the orbit space
M∗ = M/T3 is a simply connected 3-manifold (see [3, Corollary IV.4.7]). Because
the T3-action on M only has S1 isotropy groups whose fixed-point components are
2-dimensional and isolated, it follows that M∗ has no boundary, and by the resolution
to the Poincaré conjecture [50–52], we have that M∗ is homeomorphic to S3. ��

We remark that Galaz-García and Searle show if Mn is closed, simply connected,
and has Tn−3-symmetry, if the orbit space M∗ = Mn/Tn−3 is homeomorphic to S3,
and if all non-trivial isotropy groups are isomorphic to S1, then π2(Mn) ∼= Z

s−n+2,
where s is the number of isolated singular orbits [31, Proposition 4.5]. It then follows
from [33, Lemma 2-6] that if n = 6 and M6 has non-negative sectional curvature, then
s ≤ 4, and hence π2(M6) ∼= 0 (see [13, Proposition 4.12]). Escher and Searle then
use these observations to prove such a manifold M6 must be diffeomorphic to S3 × S3

[13, Proposition 4.13]. Their conclusion relies on the fact that M∗ has non-negative
curvature in the sense of Alexandrov geometry. Since our condition of Ric2 > 0
allows for some negative sectional curvatures, we do not know whether it is possible
to establish an upper bound on s in our case. This leaves us with the following:
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Remark 4.3 If M is a manifold as in Proposition 4.2, then by [31, Proposition 4.5],
π2(M) ∼= Z

s−4, where s is the number of isolated singular orbits. If one could show
that s = 4, then it would follow as in the proof of [13, Proposition 4.13] that M is
diffeomorphic to S3×S3. Such a result, alongwith those established here, would imply
that the only closed, simply connected 6-manifolds with Ric2 > 0 and T3-symmetry
are S6, CP3, and S3 × S3.

Finally, we include the following observation, as it is used in the proof of Theorem
D on the non-simply connected case.

Corollary 4.4 If S3 × S3 is equipped with a metric having Ric2 > 0 that is invariant
under an effective T3-action, then every non-trivial isotropy group is isomorphic to
S1, and the fixed-point set of any such S1 is connected and diffeomorphic to T2.

Proof In Proposition 4.2, we established that every non-trivial isotropy group is iso-
morphic to S1, and the components of the fixed-point sets of of these S1 isotropies
must be isolated and diffeomorphic to T2. Now given an arbitrary S1 isotropy group,
by Lemma 2.2, we have

∑
bi

(
(S3 × S3)S

1
)

≤
∑

bi (S
3 × S3) = 4.

Therefore, (S3 × S3)S
1
must consist of a single torus T2. ��

5 Maximal Symmetry Rank for Ric2 > 0 in Dimensions 2n ≥ 8

In this section, we finish the proof of TheoremA by induction. The result in dimension
six is used to prove dimension eight, and this result is then used as our base for higher
dimensions.

Theorem 5.1 Let M be closed, simply connected Riemannian manifold of even dimen-
sion 2n ≥ 8 with Ric2 > 0. If Tn acts effectively and by isometries on M, then M is
either diffeomorphic to S2n or homeomorphic to CPn.

Proof We induct over the dimension 2n ≥ 8, and we prove the base case and the
induction step simultaneously.

First, we claim that there exists a simply connected fixed-point component N of
a circle subgroup in Tn such that N has codimension two and such that the induced
torus action on N has a fixed point. All of this follows from Lemma 7.8 in [47], but we
include a direct argument here for completeness. Because n ≥ 4, by Lemma 2.3, there
exist circle subgroups of Tn whose fixed-point sets are non-empty. Among all the circle
subgroups and all components of their fixed-point sets, choose a subgroup S1 and a
component N of its fixed-point set such that N has maximal dimension. By Lemma
2.1, N is invariant under the action of Tn−1 = Tn/S1, and because N was chosen to be
maximal, the Tn−1-action on N must be almost effective. Thus dim N ≥ n − 1 ≥ 3.
On the other hand, because N is totally geodesic, it has Ric2 > 0, and hence the
symmetry rank of N is at most

