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Quark counting, Drell-Yan West, and the pion wave function
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The relation between the pion’s quark distribution function, g(x), its light-front wave function, and the elastic
charge form factor, F(A?), is explored. The square of the leading-twist pion wave function at a special probe
scale, ¢y, is determined using models and Poincaré covariance from realistic results for g(x). This wave function
is then used to compute form factors with the result that the Drell-Yan-West and quark counting relationships are
not satisfied. A new relationship between g(x) and F(A?) is proposed.
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Introduction. The structure of the pion continues to be
of interest to many physicists. There are plans to measure
the pion electromagnetic form factor at JLab and at the
planned Electron-Ion Collider (EIC) [1]. There are also plans
to remeasure the quark distribution of the pion, g(x), via
a new Drell-Yan measurement [2]. Much recent and older
theoretical attention has been devoted to determining and
understanding the behavior of the valence pion quark distribu-
tion function, g, (x), at high values of Bjorken x; see, e.g., the
review [3].

Much of the recent interest stems from efforts to un-
derstand the behavior at high x. While many use the
parametrization g,(x) ~ x*(1 — x)?#, there is a controversy
over the value of § and its dependence on the variables x
and the resolution scale, QZ. See, for example, the differ-
ing approaches of [4-7]. Reference [4] finds that B =1 at
low resolution scales, rising to 1.5 at 0* =27 GeV?, while
[7] finds that 8 =2 + y(Q?) with y positive and increas-
ing at Q7 rises. Both sets of authors claim agreement with
the available data set. The small values of S result from
perturbative QCD and the larger values from nonperturba-
tive techniques. Indeed, [5] finds that the value of B8 can
lie between 1 and 2.5 depending on the technique used to
resum the contributions of large logarithms in computing the
relationship between g(x) and the measured Drell-Yan cross
section data. It would be beneficial to find the relation (if any)
between the behavior at large values of x and the underlying
dynamics.

The wide interest in the form factor and distribution func-
tion originates in the early hypotheses of the connection
between the two observable quantities. Drell and Yan [8] and
West [9] suggested a relation between g(x) for large values of
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x and the elastic proton’s Dirac form factor F;(A?), where A”
is the negative of the square of the four-momentum transfer to
the target hadron, at large values of A2. Different aspects of
the wave function are used to compute distribution functions
and form factors, so the relation is very striking, namely

lim g(x) = (1 —x)" (1)
leads to the result

lim F(A%) x

A2—o00

(A2)mt1)/2” 2

with ny the number of partons in the hadron. The F; form
factor is the matrix element of the plus component of the
electromagnetic current operator between proton states of the
same spin. So the proof would provide the same relations
for the pion. This relation between inclusive and exclusive
processes points to a deep underlying connection between two
observables resulting from the underlying light front wave
function.

The Drell-Yan derivation was based on light-front pertur-
bation theory in the infinite momentum frame, and in the
pre-QCD era the degrees of freedom were hadronic. The result
was obtained from assumptions regarding the values of energy
denominators near the endpoints. In particular, the dominant
contributions to the form factor came from the integration
region of high x. West assumed that the wave function has
an asymptotic power-law behavior to obtain his result, while
commenting that the result could be different for other forms
of the wave function. The original papers are heavily quoted
now despite the ancient nature of these relations. Understand-
ing the validity of the underlying assumptions will inform
us about the nature of the wave function and therefore about
confinement.

Another relationship between structure functions and form
factors is obtained from the use of perturbative QCD and leads
to quark counting rules for the proton and pion obtained by
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Farrar and Jackson [10,11] and others, reviewed in [12]. These
are

JICIE)I} q(x’ Q2) x (1 _x)2nH73+2|Av|+Ay’ (3)

lim Fy(A®) x

A?2—00

( AZ)nH—l ’ (4)
with Ay a correction accounting for evolution that vanishes
at a starting scale g%, ny 1s the minimum number of ele-
mentary constituents of the hadron, and we have taken the
number of spectators to be ny — 1. The quantity Ay is the
difference between the z components of the quark and hadron
spin. Thus for a proton the dominant term at high x has
|AS,| = 0 and for a pion |AS;| = 1/2. The two sets of rela-
tions, Egs. (1) and (2) and Egs. (3) and (4), are approximately
the same for the proton at ¢7: namely, g(x) ~ (1 —x)* and
Fi ~ 1/A* with n; = 3. There are two sets of predictions for
the pion g(x) ~ (1 — x)?, F(A?) ~ 1/A? for Drell-Yan West,
and g(x) = (1 — x)?, F(A?) ~ 1/A? for the quark counting
rules.