⌊ dim N+1
2

⌋
. Because dim M = 2n and N has even
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codimension in M (Lemma 2.1), it follows that dim N = 2n − 2. Thus by Theorem
2.5, the inclusion N ↪→ M is (2n − 3)-connected, and thus N is simply connected.
Note moreover that the odd Betti numbers of M vanish by the Periodicity Lemma,
and hence the odd Betti numbers of N vanish by Lemma 2.2. In particular, χ(N ) > 0
and hence the Tn−1-action on N has a fixed point.

In summary, N is a closed, (2n− 2)-dimensional, simply connected manifold with
Ric2 > 0 and maximal symmetry rank, and the induced Tn−1-action on N has a fixed
point. For the base case 2n = 8, it follows fromProposition 4.1 that N is diffeomorphic
to S6 or CP3. In the cases 2n ≥ 10, it follows from the induction hypothesis that N is
diffeomorphic to S2n−2 or homeomorphic to CPn−1. Because N ↪→ M is (2n − 3)-
connected, M has the cohomology of S2n or CPn up to degree 2n − 3, and it follows
from Poincaré duality that M is a cohomology S2n or CPn (see [43, Lemma 4.8.(1)]).
Because M is simply connected, M is either a homotopy S2n or CPn by Theorem 2.7,
and it follows from Theorems 2.8 and 2.9 that M is either diffeomorphic to S2n or
homeomorphic to CPn .

��

6 Maximal Symmetry Rank for Rick > 0 with k ≥ 3

In this section, we prove Theorems B and C. First, we establish general results for
manifolds with Rick > 0 for k ≥ 3 that have maximal symmetry rank. The second
author shows in [47] that any closed, connected, n-dimensional Riemannian manifold
with Rick > 0 for some k ∈ {3, . . . , n − 1} has symmetry rank bounded above by⌊ n+k

2

⌋− 1. Notice if k = 3, or if k = 4 and n is odd, then this upper bound is equal to
⌊ n+1

2

⌋
, which is the same bound as for positive sectional curvature or Ric2 > 0. Our

first lemma applies the Isotropy Rank Lemma to show that manifolds with Rick > 0
and maximal symmetry rank often have circle actions with codimension-2 fixed-point
components.Wewill also need an analogous topological statement for rational spheres.
These results are contained in the following:

Lemma 6.1 Let M be a closed, n-dimensional Riemannian manifold equipped with
an effective, isometric action by Tr . Assume one of the following:

(a) M has Rick > 0 with 3 ≤ k ≤ n − 5 and r = ⌊ n+k
2

⌋ − 1.
(b) M is a rational homology sphere with n ≥ 2 and r ≥ ⌊ n+1

2

⌋
.

Then there exists a circle S1 ⊂ Tr whose fixed-point set contains a component of
codimension 2 in M. In addition, the lower bound on r in (b) is an equality.

Proof First we prove the lemma under the assumption of (a). Because n ≥ k + 5, it
follows from the equation r = � n+k

2 � − 1 that r ≥ k + 1. Thus by Lemma 2.3, there
exists a circle subgroup of Tr with non-empty fixed-point set in M . Now among all the
components of fixed-point sets for all circle subgroups of Tr , choose a component F f

whose dimension f is maximal, and let S1 denote a circle that fixes F . Because the
Tr action on M is effective, and since the codimension of F is even (Lemma 2.1), we
must have f ≤ n−2. By Lemma 2.1, since the dimension of F is maximal, the action
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of Tr−1 ..= Tr/S1 on F must be almost effective. Thus, f ≥ r − 1 = � n+k
2 � − 2. In

particular, since n ≥ k+5, we have f ≥ � n+k
2 �−2 ≥ � 2k+5

2 �−2 = k. Now if f = k,
then the constraints � n+k

2 � = � 2k+5
2 � and n ≥ k + 5 imply that n = k + 5 = f + 5,

which contradicts the fact that F has even codimension in M . Hence, we must have
f ≥ k + 1, and because F is totally geodesic in M , F has Rick > 0. Then by the
Maximal Symmetry Rank bound applied to F , we have r−1 ≤ � f +k

2 �−1. Combining
this with the assumption r = ⌊ n+k

2

⌋ − 1 implies n + k ≤ f + k + 3. Therefore,
because n ≡ f mod 2 and f ≤ n − 2, it follows that f = n − 2.