These storied and valuable quark-counting rules were de-
rived using perturbative QCD using the best techniques of the
1970s. But it is important to recall controversies regarding
their applicability for experimentally available kinematic sit-
uations. See, for example the papers by Isgur and Llewellyn
Smith [13-15] and Radyushkin [16]. Furthermore, computa-
tions were made that were based on assumptions regarding
the non-perturbative quark distribution amplitudes. Contribu-
tions from transverse momenta of exchanged gluons were
neglected, and contributions from the endpoints of integrals
over longitudinal momenta were assumed to be small. Al-
though more advanced work has been done since that time
(see, e.g., the review [3]), we believe that it is worth-
while to examine these rules from a different nonperturbative
perspective.

We now focus on the pion. The current literature tells us
that the relation between the high-x behavior of ¢(x) and the
pion form factor is interesting. We aim to study the connection
between ¢g(x) and the square of the pion valence light-front
wave function.

Light-front analysis. Hadronic wave functions depend on
a factorization scale ¢ at which the hadron is probed. It has
been widely argued that [7,17,18] there is a scale at which
the hadron consists of only valence quarks. These quarks are
linked to quarks of the quark-parton model as objects dressed
by quark-gluon QCD interactions obtained from the quark gap
equation. Gluon emission from valence quarks begins at ¢y
[19]. Thus, at ¢y the dressed valence u and d quarks carry all
of the momentum of the 7™ and each constituent (of equal
mass) carries 1/2 of the pion momentum. The result of every
calculation of pionic properties that respects Poincaré covari-
ance, and the Ward-Green-Takahashi identities along with the
consequences of dynamical symmetry breaking inherent in
the quark gap-equation, has these features. See, e.g., Ref. [20].

In general the pion Bethe-Salpeter amplitude depends upon
four different relativistic pseudoscalar terms, each multiplied
by its own scalar function, see, e.g., [21]. However, the be-
havior of the form factor at large values of A% is dominated
by the “leading-twist” amplitude proportional to y> in which

the quark and antiquark spins combine to zero and there is no
angular momentum. For example, this is the amplitude used
in the classic paper [22] to compute the pion electromagnetic
form factor. Therefore, we analyze only the leading twist
amplitude, the only one that enters at ¢y.

The relation between the light-front wave function, evalu-
ated at the hadron scale ¢7;, is given by

1 d*k
qx) = — / D (x, k), )
7 J x(1—x)

where ®(x, k) is the wave function of the gg component.
The function ® represents the leading-twist component of the
pion wave function, in which the quark and antiquark spins
combine to 0. This component dominates computations of the
high-momentum transfer form factor and the high x behavior
of g(x). The normalization is fol dx g(x) = 1. We drop the
explicit dependence on ¢7 to simplify the equations.

There is a special feature of the wave function at {y.
Rotational invariance requires that ®(x, k, ) is a function of

. . 2 . o _ K4M? .
a single variable, ®(M{), with M5 = m and M is the
constituent quark mass [23,24]. The key point is that in the
two-body sector one may construct a self-consistent repre-
sentation of the Poincaré generators. Both k7 and M? are
dimensionless variables measured in terms of an appropriate
intrinsic momentum scale, A2. Then changing variables to

z = M} leads to the exact result,

q(x) = / L d2e@P. ©)

x(1—x)

A curious feature is that if M = 0, g(x) = 1 in disagree-
ment with realistic extractions of g(x) at the hadronic scale
[7]. Moreover, the idea that there is a scale ¢y goes along with
the feature that spontaneous symmetry breaking causes M to
be significantly larger than its current quark value. Thus we
do not expect that g(x) is constant when evaluated at .

The next step is to take x to be near unity so that

gt~ [, dz1eP ™

I—x

The lower limit is large, M?/(1 — x) > 1. This shows im-

mediately the connection between the large x behavior and

the high-momentum part of the light front wave function. An

interesting relation can be obtained by differentiating Eq. (7)
M2

with respect to x:
MZ
P
(1 —x)? 1 —x

Given a model wave function, one can obtain the high x
behavior of ¢'(x) and thus also that of g(x) at ¢7. Then
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolu-
tion can be used to obtain the structure functions at larger
values of probe scales.

Moreover, the finite nature of ¢'(x) at x — 1 immediately
gives information about the high momentum behavior of the

2

®)

q;a](-x) = -
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pion wave function. Namely,

(75)

where ¢ is a finite number and f(1 — x) is finite as x — 1.
Thus the high x behavior of g(x) tells us about specific fea-
tures of the pion wave function. Can one say more?

Form factors are matrix elements of a conserved current
and so are independent of the factorization scale [25], so that
one may evaluate the form factor using the constraint at ¢p.
Then the form factor is given by the expression

a2k, K2 + M>
Fah =2 /dx/xa—x) (x(l—x))
<(k¢+(1—X)A)2+M2>
x & s
x(1—x)

where the plus component of the spacelike momentum trans-
fer to the proton is taken as zero, so that the momentum
transfer (A) is in a transverse (L) direction.