Nowwe prove the lemma under the assumption of (b). By Lemma 2.4, there exists a
subgroup Tr−δ with non-emptyfixed-point set,where δ is zero if n is even and one if n is
odd.Let F be afixed-point component ofTr−δ . Since the action is effective, the isotropy
representation at a normal space νpF to F is faithful. Hence r − δ ≤ 1

2 codim F . In
addition, 1

2 codim F ≤ n−δ
2 by Lemma 2.1. By the assumption r ≥ ⌊ n+1

2

⌋
, it follows

that r−δ = 1
2 codim F = n−δ

2 . In particular, r = ⌊ n+1
2

⌋
. In addition, there are exactly

r − δ irreducible subrepresentations, and the representation is equivalent to the map
sending (z1, . . . , zr−δ) ∈ Tr−δ to diag(z1, . . . , zr−δ) ∈ U(r − δ) ⊆ SO(νpF). As
in the proof of Proposition 4.1, we can intersect the kernels of any r − δ − 1 of the
irreducible subrepresentations to obtain the desired circle. ��

Next, we establish a rigidity result for highly connected manifolds with Rick > 0
that have a codimension-two circle fixed-point component.

Proposition 6.2 Let M be a closed, n-dimensional Riemannian manifold with Rick >

0. Assume that 3 ≤ k ≤ n − 3 and moreover that k is odd if k = n
2 . If M is (k − 1)-

connected, and if S1 acts effectively and by isometries on M such that its fixed-point
set contains a component N of codimension 2 in M, then M is diffeomorphic to Sn.

Proof First assume 3 ≤ k ≤ n−1
2 . By the Connectedness Lemma, the inclusion N ↪→

M is (n−k−1)-connected. In particular, N is simply connected since n−k−1 ≥ 2.We
claim that Mn is a cohomology sphere. Given the claim, Theorems 2.7 and 2.8 imply
that M is diffeomorphic to Sn . To prove the claim, we apply the Periodicity Lemma to
the inclusion N ↪→ M , which has codimension two and is (n− k − 1)-connected. We
then have e ∈ H2(M) that induces periodicity from degree k−1 to degree n−(k−1).
That is, the map Hi (M) → Hi+2(M) induced by multiplication by e is surjective
for k − 1 ≤ i < n − (k − 1) − 2 and injective for k − 1 < i ≤ n − (k − 1) − 2.
Because M is (k − 1)-connected and k ≥ 3, we have e = 0, so combining with the
injectivity property implies that Hi (M) = 0 for all 0 < i ≤ n − (k − 1) − 2. Since
n − (k − 1) − 2 ≥ n−1

2 , Poincaré duality implies that M is cohomology sphere, as
claimed.

Second assume n+1
2 ≤ k ≤ n−3. The condition thatM is (k−1)-connected implies

that M is a homology sphere by Poincaré duality. Since M is simply connected, we see
as in the previous case that N is simply connected and hence that M is diffeomorphic
to Sn by Theorems 2.7 and 2.8.

Finally assume k = n
2 and that k is odd. By the Connectedness Lemma, N ↪→ M

is (k − 1)-connected, and hence N is (k − 2)-connected. Thus by Poincaré duality,
χ(N ) = 2+bk−1(N ). BecauseM is (k−1)-connected, it follows from the estimate on
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the sum of even Betti numbers (Lemma 2.2) that N is the only connected component
of MS1 and bk−1(N ) = 0. Thus, 2 = χ(N ) = χ(MS1) = χ(M) = 2 − bk(M),
and hence bk(M) = 0. Therefore, M and N are both simply connected cohomology
spheres, and by Theorems 2.7 and 2.8, M is diffeomorphic to Sn . ��

Now we prove our second main result:

Theorem 6.3 (Theorem B) Let Mn be a (k − 1)-connected, closed Riemannian man-
ifold with Rick > 0 for some k ≥ 3. If n 	= 7 and if Mn admits an effective, isometric
Tr -action with r = ⌊ n+k

2

⌋ − 1, then one of the following occurs:

(1) M is diffeomorphic to Sn and k ≤ 4, with equality only if n is odd.
(2) M is diffeomorphic to S3 × S3 and k = 3.

Proof The claim on k in (1) follows as soon as we know that M is a rational sphere
by combining the assumption r = ⌊ n+k

2

⌋ − 1 with the upper bound r ≤ ⌊ n+1
2

⌋
from

Lemma 6.1. The claim on k in (2) follows from the assumption that M is (k − 1)-
connected. It suffices to prove the diffeomorphism claims.

First, assume k < n
2 . Since n ≥ 2k + 1 ≥ 7 and n 	= 7, we have k ≤ n − 5. Hence

Lemma 6.1 implies the existence of a circle S1 with fixed-point set of codimension
two, and Proposition 6.2 implies M is diffeomorphic to Sn .

Second, assume k > n
2 . By the assumption thatM is (k−1)-connected and Poincaré

duality, we see that M is a homology sphere.
Since k ≥ 3, the assumption on r implies r ≥ ⌊ n+1

2

⌋
. By Lemma 6.1, there exists

a subgroup S1 having a fixed-point component N with codimension two. If k ≤ n−3,
then Proposition 6.2 implies again that M is diffeomorphic to Sn . If k ≥ n−2, then we
apply Lemma 6.1 once more to conclude that r = ⌊ n+1

2

⌋
and hence that n ≤ 6. In this

range, simply connected homology spheres are diffeomorphic to standard spheres, so
again M is diffeomorphic to Sn .

Third, assume that k = n
2 and that the fixed-point set of Tr is non-empty. For

any fixed-point component F f and any p ∈ F f , the isotropy representation Tr →
SO(νpF f ) on the normal space to F f is faithful since the action on M is effective.
Hence r ≤ n− f

2 . Since f ≥ 0, the lower bound on r implies k = 3 and r = 3. As in
the proof of Proposition 4.1, there exists a circle S1 with a fixed-point component N 4

of codimension two. By Proposition 6.2, M is diffeomorphic to S6.
Finally, assume that k = n

2 and that fixed-point set of Tr is empty. Hence χ(M) =
χ(MTr ) = 0. On the other hand, χ(M) = 2 + (−1)kbk(M) since M2k is (k − 1)-
connected. So it follows that k is odd and bk(M) = 2. If k ≥ 5, then Lemma 6.1
applies since n = 2k ≥ k + 5, and we get a circle S1 whose fixed-point set has a
component N 2k−2 of codimension two. But then Proposition 6.2 implies that M is a
sphere, which contradicts the fact that bk(M) = 2, so we must have k = 3. Corollary
2.6 in [13] now implies that M is diffeomorphic to S3 × S3. ��
NextweapplyLemma6.1 to proveour thirdmain result.Recall thatM being an integral
cohomology CP up to degree k + 2 means that H1(M;Z) ∼= 0, H2(M;Z) ∼= Z,
and the map Hi (M;Z) → Hi+2(M;Z) induced by multiplication by a generator
x ∈ H2(M;Z) is surjective for 0 ≤ i < k and injective for 0 < i ≤ k.
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Theorem 6.4 (Theorem C) Fix k ≥ 3, and let Mn be a simply connected, closed
Riemannian manifold. Assume further that Mn is an integral cohomology CP up to
degree k + 2. If M has Rick > 0 and admits an effective, isometric Tr -action with
r = ⌊ n+k

2

⌋ − 1, then n is even, Mn is homeomorphic to CP
n
2 , and k = 3.