To see if there is a connection between F(A?) and g(x)
we use model wave functions to compute both quantities.
The connection between wave functions and g(x) is given by
Eq. (6).

It is convenient to use a flexible power law (PL) form:

2

=c(l —x)*f(1 —x), )

lim

x—1

(10)

|D(2)]? Pl (1 =) (11)

K
(z)m+! ’
with n > 1. This form does not build in the asymptotic be-
havior predlcted by using perturbative QCD. However, the
applicability of perturbative QCD to exclusive processes at
nonasymptotic, experimentally realizable values of the mo-
mentum transfer has been questioned [15,16,26-28] for a
variety of reasons including lack of knowledge of the nonper-
turbative part of the wave function, convergence issues, higher
twist effects, and those of Sudakov suppression. Radyushkin
[16] wrote, “for accessible energies and momentum transfers
the soft (nonperturbative) contributions dominate over those
due to the hard quark rescattering subprocesses.” Many of
the problems in computing form factors are related to the
importance of the high-x region that Feynman argued [29]
was dominant. We also note that our current procedure is very
similar to that used in the seminal works of Drell-Yan and
West. The main difference is that tools are available to do
exact integration with results in closed form. Despite progress
in understanding nonperturbative aspects using lattice QCD
(see, e.g., [30]) and Dyson-Schwinger techniques (see, e.g.,
[7,31], we believe that it is worthwhile to examine models of
nonperturbative wave functions.

With n =1, F(A?)~ 1/A3 with Drell-Yan West and
F ~ 1/A? with quark counting. These predictions can be
checked by doing the exact model calculation. We thus expect
the asymptotic form factor to behave as ~1/A?, Eq. (4), if
quark counting is correct. We now check to see if the quark
counting relations are respected if Eq. (11) describes the wave
function.

Note that in the nonrelativistic limit that the integral ap-
pearing in Eq. (10) is dominated by values of x near 1/2, and
if A2 > (M?) then Fap(A?) ~ ®(1/2A%) ~ (1/AH)+D/2in

TABLE I. Asymptotic behavior of F,,. The two leading terms are
kept, and n = 2m — 1.

n lim 2, o, F,(A?)

1 6(In2(A2);4A]2n(A2)+8 . 2(]n(ii)+2))

2 180/ (MZGH"((A@IW) /A )
3 840(3(ln2(A2) 3In(A2)+7) + ’%1n(()AZ) 14)

accord with Eq. (2). This result is similar to the nonrelativistic
arguments presented by Brodsky and Lepage [32]. However,
the region of x near unity is very important because the effects
of a large value of A are mitigated.

To understand this, let us compute the form factor using
Eq. (11) in Eq. (10) with m = (n + 1)/2. Combining denom-
inators using the Feynman parametrization and integrating
over the transverse momentum variable leads to the result

1 1 1— 2m—1 1— m—1
Fu(A?) = CKm/ dx/ Pty il i Cal)) iy
o Jo 1+ A% —x)u(l —u)m!
(12)
with A? expressed in units of M2, and CK,, = %.

brief look at the integrand of Eq. (12) shows why it is difficult
to determine the asymptotic behavior of F(A?). The value
of A? can be taken to be large, but the multiplying factor,
(1 — x)’u(1 — u), can be very small. One must do the integral
first and then take A to be large. Closed form expressions for
F;,, can be obtained for values of m between 1 and 3, and the
asymptotic forms of F,, for n = 1, 2, 3 are shown in Table L.
The results in Table I and Eq. (11) show that the Drell-Yan
West relations (1) and (2) are violated by the logarithms,
which are not related to those of perturbative QCD that
involve the strong coupling constant «s. If one uses the quark
counting relations Eqs. (3) and (4) with Ay = 0 from using
the hadronic scale, and n =2n,, ny =n,+ 1 =n/2+ 1,
then the powers of A? do not match. In particular, if
n = 2 quark counting rules would say F ~ 1/A?; instead we
observe that F ~ In A/A3. Moreover, the appearance of loga-
rithms in Table I shows that the approach to asymptotic limit is
extremely slow. Power law wave functions are not consistent
with quark counting rules, but nevertheless are relevant. This
is because terms like AZ(1 — x)%u(1 — u) appear in the inte-
grals resulting from the evaluation of Feynman diagrams, and
the values of x and u approach unity when evaluating integrals.
Realistic form factors. The next step is to see if the power
law form has any phenomenological relevance. To this end,
we note that g(x) at ¢7 is described as a parameter-free
prediction of the pion valence-quark distribution function in

Ref. [7,31]:
g(x) = 375.32x*(1 — x)*[1 — 2.5088/x(1 — x)

+ 2.0250x(1 — x)]°,

8
= D Cylx(1 - 012, (13)
N=4
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F(A?)