Proof First, we claim it suffices to prove that M has the cohomology of CP
n
2 in all

degrees by Theorems 2.7 and 2.9. Indeed, if M is a cohomology CP
n
2 , it follows

that χ(M) > 0, that Tr has a fixed point, and hence that r ≤ n
2 . From the equation

r = ⌊ n+k
2

⌋−1, since n is even and k ≥ 3, we have k = 3 and r = n
2 . As in the proof of

Proposition 4.1, the isotropy representation Tr → U(r) at a fixed point of the Tr -action
is of the form (z1, . . . , zr ) �→ diag(z1, . . . , zr ) for a certain choice of coordinates.
For each j ∈ {1, . . . , r}, let S1j ⊂ Tr denote the circle subgroup parametrized by z j ,

and let N j denote the fixed-point set of S1j , which is (n − 2)-dimensional. Defining

F2i = ⋂r−i
j=1 N j for each i ∈ {2, . . . , r − 1}, we have a chain of inclusions

F4 ⊂ F6 ⊂ . . . ⊂ Fn−2 ⊂ Mn .

Because each space F2i is a fixed-point component of a circle action on the subsequent
space in the chain, it follows from [67] that each F2i is a cohomology CP2i , and
the generator of H2(F2i ;Z) restricts to a generator of H2(F2i−2;Z) for all i . In
particular, each inclusion induces isomorphisms on cohomology in all degrees less
than the dimension of the submanifold. By the universal coefficients theorem and
Hurewicz’s theorem, it follows that each inclusion is 3-connected. Now F4 is then
homeomorphic to CP2 by Freedman’s classification in dimension four, so we can
apply Theorems 2.7 and 2.9 to conclude that Mn is homeomorphic to CP

n
2 .

We now proceed to the proof that M has the cohomology of CP
n
2 in all degrees.

Since we already know the integral cohomology is correct in degrees up to k + 2,
the rest follows by Poincaré duality if k + 2 ≥ n+3

2 (for proof of a similar fact in
rational cohomology, see [43, Lemma 4.8.(1)]). We may therefore assume k ≤ n−2

2 .
In particular, we have n ≥ 2k + 2 ≥ 8, and hence k ≤ n−2

2 < n − 4. Lemma
6.1 therefore implies the existence of a circle S1 containing a fixed-point component
Nn−2 of codimension two. By Theorem 2.5, the inclusion N ↪→ M is (n − k − 1)-
connected, and by Lemma 2.6, there exists e ∈ H2(M) such that the homomorphism
∪e : Hi (M) → Hi+2(M) is surjective for k − 1 ≤ i < n − k − 1 and injective
for k − 1 < i ≤ n − k − 1. Because M is an integral cohomology CP up to degree
k + 2 ≥ 5, if x ∈ H2(M) ∼= Z denotes a generator, then e = λx for some λ ∈ Z. We
will show that λ = ±1.

Define l ..= � k
2�. Then taking i = 2l above, we have that ∪(λx) : H2l(M) →

H2l+2(M) is an isomorphism if k is even and an epimorphism if k is odd. However,
because M is an integral cohomologyCP up to degree k+2, it follows that this map is
in fact an isomorphism Z → Z in either case. Thus, since xl and xl+1 are a generators
of H2 l(M) and H2 l+2(M), respectively, it follows that λxl+1 = ±xl+1, and hence
λ = ±1. Therefore, M has the cohomology of CPn/2, and the result follows. ��
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7 Fundamental Groups for Maximal Symmetry Rank

In this section, we prove our last main result, which deals with fundamental groups of
manifolds with Ric2 > 0 and maximal symmetry rank:

Theorem 7.1 (Theorem D) Let Mn be a closed, connected Riemannian manifold with
Ric2 > 0 and Tr symmetry with r = ⌊ n+1

2

⌋
. If π1(M) is non-trivial, then one of the

following occurs:

(1) M is homotopy equivalent to RPn or a lens space, or
(2) M has dimension six and, if additionally the universal cover is S3 × S3, then

π1(M) ∼= Zl × Zm for some l,m ≥ 1.

Proof We may assume n ≥ 3, since otherwise the condition Ric2 > 0 is vacuous. We
set � = π1(M) and pullback the metric and the torus action to the universal cover
M̃ . We get a Tr -action on M̃ that commutes with the free action of � on M̃ by deck
transformations. Note that � is finite by Myers’ theorem.

Following the proofs ofTheorem1.1 in [47] andTheoremA in the simply connected
case, we arrive at one of the following situations:

(i) There exists S1 ⊆ Tr such that the fixed-point set M̃S1 has a unique component
Nn−2 with codimension two. Moreover, M̃ is a cohomology Sn or CP

n
2 .

(ii) The universal cover is S3 × S3, and the torus T3 contains a circle S1 whose
fixed-point set is connected and diffeomorphic to T2.

(iii) The universal cover is CP2# . . . #CP2, and the torus T2 contains t = χ(M)

distinct isotropy groups S11, . . . , S
1
t whose fixed-point sets have a unique S2

component.

Indeed, Lemma 6.2 in [47] implies that (i) holds in the odd-dimensional case. For the
even-dimensional case, if the Tr action has no fixed point, then (ii) holds by Corollary
4.4. If instead the Tr action has a fixed point, then the existence statements of (i) and
(iii) were established in the proofs of the simply connected cases and the uniqueness
statements follow from the generalizations of Frankel’s theorem provided by Part 2 of
Theorem 2.5 and Lemma 3.1, respectively.

Suppose first we are in Case (i) and that M̃ is a cohomology Sn , then N is a
cohomology Sn−2 by the sum of Betti numbers estimate (Lemma 2.2). Since the
actions by � and Tr commute, � acts freely on both Sn and Sn−2. It follows that � is
cyclic (see [19, Lemma 1.8]) in general andmoreoverZ2 if n is even. By [41, Theorem
3.4], it follows that M is homotopy equivalent to real projective space or a lens space,
as required.

Next suppose we are in Case (i) and that M̃ is a cohomologyCP
n
2 . By [67, Theorem

7.2], N is a cohomologyCP
n
2−1. Once again, � acts freely on both of these manifolds.

In particular, the order of � divides both of their Euler characteristics. Since these
differ by one, � is trivial, a contradiction.

Next suppose we are in Case (ii). Let S1 be a non-trivial isotropy group in T3 whose
fixed-point set F ..= MS1 consists of a unique 2-dimensional torus. Fix any x ∈ F , and
consider the diffeomorphism T2 ..= T3/S1 → F given by g �→ g · x . Using the inverse
of this map, we obtain another a map � → T2 denoted by γ �→ gγ and determined
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by the property that γ · x = gγ · x . We claim that � → T2 is a group homomorphism.
Given α, β ∈ �, we find that

gαβ · x = (αβ) · x = α · (β · x) = α · (gβ · x)
= gβ · (α · x) = gβ · (gα · x) = (gαgβ) · x,

where we have used that T2 is abelian and that the T2- and �-actions commute. By the
injectivity of the map T2 → F , we find that gαβ = gαgβ , and hence the map � → T2

is indeed a group homomorphism. Since � acts freely, this map is an injection. Hence
� may be regarded as a subgroup of T2, and it follows then that � is either cyclic or a
two-fold product of cyclic groups.

Finally, suppose we are in Case (iii). It suffices to prove that χ(M) = 2, since
then M = S4 and we are in the situation of (i). We suppose then that χ(M) ≥ 3
and seek a contradiction. After possibly relabeling, we may assume that the first two
circles, S11 and S12, have the property that their respective S2 fixed-point components
contain { f0, f1} and { f1, f2}, respectively, where f0, f1, and f2 are distinct isolated
fixed points of the T2-action (see Sect. 3). Since the free �-action commutes with the
T2-action, � acts freely on both of the sets { f0, f1} and { f1, f2}, which contradicts the
assumption that � is non-trivial. ��
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