: : : . ~ A? (GeV?)
0.5 1.0 1.5 2.0 2.5

FIG. 1. F(A?) results. Solid curve: model 1, F(A?) of Eq. (10).
Dashed curve: model 2, F(A?) of Eq. (22). The data for A? <
0.253 GeV? are from CERN [33]. The data for higher values are
from JLab [34].

This distribution is defined as model 1. The corresponding
pion wave function can then be written in a more general form
than Eq. (11) as

A
Pz) = —= - (14)

Then, using Eq. (5),

5 8

2
gy == LAl =02 (15)

n=3 N=4
Then A,, is determined by equating Eq. (15) with Eq. (13). The
result is

5 8
qx) =Y > Con,N+2—mlx(1 =", (16)
n=3 N=4

with  C(3,3)=Cs, C(3,4)=Cs, C(3,5 =3Cs—
(T/4PC3/Cs,  C(4,4) = (1/4P°C3/Cs, C(4,5) =T/4C;,
C(5,5) =4Cg, and C(n, m) = C(m, n).

H(x, A*) x

28—1 1 . 1. (1-x)’A?
[(1 —x)x] p 2F1 (57 2,3 - l,ﬂ + 2 (lfx)2A2+4(M2+(17x)x))

The form factor is obtained from Eq. (10) and is given by
5

F(A%) = ) Clnmlu(A?), (17
m,n=3
8n+m N+2 !
L, = ’ dx[x(1 —x)V/*!

B(n/2,m/2) Jo
/1 un/2—l(1 _ u)m/Z—l
X du
o [1=2A201—=x)u(l —u]
with B the beta function. The results are shown in Fig. 1. The
units of A? are converted to GeV? by introducing a mass scale.

We use M = 134 MeV to reproduce measured data.
An alternative model, model 2, is presented in Ref. [20]:

G(x) = 213.32[x(1 — )21 — 2.9342/x(1 — x)
+ 2.2911x(1 — x)). (19)

(18)

This quark distribution can be rewritten in a form consistent
with ®2(M?/x(1 — x)):

(20)

The constants are given by }[V\’—; = 0.0550309 and o =
3.266 54703, and C is for normalization. Note that the end-
point behaviors of the two expressions (19) and (20) are very
different, with the latter ~(1 — x)>?7 instead of an exponent
of 2. Nevertheless, the first 11 moments are reproduced to
better than 1%, and the next 5 to better than 2%. The two
distributions are experimentally indistinguishable, showing
the elusive behavior of the endpoint behavior of g(x).

Using Eq. (6) yields the square of the wave function to be

aC
A2a(1 + Z)I-Hx :
Then using Eq. (10) the form factor is found to be

1 1
F(A2)=K/ dx/
0 0

X du

P2(z) = @21

(1 — x)]%[u(l — w)]2@D
[x(1 — x) + M2 + A2(1 — x)2u(l — u)]*’
(22)

Integration over u leads to the generalized parton distribution
H(x, A?):

where 8 = (1 4+ «)/2 and , F; is the hypergeometric function
and H(x, 0) = G(x). Both M? and AZ are given in units of AZ.
We choose A% = 0.36 GeV? to reproduce data. This corre-
sponds to M = 140 MeV.

The results for both form factors are shown
in Fig. 2. There are significant differences

) (23)
(4IM2 + (1 — x)x] + A2(1 —x)2) %
(
in the region that is not yet experimentally
explored.

Conclusions. If the nonperturbative pion wave function can
be modeled as a power-law form, or if the high-x behavior is
important for computing the form factor, both the Drell-Yan
West relations and quark counting rules for the pion are not
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A’F(GeV?)
0.6}
sphwEit ;o] |
o.2é

: : : = A2 (GeV?)
10 20 30 40

FIG. 2. A%F(A?) in units of GeV?. Solid curve: model 1, F(A?)
of Eq. (10). Dashed curve: model 2, F (A?) of Eq. (22). The projected
error bars for the data points between A? = 0.375 and 6 GeV? are
from [35] and Huber (private communication). The projected error
bars for the data points between A2 = 8.50 and 15 GeV? are from
[36] and show what might be possible at a 22 GeV facility at JLab.
The projected error bars for higher values of A? are from Huber
(private communication) and [37]. In each case the values of F(A?)
are arbitrary.

completely correct. Based on our calculations we propose that
the Drell-Yan West relations should be modified to

In(A?)

: — _ ny 2 ~
lim g) = (1 =" — R(A) ~ o

(24)

with g(x) evaluated at the hadron scale {7, and with the
logarithm, which is the new feature, not accompanied by a
factor involving the strong coupling constant, og.
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